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Abstract

We consider a linear finite dimensional control system depending on unknown parameters. We aim
to design controls, independent of the parameters, to control the system in some optimal sense. We
discuss the notions of averaged control, according to which one aims to control only the average of the
states with respect to the unknown parameters, and the notion of simultaneous control in which the goal
is to control the system for all values of these parameters. We show how these notions are connected
through a penalization process. Roughly, averaged control is a relaxed version of the simultaneous
control property, in which the differences of the states with respect to the various parameters are
left free, while simultaneous control can be achieved by reinforcing the averaged control property
by penalizing these differences. We show however that these two notions require of different rank
conditions on the matrices determining the dynamics and the control. When the stronger conditions
for simultaneous control are fulfilled, one can obtain the later as a limit, through this penalization
process, out of the averaged control property.
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1 Introduction

We consider a parameter dependent control system:

ẏζ = Aζyζ +Bζu (t ∈ (0, T )) , (1.1a)

yζ(0) = yiζ . (1.1b)

In order to fix the notation, all along this paper, ζ ∈ Ω is a random parameter (the system’s parameter)
following a probability law µ, with (Ω,F , µ) a probability space, X = Rn is the state space and U = Rm
the control one. We assume that for every ζ ∈ Ω, Aζ ∈ L(X) and Bζ ∈ L(U,X).

The control t 7→ u(t) ∈ U is assumed to be independent of the parameter ζ whereas the state
yζ(t) = yζ(t;u) ∈ X is time and parameter dependent. In addition, by Duhamel formula, yζ can be
represented as follows:

yζ(t;u) = etAζyiζ +

∫ T

0
e(t−s)AζBζu(s) ds (ζ ∈ Ω , t > 0 , u ∈ L2

loc(R+, U)) . (1.2)

Let us also define the space:

L2(Ω, X;µ) =

{
(yζ)ζ ∈ XΩ ,

∫
Ω
‖yζ‖2X dµζ

}
, (1.3)

which is an Hilbert space endowed with the scalar product:

〈yζ , zζ〉L2(Ω,X;µ) =

∫
Ω
〈yζ , zζ〉X dµζ ((yζ)ζ , (zζ)ζ ∈ L2(Ω, X;µ)) .

In section 2 we introduce precise conditions on ζ 7→ (Aζ , Bζ) ensuring that for every t > 0 and
every u ∈ L2

loc(R+, U), (yζ(t;u))ζ ∈ L2(Ω, X;µ) whenever the parameter-dependent initial data satisfy
(yiζ)ζ ∈ L2(Ω, X;µ).

This paper is devoted to analyse the following controllability problems.

• Averaged controllability: The system is said to be averaged controllable in time T > 0 if, for
every (yiζ)ζ ∈ L2(Ω, X;µ) and every yf ∈ X, there exists u ∈ L2([0, T ], U) such that:∫

Ω
yζ(T ;u) dµζ = yf , (1.4)

In other words, averaged controllability is the control of the expectation of the system’s output.
This notion is illustrated on Figure 1a.

• Exact simultaneous controllability: The system is said to be exactly simultaneously controllable
in time T > 0 if, for every (yiζ)ζ , (y

f
ζ )ζ ∈ L2(Ω, X;µ), there exists u ∈ L2([0, T ], U) such that:

yζ(T ;u) = yfζ (ζ ∈ Ω µ−a.e.) , (1.5)

This notion is illustrated on Figure 1b.
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• Approximate simultaneous controllability: The system is said to be approximately simulta-
neously controllable in time T > 0 if, for every (yiζ)ζ , (y

f
ζ )ζ ∈ L2(Ω, X;µ) and every ε > 0, there

exists u ∈ L2([0, T ], U) such that: ∫
Ω

∥∥yζ(T ;u)− yfζ
∥∥2

X
dµζ 6 ε . (1.6)

This notion is illustrated on Figure 1c.

parameter dependent trajectories

yi

yf

average trajectory

(a) Averaged controllability.

parameter dependent trajectories
yi

yf

(b) Simultaneous controllability.

yi

yf

parameter dependent trajectories

(c) Approximate Simultaneous
controllability.

Figure 1: Different controllability notions, introduced in (1.4), (1.5) and (1.6), for parameter dependent
systems, with initial condition and target independent of ζ.

Remark 1.1. 1. Even if the system (1.1) is controllable in average, this fact does not give any infor-
mation on the variance of the outputs.

2. It is obvious that the exact simultaneous controllability property implies the averaged controllability
and the approximate simultaneous controllability ones. In addition, one can find systems which are
controllable in average (resp. approximatively simultaneously controllable) which are not exactly
simultaneously controllable.

Moreover, the approximate simultaneous controllability property implies the averaged controllability
one. In fact, the approximate simultaneous controllability property ensures that given T > 0, (yiζ)ζ ∈
L2(Ω, X;µ), yf ∈ X and ε > 0, there exists uε ∈ L2([0, T ], U) such that∥∥yζ(T ;uε)− yf

∥∥2

L2(Ω,X;µ)
6 ε.

But, by Cauchy-Schwarz inequality,∥∥∥∥∫
Ω

(
yζ(T ;uε)− yf

)
dµζ

∥∥∥∥2

X

6
∫

Ω

∥∥yζ(T ;uε)− yf
∥∥2

X
dµζ .

Thus, the system is approximatively controllable in average i.e. the linear and continuous map
Φ : u ∈ L2([0, T ], U) 7→

∫
Ω

∫ T
0 e(t−t)AζBζu(t) dtdµζ ∈ X has a dense image in X. But since X is a

finite dimensional vector space, we obtain Im Φ = X, i.e. the system is controllable in average.
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3. There is no natural ordinary differential equation describing the average Y (t) =
∫

Ω yζ(t) dµζ , except

when Aζ is independent of ζ for which we have: Ẏ = AY +
(∫

ΩBζ dµζ
)
u. In this particular case,

the averaged controllability property is equivalent to the controllability of the pair (A,
∫

ΩBζ dµζ).

4. When Ω = {ζ1, · · · , ζK} is of finite cardinal, the simultaneous controllability is equivalent to the
classical controllability one for the augmented system:

ẏ = Ay + Bu ,

with:

y =

yζ1...
yζK

 , A =

Aζ1 0
. . .

0 AζK

 and B =

Bζ1...
BζK

 .

And the controllability of this system is equivalent to the Kalman rank condition:

rank
[
B AB · · · AKdimX−1B

]
= K dimX .

5. In the previous item, we have seen that the simultaneous controllability property when the cardinal
of Ω is finite can be interpreted in terms of a classical rank condition. But, when Ω is infinite, the
output of the system is the function ζ ∈ Ω 7→ yζ(T ) ∈ X, living in an infinite-dimensional space.
The first issue to be addressed is the choice of the norm in that space.
In the following, we choose the L2-norm. Accordingly, the fact that yζ(T ) = yfζ holds for almost

every ζ ∈ Ω with respect to the measure µ is guaranteed by the fact that

∫
Ω

∥∥yζ(T )− yfζ
∥∥2

X
dµζ = 0.

This choice is natural, since in the particular case where yfζ = yf is independent of ζ and∫
Ω
yζ(T ) dµζ = yf , the integral

∫
Ω

∥∥yζ(T )− yfζ
∥∥2

X
dµζ is the variance of the system’s output.

Thus, the L2-norm approach is natural from a probabilistic point of view but one could also use
any Lp(Ω, X;µ)-norm. In the next item, we mention some existing literature when considering the
L∞-norm.

6. For parameter dependent systems, J.-S. Li and N. Khaneja [6] (see also J.-S. Li [5]) introduced the
notion of ensemble controllability: The system is said to be ensemble controllable in time T > 0 if,
for every ε and every yiζ , y

f
ζ ∈ X, there exists u ∈ L2([0, T ], U) such that:∥∥yζ(T ;u)− yfζ

∥∥
X

6 ε (ζ ∈ Ω) . (1.7)

This notion of ensemble controllability, which does not seem to have a probabilistic interpretation, is
similar to our notion of approximate simultaneous controllability above, where the L2(Ω, X;µ)-norm
is replaced by the L∞(Ω, X) one.

