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Abstract

We consider a linear finite dimensional control system depending on unknown parameters. We aim
to design controls, independent of the parameters, to control the system in some optimal sense. We
discuss the notions of averaged control, according to which one aims to control only the average of the
states with respect to the unknown parameters, and the notion of simultaneous control in which the goal
is to control the system for all values of these parameters. We show how these notions are connected
through a penalization process. Roughly, averaged control is a relaxed version of the simultaneous
control property, in which the differences of the states with respect to the various parameters are
left free, while simultaneous control can be achieved by reinforcing the averaged control property
by penalizing these differences. We show however that these two notions require of different rank
conditions on the matrices determining the dynamics and the control. When the stronger conditions
for simultaneous control are fulfilled, one can obtain the later as a limit, through this penalization
process, out of the averaged control property.

Résumé

Nous considérons un systeme de controle linéaire de dimension finie dépendant de parametres incon-
nus. L’objectif est de construire des controles indépendants des parametres afin de controler le systeme
en un sens optimal. Nous discutons la notion de contréle moyenné, dont le but est de controler seule-
ment la moyenne des états par rapport aux parametres, ainsi que la notion de controle simultané, dont
I’objectif est de controler pour chaque parametre I’état du systeme associé & ce parameétre. Nous mon-
trerons que ces deux notions peuvent étre connectées par le biais d’un processus de pénalisation. Plus
précisément, la propriété de controlabilité en moyenne est une relaxation de la propriété de controlabilité
simultanée. Pour la notion de controlabilité en moyenne les écarts entre les états par rapport aux
parametres sont laissés libres tandis que ces derniers sont forcés pour la notions de controlabilité si-
multanée. Afin de relier le controle moyenné au contrdle simultané, ce seront ces écarts qui seront
pénalisés. Cependant, ces deux notions de controle requirent différentes conditions sur les rangs des
matrices déterminant la dynamique du systeme et le controle. Lorsque la condition de rang pour le
controle simultané est satisfaite, nous montrerons que le controle simultané peut étre obtenu a partir
du contréle moyenné, comme limite de ce processus de pénalisation.
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1 Introduction

We consider a parameter dependent control system:
Yo = Agyc + Bew (£ €(0,T)), (1.1a)
yc(0) =ye. (1.1b)
In order to fix the notation, all along this paper, ¢ €  is a random parameter (the system’s parameter)
following a probability law u, with (€2, F, 1) a probability space (in particular, u(€2) = 1), X = R" is the
state space and U = R™ the control one. We assume that for every ¢ € Q, A¢ € £(X) and B¢ € L(U, X).
The control ¢ — wu(t) € U is assumed to be independent of the parameter ¢ whereas the state

ye(t) = ye(t;u) € X is time and parameter dependent. In addition, by Duhamel formula, yc can be
represented as follows:

T
ye(t;u) = et eyt +/O DA Bau(s)ds  (CeQ, t>0, ue L} (R, U)). (1.2)
Let us also define the space:

L@, X p) = {<y<>< e x, [ el duc} | (13

which is an Hilbert space endowed with the scalar product:

(Ves 20) 1200, x310) Z/Q<Y<7ZC>X due  ((vo)es (ze)c € LP(92, X5 1)) - (1.4)

In we introduce precise conditions on ( — (A¢, B¢) ensuring that for every ¢ > 0 and
every u € L7 (R, U), (ye(t;u))e € L*(Q, X; ) whenever the parameter-dependent initial data satisfy

(ve)e € L2(Q, X5 ).
This paper is devoted to analyse the following controllability problems.

e Averaged controllability: The system is said to be averaged controllable in time 7" > 0 if, for
every (yé)g € L?(Q, X; ) and every y/ € X, there exists u € L?([0,T],U) such that:

/ch(T; w)dpe =y’ (1.5)

In other words, averaged controllability is the control of the expectation of the system’s output.

This notion is illustrated on

¢ Exact simultaneous controllability: The system is said to be exactly simultaneously controllable
in time 7" > 0 if, for every (yz)g, (yg)g € L?(9, X; i), there exists u € L2([0,T],U) such that:

y(Tiu) =yl (C€Q p-ae), (1.6)
This notion is illustrated on



e Approximate simultaneous controllability: The system is said to be approximately simulta-
neously controllable in time T' > 0 if, for every (yé)c, (yg)c € L*(Q, X;u) and every ¢ > 0, there

exists u € L2([0,T],U) such that:
£112
QHyc(T; w) = y7 | due <e. (1.7)

This notion is illustrated on

parameter dependent trajectories parameter dependent trajectories

parameter dependent trajectories

(a) Averaged controllability. (b) Simultaneous controllability. (¢) Approximate Simultaneous
controllability.

Figure 1: Different controllability notions, introduced in ([L.5)), (1.6) and (1.7]), for parameter dependent

systems, with initial condition and target independent of (.

Remark 1.1. 1. Even if the system (1.1)) is controllable in average, this fact does not give any infor-
mation on the variance of the outputs.

2. There is no natural ordinary differential equation describing the average Y (t) = [ yc(t) dpc, except
when A¢ is independent of ¢ for which we have: Y = AY + (fﬂ B d,ug) w. In this particular case,
the averaged controllability property is equivalent to the controllability of the pair (A, fQ Bedpg).

3. It is obvious that the exact simultaneous controllability property implies the averaged controllability
and the approximate simultaneous controllability ones. In addition, one can find systems which are
controllable in average (resp. approximatively simultaneously controllable) which are not exactly

simultaneously controllable, see for instance |Example 4.2 (resp. |Example 3.1)).

Moreover, the approxzimate simultaneous controllability property implies the averaged controllability
one. In fact, the approximate simultaneous controllability property ensures that given T’ > 0, (y’g)g €

L*(Q,X;p), y' € X and e > 0, there exists u® € L*([0,T],U) such that
2
[y (T5u%) — nyLQ(Q,X;,u) SE

But, by Cauchy-Schwarz inequality,

2
< [ llve(rsu) = 7| duc.
X Q

H/Q(yc(T; u) —y7) due



Thus, the system is approximatively controllable in average i.e. the linear and continuous map
®:ue L*[0,T,U) — [, fOT et DABeu(t) dtdu; € X has a dense image in X. But since X is a
finite dimensional vector space, we obtain Im® = X, i.e. the system is controllable in average.

A proof using probabilistic arguments can also be given. More precisely, approrimate simultaneous

controllability in time T' > 0 means that for every (yg)g € L?(Q, X; p) and every € > 0, there exists

u® € L*([0,T),U) such that HyC(T; u®) — yg < g, that is to say that the sequence of random

L2(Q,X;1)

variables ((y¢(T;u))¢),. converges in mean square to the random variable (yg)g as € goes to 0. This
convergence in mean square implies the convergence in law and hence the convergence of all finite
momenta and, in particular,

e—0

lim QyC(T;ua)ducz/ngdluc.

In the spirit of the above paragraph, if there exists u € L2([0,T],U) such that the family of random
variables ((ye(t; “))C)te[o 7) converges in law to (yg)c as t goes to T', then the averaged controllability
property holds. Let us mention that this convergence in law is a weaker notion than the exact

stmultaneous controllability one (corresponding to the mean square convergence).

. When Q = {(1,---,Cx} is of finite cardinal, the simultaneous controllability is equivalent to the
classical controllability one for the augmented system:

y=Ay + Bu,
with:
Y& AC1 0 BC1
y= : , A = and B = :
Yix 0 ACK BCK

And the controllability of this system is equivalent to the Kalman rank condition:

rank [B AB - AKdimX*lB} — Kdim X .

. In the previous item, we have seen that the simultaneous controllability property when the cardinal
of Q0 is finite can be interpreted in terms of a classical rank condition. But, when § is infinite, the
output of the system is the function ¢ € Q — yc(T) € X, living in an infinite-dimensional space.
The first issue to be addressed is the choice of the norm in that space.

In the following, we choose the L?-norm. Accordingly, the fact that ye(T) = yg holds for almost

every ¢ € Q) with respect to the measure p is guaranteed by the fact that / HyC(T) — ng?X dpe = 0.
Q

This choice is natural, since in the particular case where yg = y/ is independent of ¢ and

/ ye(T) dpe = yf, the integral / HyC(T) — ngi dpug is the variance of the system’s output.
Q Q

Thus, the L?-norm approach is natural from a probabilistic point of view but one could also use
any LP(Q2, X; p)-norm. In the next item, we mention some ezisting literature when considering the
L*>*-norm.