In [3], U. Helmke and M. Schönlein extended this notion to the one of Lq-ensemble controllability,
for q ∈ [1,∞]. More precisely, defining Ω = [ζ−, ζ+] a compact subset of R, the system (1.1) is said
Lq-ensemble controllable if for every ε > 0, there exists u : [0, T ]→ R such that:∥∥ζ 7→ (

yζ(T ;u)− yfζ
)∥∥
Lq(Ω,X)

6 ε . (1.8)

For this approximate controllability problem, they give the following necessary and sufficient condi-
tions:
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Theorem 1.1 ([3], Theorem 1). Let Ω = [ζ−, ζ+] be a compact subset of R. A continuous family
(Aζ , Bζ) of linear systems is Lq-ensemble controllable for any q ∈ [1,∞], provided the following
conditions are satisfied:

(a) (Aζ , Bζ) is reachable for every ζ ∈ Ω;

(b) The input Hermite indices K1(ζ), · · · ,Km(ζ) of (Aζ , Bζ) are independent of ζ ∈ Ω;

(c) For any pair of distinct parameters ζ, ζ ′ ∈ Ω, the spectra of Aζ and Aζ′ are disjoint;

(d) For every ζ ∈ Ω, the eigenvalues of Aζ have algebraic multiplicity one.

Controlling the average (or the expectation) of a parameter dependent system is not a new prob-
lem. It has been previously studied when a classical control system is perturbed by an additional drift
(V. A. Ugrinovskii [15], A. V. Savkin and I. R. Petersen [12], I. R. Petersen [10]). We present here a differ-
ent frame for which the uncertainty is inside the system itself, and not due to some external noise. Taking
into account that we only know the probability distribution of the unknown parameter, it is natural to
try to control the expectation of the output of the system.

In [16], it has been shown that the averaged controllability property is equivalent to a Kalman rank
condition of infinite order. However, even if the average of the system is controlled, this fact does not
ensure that the output of system is close to the desired target for any specific realisation of the parameter.
Of course, the ideal situation arises when all the parameter dependent trajectories exactly reach the desired
target. This corresponds, precisely, to the notion of simultaneous controllability.

Classically, the simultaneous exact controllability property corresponds, by duality, to the one of simul-
taneous exact observability (see § 3.2). However, when Ω is an infinite dimensional set, those properties
are difficult to check in practice. This is why, in this article, we show that, if the simultaneous control-
lability property holds, then the approximate simultaneous control can be achieved from the averaged
controls by means of a penalisation procedure and at the limit, when the penalizing parameter goes to
∞, we recover the simultaneous control.

The notion of simultaneous controllability was introduced by D. L. Russell [11] (see also J.-L. Lions [7,
Chapter 5]) for partial differential equations. As mentioned above, when dealing with finite dimensional
systems and when the parameter ranges over a finite set, the problem can be handled through classical
rank conditions. However, the issue is much more complex when the parameter ranges over an infinite
set.

The averaged controllability property has already been tackled by E. Zuazua et al [16, 4, 9] for some
relevant PDE models. However, the link between the averaged and simultaneous controllability in that
setting has not been yet developed. The tools developed here could be used to handle PDE and, in
general, infinite-dimensional systems, but this requires further efforts.

In general, the simultaneous controllability problem is set in an infinite dimensional space (this holds
when the cardinal of Ω is infinite). In infinite dimensional spaces the choice of the norm is important and
an appropriate choice has to be done. According to the 5th item of Remark 1.1, we chose the weighted
L2-norm, that corresponds to the variance. More precisely, the simultaneous controllability property (1.5)
holds if: ∫

Ω

∥∥yζ(T )− yfζ
∥∥2

X
dµζ = 0 . (1.9)
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Consequently, in section 4, we introduce the parametrized optimal control problems:

min Jκ(u) =
1

2

∫ T

0
‖u(t)‖2U dt+ κ

∫
Ω
‖yζ(T ;u)− yfζ ‖

2
X dµζ∫

Ω
yζ(T ;u) dµζ =

∫
Ω

yfζ dµζ

(κ > 0) ,

with yζ the solution of (1.1) with control u and initial condition yiζ .
We will see in Theorem 4.1 that, at the limit κ→∞, the minimum uκ is a control which minimizes the
variance of the system’s outputs. For instance, we will see that if the sequence (Jκ(uκ))κ is bounded then
the sequence (uκ)κ converges to a control u∞ which solves the minimisation problem:

min
1

2

∫ T

0
‖u(t)‖2U dt

∫
Ω
‖yζ(T ;u)− yfζ ‖

2
X dµζ = 0 .

In other words, u∞ is the HUM control (the control obtained from the Hilbert Uniqueness Method) for
the simultaneous control problem.
More generally, the result of Theorem 4.1 can be summarized in Table 1, where we have defined

(y?ζ)ζ ∈ L2(Ω, X;µ) as the minimizer of
∥∥yζ − yfζ

∥∥
L2(Ω,X;µ)

under the constraints

∫
Ω

yζ dµζ =

∫
Ω

yfζ dµζ

and (yζ)ζ ∈ {yζ(T ;u) , u ∈ L2([0, T ], U)}. (∥∥yζ(T ;uκ)− yfζ
∥∥
L2(Ω,X;µ)

)
κ

converge to 0 do not converge to 0

(‖
u
κ
‖ L

2
) κ bounded simultaneous exact controllability

simultaneous exact controllability
to y?ζ

unbounded
simultaneous approximate controlla-
bility

simultaneous approximate controlla-
bility to y?ζ

Table 1: Possible behaviors as κ→∞, with y?ζ defined by (4.4).

This penalty argument is natural and has already been used in control theory. In J.-L. Lions [8] it
was used to achieve approximate controllability as the limit of a sequence of optimal control problems
(see also L. A. Fernández and E. Zuazua [2] for semi-linear heat equations). This penalty method has
also been used numerically, for the numerical approximation of null controls for parabolic problems (see
F. Boyer [1]).

This paper is organized as follows.
In section 2, we give some conditions on Aζ , Bζ and yiζ ensuring that the problem we are consider-

ing is well defined. Then, in section 3, we recall some known results about averaged controllability and
we describe the duality approach for simultaneous controllability. In section 4, we present the penalty
method and give some convergence results. More precisely, in this section we prove the main theorem
(Theorem 4.1) of this article. Then, in section 5, we present some results for a further numerical develop-
ment of the case where Ω is a countable set. Finally, in section 6, we conclude this work by some general
remarks and open problems.
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2 Admissibility conditions

In this section, we give some conditions ensuring that
∫

Ω yζ(t) dµζ and
∫

Ω ‖yζ(t)‖
2 dµζ are well defined.

Let us consider the Hilbert space L2(Ω, X;µ) defined by (1.3). Using Cauchy-Schwarz together with∫
Ω dµζ = 1, leads to: ∥∥∥∥∫

Ω
yζ dµζ

∥∥∥∥2

X

6 ‖yζ‖2L2(Ω,X;µ) ((yζ)ζ ∈ L2(Ω, X;µ)) .

Thus, in this paragraph, we only give conditions on Aζ , Bζ and µ such that ‖yζ(t)‖L2(Ω,X;µ) <∞ and in
all this article, we assume that initial and final condition are elements of L2(Ω, X;µ).

By Duhamel formula, the solution yζ(t) = yζ(t;u) of (1.1) is given by (1.2), i.e.,

yζ(t;u) = etAζyiζ +

∫ t

0
e(t−s)AζBζu(s) ds (ζ ∈ Ω , t > 0) .

Lemma 2.1. Set (Aζ)ζ∈Ω ∈ L(X)Ω. For every T > 0 and every ζ ∈ Ω, there exists ςζ(T ) > 0 such that:∥∥∥eTA∗ζeTAζy∥∥∥
X

6 ςζ(T )‖y‖X (y ∈ X) .

Assume:
ςζ(T ) <∞ (ζ ∈ Ω µ− a.e.). (2.1)

Then for every T > 0, there exists ς(T ) > 0 (ς(T ) = sup
ζ∈Ω

ςζ(T )) such that:

∥∥eTAζyiζ∥∥L2(Ω,X;µ)
6 ς(T )‖yiζ‖L2(Ω,X;µ) ((yiζ)ζ ∈ L2(Ω, X;µ)) . (2.2)

Proof. The existence of ςζ(T ) is clear. The result follows from Cauchy-Schwarz inequality.

Example 2.1. Let (Ω,F , µ) be a probability space. If for every ζ ∈ Ω, Aζ is skew-adjoint, then (2.2)
holds with ς(T ) = 1. (In this case, we have ςζ(T ) = 1 for every ζ ∈ Ω.)

Lemma 2.2. Set (Aζ)ζ∈Ω ∈ L(X)Ω and (Bζ)ζ∈Ω ∈ L(U,X)Ω. For every T > 0 and every ζ ∈ Ω, there
exists a constant Cζ(T ) > 0 such that:∥∥∥∥∫ T

0
e(T−t)AζBζu(t) dt

∥∥∥∥2

X

6 Cζ(T )‖u‖2L2([0,T ],U) .

Assume that: ∫
Ω
Cζ(T ) dµζ <∞ . (2.3)

Then for every T > 0, there exists C(T ) > 0 such that:∫
Ω

∥∥∥∥∫ T

0
e(T−t)AζBζu(t) dt

∥∥∥∥2

X

dµζ 6 C(T )‖u‖2L2([0,T ],U) (u ∈ L2([0, T ], U)) .

Proof. The existence of Cζ(T ) > 0 independent of u is classical. The result follows from Minkowski and
Cauchy-Schwarz inequalities.
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Thus, if Aζ and Bζ satisfies the assumption of lemmas 2.1 and 2.2, then for every (yiζ)ζ ∈ L2(Ω, X;µ),

y(T ;u) defined by (1.2) is an element of L2(Ω, X;µ).
From these two lemmas, we can derive the following corollaries:

Corollary 2.1. Assume Card Ω < ∞ and set ζ ∈ Ω 7→ (Aζ , Bζ) ∈ L(X) × L(U,X), then for every
(yiζ)ζ ∈ L2(Ω, X;µ), and every u ∈ L2

loc(R+, U), the solution yζ(t;u) of (1.1) belongs to L2(Ω, X;µ) for
every t > 0.

Corollary 2.2. Assume Ω ⊂ Rd is a bounded set and assume the map ζ 7→ (Aζ , Bζ) is continuous on

co(Ω), with co(Ω) the smallest convex set containing Ω.
Then for every (yiζ)ζ ∈ L2(Ω, X;µ), every u ∈ L2

loc(R+, U) and every t > 0, the solution yζ(t;u) of

(1.1) belongs to L2(Ω, X;µ).

Proof. Since X and U are finite dimensional spaces, for every ζ ∈ co(Ω),

ςζ(T ) := sup
y∈X ,
‖y‖X=1

∥∥∥eTA∗ζeTAζy∥∥∥
X

and Cζ(T ) := sup
u∈L2([0,T ],U) ,
‖u‖L2([0,T ],U)=1

∥∥∥∥∫ T

0
e(T−t)AζBζu(t) dt

∥∥∥∥2

X

are well defined for every ζ ∈ co(Ω) and every T > 0.
Moreover, since ζ ∈ co(Ω) 7→ (Aζ , Bζ) ∈ L(X) × L(U,X) is continuous, the map ζ ∈ co(Ω) 7→
(ςζ(T ), Cζ(T )) ∈ R2 is continuous, thus bounded.
The result follows from lemmas 2.1 and 2.2.

Remark 2.1. Even if Corollary 2.1 can be proved directly, it can also be seen as a consequence of
Corollary 2.2.

Corollary 2.3. Let (Ω,F , µ) be a probability space and assume Aζ skew-adjoint for every ζ ∈ Ω.

If

∫
Ω
‖Bζ‖2L(U,X) dµζ < ∞, then for every (yiζ)ζ ∈ L2(Ω, X;µ) and every u ∈ L2

loc(R+, U), the solution

yζ(t;u) of (1.1) belongs to L2(Ω, X;µ) for every t > 0.

Proof. According to Lemma 2.1 and Example 2.1, we have
(
etAζyiζ

)
ζ
∈ L2(Ω, X;µ). In addition, we

have:∥∥∥∥∫ t

0
e(t−s)AζBζu(s) ds

∥∥∥∥
X

6
∫ t

0

∥∥∥e(t−s)AζBζu(s)
∥∥∥
X

ds =

∫ t

0
‖Bζu(s)‖X ds 6

√
t ‖Bζ‖L(U,X) ‖u‖L2([0,t],U) .

Thus the assumptions of Lemma 2.2 are fulfilled.

3 Duality approach and Kalman rank conditions

Here and in the sequel we assume that the hypotheses of lemmas 2.1 and 2.2 are satisfied.
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3.1 State of the art for averaged controllability

Let us recall some known results on averaged controllability for finite dimensional systems. These results
are taken from [16].

Theorem 3.1 ([16] Theorem 1). System (1.1) fulfills the averaged controllability property (1.4) if and
only if the following rank condition is satisfied:

rank

[∫
Ω
AjζBζ dµζ , j > 0

]
= dimX . (3.1)

This result is based on duality arguments. More precisely, we introduce the (parameter dependent)
adjoint system:

−żζ = A∗ζzζ (t ∈ (0, T )) , (3.2a)

zζ(T ) = zf . (3.2b)

Notice that even if this system depends of the parameter ζ the final condition zf is independent of ζ.
The next result makes the link between averaged controllability, and averaged observability and gives also
a link between the adjoint system and the control of minimal L2-norm.

Theorem 3.2 ([16] Theorem 2). System (1.1) fulfills the averaged controllability property (1.4) if and
only if the adjoint system (3.2) satisfies the averaged observability inequality:

c̄(T )‖zf‖2X 6
∫ T

0

∥∥∥∥∫
Ω
B∗ζ zζ(t) dµζ

∥∥∥∥2

U

dt (zf ∈ X) , (3.3)

where c̄(T ) > 0 is a constant independent of zf .
In addition, both conditions are equivalent to the rank condition (3.1).

When these properties hold, the averaged control of minimal L2([0, T ], U)-norm is given by:

u(t) =

∫
Ω
B∗ζ z̄ζ(t) dµζ (t ∈ (0, T )) , (3.4)

where {z̄ζ}ζ is the solution of the adjoint system (3.2) corresponding to the datum zf ∈ X minimizing the
functional:

J : X −→ R

zf 7−→ 1

2

∫ T

0

∥∥∥∥∫
Ω
B∗ζ zζ(t) dµζ

∥∥∥∥2

U

dt−
〈
yf , zf

〉
X

+

∫
Ω

〈
yiζ , zζ(0)

〉
X

dµζ .
(3.5)

3.2 Observability inequality for exact simultaneous controllability

Let us define for every ζ ∈ Ω the adjoint system of (1.1):

−żζ = A∗ζzζ (t ∈ (0, T )) , (3.6a)

zζ(T ) = zfζ . (3.6b)
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If the system (1.1) is simultaneously controllable then for every (zfζ )ζ ∈ L2(Ω, X;µ),〈(
yζ(T )− yfζ

)
ζ
,
(
zfζ
)
ζ

〉
L2(Ω,X;µ)

= 0 .

That is to say:∫ T

0

〈
u(t),

∫
Ω
B∗ζ zζ(t) dµζ

〉
U

dt =
〈(

yfζ
)
ζ
,
(
zfζ
)
ζ

〉
L2(Ω,X;µ)

−
〈(

yiζ
)
ζ
,
(
zζ(0)

)
ζ

〉
L2(Ω,X;µ)

.

Let us then define the cost function J by:

J : L2(Ω, X;µ) −→ R(
zfζ
)
ζ

7−→ 1

2

∫ T

0

∥∥∥∥∫
Ω
B∗ζ zζ(t) dµζ

∥∥∥∥2

U

dt−
∫

Ω

〈
yfζ , z

f
ζ

〉
X

dµζ +

∫
Ω

〈
yiζ , zζ(0)

〉
X

dµζ ,
(3.7)

where zζ is the solution of (3.6).
The only difference between the cost functions defined by (3.5) for averaged controllability and (3.7) for
simultaneous controllability is that, for simultaneous controllability, we allowed the final condition of the
adjoint system to depend on the parameter ζ.

Assuming that J has a minimizer (ẑζ)ζ ∈ L2(Ω, X;µ), we obtain, by computing the first variation of
J, that:

û(t) =

∫
Ω
B∗ζ ẑζ(t) dµζ (t ∈ [0, T ] a.e.) . (3.8)

It is clear that J is convex. Thus, proving the existence of a minimizer
(
zfζ
)
ζ
∈ L2(Ω, X;µ) for J is

equivalent to showing that J is coercive, i.e. to the existence of a constant ĉ(T ) > 0 such that:

ĉ(T )

∫
Ω

∥∥zfζ
∥∥2

X
dµζ 6

∫ T

0

∥∥∥∥∫
Ω
B∗ζ zζ(t) dµζ

∥∥∥∥2

U

dt (
(
zfζ
)
ζ
∈ L2(Ω, X;µ)) . (3.9)

where zζ is the solution of (3.6) with final condition zfζ .
Summarizing this discussion, we end up with:

Theorem 3.3. System (1.1) fulfills the exact simultaneous controllability property (1.9) if and only if the
adjoint system (3.6) satisfies the exact simultaneous observability inequality (3.9).