6. For parameter dependent systems, the notion of ensemble controllability is also commonly used (see
for instance [3, [0, (13, [17]). A system is said to be ensemble controllable in time T > 0 if, for every

e and every yé,y{ € X, there exists u € L*([0,T],U) such that:
luc(Tiw) —vl||ly < (CeQ). (1.8)

This notion of ensemble controllability, which does not seem to have a probabilistic interpretation, is
similar to our notion of approximate simultaneous controllability above, where the L*(), X; 1)-norm
is replaced by the L> (8, X) one.

In [3], U. Helmke and M. Schonlein extended this notion to the one of LP-ensemble controllabil-
ity, for p € [1,00]. For p = 2, the L?-ensemble controllability corresponds to our approximate
simultaneous controllability defined by . More precisely, the system 1s said LP-ensemble
controllable if for every e > 0, there exists u : [0,T] — R such that:

1€ = (ye(T5u) - y{) HLP(Q,X) S€E. (1.9)

In [3], with Q = [(™,("] a compact subset of R and p the Lebesque measure, the authors give a
necessary and sufficient conditions for the system (1.1)) to be LP-ensemble controllable.

Controlling the average (or the expectation) of a parameter dependent system is not a new prob-
lem. It has been previously studied when a classical control system is perturbed by an additional drift
(V. A. Ugrinovskii [18], A. V. Savkin and I. R. Petersen [12], I. R. Petersen [10]). We present here a differ-
ent frame for which the uncertainty is inside the system itself, and not due to some external noise. Taking
into account that we only know the probability distribution of the unknown parameter, it is natural to
try to control the expectation of the output of the system.

In [19], it has been shown that the averaged controllability property is equivalent to a Kalman rank
condition of infinite order. However, even if the average of the system is controlled, this fact does not
ensure that the output of system is close to the desired target for any specific realisation of the parameter.
Of course, the ideal situation arises when all the parameter dependent trajectories exactly reach the desired
target. This corresponds, precisely, to the notion of simultaneous controllability.

Classically, the simultaneous exact controllability property corresponds, by duality, to the one of simul-
taneous exact observability (see . However, when 2 is an infinite dimensional set, those properties
are difficult to check in practice. This is why, in this article, we show that, if the simultaneous control-
lability property holds, then the approximate simultaneous control can be achieved from the averaged
controls by means of a penalisation procedure and at the limit, when the penalizing parameter goes to
00, we recover the simultaneous control.

The notion of simultaneous controllability was introduced by D. L. Russell [11] (see also J.-L. Lions [7,
Chapter 5]) for partial differential equations. As mentioned above, when dealing with finite dimensional
systems and when the parameter ranges over a finite set, the problem can be handled through classical
rank conditions. However, the issue is much more complex when the parameter ranges over an infinite
set.

The averaged controllability property has already been tackled by E. Zuazua et al [19, [4), 9] for some
relevant PDE models. However, the link between the averaged and simultaneous controllability in that
setting has not been yet developed. The tools developed here could be used to handle PDE and, in
general, infinite-dimensional systems, but this requires further efforts.



In general, the simultaneous controllability problem is set in an infinite dimensional space (this holds
when the cardinal of €2 is infinite). In infinite dimensional spaces the choice of the norm is important and
an appropriate choice has to be done. According to the h item of we chose the weighted
L?-norm, that corresponds to the variance. More precisely, the simultaneous controllability property
holds if:

/QHyC(T)—ngiduczo. (1.10)

Consequently, in we introduce the parametrized optimal control problems:
. 1 r 2 2
win Jolu) = [ Ol de+ o [ ) 32 dne

/ Yo (T u) dpe = / v dpe
Q Q

with y¢ the solution of with control v and initial condition yé.

We will see in that, at the limit x — oo, the minimum u, is a control which minimizes the
variance of the system’s outputs. For instance, we will see that if the sequence (7, (u)), is bounded then
the sequence (uy ), converges to a control us which solves the minimisation problem:

(’4’20)7

.1 T 5
min - llu(t)||z dt
2 Jo

[ (0 = 5L B duc =o.

In other words, us is the HUM control (the control obtained from the Hilbert Uniqueness Method) for
the simultaneous control problem.
More generally, the result of can be summarized in where we have defined

(V)¢ € L?(, X; ) as the minimizer of ||y. — ngN(Q,X;M) under the constraints /ch dpe = /ng dpe
and (y¢)¢ € {yc(T;u), we L2([0,T],U)}.

(H?JC(T3 Uy) — yéHLQ(Q,X;u))n

converge to 0 \ do not converge to 0
simultaneous exact controllabilit
P bounded simultaneous exact controllability N Y
N to Y¢
E nbounded simultaneous approximate controlla- simultaneous approximate controlla-
= | unbounde bility bility to y}

Table 1: Possible behaviors as kK — oo, with yz defined by (4.4).

This penalty argument is natural and has already been used in control theory. In J.-L. Lions [§] it
was used to achieve approximate controllability as the limit of a sequence of optimal control problems
(see also L. A. Fernandez and E. Zuazua [2] for semi-linear heat equations). This penalty method has
also been used numerically, for the numerical approximation of null controls for parabolic problems (see
F. Boyer [1]).

This paper is organized as follows.



In we give some conditions on A¢, B¢ and yé ensuring that the problem we are consider-
ing is well defined. Then, in we recall some known results about averaged controllability and
we describe the duality approach for simultaneous controllability. In we present the penalty
method and give some convergence results. More precisely, in this section we prove the main theorem
(Theorem 4.1)) of this article. Then, in we present some results for a further numerical develop-
ment of the case where  is a countable set. Finally, in we conclude this work by some general
remarks and open problems.

2 Admissibility conditions

In this section, we give some conditions ensuring that [, y¢(¢) dpe and [, [|ye(t)]|* dpe are well defined.

Let us consider the Hilbert space L?(2, X; 1) defined by (1.3). Using Cauchy-Schwarz together with

f&z I C ? :
Q

Thus, in this paragraph, we only give conditions on A¢, B¢ and p such that [y¢ ()|l 120, x;,) < o0 and in
all this article, we assume that initial and final condition are elements of L?(£2, X; ).

By Duhamel formula, the solution y¢(t) = y¢(t;u) of (1.1) is given by (1.2), i.e.,

2
<yelle@uy () € LR X3 ).
X

¢
ye(tiu) = etACyz- —i—/o e(t_S)ACBCu(s) ds (e, t=0).
Lemma 2.1. Set (A¢)ceq € L(X). For every T > 0 and every ( € Q, there exists sc(T) > 0 such that:

A*
[ty < <@ivlx (e X).

Assume:
(T) < o0 (CeQ p—ae). (2.1)

Then for every T > 0, there exists <(T) > 0 (s(T') = sup<sc(T)) such that:
Cen

1Y s < SOz (i) € L2 X)) (22)
Proof. The existence of ¢¢(T) is clear. The result follows from Cauchy-Schwarz inequality. O

Example 2.1. If for every ( € Q, A is skew-adjoint, then (2.2)) holds with <(T') = 1. (In this case, we
have ¢c(T)) =1 for every ¢ € §2.)

Lemma 2.2. Set (A¢)ceq € L(X) and (Be)cea € LU, X)®. For every T > 0 and every ¢ € Q, there
exists a constant C¢(T) > 0 such that:

. 2
/0 T DA Beu(t) dt|| < Ce(T)lulla o0
X
Assume that:
| e < oe. 2
Q

7



Then for every T > 0, there exists C(T) > 0 such that:

J

Proof. The existence of C¢(T") > 0 independent of u is classical. The result follows from Minkowski and
Cauchy-Schwarz inequalities. 0

. 2
/ T DA Bay(t)dt]|  due < Cullfzqoryey — (we L([0,T,0)).
b%

0

Thus, if A; and B, satisfies the assumption of lemmas and then for every (yé)g € L2(Q, X; ),
y(T;u) defined by (1.2)) is an element of L?(Q, X; ).
From these two lemmas, we can derive the following corollaries:

Corollary 2.1. Assume Card§) < oo and set ¢ € Q — (A¢,Be) € L(X) x L(U,X), then for every
(yé)g € L*(Q, X; ), and every w € L (Ry,U), the solution y¢(t;u) of (L.1)) belongs to L*(Q, X; ) for
every t > 0.

Corollary 2.2. Assume Q2 C R? is a bounded set and assume the map ¢ v (A¢, Be) is continuous on

co(R2), with co(Q2) the smallest convex set containing €.
Then for every (yé)g € L*(Q, X;u), every u € L2 (Ry,U) and every t > 0, the solution y¢(t;u) of

loc
(T.1)) belongs to L*(Q2, X; p).

Proof. Since X and U are finite dimensional spaces, for every ¢ € co(f2),

2

T

()= sup ["eeTAey|| and  CT)=  swp \ / T4 Beu(t) dt
IIyﬁX71 X ueL2([0,71,0), IIJo X
Yliix=

lell 22 o, 7y,0) =1

are well defined for every ¢ € co(Q) and every T > 0.

Moreover, since ¢ € co(Q) — (A, Be) € L(X) x L(U,X) is continuous, the map ¢ € co(2) —
(s¢(T),Ce(T)) € R? is continuous, thus bounded.

The result follows from lemmas 2.1] and 2.2 O

Remark 2.1. Even if [Corollary 2.1 can be proved directly, it can also be seen as a consequence of
Corollary 23

Corollary 2.3. Assume A; skew-adjoint for every ¢ € Q.
If/QHBCH%(U,X) due < oo, then for every (yé)g € L*(Q,X;pn) and every u € L? (R4, U), the solution
ye(t;u) of (L)) belongs to L*(Q, X; u) for every t > 0.

Proof. According to [Lemma 2.1| and [Example 2.1, we have (6tAcy2>< € L?(Q,X;p). In addition, we

have:

! t A ! t A !
’ /0 6( —5) CBCU(S) ds N < /0 ‘6( —s) CBCU(S) " ds = /0 ||BCU(S)HX ds < \/EHBCHE(U,X) Hu||L2([O,t],U) .
Thus the assumptions of are fulfilled. O



3 Duality approach and Kalman rank conditions

Here and in the sequel we assume that the hypotheses of lemmas [2.1] and [2.2] are satisfied.

3.1 State of the art for averaged controllability

Let us recall some known results on averaged controllability for finite dimensional systems. These results
are taken from [19].

Theorem 3.1 ([I9] Theorem 1). System (1.1) fulfills the averaged controllability property (1.5) if and

only if the following rank condition is satisfied:
rank {/ (A¢Y Bedpe, j > 0] =dim X . (3.1)
Q

This result is based on duality arguments. More precisely, we introduce the (parameter dependent)
adjoint system:

e =Afze (e (0,7)), (3.2a)
2(T) =27 (3.2b)

Notice that even if this system depends of the parameter ¢ the final condition zf is independent of (.
The next result makes the link between averaged controllability, and averaged observability and gives also
a link between the adjoint system and the control of minimal L?-norm.

Theorem 3.2 ([I9] Theorem 2). System (1.1) fulfills the averaged controllability property (1.5) if and
only if the adjoint system (3.2)) satisfies the averaged observability inequality:

i it (zf € X), (3.3)
U

5 T
dnwwx<A

/ Bez(t) dpc
Q

where &(T) > 0 is a constant independent of z7.
In addition, both conditions are equivalent to the rank condition (3.1]).
When these properties hold, the averaged control of minimal L*([0,T], U)-norm is given by:

ut) = [ Bz (te0.1)). (3.4)
where {Z¢}¢ is the solution of the adjoint system (3.2]) corresponding to the datum 2l € X minimizing the

functional:

J: X — R

zf — 1/T (3:5)
2 Jo

2
dt = (572 o+ [ (5 2c0)) .
U

/Q Bac(t) dug



3.2 Observability inequality for exact simultaneous controllability
Let us define for every ¢ € 2 the adjoint system of :
—z¢ = Az (te (0,7)), (3.6a)
2(T) =2 (3.6b)

If the system (|1.1)) is simultaneously controllable then for every (zg )¢ € L*(, X; ),
_ b _
(0eT) =) () 1oy =

That is to say:

T .
/0 <u<t>, | Be du<>U At = (0D (D) gy ~ {00 (5 O))

Let us then define the cost function J by:
I L2, X;n) — R

1 T
(), 2/0

where z¢ is the solution of .
The only difference between the cost functions defined by for averaged controllability and for
simultaneous controllability is that, for simultaneous controllability, we allowed the final condition of the
adjoint system to depend on the parameter (.

Assuming that J has a minimizer (z¢)¢ € L?(2, X; 1), we obtain, by computing the first variation of J,

2

; 3.7
Car= [l dnes [ Gty dne. O

/Q Bzc(t) dug

a(t) = /Q Br(t)dpe (1€ 0.T] ae). (3.9)

It is clear that J is convex. Thus, proving the existence of a minimizer (zg) ¢ € L2(Q, X;p) for J is
equivalent to showing that J is coercive, i.e. to the existence of a constant ¢(7") > 0 such that:

e(n/ﬂuzguidﬂgg/OTH/QB;zC@)dM

where z¢ is the solution of (3.6) with final condition zg .
Summarizing this discussion, we end up with:

Theorem 3.3. System fulfills the exact simultaneous controllability property if and only if
the adjoint system satisfies the exact simultaneous observability inequality .

When these properties hold, the exact simultaneous control of minimal norm is given by , where
Z¢ 1is the solution of with final condition ig and (ig)c € L%(Q, X; ) is the minimizer of J defined
by .

Let us notice that very few systems have the property of simultaneous controllability. When card € is
finite, the situation is clear since simultaneous controllability follows from a Kalman rank on an augmented
system (see h item of [Remark 1.1). But when card (2 is infinite, the situation more complex and we
have from [16, Theorem 3.3.1],

2
i} dt ((#)), € (2, X)) . (3.9)

10



Proposition 3.1. If L?(Q, X;u) is an infinite dimensional space, then the system (1.1]) will never be
exactly simultaneously controllable.

Example 3.1. Let (i )nen+ be a nonnegative sequence of real numbers and (¢, )nen+ of real numbers and
assume that ) -« pin = 1 and G, # (m for every n # m. Let us then define Q = {(,, n € N*} and the
probability space (Q, P(2), 1), with the measure p defined by p({¢n}) = pn and consider the system

Yo =—Cyc+tu (C€Q).

According to|Proposition 3.1|, this system is not exactly simultaneously controllable, although the truncated
system in which we consider ( € {C1,---,(n} with the probability measure p given by u™ ({¢}) =

({41{7%, for ¢ € {C1,- -+, (N} is simultaneously controllable, whatever N € N* is

In fact, for this truncated system, the precise values of the measure p are not important since its
simultaneous controllability can be understood though the augmented system:

d

Y&, - Cl 0 Y 1
a =

Yew 0 v/ \ew 1
The Kalman matriz of this system is:

1L =G o (=N
1 =y oo (=)

which is a Vandermonde matrixz of determinant H (G —¢)#0

1<i<j<N
Let us now assume that Z < oo and p, # 0 for every n € N*. Under this assumption, we will
neN* Cn|
Cn#0

prove that this system is approximatively simultaneously controllable in any time T > 0. In order to prove
this result, we have to show the unique continuation property:

/Ze 2h1in

neN*
This property directly follows from Miintz’s theorem, see for instance [1]), §12, p. 54].

2
dt =0 = VYneN*, z/ =0.

[Proposition 3.1] tells us that it is impossible to build dependent parameter systems which are exactly
simultaneously controllable (unless dim L?(2, X;u) < oo). However, as we have seen, the averaged
controllability property holds for a variety of models. Consequently, it is natural to look for averaged
controls which are optimal in the sense that they minimize the output’s variance. This is the core of

section 41
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3.3 Momentum approach for simultaneous controllability

In we gave a necessary and sufficient condition, , for simultaneous controllability. However, even
on simple problems, it is difficult to check whether this condition is satisfied or not. In this paragraph, we
present an iterative approach to check whether the observability inequality is fulfilled or not. The
method presented here can also be seen as an alternative method to the one we proposed in the rest of
this paper (see in order to link averaged controllability to exact simultaneous controllability.

To simplify the notation we define the operator E € £(L?(Q, X; u), X) by:

E(yc)e = /ch due — ((vo)e € L*(Q, X3 1)) - (3.10)

Notice that we have E*z = (z)¢ and EE* = Idx.

Let us first remind that proving the averaged controllability property is equivalent to proving that the
cost function J defined by is coercive and proving the exact simultaneous controllability is equivalent
to proving that the cost function J defined by is coercive. In addition, we have also noticed that
we have J = Jo E*, where E is given by . Thus, proving that J is coercive means proving that the
restriction of J to the subset E*(X) = {( € Q> y € X, y € X} of L*(Q, X; ) is coercive.