When these properties hold, the exact simultaneous control of minimal norm is given by (3.8), where

ẑζ is the solution of (3.6) with final condition ẑfζ and (ẑfζ )ζ ∈ L2(Ω, X;µ) is the minimizer of J defined
by (3.7).

Let us notice that very few systems have the property of simultaneous controllability. When card Ω is
finite, the situation is clear since simultaneous controllability follows from a Kalman rank on an augmented
system (see 4th item of Remark 1.1). But when card Ω is infinite, the situation more complex and we
have from [14, Theorem 3.3.1],

Proposition 3.1. If L2(Ω, X;µ) is an infinite dimensional space, then the system (1.1) will never be
exactly simultaneously controllable.
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Example 3.1. Consider the system ẏζ = (ζ + 1)yζ + u with ζ ∈
{

1
n , n ∈ N∗

}
= Ω with a probability

measure µ such that µ({ζ}) > 0 for every ζ ∈ Ω. This system is not exactly simultaneously controllable
although the truncated system in which we consider ζ ∈

{
1
n , n ∈ {1, · · · , N}

}
with the probability measure

µN given by µN ({ζ}) = µ({ζ})
µ
({

1
N ,

1
N−1 ,··· ,1

}) , for ζ ∈
{

1
n , n ∈ {1, · · · , N}

}
is simultaneously controllable,

whatever N ∈ N∗ is.
In fact, for this truncated system, the precise values of the measure µN are not important since its

simultaneous controllability can be understood though the augmented system:

d

dt

 y1
...
y 1
N

 =

1 + 1 0
. . .

0 1 + 1
N


 y1

...
y 1
N

+

1
...
1

u .

The Kalman matrix of this system is:1 1 + 1 . . . (1 + 1)N−1

...
...

...
1 1 + 1

N . . . (1 + 1
N )N−1

 ,

which is a Vandermonde matrix of determinant
∏

16i<j6N

(
1

i
− 1

j

)
6= 0.

In addition, since this determinant goes to 0 as N goes to ∞, it is not surprising that the system with the
full set of parameters

{
1
n , n ∈ N∗

}
is not simultaneously controllable.

Proposition 3.1 tells us that it is impossible to build dependent parameter systems which are exactly
simultaneously controllable (unless dimL2(Ω, X;µ) < ∞). However, as we have seen, the averaged
controllability property holds for a variety of models. Consequently, it is natural to look for averaged
controls which are optimal in the sense that they minimize the output’s variance. This is the core of
section 4.

3.3 Momentum approach for simultaneous controllability

In § 3.2, we gave a necessary and sufficient condition, (3.9), for simultaneous controllability. However, even
on simple problems, it is difficult to check whether this condition is satisfied or not. In this paragraph, we
present an iterative approach to check whether the observability inequality (3.9) is fulfilled or not. The
method presented here can also be seen as an alternative method to the one we proposed in the rest of
this paper (see section 4) in order to link averaged controllability to exact simultaneous controllability.

To simplify the notation we define the operator E ∈ L(L2(Ω, X;µ), X) by:

E(yζ)ζ =

∫
Ω

yζ dµζ ((yζ)ζ ∈ L2(Ω, X;µ)) . (3.10)

Notice that we have E∗z = (z)ζ and EE∗ = IdX .
Let us first remind that proving the averaged controllability property is equivalent as proving that the

cost function J defined by (3.5) is coercive and proving the exact simultaneous controllability is equivalent
as proving that the cost function J defined by (3.7) is coercive. In addition, we have also noticed that
we have J = J ◦ E∗, where E is given by (3.10). Thus, proving that J is coercive means proving that the
restriction of J to the subset E∗(X) = {ζ ∈ Ω 7→ y ∈ X , y ∈ X} of L2(Ω, X;µ) is coercive.
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Let us also notice that since L2(Ω,R;µ) is an Hilbert space, one can define an orthonormal basis
(ϕi)i∈I (with the convention 0 ∈ I and ϕ0 = 1) of this space. Based on the above construction of E, we
define for every i ∈ I, the operator Ei ∈ L(L2(Ω, X;µ), X) by:

Ei(yζ)ζ =

∫
Ω

yζϕi(ζ) dµζ ((yζ)ζ ∈ L2(Ω, X;µ)) , (3.11)

so that L2(Ω, X;µ) =
⊕
i∈I

E∗i (X).

Let us assume that L2(Ω,R;µ) is a separable Hilbert space, that is to say that we can choose I = N (if
L2(Ω,R;µ) is of infinite dimension) or I = {0, · · · , d} ⊂ N (if L2(Ω,R;µ) is of dimension d). For every
k ∈ N, we define the finite dimensional subspace Vk of L2(Ω, X;µ) by:

Vk =
k⊕
i∈I
i6k

E∗i (X) ⊂ L2(Ω, X;µ) . (3.12)

Let us also define the constant ĉk(T ) > 0 by:

ĉk(T ) = inf
(zfζ )ζ∈Vk\{0}

∫ T

0

∥∥∥∥∫
Ω
B∗ζ zζ(t) dµζ

∥∥∥∥2

U

dt∥∥zfζ
∥∥2

L2(Ω,X:µ)

(k ∈ N) , (3.13)

that is to say:

ĉk(T )

∫
Ω

∥∥zfζ
∥∥2

X
dµζ 6

∫ T

0

∥∥∥∥∫
Ω
B∗ζ zζ(t) dµζ

∥∥∥∥2

U

dt (k ∈ N
(
zfζ
)
ζ
∈ Vk) , (3.14)

with zζ(t) the solution of the adjoint problem (3.6) with final condition zζ(T ) = zfζ ∈ Vk.
Thus, if ĉk(T ) > 0, J is convex and coercive on Vk.

Since Vk ⊂ Vk+1, it remains clear that the sequence (ĉk(T ))k∈N is decreasing. In addition, one can
easily convince that if lim

k→∞
ĉk(T ) > 0, there exists ĉ(T ) > 0 (ĉ(T ) = lim

k→∞
ĉk(T )) such that:

ĉ(T )

∫
Ω

∥∥zfζ
∥∥2

X
dµζ 6

∫ T

0

∥∥∥∥∫
Ω
B∗ζ zζ(t) dµζ

∥∥∥∥2

U

dt (
(
zfζ
)
ζ
∈ L2(Ω, X;µ)) .

That is to say that J is convex and coercive on L2(Ω, X;µ) and hence we have exact simultaneous

controllability. Moreover, the sequence (zfk,ζ)ζ ∈ Vk of minimizer of J on the finite dimensional subspace

Vk of L2(Ω, X;µ) is convergent to a minimizer (ẑζ)ζ ∈ L2(Ω, X;µ) of J on L2(Ω, X;µ).
Summarizing the above discussion, leads to the following:

Remark 3.1. Let us assume that L2(Ω, X;µ) is a separable Hilbert space.

1. If the system (1.1) is approximatively simultaneously controllable, then ĉk(T ) 6= 0 for every k ∈ N.

2. If lim
k→∞

ĉk > 0, then the system (1.1) is exactly simultaneously controllable.

3. According to Proposition 3.1, unless dimL2(Ω, X;µ) <∞, we have lim
k→∞

ĉk = 0.
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4. Let us mention that the property (3.14) correspond to a Kalman rank condition.

More precisely,
(
zfζ
)
ζ
∈ Vk means there exists (zj,f )j=0,··· ,k ∈ Xk+1 such that zfζ =

k∑
j=0

ϕj(ζ)zj,f . Let

us then denote by zjζ the solution of (3.2) with final condition zj,f . Due to linearity, the solution zζ

of (3.6) with final condition zfζ is:

zζ(t) =

k∑
j=0

ϕj(ζ)zjζ(t) =

k∑
j=0

ϕj(ζ)e(T−t)A∗ζ zj,f .

Finally, since we are in a finite dimensional space the coercive property (3.14) is equivalent to the
uniqueness property:

∫
Ω
B∗ζ

k∑
j=0

ϕj(ζ)e(T−t)A∗ζ zj,f dµζ = 0 (t ∈ [0, T ] a.e.)

=⇒ zj,f = 0 (j ∈ {0, · · · , k}) .

We conclude by time analyticity that (3.14) holds if and only if:

rank

[∫
Ω
ÂlζB̂ζ dµζ , l ∈ N

]
= (k + 1) dimX ,

where we have defined:

Âζ =

Aζ 0
. . .

0 Aζ

 ∈ L(Xk+1) and B̂ζ =

ϕ0(ζ)Bζ
...

ϕk(ζ)Bζ

 ∈ L(U,Xk+1) (ζ ∈ Ω) .

5. When Card Ω <∞, the moments are solution of an ordinary differential equation.
More precisely, consider Ω = {1, · · · ,K} with measure µ given by µ({k}) = θk with θk ∈ (0, 1)
and

∑K
k=1 θk = 1. Let us consider an orthonormal basis {ϕ0, · · · , ϕK−1} of L2(Ω,R;µ) (with the

convention, ϕ0(k) = 1). Then the ith-momentum is:

Yi =

K∑
k=1

θkϕi(k)yk = MiI y (i ∈ {0, · · · ,K − 1}) ,

with:

y =

 y1
...
yK

 ∈ XK , Mi =
(
ϕi(1)

√
θ1IdX · · · ϕi(K)

√
θKIdX

)
∈ L(XK , X)

and I =


√
θ1IdX 0

. . .

0
√
θKIdX

 ∈ L(XK) .

13



Thus, setting:

M =

 M0
...

MK−1

 ∈ L(XK) , A =

A1 0
. . .

0 AK

 ∈ L(XK)

and B =

B1
...
BK

 ∈ L(U,XK) ,

the momentums Y =

 Y0
...

YK−1

 satisfies (noticing that MM> = IdXK ):

Ẏ = MIAI−1M> Y + MIBu . (3.15)

Controlling the first k momentums of (yk)k means controlling the first k dimX components of Y ,
solution of (3.15).
Since the basis ϕ0, ϕ1, · · · , ϕK−1 is free (except ϕ0 = 1) one can consider the problem of finding
the best possible basis. For instance we can wonder if there exists ϕ1, · · · , ϕK−1 such that the
pair

(
MIAI−1M> , MIB

)
has a normal form (see [13, Proposition 2.2.6]). That is to say find

ϕ1, · · · , ϕK−1 such that MIAI−1M> has the structure

(
∗ ∗
0 ∗

)
and MIB the structure

(
∗
0

)
.

4 A penalty method linking averaged and simultaneous controllability

As in all this paper, we assume in this section that the assumptions of lemmas 2.1 and 2.2 are satisfied.
In this section, we will present our strategy to link averaged controllability to exact simultaneous con-

trollability. First of all, solving the averaged control problem, can be done with the Hilbert Uniqueness

Method, that is to say minimize the L2-norm of the control with the constraint

∫
Ω
yζ(T ) dµζ =

∫
Ω

yfζ dµζ .

Thus, using Euler-Lagrange formulation (or directly Theorem 3.2), on can see that the averaged control
of minimal L2-norm is given by (3.4).

In order to reduce the output’s variance, one can think to penalise the cost function J0 (given by

J0(u) = 1
2‖u‖

2
L2([0,T ],U) with the output’s variance,

∫
Ω

∥∥yζ(T )−yfζ
∥∥2

X
dµζ . Thus, we introduce the penalty

problem of optimisation:

min Jκ(u) := 1
2‖u(t)‖2L2([0,T ],U) + κ

∥∥yζ(T ;u)− yfζ
∥∥2

L2(Ω,X;µ)

E
(
yζ(T ;u)− yfζ

)
= 0 .

(κ > 0) , (4.1)

where in the above, yζ is the solution of (1.1) defined by (1.2) with control u, L2(Ω, X;µ) is the Hilbert
space introduced in (1.3) and E is the expectation defined by (3.10).

Let us give an existence result.
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Proposition 4.1. If system (1.1) satisfies the averaged controllability property (1.4) then for every T > 0,

(yiζ)ζ , (y
f
ζ )ζ ∈ L2(Ω, X;µ) and κ > 0, the minimisation problem (4.1) admits one and only one solution

uκ ∈ L2([0, T ], U).

In addition, the optimal control uκ satisfies:

uκ(t) =

∫
Ω
B?
ζ zζ(t) dµζ (t ∈ [0, T ]) , (4.2a)

where, zζ is solution of:

żζ = −A∗ζzζ , zζ(T ) = z + yfζ − yζ(T ;uκ) , (4.2b)

with z ∈ X unknown.

Proof. For every κ > 0, it is clear that Jκ is convex. Since we have assumed that the system (1.1) satisfies
the averaged controllability property (1.4), this ensure that the set:{

u ∈ L2([0, T ], U) , E
(
yζ(T ;u)− yfζ

)
= 0
}

is non empty and in addition, this set is a convex and closed set of L2([0, T ], U). Moreover, the averaged
controllability property ensure that J0 is coercive on this set and consequently Jκ is also coercive on this
set. Thus, there exists a unique minimizer uκ ∈ L2([0, T ], U) for the minimisation problem (4.1).

Let us now prove the optimality conditions. Let us define the Lagrangian of the system:

L(u, z) = Jκ(u) + 〈z, E
(
yζ(T ;u)− yfζ

)
〉X (u ∈ L2([0, T ], U) , z ∈ X) .

The optimality conditions are:
∂zL = 0 and ∂uL = 0 .

But we have, ∂uL(u, z) = u +

∫
Ω
B∗ζ e

(T−t)A∗ζ
(
z + yζ(T ;u) − yfζ

)
dµζ . That is to say that, the optimal

control uκ should satisfy (4.2).

Of course, we have introduced the cost functions Jκ in order to pass to the limit κ→∞.
Let us first state a trivial statement:

Lemma 4.1. Set T > 0 and assume the system (1.1) is controllable in average.

For every κ > 0, let us define uκ the minimum of Jκ under the constraint E
(
yζ(T, uκ)− yfζ

)
= 0.

Then, we have:

‖uκ‖L2([0,T ],U) 6 ‖uκ+ε‖L2([0,T ],U) and

‖yζ(T ;uκ)− yfζ ‖L2(Ω,X;µ) > ‖yζ(T ;uκ+ε)− yfζ ‖L2(Ω,X;µ) (κ, ε > 0) .

In addition, for every κ > 0, we have:∥∥yζ(T, uκ)− yfζ
∥∥
L2(Ω,X;µ)

= min
{∥∥yζ(T ;u)− yfζ

∥∥
L2(Ω,X;µ)

, u ∈ L2([0, T ], U) , ‖u‖L2([0,T ],U) 6 ‖uκ‖L2([0,T ],U)

and E
(
yζ(T ;u)− yfζ

)
= 0
}
. (4.3)
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Proof. It remains clear that for every κ, ε > 0, we have:

Jκ(uκ) 6 Jκ(uκ+ε) 6 Jκ+ε(uκ+ε) 6 Jκ+ε(uκ) .

Thus from, Jκ(uκ)+Jκ+ε(uκ+ε) 6 Jκ(uκ+ε)+Jκ+ε(uκ), it is easy to see that
(
‖yζ(T ;uκ)− yfζ ‖L2(Ω,X;µ)

)
κ>0

is decreasing and then, form Jκ(uκ) 6 Jκ(uκ+ε), we obtain that
(
‖uκ‖L2([0,T ],U)

)
κ>0

is increasing.

Let us now prove (4.3). To this end, we assume by contradiction that there exists u ∈ L2([0, T ], U)
such that:

‖u‖L2([0,T ],U) 6 ‖uκ‖L2([0,T ],U) , E
(
yζ(T ;u)− yfζ

)
= 0

and ‖yζ(T ;u)− yfζ ‖L2(Ω,X;µ) < ‖yζ(T ;uκ)− yfζ ‖L2(Ω,X;µ) .

Then we have Jκ(u) < Jκ(uκ) which is in contradiction with uκ minimize Jκ.

Various situations could hold as κ→∞. These different situations, reported on Table 1, are given by
the following theorem.

Theorem 4.1. Set T > 0 and assume that the system (1.1) in controllable in average in time T .