Let us also notice that since L?(2,R;u) is an Hilbert space, one can define an orthonormal basis
(pi)ier (with the convention 0 € I and o = 1) of this space. Based on the above construction of E, we
define for every i € I, the operator E; € L(L?*(, X; i), X) by:

Ei(yo)e = /ch%-(é) due  ((vo)e € L2, X; 1) (3.11)

so that L*(Q, X; 1) = @ E;(X).

el
Let us assume that L?(,R; ) is a separable Hilbert space, that is to say that we can choose I = N (if
L*(Q,R; p) is of infinite dimension) or I = {0,--- ,d} C N (if L*(Q,R; ) is of dimension d). For every
k € N, we define the finite dimensional subspaces Vj, of L?(Q, X; i) by:

k

Vi = @PE;(X) C L*(Q,X;p). (3.12)
1€l
i<k

Let us also define the constant ¢ (7)) > 0 by:

2

T
/ /BZZC(t) dpe|| dt
en(T) =  inf 0 Qf . U (k e N), (3.13)
(#z0)cevi\{0} HZCHLQ(Q,X:M)
that is to say:
T 2
A 2 %

ck(T)/QHngXd,ucg/o H/QBCZC(t)d,u,C dt (keN (4). eV, (3.14)

U

with z¢(t) the solution of the adjoint problem ([3.6) with final condition z¢(T") = z{ € Vi.
Thus, if é,(T) > 0, J is convex and coercive on V.

12



Since Vi C Vi1, the sequence (¢éx(T))ken is decreasing. In addition, one can easily convince that if
klim ¢k(T) > 0, there exists ¢(T) > 0 (¢(T) = klim ¢x(T)) such that:
—00 —00

2
§ dt ((#)), € (2, X)) -

é(T)/QHZgHidW</0TH/QBZZ<W“C

That is to say that J is convex and coercive on L?(£), X;u) and hence we have exact simultaneous

controllability. Moreover, as k goes to infinity, the minimizing family (z£ C)C € Vi of the restriction of J to

the finite dimensional subspace Vj, of L%(Q2, X; i), converges to a minimizing family (2¢)¢ € L*(Q, X; u)
of 3 on L?(Q, X; ).
Summarizing the above discussion, leads to the following:

Remark 3.1. Assume that L*(Q, X; u) is a separable Hilbert space.

1.

2.

3.

If the system (1.1) is approxzimatively simultaneously controllable, then ¢ (T) # 0 for every k € N.

If klim ¢ > 0, then the system (1.1) is exactly simultaneously controllable.
—00

According to [Proposition 3.1), unless dim L?(Q, X; ) < oo, we have klim ¢ = 0.
—00

. Let us mention that the property (3.14]) corresponds to a Kalman rank condition.

More precisely, (Zg)C € Vi means there exists (z97)j—o.... x € X**1 such that Zéc = ©; ()2 . Let

k
us then denote by zz the solution of (3.2)) with final condition z7f. Due to linearity, the solution 2¢
of (3.6 with final condition zg 18:

k k
(1) =D (Ol =Y ()T 2
j=0 =0

Finally, since we are in a finite dimensional space the coercive property (3.14) is equivalent to the
uniqueness property:

k
/QB&k Z goj(C)e(T_t)AZ 2 dpe =0 (te€]0,7] a.e.)
Jj=0 )
— =0 (je{0,--,k}).
We conclude by time analyticity that (3.14)) holds if and only if:
rank U (A)'Bedpe, 1€N| =(k+1)dimX,
Q

where we have defined:

A¢ 0 o(€) B
Ac = e L(XMY  and B = : € L(U, X" (Ceq).

0 Ag ‘Pk(C)BC
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5. When Card Q) < oo, the moments are solution of an ordinary differential equation.
More precisely, consider Q = {1,---, K} with measure p given by p({k}) = 0 with 0, € (0,1)
and Zle 0 = 1. Let us consider an orthonormal basis {po, - ,0x_1} of L*(,R; ) (with the
convention, @o(k) = 1). Then the i™-momentum is:

K
Y= Okpi(k)ye =Mily (i €{0,--- K —1}),
k=1

with:
U1
y={ | ex®, M= (w)Voldx - ei(K)Vigldx) € L(XF, X)
- VO Idx 0

and 1= EE(XK)-
0 VOrIdx

Thus, setting:

M Ay 0
M = cL(XE), A= € L(XT)
Mg 1 0 Ak B,
and B=| : | e LU XK),
Bk
Yo
the momentums Y = : satisfies (noticing that MM = Id yx ):
Y 1
Y = MIAI"'M" Y + MIBu. (3.15)

Controlling the first k momentums of (yr)r means controlling the first kdim X components of Y,
solution of (3.15).

Since the basis po,p1,- -+, 0Kr—1 1S free (except pg = 1) one can consider the problem of finding
the best possible basis. For instance we can wonder if there exists p1,--+,px—1 such that the
pair (M]IA]I_IMT, M]HB) has a normal form (see [15, Proposition 2.2.6]). That is to say find

@1, @r—1 such that MIAI"'M" has the structure <* :) and MIB the structure <3>

0

4 A penalty method linking averaged and simultaneous controllability

As in all this paper, we assume in this section that the assumptions of lemmas and are satisfied.
In this section, we will present our strategy to link averaged controllability to exact simultaneous con-
trollability. First of all, solving the averaged control problem, can be done with the Hilbert Uniqueness
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Method, that is to say minimize the L?-norm of the control with the constraint / ye(T)dpe = / yg dpe.
Q Q

Thus, using Euler-Lagrange formulation (or directly [Theorem 3.2)), one can see that the averaged control
of minimal L?-norm is given by ([3.4).

In order to reduce the output’s variance, one can think to penalise the cost function Jy (given by
. , . 2 .
Jo(u) = %HUH%Q([O,T},U) with the output’s variance, /QHyC(T) — ngX dpc. Thus, we introduce the penal-

ized optimization problem:
. 2
min T (u) = 3llu(t)l|72 00,00 + #l|uc(Tiu) - ngL2(Q,X;,u) (r
E(yc(T;u) —yl) =0.
Ye\ds YC

where in the above, y, is the solution of (L.1)) defined by (1.2)) with control u, L*(Q2, X; u) is the Hilbert
space introduced in (1.3) and E is the expectation defined by (3.10]).

Let us give an existence result.

>0), (4.1)

Proposition 4.1. If system (1.1)) satisfies the averaged controllability property (1.5) then for every T > 0,

(yé)g, (yg)c € L?(Q,X;p) and k > 0, the minimisation problem (&.1) admits one and only one solution

we € L2(0,T],U).

In addition, the optimal control u, satisfies:

wlt) = [ Bezduc (€T, (4.2)
where, z¢ 1s solution of:
fo=—Alze,  2(T)=z+yl —y(Tiu), (4.2b)
with z € X unknown.

Proof. For every k > 0, it is clear that J is convex. Since we have assumed that the system ((1.1)) satisfies
the averaged controllability property (1.5]), this ensure that the set:

{ue 2(0,1,0), E(y(Tsu) - y{) =0}

is non empty and in addition, this set is a convex and closed set of L?([0,T],U). Moreover, the averaged
controllability property ensure that [Jp is coercive on this set and consequently J, is also coercive on this
set. Thus, there exists a unique minimizer u,, € L?([0,T],U) for the minimisation problem (4.]).

Let us now prove the optimality conditions. Let us define the Lagrangian of the system:
L(u,z) = Ju(w) + (z, E(ye(Tiu) —y0))x  (we L*(0,T],U), z € X).

The optimality conditions are:

0,L=0 and 0,L=0.

But we have, 0,L(u,z) = u + / BZe(Tft)Az (z + ye(T;u) — yg) dp¢. That is to say that, the optimal
Q
control u, should satisfy (4.2)). O
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Of course, we have introduced the cost functions 7 in order to pass to the limit k — oo.
Let us first state a trivial statement:

Lemma 4.1. Set T' > 0 and assume the system (1.1)) is controllable in average.
For every k > 0, let us define u,, the minimum of J,. under the constraint ]E(yC(T, Up) — yg) =0.
Then, we have:

sl 20,0y < lus+ell 2o,y and

lye(Ts ) = yE e, xim) = (T unre) = ville@xm (5,2 >0).

In addition, for every k > 0, we have:

[y (T, ux) — ngLQ(Q,X;u)
= min { [l (T3) = || oy @ € U0 TLU), Nl 2oy < lll 2o
and E(yc(T;u) — yg) = 0} . (4.3)
Proof. It remains clear that for every x,e > 0, we have:

jf@(un) < jﬁ(uﬁ—l-E) < \7/{+6(uﬁ+6) < jl{—‘—e(uﬁ) .

Thus from, J () +Tte (Upte) < Ti(Upte)+Trte(Ux), it is easy to see that (”?/C(TQ Uy) — y{HLQ(Q7X;M)>

is decreasing and then, form J(uyx) < Jx(ux+e), we obtain that (]]uﬁ|]Lz([07T]7U))N>O is increasing.

Let us now prove (4.3). To this end, we assume by contradiction that there exists u € L?([0,T],U)
such that:

=0

lull 20,10y < Nusllz2o,r,0y > E(ye(T5u) — Yg) =0
and HyC(Tv U) - yz”[ﬁ(Q,X;u) < ”yC(Ta uﬁ) - yzHLQ(Q,X;p) .
Then we have J,(u) < Jx(u,) which is in contradiction with u, minimize Jj. d

Various situations could hold as kK — oo. These different situations, reported on are given by
the following theorem.

Theorem 4.1. Set T' > 0 and assume that the system (1.1) in controllable in average in time T
For every k > 0, let us define u,, the minimum of J. under the constraint (yC(T, Up) — yg) =0.
Define (y)¢ € L*(Q, X; 1) as the minimizer of:

min  |yc - YgHm(Q,X;H)
(vo)e € {ye(Tsu), uwe L2([0,T],U)}, (4.4)
E(yc)e = By{)c.-

Then, the following alternative holds:
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o If (HUKHL?([O,T],U)),QO is bounded, then (uy), converges to a control which steers exactly yé to yt
and realises the minimum of:

o 1,112
min QHUHLQ([O,T],UE (4.5)
‘ HyC(T,U) _YCHLQ(Q,X;M) =0.

o If (Hu,{HLQ([O,T],U))@O is unbounded, then yé can be approzimatively steered to yg.

i1 T . ! _ _
In addition, if Kl;rgo <Hy<(T7 Uy) — \fy HLQ(QVXWO =0, then we have y; = y;.
Proof. Without loss of generality, we can assume that yé = 0.
Let us first notice that (y¥)¢ € L2(Q, X; p) is well defined. In fact, (¥¢)¢ is the orthogonal projection of

(yg)c in L?(€), X; p) on the closed vector space {y¢(T;u), u € L2([0,T],U)}N{(v¢)e, E(ye)e = E(yg)c}

e Let us assume (HUKHLQ([O,T],U)),{>O bounded.
From the sequence (HUKHB([O,T],U)),QO is increasing, hence there exists us, € L([0,T],U)
such that up to a subsequence, (uy) x>0 18 weakly convergent to us and in addition, we have:

lwooll 22 (jo,m,0) < KILH;O 2wl 22 jo,m1,0) -

Since (ux),> 18 weakly convergent to us, it is easy to obtain that ((y¢(75ux))¢) is weakly

convergent to (y¢ (T uoo))e € L*(S2, X; ). Hence,

k=0

KR—00

In addition, from [Lemma 4.1, the sequence (HyC(T; Up) — ngLQ(Q X'u)) is decreasing thus, we
Y b K

have:
HyC(T; Uso) — YgHB(Q,XW) < HyC(T;U'{) - ngL2(Q,X;,u) (k>0)

and hence, from relation (4.3)) of |[Lemma 4.1} we obtain ||uc || z2(0,77,07 = x|l L2(j0,m,0) that is to
say, |[ucollr2(jo,m,o) = Hm |lugl[r2(jo,m,0) and (up to a subsequence, (uy)s is strongly convergent
k) k) K«—>OO I I

to oo in L*([0,T],U). Consequently, ((yc(T;ux))c), is strongly convergent to (y¢(T';too))c in
L*(9, X; ).

Let us now prove that y¢ (T, uso) = y¢. Assume by contradiction that it is not the case. That is
to say there exists 4 € L?([0,T],U) such that:

E(yC(T’ ﬁ))g :E(yg>< and HyC(T7ﬂ') _yécHL2(Q,X;/L) < HyC(T7uOO> _YZHLQ(Q,X;M) :
But, we have J,;(uy) < J.(a) for every k > 0, i.e.:

1/
by <||UH%2([0,T],U) - HUKHLQ([U,TLU))

: f112 . 7112
Z HyC(T,uH) - yCHLQ(Q,X;p) - Hyc(T’ u) = ¢ HLQ(Q,X;,u) (k> 0).
Taking the limit K — co comes the contradiction:
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Let us now show that (u ), is convergent to u~ (that is to say that we do not need the subsequence
extraction procedure). This follows form the fact that any convergent subsequence of (uy), is
convergent to a minimizer of . But it is trivial that the minimization problem has at most
one minimizer.

. . . . ) ¥ o . . f
Finally, it remains clear that nggoHyC(T, Ug) = ye HL2(Q,X;,u) = 0 is equivalent to y¥ = y;.

e Let us assume that (HUHHLQ([O»T}»U))K>0 is not bounded.

The results of this point are direct consequences of (4.3) given in
O

If the system (1.1]) is simultaneously controllable, the convergence rates to the simultaneous control
and the one of the variance to 0 are linked.

Proposition 4.2. Assume system (1.1) is exactly simultaneously controllable in time T > 0. Let us €
L2([0,T),U) be the exact simultaneous control of minimal norm steering yé to yg and let u, € L*([0,T],U)

be the minimizer of (4.1).

Then, (ug)x>0 is strongly convergent to us and, in addition,

lye (T, uy) — YgH%Q(Q,X;u) < ool 2qpo.1,0y £t — wooll L2(0,1,0) - (4.6)
Proof. First of all, (uy), is strongly convergent to u is a consequence of
Let us now prove . First of all, changing yg in yf —eT4c¢ yé, we can assume without loss of generality
that yz =0.
Set ux = uso + Uk, then v, is a minimizer of:
2

. 1 T
min - Gy (v) = §HU|’%2([O,T],U) + (v, Uso) L2(j0,71,0) + H/Q /o e t)ACBcv(t) dt|| dpc
X
T
E </ e(T_t)ACBCU(t) dt) =0.
0
We have:
gn(vn) < gn(o) =0.
Thus, for every x > 0,
T (r-pa ’ Lo T (r-pa ’
Iﬁ?/Q /0 e( —t) CBCUn(t) dt d,u< < 5”1),{"[/2([0771}’[]) + H/Q /0 e( —1) CBCU/{(t) dt d,U,C

< — (Vs too) 2(0,77,0) < 0sll 2(j0,17,0) 1ttoo | 2 0, 77,07) -
This ends the proof using fOT T DA B, (t) dt = ye (T ) — ye (b too) = Yo (T ) — yg O
Let us now give the consequences of in the case where the cardinal of € is finite.

Corollary 4.1. Assume L?(Q, X; ) is of finite dimension.
Then the sequence of minimizers (i), of the optimisation problem (4.1)) is strongly convergent to an
element i € L2([0,T),U) satisfying the minimisation problem:

min %”UH%Q([O,T],U)
wM=y CeQ p-ae),

where y¢, defined by|Theorem 4.1, is the minimizer of (4.4).
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A graphical interpretation of this result is given on

{]E)'c =Ey/ }

{yc(T:u), we L¥[0,T),U)}

Figure 2: Under the assumptions of |Corollary 4.1} at the limit x — oo, the emergent control will be a
control steering (y¢)¢ to (v¢)c-

Proof. Let us use the notations introduced in [Theorem 4.1} Since L?(£2, X;u) is a finite dimensional
space, {yc(T;u), u e L*([0,T],U) }n{(v¢c)e, E(ye)e = E(yC)C} is a closed affine subspace of L%(Q, X; u1).
Consequently, there exists u* € L%([0,7],U) such that ve = ye(Tu¥). O

Example 4.1. This ezample illustrates the result of[Corollary 4.1]in the exact simultaneous controllability

case.
Consider the probability space (0, P(),n) with Q@ = {1,2} and p({1}) = p({2}) = 5. The parameter
dependent system under consideration is:

je=CAyc+Bu  y(0)=y"  ((€{L,2}),

. 0 -1 1 (1
with A = (1 0 >, B = <0> and y* = (1)
We fix the final target y' to (0, 0)T and the final time T to 1.
The corresponding augmented system is:

y=Ay+Bu y(0) =y,

0 -1 0 0 1 1

: (A 0Y) |1 0 0 O _(BY |0 (YY1
wmA‘(o ZA)_ 0 0 0 —2 ’B_<B)_ 1 ‘mdy_<yi)_ 1
0 0 2 0 0 1

Using the Kalman rank condition, it is easy to see that this augmented system is controllable (in the
classical sense) and controlling the average means controlling % (y; +y3, yo + y4)T

On figures [3, [f] and [3, we plot the numerical results dealing with the averaged control, the exact
simultaneous control and the solution of the penalisation problem, when letting the parameter k growing.
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Average control

Trajectories for average control 6
T T

T
control ——

02 i a4t i
Sl average
041~ \“‘n\\_»_» 622:—::—7 6 | | | |
06 | LT 1 | 0 0.2 0.4 0.6 0.8 1
-15 -1 -0.5 0 0.5 1 ¢
(a) Controlled trajectories in the phase plan (b) Averaged control, the norm of the control
using the averaged control. The variance at is 3.19.

final time is 2.75e-01.

Figure 3: On left, we plotted the trajectories obtained by the averaged control (right) which is of minimal
L?-norm.