For every κ > 0, let us define uκ the minimum of Jκ under the constraint E
(
yζ(T, uκ)− yfζ

)
= 0.

Define (y?ζ)ζ ∈ L2(Ω, X;µ) as the minimizer of:

min
∥∥yζ − yfζ

∥∥
L2(Ω,X;µ)

(yζ)ζ ∈ {yζ(T ;u) , u ∈ L2([0, T ], U)} ,
E(yζ)ζ = E(yfζ )ζ .

(4.4)

Then, the following alternative holds:

• If
(
‖uκ‖L2([0,T ],U)

)
κ>0

is bounded, then (uκ)κ converges to a control which steers exactly yiζ to y?ζ
and realises the minimum of:

min 1
2‖u‖

2
L2([0,T ],U)

‖yζ(T ;u)− y?ζ‖L2(Ω,X;µ) = 0 .
(4.5)

• If
(
‖uκ‖L2([0,T ],U)

)
κ>0

is unbounded, then yiζ can be approximatively steered to y?ζ .

In addition, if lim
κ→∞

(∥∥yζ(T ;uκ)− yfζ
∥∥
L2(Ω,X;µ)

)
= 0, then we have y?ζ = yfζ .

Proof. Without loss of generality, we can assume that yiζ = 0.

Let us first notice that (y?ζ)ζ ∈ L2(Ω, X;µ) is well defined. In fact, (y?ζ)ζ is the orthogonal projection of

(yfζ )ζ in L2(Ω, X;µ) on the closed vector space {yζ(T ;u) , u ∈ L2([0, T ], U)}∩
{

(yζ)ζ , E(yζ)ζ = E(yfζ )ζ
}

.

• Let us assume
(
‖uκ‖L2([0,T ],U)

)
κ>0

bounded.

From Lemma 4.1, the sequence
(
‖uκ‖L2([0,T ],U)

)
κ>0

is increasing, hence there exists u∞ ∈ L2([0, T ], U)

such that up to a subsequence, (uκ)κ>0 is weakly convergent to u∞ and in addition, we have:

‖u∞‖L2([0,T ],U) 6 lim
κ→∞

‖uκ‖L2([0,T ],U) .
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Since (uκ)κ>0 is weakly convergent to u∞, it is easy to obtain that ((yζ(T ;uκ))ζ)κ>0 is weakly

convergent to (yζ(T ;u∞))ζ ∈ L2(Ω, X;µ). Hence,

E
(
yζ(T ;u∞)

)
ζ

= E
(
yfζ
)
ζ

and
∥∥yζ(T ;u∞)− yfζ

∥∥
L2(Ω,X;µ)

6 lim inf
κ→∞

∥∥yζ(T ;uκ)− yfζ
∥∥
L2(Ω,X;µ)

.

In addition, from Lemma 4.1, the sequence
(∥∥yζ(T ;uκ)− yfζ

∥∥
L2(Ω,X;µ)

)
κ

is decreasing thus, we

have: ∥∥yζ(T ;u∞)− yfζ
∥∥
L2(Ω,X;µ)

6
∥∥yζ(T ;uκ)− yfζ

∥∥
L2(Ω,X;µ)

(κ > 0)

and hence, from relation (4.3) of Lemma 4.1, we obtain ‖u∞‖L2([0,T ],U) > ‖uκ‖L2([0,T ],U) that is to
say, ‖u∞‖L2([0,T ],U) = lim

κ→∞
‖uκ‖L2([0,T ],U) and (up to a subsequence, (uκ)κ is strongly convergent

to u∞ in L2([0, T ], U). Consequently,
(
(yζ(T ;uκ))ζ

)
κ

is strongly convergent to (yζ(T ;u∞))ζ in
L2(Ω, X;µ).

Let us now prove that yζ(T, u∞) = y?ζ . Assume by contradiction that it is not the case. That is

to say there exists ū ∈ L2([0, T ], U) such that:

E
(
yζ(T ; ū)

)
ζ

= E
(
yfζ )ζ and

∥∥yζ(T ; ū)− yfζ
∥∥
L2(Ω,X;µ)

<
∥∥yζ(T, u∞)− yfζ

∥∥
L2(Ω,X;µ)

.

On the other hand, we have Jκ(uκ) 6 Jκ(ū) for every κ > 0, i.e.:

1

2κ

(
‖ū‖2L2([0,T ],U) − ‖uκ‖L2([0,T ],U)

)
>
∥∥yζ(T ;uκ)− yfζ

∥∥2

L2(Ω,X;µ)
−
∥∥yζ(T ; ū)− yfζ

∥∥2

L2(Ω,X;µ)
(κ > 0) .

Taking the limit κ→∞ comes the contradiction:∥∥yζ(T ; ū)− yfζ
∥∥2

L2(Ω,X;µ)
>
∥∥yζ(T ;u∞)− yfζ

∥∥2

L2(Ω,X;µ)
.

Let us now show that (uκ)κ is convergent to u∞ (that is to say that we do not need the subsequence
extraction procedure). This follows form the fact that any convergent subsequence of (uκ)κ is
convergent to a minimizer of (4.5). But it is trivial that the minimization problem (4.5) has at most
one minimizer.

Finally, it remains clear that lim
κ→∞

∥∥yζ(T ;uκ)− yfζ
∥∥
L2(Ω,X;µ)

= 0 is equivalent as y?ζ = yfζ .

• Let us assume that
(
‖uκ‖L2([0,T ],U)

)
κ>0

is not bounded.

The results of this point are direct consequences of (4.3) given in Lemma 4.1.

If the system (1.1) is simultaneously controllable, the convergence rates to the simultaneous control
and the one of the variance to 0 are linked.

Proposition 4.2. Assume system (1.1) is exactly simultaneously controllable in time T > 0. Let u∞ ∈
L2([0, T ], U) be the exact simultaneous control of minimal norm steering yiζ to yfζ and let uκ ∈ L2([0, T ], U)
be the minimizer of (4.1).

Then, (uκ)κ>0 is strongly convergent to u∞ and, in addition,

‖yζ(T, uκ)− yfζ ‖L2(Ω,X;µ) 6 ‖u∞‖L2([0,T ],U) κ
−1‖uκ − u∞‖L2([0,T ],U) . (4.6)
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Proof. First of all, (uκ)κ is strongly convergent to u∞ is a consequence of Theorem 4.1.

Let us now prove (4.6). First of all, changing yfζ in yf − eTAζyiζ , we can assume without loss of generality

that yiζ = 0.
Set uκ = u∞ + vκ, then vκ is a minimizer of:

min Gκ(v) =
1

2
‖v‖2L2([0,T ],U) + 〈v, u∞〉L2([0,T ],U) + κ

∫
Ω

∥∥∥∥∫ T

0
e(T−t)AζBζv(t) dt

∥∥∥∥2

X

dµζ

E
(∫ T

0
e(T−t)AζBζv(t) dt

)
= 0 .

We have:
Gκ(vκ) 6 Gκ(0) = 0 .

Thus, for every κ > 0,

κ

∫
Ω

∥∥∥∥∫ T

0
e(T−t)AζBζvκ(t) dt

∥∥∥∥2

dµζ 6
1

2
‖vκ‖2L2([0,T ],U) + κ

∫
Ω

∥∥∥∥∫ T

0
e(T−t)AζBζvκ(t) dt

∥∥∥∥2

dµζ

6 −〈vκ, u∞〉L2([0,T ],U) 6 ‖vκ‖L2([0,T ],U)‖u∞‖L2([0,T ],U) .

Let us now give the consequences of Theorem 4.1 in the case where the cardinal of Ω is finite.

Corollary 4.1. Assume L2(Ω, X;µ) is of finite dimension.
Then the sequence of minimizers (ûκ)κ of the optimisation problem (4.1) is strongly convergent (up to

the extraction of a subsequence) to an element û∞ ∈ L2([0, T ], U) satisfying the minimisation problem:

min 1
2‖u‖

2
L2([0,T ],U)

yζ(T ) = y?ζ (ζ ∈ Ω µ− a.e.) ,

where y?ζ is defined by Theorem 4.1, i.e. is the minimizer of (4.4).

A graphical interpretation of this result is given on Figure 2.

Proof. Let us use the notations introduced in Theorem 4.1. Since L2(Ω, X;µ) is a finite dimensional

space,
{
yζ(T ;u) , u ∈ L2([0, T ], U)

}
∩
{

(yζ)ζ , E(yζ)ζ = E(yfζ )ζ
}

is a closed affine subspace of L2(Ω, X;µ).