Simultaneous control

Trajectories for simultaneous control 200
T T

T
control

150

100

- 50

=50

-100

-150

o ﬂ_»»»,/-“' 200 I I I !

3 I I I I L L L L L I 0 0.2 0.4 0.6 0.8 1
-0 -8 -6 -4 -2 0 2 4 6 8 012 t

(a) Controlled trajectories in the phase plan (b) Simultaneous control, the norm of the con-
using the simultaneous control. trol is 6.34e+01.

Figure 4: On left, we plotted the trajectories obtained by the simultaneous control (right) which is of
minimal L?-norm.

Example 4.2. This example illustrates the result of[Corollary 4.1 when there is no simultaneous control-
lability. For this example, we consider again the probability space Q = {1,2} and the probability density
p given by p({1}) = p({2}) = 3. The parameter dependent system under consideration is:

Yo = Acyc + Bu  yc(0) =y',

(O _1> ifo=1,
N , (1 10
withB:<O>,y1:<1> and A¢ =
10 L
(O 1) if(=2.

Using the Kalman rank condition, introduced by E. Zuazua (see|Theorem 3.1)), one can see that this system
is controllable in average. On the other hand, the simultaneous controllability of this system reduce to
prove the classical controllability of the augmented system:

y=Ay+Bu,
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Control’s convergence with respect to &
100 T

s = usollzz (0,750

1 I
10000 100000 1e+06
K

(a) Plot of the L2-distance between the exact
simultaneous control and the optimal control
of the minimisation problem indexed with k.
This distance behaves as Ck ™ with o ~ 0.98.

Variance with respect to x
1 T T

variance

0.1 E

0.01 ¢ E|

0.001 E

0.0001 &

5 I I I
100 1000 10000 100000 1e+06
K

le-0;

(b) Plot of the variance at final state
(J lye(T) — y'||3dp¢) with respect to . The
variance behaves as Cx™ with o ~ 1.95.

Figure 5: Plots in log —log scale of the L?-distance between the solution of the optimal control with
parameter k£ and the exact simultaneous control (left) and of the variance at final state (right) as x grows.
The decay rates obtained are coherent with the results of [Proposition 4.2

0 -1 00
. (A 0) |1 0 00
WhA_(o A2>_ 0 0 10
0 01

One can easily see that rank [B, A

satisfied.

andB:(

B, A’B, ASB] = 3 < 4 and hence, the Kalman rank condition is not

On figures [0, [ and[8, we present the numerical results for this system. As in[Ezample 7.1), the final

time T is set to 1 and the target y/ is (0, 0)7.

Trajectories for average control
3 T T T T

T
average

-2 - i

(a) Controlled trajectories in the phase plan
using the averaged control. The variance at
final time is 2.13e+01.

Average control
50 T T

T
control

_30 I I I I
0 0.2 0.4 0.6 0.8 1

t

(b) Averaged control, the L?-norm of the con-
trol is 1.99e+01.

Figure 6: On left, we plotted the trajectories obtained by the averaged control (right) which is of minimal

L2-norm.



L?-norm of the control with respect to & Variance with respect to x
55 T T T T 22 T T

T
variance

norm of the control ——
1 1 1 1 1 1 1 1
13 0 1000 2000 3000 4000 5000 6 0 1000 2000 3000 4000 5000
K K
(a) Plot of the norm of the control with respect (b) Plot of the variance at final state with re-
to k. spect to k.

Figure 7: Plots of the norm of the control (left) and of the variance at final state (right) as x grows.

min-variance control

Trajectories for min-variance control 140
T T

4 T T T T

T
control

. \ ‘ R i ‘ ‘ 0 02 0.4 06 08 I
20 -15 -10 -5 0 5 10 15 t

(a) Controlled trajectories in the phase plan (b) Optimal control for £ = 5.10% its L?>-norm
using the optimal control for x = 5.103. The is 5.30e+01.

variance at final time is 7.41.

Figure 8: On left, we plotted the trajectories obtained by the optimal control (right) for x = 5.103.

5 Numerical realisation when Card (2 is infinite

In this section we will study the discrete event case (€ = N*).

For this case, we consider the probability space (N*,P(N*), ). A natural way to deal with this
problem is to truncate it. More precisely, instead of considering the probability space (N*, P(N*), u), we
consider the probability space (N*, P(N*), xzu) with the measure yzu given by

p({C}) .
won({cy) = d a2y eSS

0 otherwise,

(ZeN*, CeNY), (5.1)

for Z € N* large enough so that u({1,---,Z}) > 0.

Since our penalisation procedure needs the system g = A¢yc + Beu to be controllable in average the
first question we should answer is whether this averaged controllability property is stable or not through
the truncation procedure.

Proposition 5.1. Assume the system (1.1)) is controllable in average for the measure .
Then there exists Zy € N* such that for every Z > Zy, this system is controllable in average for the

measure Xz given by (5.1).
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Let us also notice that this truncation procedure does not affect the simultaneous controllability
property for Z large enough.

Proposition 5.2. Assume the system (1.1)) is approzimatively simultaneously controllable for the mea-
sure f.
Then for every Z € N* such that p ({1,---,Z}) > 0, this system is simultaneously controllable for the

measure Xz given by (5.1)).

Remark 5.1. Notice that by truncation, one can lose the averaged controllability property. This is for
instance the case of the system considered in[Example .2

In opposition the simultaneous controllability property cannot be lost by truncation. This is natural
since if the system in simultaneously controllable, all the events y1,--- ,yz can be exactly controlled.
Of course, as[Ezample 3.1] shows, the reverse property does not hold.

Consequently, if a system is simultaneously controllable, then it is controllable in average and each of
its truncation is controllable in average.
The reverse property does not hold, i.e. there exist systems which are not controllable in average but so
that each of its truncations is controllable in average. An example of such system is based on the following
construction. Let A € E(X) and B € L(U,X) and assume that the pair (A, B) is controllable, that is to
say that rank (B AB,--- ,AMMX=1B) = dim X. Let us now consider the probability set (N*, P(N*), p)
with p({1}) = % and for every ¢ € N*, u({¢}) > 0 and define the parameter dependent system:

Ye = Acyc + Beu  (C€NT),

with A¢ = A for every ( € N*, By = B and B; = —B for every ¢ € N*\ {1}.
Then, for every Z € N*, the truncated system is controllable in average. Indeed, we have:

Z

Z
rank Z ﬁ,jeN = rank %AjB— ZM({C}) A'B, jeN

2 7)) 2

=rank [p(N*\{1,--- ,Z})A'B, j e N| =rank [A'B, j € N] =dim X .

But, the full system is not controllable in average. Indeed, for every z/ € R™ and T > 0, we have:

ZB* (T-t)A §Z ({C}) T tA* ZM {C} B*e(Tft)A*Zf:O

and hence, whatever T' > 0 is, dt =0 does not imply z7 = 0.

T ©©
> Bre" 0l u({¢h)
¢=1

Proof of[Proposition 5.1 Set 6 = p({¢}) without loss of generality, we can assume that 6 > 0 for every

0¢ .
N*. Set 67 — _ 722 ; if(<Z
¢ €N" Set 67 = xzu({C}) =19
0 otherwise.

Let us remind that due to|Theorem 3.2} the pairs (A¢, B¢)¢ being controllable in average, is equivalent

to @3):
I 1% < /
0

dt (= € X).

Z B* tACZfHC
¢eN*
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with ¢ = ¢(T) > 0 independent of z/.

But,
1 1
T Z 2 2
/ > Bre 0| dt| = —— / B* “‘<zf9C &
0 =1 U ZC 194 0
and using Minkowski inequality,
Z T Z 2 2
tAL fpZ
> o, / > BretaloZ| at
¢=1 0 Te=1 v

T 2 T
> / ZB* tACZf9<H dt | — / Z B} tA<zf9< dt
0 He=y 0 lle=z+1
From the averaged controllability property, there exists ¢ > 0 such that:
T ©°
< [ [ s ar
o =
and due to the admissibility condition, there exists C' > 0 such that:
T|| 2 00
/ > Bretdo | dt< x> 6
0 He—z 1 U (=Z+1
Consequently,
Z
TN %2 AE g \[ \/ Zg:l 94)
/ > Be szQC dt 7 Iz || x -
0 ey U Z( 1Y¢
Ve \/C (1 —ZCZ:1QC>
Since lim — = /c > 0, we obtain the result. O
Z—00 ZC:l QC
Proof of[Proposition 5.2, As in the previous proof, we set : = u({(}) and without loss of generality, we
0
e if(<Z
can assume that 6. > 0 for every ( € N*. Let us then set 9<Z =xzp({¢}) = Z<:1 O¢
0 otherwise.

Due to that approximate simultaneous controllability, for every € > 0 and every (yé)g,(yg )c €
L?(N*, X; i), there exist a control u € L%([0,T],U) such that:

S we(Trw) — yE|[30c <.
CeEN*

But we have for every Z € N*,

7
1
S e )=y |[30Z =D luc(Tsw)—yI |07 < ———— D lue(Tiw)—y! |30 < ———+
CEN* clix ¢=1 ¢llx /‘L({ Z} CEN* X ”({17 aZ}
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That is to say that u € L2([0,T],U) — (y¢c(T;u))¢ € L*(N*, X; xzp) has a dense image in L2(N*, X; xzu).
But its image is an affine space and L?(N*, X;xzu) is a finite dimensional space. Thus, its image is
L?(N*, X: xzu) and the truncated system is exactly simultaneously controllable. O

Let us finally study the error between the initial minimisation problem:

min  J°(u) := 1/ [Ju(t )|’Udt+“2”yC (T ) — yl|5n({CH)
=1 (k> 0) (5.2)

S (s(Ts0) - y1) nlich =0

(=1

and the truncated minimisation problem:

min 72w =3 [t e+ 13 el — ¢ Eonzn(ic)
¢=1 (=20, Z>2), (53)

Z
> (yg T;u) yf) xzp({¢}) =0
¢=1

with Zy € N* given by |Proposition 5.1|

Proposition 5.3. Assume that the system is controllable in average for the probability measure p.
Set k > 0. For Z > Zy (with Zy € N* given by |Proposition 5.1)), let uZ be the minimizer of the truncated
minimisation problem (|5.3)).

Then, as Z — oo, the sequence (u
inatial minimisation problem .

2)y strongly converges in L%([0,T],U) to the minimizer u, of the

Proof. Without loss of generality, we can assume that u({(}) > 0 for every ¢ € N* and for convenience,
. i<z
we set u({C}) = 0 = 62° and as previously, QCZ = xzu({¢}) = 21 Oc
0 otherwise.
Without loss of generality, we can also assume that for every Z € N* the system in controllable in
average for the probability measure xzpu.
Let us introduce for every Z € N* U {oo} the map ZZ : L%([0,T],U) — {0, 00} defined by:

Z
0 i ( T;u) — f)ezzo
IZ(U) . zz:l y(( ) Y§ ¢
oo otherwise.
Thus minimizing J7 under the constraint Z?Zl (yC(T; u) — y£> GCZ = 0 is equivalent to minimizing
JZ +17.

The proof of this result is based on I'-convergence. More precisely, we will prove that the sequence
(jKZ + IZ)ZeN* I'-converge to J° + Z°°.
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e Upper bound:
Let (uz)zens € L2([0,T),U)N" be strongly convergent to an element us, € L([0,T],U).
The aim of this point is to prove:

T (teo) + I (o) < liminf (j (uz)—l—I( )) (5.4)

Z—00

If lign inf 72 (uyz) = oo, then, it is clear that (5.4) is true.
—00

Otherwise, we can assume up to the extraction of a subsequence that for every Z € N*, we have
74 (uz) = 0. Under this assumption, let us prove:

Z 00
T¥(us) =0  and  lim Y |lye(Tiuz) = vl |30 = D [luc(Tius) = ¥[S0 -
¢=1 ¢=1

This will ensure ((5.4).

1. Let us prove that Z°(ue) = 0:
To this end, let us notice:

i (yC(T;uOO) - y£> 0 = i (yC(T, Uoo) — > i (yc (T,uy) y£> QCZ

¢=1 ¢=1 ¢=1

= 32 () =)0 = i 2 (T ) o
+M({1, ! 77 i (yc(T uy) yc) 02

The admissibility condition, ensures:

[e.e]

S ([ )

¢=1 X
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with C' > 0 a constant.
Using Cauchy-Schwarz inequality, we obtain:

2

00 T
> < /0 T =D By (t) dt) 0
(=Z+1 x
o0 T 2
<(1—p{l,---,Z eT=DAB 4y, t)dt|| 6g°
¢ ¢
¢=z+111Y0 X
oo T 2
<(1-p(l,---,Z eT=DABuy(t)dt]| 6
0 ¢ ¥ ¢
¢=1

But, according to the admissibility conditions (see , there exists a constant C' > 0
such that:

2

00 T
Z </ eT=D4 By (t) dt) 0| < (—pu({L,--,2)) Clluzllizqomo -
¢=z+1 0 X
o0
Thus, taking the limit Z — oo, we obtain (yC(T;uoo) — yg) 0| =0, ie I%(ux) = 0.
C:]- X
4 2 - 2
; . f zZ _ . ! .
2. Let us prove Zlgr;o Cz_:lHyc(T, uz) = v; HXGC = ;HyC(T, Uso) — yCHXHE’O.

For every Z € N*, we have, by Cauchy-Schwarz inequality:
Z 2 Z 2 Z 2
S lle(Tiuz) = vL|[567 = > |lue (T uz) — ye(Tsue) 307 + 3 |ue(Ts use) — vL || 307
¢=1 ¢=1 =1

+2) (yc(Tsuz) = ye(Ts o), ye (Ti o) — y1) 08
¢=1

=

Z

< Do llwe (5 uz2) = (T3 o) || 502
(=1
2

2

A
[ D lwe (T use) — vE|[567
¢=1

Using the admissibility of every system indexed by ¢, for every ¢ € N*, there exists C¢ > 0
such that:

Z
S e(Tsuz) = ye (T o) | 0 < CcOZluz — ool 20,1701 -
=1

Z
(=1
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Z

In addition, due to assumption (2.3) made in [Lemma 2.2, we have Zlim ZCCBCZ < oo and
— 00

¢=1

hence, since (uz)z is strongly convergent to e,

Z
lim > [|ye (T5uz) — ye (T uso) || 3 07 = 0.

Z—00

On the other hand, it remains clear, due to the construction of GCZ that:

o0
Jim ZHyc (T5u00) =¥[8¢ = D_lluc(Ts uee) = ¥C|I 0
(=1

Thus,

Z 0o
lim " lye(Tsuz) = y{|[507 = D [lue(Tsuse) = v |62
1

Z—0
=1

e Lower bound:
Set U € L2([0,T],U). The aim is to prove that there exists a sequence (uz)zen+ strongly conver-
gent to uy, such that:

T (Ueo) + I (o) = limsup (j,f(uw) —|—IZ(uoo)) )

Z—00

If Z°°(uno) = 0o then this result can be easily obtained with uy = ux.
Let us now assume that Z°°(u,) = 0. From the previous point, it remains clear that if the sequence
(uyz)z is converging to us and if for every Z € N*, Z%(uy) = 0 then:

T (ueo) = lim jHZ(uZ) .
Z—00
Thus we only need to prove that such a sequence (uz)z exists.

Let us write uz = us + vz. Then Z%(uz) = 0 means:

Z

Z T
$ /0 T 0Bz (1)t 07 = =3 (ye(Tiue) — 1) 6.
=1

¢=1

Since we have assumed that the system ((1.1)) is controllable in average, such a vz exists and in
addition, there exists a constant C' > 0 independent of vz such that:

Z

||UZ||L2 ([0,T),U Z <yg (T uoo) Y£> 9¢Z
=1 X
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But since Z (yC(T; Uso) — y£> 62° = 0, we have:

(eN*
Zz:(yg T uso) yC> 9( i(yc T uoo) —yéc) (HEO—HCZ)
¢=1 X (= X
1.. Z oo
< ({ Z (yC T Uoo yC) eg + Z (yC(T;uoo) - yz) 920 )
p({1,---, 2 = s =z %

which is going to 0 when Z — oo. Consequently, (vz)z converges to 0, that is to say, there exists a
sequence (uy)z convergent to s, such that ZZ(uy) = 0 for every Z > 1.

The final result follows from I'-convergence property and J,.°+Z°° admits one and only one minimizer. [

Let us denote by uZ (resp. u>°) the minimizer of the truncated (resp. initial) minimisation problem.

We proved here that lim u? = u®. Thus, if lim u® = u exists, we have: lim lim u? = v, But,
K—>00 K—00 Z—00
27

do we have lim lim wu; = wu? This question is the aim of the next proposition.

Z—00 K—00

Proposition 5.4. Let us assume that the system (L.1)) is controllable in average for the probability mea-
sure f.
Then,

1. For every k =2 0 and every large enough Z € N*, there exists a minimizer uZ € L*([0,T],U) of the
truncated minimisation problem (5 .