Consequently, there exists u? ∈ L2([0, T ], U) such that y?ζ = yζ(T ;u?).

Example 4.1. This example illustrates the result of Corollary 4.1 in the exact simultaneous controllability
case.
Consider the probability space Ω = {1, 2} and the probability measure µ is given by µ({1}) = µ({2}) = 1

2 .
The parameter dependent system under consideration is:

ẏζ = ζAyζ +Bu yζ(0) = yi ,

with A =

(
0 −1
1 0

)
, B =

(
1
0

)
and yi =

(
1
1

)
.

We fix the final target to yf = (0 0)> and the final time T to be 1.
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{
Eyζ = Eyfζ

}

{yζ(T ;u) , u ∈ L2([0, T ], U)}

yfζ

y?ζ

Figure 2: Under the assumptions of Corollary 4.1, at the limit κ → ∞, the emergent control will be a
control steering (yiζ)ζ to (y?ζ)ζ .

The corresponding augmented system is:

ẏ = Ay + Bu y(0) = yi ,

with A =

(
A 0
0 2A

)
=


0 −1 0 0
1 0 0 0
0 0 0 −2
0 0 2 0

, B =

(
B
B

)
=


1
0
1
0

 and yi =

(
yi

yi

)
=


1
1
1
1

.

Using the Kalman rank condition, it is easy to see that this system is controllable (in the classical sense)
and controlling the average means controlling 1

2 (y1 + y3 , y2 + y4)>.
On figures 3, 4 and 5, we plot the numerical results dealing with the averaged control, the exact

simultaneous control and the solution of the penalisation problem, when letting the parameter κ growing.
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 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

−1.5 −1 −0.5  0  0.5  1
−0.6

ζ = 2

Trajectories for average control

average
ζ = 1

(a) Controlled trajectories in the phase plan
using the averaged control. The variance at
final time is 2.75e-01.

−4

−2

 0

 2

 4

 6

 0  0.2  0.4  0.6  0.8  1
−6

control

t

Average control

(b) Averaged control, the norm of the control
is 3.19.

Figure 3: On left, we plotted the trajectories obtained by the averaged control (right) which is of minimal
L2-norm.
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Trajectories for simultaneous control

average
ζ = 1

(a) Controlled trajectories in the phase plan
using the simultaneous control.
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−100

−50

 0

 50

 100
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 0  0.2  0.4  0.6  0.8  1
−200

control

t

Simultaneous control

(b) Simultaneous control, the norm of the con-
trol is 6.34e+01.

Figure 4: On left, we plotted the trajectories obtained by the simultaneous control (right) which is of
minimal L2-norm.

 10

 100

 10000  100000  1e+06
 1

‖uκ − u∞‖L2(0,T ;U)

κ

Control’s convergence with respect to κ

(a) Plot of the L2-distance between the exact
simultaneous control and the optimal control
of the minimisation problem indexed with κ.
This distance behaves as Cκ−α with α ' 0.98.

 0.0001

 0.001

 0.01

 0.1

 1

 100  1000  10000  100000  1e+06
 1e−05

variance

κ

Variance with respect to κ

(b) Plot of the variance at final state
(
∫
‖yζ(T )− yf‖2Xdµζ) with respect to κ. The

variance behaves as Cκ−α with α ' 1.95.

Figure 5: Plots in log− log scale of the L2-distance between the solution of the optimal control with
parameter κ and the exact simultaneous control (left) and of the variance at final state (right) as κ grows.
The decay rates obtained are coherent with the results of Proposition 4.2.

Example 4.2. This example illustrate the result of Corollary 4.1 when the is no simultaneous controlla-
bility. For this example, we consider again the probability space Ω = {1, 2} and the probability density µ
given by µ({1}) = µ({2}) = 1

2 . The parameter dependent system under consideration is:

ẏζ = Aζyζ +Bu yζ(0) = yi ,

with B =

(
1
0

)
, yi =

(
1
1

)
and Aζ =



(
0 −1

1 0

)
if ζ = 1 ,(

1 0

0 1

)
if ζ = 2 .

Using the Kalman rank condition, introduced by E. Zuazua (see Theorem 3.1), one can see that this system
is controllable in average. On the other hand, the simultaneous controllability of this system reduce to

20



prove the classical controllability of the augmented system:

ẏ = Ay + Bu ,

with A =

(
A1 0
0 A2

)
=


0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 and B =

(
B
B

)
=


1
0
1
0

.

One can easily see that rank
[
B, AB, A2B, A3B

]
= 3 < 4 and hence, the Kalman rank condition is not

satisfied.
On figures 6, 7 and 8, we present the numerical results for this system. As in Example 4.1, the final

time T is set to 1 and the target yf is (0 0)>.
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(a) Controlled trajectories in the phase plan
using the averaged control. The variance at
final time is 2.13e+01.
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(b) Averaged control, the L2-norm of the con-
trol is 1.99e+01.

Figure 6: On left, we plotted the trajectories obtained by the averaged control (right) which is of minimal
L2-norm.
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(a) Plot of the norm of the control with respect
to κ.
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(b) Plot of the variance at final state with re-
spect to κ.

Figure 7: Plots of the norm of the control (left) and of the variance at final state (right) as κ grows.
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(a) Controlled trajectories in the phase plan
using the optimal control for κ = 5.103. The
variance at final time is 7.41.
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(b) Optimal control for κ = 5.103 its L2-norm
is 5.30e+01.

Figure 8: On left, we plotted the trajectories obtained by the optimal control (right) for κ = 5.103.

5 Numerical realisation when Card Ω is infinite

In this section we will study the discrete event case (Ω = N∗).
For this case, we consider the probability space (N∗,P(N∗), µ). A natural way to deal with this

problem is to truncate it. More precisely, instead of considering the probability space (N∗,P(N∗), µ), we
consider the probability space (N∗,P(N∗), χZµ) with the measure χZµ given by

χZµ({ζ}) =


µ({ζ})

µ({1, · · · , Z})
if ζ 6 Z ,

0 otherwise,
(Z ∈ N∗ , ζ ∈ N∗) , (5.1)

for Z ∈ N∗ large enough so that µ({1, · · · , Z}) > 0.
Since our penalisation procedure needs the system ẏζ = Aζyζ +Bζu to be controllable in average the

first question we should answer is whether this averaged controllability property is stable or not through
the truncation procedure.

Proposition 5.1. Assume the system (1.1) is controllable in average for the measure µ.
Then there exists Z0 ∈ N∗ such that for every Z > Z0, this system is controllable in average for the

measure χZµ given by (5.1).

Let us also notice that this truncation procedure does not affect the simultaneous controllability
property for Z large enough.

Proposition 5.2. Assume the system (1.1) is approximatively simultaneously controllable for the mea-
sure µ.

Then for every Z ∈ N∗ such that µ ({1, · · · , Z}) > 0, this system is simultaneously controllable for the
measure χZµ given by (5.1).

Remark 5.1. Notice that by truncation, one can lose the averaged controllability property. This is for
instance the case of the system considered in Example 4.2.

In opposition the simultaneous controllability property cannot be lost by truncation. This is natural
since if the system in simultaneously controllable, all the events y1, · · · , yZ can be exactly controlled.

Consequently, if a system is simultaneously controllable, then it is controllable in average and each of
its truncation is controllable in average.
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Proof of Proposition 5.1. Set θζ = µ({ζ}) without loss of generality, we can assume that θζ > 0 for every

ζ ∈ N∗. Set θZζ = χZµ({ζ}) =


θζ∑Z
ζ=1 θζ

if ζ 6 Z ,

0 otherwise.