2. Up to a subsequence, the sequence (u?), is strongly convergent to an element uZ, € L?([0,T],U)
which is a solution of the minimisation problem:
: 1
min w2 om0

(5.5)
‘ ye(T) = yCZ’* (CeN* xzp—ae.),

Zx - .. . .. . .
where ye is a minimizer of the minimization problem:

min HyC o ngLQ(Q,X;XZ,u)
(ve)e € {yc(Tsu), we L2([0,T),U)}, (5.6)
E”(y¢)e = B (v{)c

and where we have set:

0= vexzn({¢h)  ((vo)e € L*(N*, X5 xz2p))
CeN*

3. Moreover,

(a) Zlim y?’* = y¢, with y7 € L2(, X; ) given by |Theorem 4.1
— 00

29



(b) if the sequence (uZ)z is bounded, then the system (L.1)) can be exactly steered from yz to y¢
and up to a subsequence (ugo)z it 1s weakly convergent to such a control; otherwise, the system
(1.1) can be approximatively steered from yé to yZ.

Proof. First of all, the existence of uZ for every x > 0 and every Z large enough is ensured by
ftion 5.11
Without loss of generality, we can assume u({C}) > 0 for every ¢ € N* and the system is
controllable in average for the measure xyzu for every Z € N*. As in the previous proofs, we set for
. sz,
convenience, p({(}) = ¢ = 6z° and HCZ = xzp({¢}) =< 2oto1be
0 otherwise.

Finally, changing yg in yg —eTAc yé, we can assume without loss of generality that yé = 0.

Let us notice that for every Z > 1, the control system (|1.1)) endowed with the measure xzu can be
recast as a parameter dependent system whose parameters take place in a set of finite cardinal. Conse-

quently, |(Corollary 4.1|ensure that the sequence of minimizers (uZ),>0 is convergent to uZ, € L2([0,T],U)
solution of the minimisation problem (5.5)).

Let us prove item
For every Z € N* U oo, the minimisations problems ([5.6]) is:

Z
min G%(yc) = > |vc — vl ||[x07
¢=1

y¢ € {(yg(T;u))g, u € L2([O’T]aU)}7
Z

(yc — yg)HCZ =0.
=1

Define

0 ifyc S {(yC(T;u))Cv UELQ([()?TLU)}’

oo otherwise

Zo(ye) = {
Z

0 ifZ(yg—yg)QCZ:(),
¢=1

oo otherwise,

and  I{(yc) =

so that the above minimisation problem is:

i Z T I¢ :
vee L3N Xin) (G%(ve) +Zolye) +I7 (v¢))

In the next points, we will prove that (gZ + 7y + I1Z)Z I'-convergence to G + Zy + Z7°.

e Lower bound:
Let ((yCZ)C)Z € L2(N*, X; )" be a convergent sequence in L?(N*, X; u) to (v¢%)¢. The aim is to
prove:
GA(yE) + To(y&) + T (vE) < liminf G(v7) + To(v) + 7 (vC) - (5.7)
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First of all, if liZm inf GZ (yCZ )+ Io(yCZ )+ I¥ (yCZ ) = o0, the result is obvious. Consequently, we can
— 00
assume Io(yg) +Ilz(yCZ) = 0 for every Z € N*.

Since IO(yCZ) = 0 for every Z € N* and since {(y¢(T;u))¢, uw € L2([0,T],U)} is a closed set, then

Io(ygo) = 0.
Let us now prove that Z3°(yz°) = 0. To this end, we notice that:

[e%s) 00 7Z
Y& -vhor|| = D@ -vHeE + 294 Y & —yho? | + Z ?—yhog
¢=1 x ¢=1 ¢=1 (=Z+1 X
o0
=D& —yO)er + Z Al
=1 (=Z+1 X
o0 o0
<|2oeE —vher| +| Yo 68 —vher
¢=1 x  le=z+1 x

o0
Thus, taking the limit Z — oo, we obtain Z(ygo - yg)egO =0, ie. I3°(yg°) = 0.
¢=1
To conclude, it is obvious that lim GZ (yCZ ) =G> (y&)-
Z—00

Upper bound:
Let (y¢°)¢ € L?(N*, X 1), the aim is to prove that there exists ((YCZ)c)Z c L2(N*, X; )V, a
sequence converging to (y¢°)¢ such that:

G2 (yE) + To(yX) + I (yX) > lim sup G2 (e + To(yE) + TE (y7) -
—00

If Io(ygo) = 00, the result is clear with yCZ =y
[o.¢]

If I°(yg°) = o0, i.e. there exists € > 0 such that Z - yc > €. Consider the sequence
= X

: yo (<7, 7z N
((YCZ)C) given by yCZ ={"¢ ~ ' Then ((yC )¢)z converges to (ygo)g in L*(N*, X; ) as
Z 0 otherwise.

Z — oo and

Z 1 0o 00
Z -vDeE|| = 7 g D 68 —yE+yE - y)E
=1 X ¢=1"¢ ¢=1 X

1 o o0

C:l C C X C X
1 = o] 2 poo
> =7 oo |\¢ Z lye® = ¥¢ er
E(:l 9( ¢=1
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Z
But, since ((yCZ)C)Z converges to (yg°)¢, we have for Z large enough, Z — yC 0< >

¢=t X

is to say Ilz(yg) = 0.

Now assume that Zo(yz°) = Zi°(y¢°) = 0. First of all, it is easy to show that if the sequence ((yCZ)g)Z
converges to (ygo)g then Zlim G? (yCZ ) = Qoo(ygo). Consequently, in order to prove , we only

—00

need to prove the existence of a sequence ((yCZ )o)z € L2(N*, X; )" convergent to (v¢%)¢ such that
Io(yCZ) = Ilz(yg) = 0 for every large enough Z.

Since y° € {(y¢(T5u))¢, w € L*([0,T],U)}, there exists a sequence (uz)z € L%([0,T],U)N" such

[e.e]

o0

that Zl;r{l)o CZ:I lye (T uz)—y°||02° = 0 and in addition, since Eyz® = Eyg, we have Zlgr(l)o CZ:l(yC(T; ug)—
yg )02° = 0. Moreover, the system (L.1) is controllable in average for the measure xzp, thus the
minimisation problem:

min %HUH%P([O,T},U)
| B (y(T0) = B (v{ — ye(Tiuz))..

admits a minimum which is obtained for v = vz. In addition, since Zlim EZ (yg —ye (T uZ))C =0,
—00
we obtain Zlim lvzllz2(o,7],0y = 0. Consequently, we have build a sequence ((y¢(T5uz + vz))¢)z,
— 00

satisfying Zo(ye(T;uz + vz)) = IE (yc(T;uz +vz)) = 0 for every Z € N* and convergent to (v&%)es
since,

1" = ye (T uz +vz)llreve xpm) < N¥E — ve(Tiuz) |l p2ve xi) + 19c (T 02) |2 (v X0
is going to 0 as Z — oo.

All in all, from I'-convergence tools and the fact that G + 7 + Z7° admits one and only one minimizer,

. . Zx
we obtain lim ’ =0.
Z—>ooHy<

- YZHH(N*,X;N)
Let us finally prove item

Firstly, we have for every Z € N*, yg(T;qu) = yCZ* and hence, from the above point, the sequence
((ye (T quo))C)Z is strongly convergent to (y{)¢ in L2(N*, X ).

In addition, if the sequence (ugo) z is bounded, then up to a subsequence, this sequence is weakly con-
vergent to a control 4 and hence the sequence ((y¢(T;uZ))c) , 18 weakly convergent to (y¢(T;usg))¢
in L?(N*, X; ). But from the above point, the sequence ((y?’*)c)z = ((y¢(T; UoZo))C)Z is convergent to
(v&)¢- Thus, yo(T5u) = v¢- O

6 Concluding remarks

In this paper, we have presented a theoretical link between the averaged controllability and the exact
simultaneous controllability. But there still exist many practical questions to be addressed. We list here
some of them:
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The problem of convergence rates both for variances and controls as kK — oo is open. Such results
would be helpful in order to validate numerical simulations, since from a computational viewpoint,
it is hard to determine what the decay or convergence rate is or even if the limit vanishes or not.

When the probability space €2 is of infinite cardinal, we have introduced a truncation parameter Z.
In that case, we have to parameters (Z and k) going to infinity. Propositions and show that
the limits in k¥ and Z commute. But, in practice, it would be interesting to be in condition to bound
the analysis and simulations to deal with a single parameter. To this end, we should establish some
explicit relation between both of them, for instance, find a function Z — k(Z) such that when
letting Z — oo, the correct asymptotic behavior in ensured. This problem is related to the one of
convergence rates mentioned in the previous item.

Similar results as those in [section 5l could be obtained with a continuous measure and under
Lipschitz-regularity assumptions on ¢ + (A¢, B¢). In this situation, instead of truncating the
system, one could use the approximation of Lipschitz functions by piecewise constant functions.

Finally, the penalization procedure proposed here could be extended in the PDE context.
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