Let us remind that due to Theorem 3.2, the pairs (Aζ , Bζ)ζ being controllable in average, is equivalent
as (3.3):

c‖zf‖2X 6
∫ T

0

∥∥∥∥∥∥
∑
ζ∈N∗

B∗ζ e
tA∗ζzfθζ

∥∥∥∥∥∥
2

U

dt (zf ∈ X) .

with c = c(T ) > 0 independent of zf .
But, ∫ T

0

∥∥∥∥∥∥
Z∑
ζ=1

B∗ζ e
tA∗ζzfθZζ

∥∥∥∥∥∥
2

U

dt


1
2

=
1∑Z
ζ=1 θζ

∫ T

0

∥∥∥∥∥∥
Z∑
ζ=1

B∗ζ e
tA∗ζzfθζ

∥∥∥∥∥∥
2

U

dt


1
2

and using Minkowski inequality,

 Z∑
ζ=1

θζ

∫ T

0

∥∥∥∥∥∥
Z∑
ζ=1

B∗ζ e
tA∗ζzfθZζ

∥∥∥∥∥∥
2

U

dt


1
2

>

∫ T

0

∥∥∥∥∥∥
∞∑
ζ=1

B∗ζ e
tA∗ζzfθζ

∥∥∥∥∥∥
2

U

dt


1
2

−

∫ T

0

∥∥∥∥∥∥
∞∑

ζ=Z+1

B∗ζ e
tA∗ζzfθζ

∥∥∥∥∥∥
2

U

dt


1
2

.

From the averaged controllability property, there exists c > 0 such that:

c‖zf‖2X 6
∫ T

0

∥∥∥∥∥∥
∞∑
ζ=1

B∗ζ e
tA∗ζzfθζ

∥∥∥∥∥∥
2

U

dt

and due to the admissibility condition, there exists C > 0 such that:

∫ T

0

∥∥∥∥∥∥
∞∑

ζ=Z+1

B∗ζ e
tA∗ζzfθζ

∥∥∥∥∥∥
2

U

dt 6 C‖zf‖2X
∞∑

ζ=Z+1

θζ .

Consequently, ∫ T

0

∥∥∥∥∥∥
Z∑
ζ=1

B∗ζ e
tA∗ζzfθZζ

∥∥∥∥∥∥
2

U

dt


1
2

>

√
c−

√
C
(

1−
∑Z

ζ=1 θζ

)
∑Z

ζ=1 θζ
‖zf‖X .

Since lim
Z→∞

√
c−

√
C
(

1−
∑Z

ζ=1 θζ

)
∑Z

ζ=1 θζ
=
√
c > 0, we obtain the result.
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Proof of Proposition 5.2. As in the previous proof, we set θζ = µ({ζ}) and without loss of generality, we

can assume that θζ > 0 for every ζ ∈ N∗. Let us then set θZζ = χZµ({ζ}) =


θζ∑Z
ζ=1 θζ

if ζ 6 Z ,

0 otherwise.

Due to that approximate simultaneous controllability, for every ε > 0 and every (yiζ)ζ , (y
f
ζ )ζ ∈

L2(N∗, X;µ), there exist a control u ∈ L2([0, T ], U) such that:∑
ζ∈N∗
‖yζ(T ;u)− yfζ ‖

2
Xθζ 6 ε .

But we have for every Z ∈ N∗,

∑
ζ∈N∗
‖yζ(T ;u)−yfζ ‖

2
Xθ

Z
ζ =

Z∑
ζ=1

‖yζ(T ;u)−yfζ ‖
2
Xθ

Z
ζ 6

1

µ({1, · · · , Z}
∑
ζ∈N∗
‖yζ(T ;u)−yfζ ‖

2
Xθζ 6

ε

µ({1, · · · , Z}
.

That is to say that u ∈ L2([0, T ], U)→ (yζ(T ;u))ζ ∈ L2(N∗, X;χZµ) has a dense image in L2(N∗, X;χZµ).
But its image is an affine space and L2(N∗, X;χZµ) is a finite dimensional space. Thus its image is
L2(N∗, X;χZµ) and the truncated system is exactly simultaneously controllable.

Let us finally study the error between the initial minimisation problem:

min J∞κ (u) :=
1

2

∫ T

0
‖u(t)‖2U dt+ κ

∞∑
ζ=1

∥∥yζ(T ;u)− yfζ
∥∥2

X
µ({ζ})

∞∑
ζ=1

(
yζ(T ;u)− yfζ

)
µ({ζ}) = 0

(κ > 0) (5.2)

and the truncated minimisation problem:

min J Zκ (u) :=
1

2

∫ T

0
‖u(t)‖2U dt+ κ

Z∑
ζ=1

∥∥yζ(T ;u)− yfζ
∥∥2

X
χZµ({ζ})

Z∑
ζ=1

(
yζ(T ;u)− yfζ

)
χZµ({ζ}) = 0

(κ > 0 , Z > Z0) , (5.3)

with Z0 ∈ N∗ given by Proposition 5.1.

Proposition 5.3. Assume that the system (1.1) is controllable in average for the probability measure µ.
Set κ > 0. Let uZκ be a minimizer of the truncated minimisation problem (5.3).

Then, as Z → ∞, the sequence (uZκ )Z is strongly convergent in L2([0, T ], U) to the minimizer uκ of
the initial minimisation problem (5.2).

Proof. Without loss of generality, we can assume that µ({ζ}) > 0 for every ζ ∈ N∗ and for convenience,

we set µ({ζ}) = θζ = θ∞ζ and as previously, θZζ = χZµ({ζ}) =


θζ∑Z
ζ=1 θζ

if ζ 6 Z ,

0 otherwise.
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Without loss of generality, we can also assume that for every Z ∈ N∗, the system (1.1) in controllable in
average for the probability measure χZµ.

Let us introduce for every Z ∈ N∗ ∪ {∞} the map IZ : L2([0, T ], U)→ {0,∞} defined by:

IZ(u) =


0 if

Z∑
ζ=1

(
yζ(T ;u)− yfζ

)
θZζ = 0 ,

∞ otherwise.

Thus minimizing J Zκ under the constraint
∑Z

ζ=1

(
yζ(T ;u)− yfζ

)
θZζ = 0 is equivalent as minimizing

J Zκ + IZ .
The proof of this result is based on Γ-convergence. More precisely, we will prove that the sequence(

J Zκ + IZ
)
Z∈N∗ Γ-converge to J∞κ + I∞.

• Upper bound:
Let (uZ)Z∈N∗ ∈ L2([0, T ], U)N

∗
be strongly convergent to an element u∞ ∈ L2([0, T ], U).

The aim of this point is to prove:

J∞κ (u∞) + I∞(u∞) 6 lim inf
Z→∞

(
J Zκ (uZ) + IZ(uZ)

)
. (5.4)

If lim inf
Z→∞

IZ(uZ) =∞, then, it is clear that (5.4) is true.

Otherwise, we can assume up to the extraction of a subsequence that for every Z ∈ N∗, we have
IZ(uZ) = 0. Under this assumption, let us prove:

I∞(u∞) = 0 and lim
Z→∞

Z∑
ζ=1

∥∥yζ(T ;uZ)− yfζ
∥∥2

X
θZζ =

∞∑
ζ=1

∥∥yζ(T ;u∞)− yfζ
∥∥2

X
θζ .

This ensure (5.4).

1. Let us prove that I∞(u∞) = 0:
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To this end, let us notice:

∞∑
ζ=1

(
yζ(T, u∞)− yfζ

)
θ∞ζ =

∞∑
ζ=1

(
yζ(T, u∞)− yfζ

)
θ∞ζ −

∞∑
ζ=1

(
yζ(T, uZ)− yfζ

)
θZζ

=

∞∑
ζ=1

(
yζ(T, u∞)− yfζ

)
θ∞ζ −

1

µ({1, · · · , Z})

∞∑
ζ=1

(
yζ(T, uZ)− yfζ

)
θ∞ζ

+
1

µ({1, · · · , Z})

∞∑
ζ=Z+1

(
yζ(T, uZ)− yfζ

)
θ∞ζ

=
∞∑
ζ=1

(∫ T

0
e(T−t)AζBζ

(
u∞(t)− uZ(t)

µ ({1, · · · , Z})

)
dt

)
θ∞ζ

+

(
1− 1

µ ({1, · · · , Z})

) ∞∑
ζ=1

(
eTAζyiζ − yfζ

)
θ∞ζ

+
1

µ({1, · · · , Z})

∞∑
ζ=Z+1

(∫ T

0
e(T−t)AζBζuZ(t) dt

)
θ∞ζ

+
1

µ({1, · · · , Z})

∞∑
ζ=Z+1

(
eTAζyiζ − yfζ

)
θ∞ζ

The admissibility condition, ensure:∥∥∥∥∥∥
∞∑
ζ=1

(∫ T

0
e(T−t)AζBζ

(
u∞(t)− uZ(t)

µ ({1, · · · , Z})

)
dt

)
θ∞ζ

∥∥∥∥∥∥
2

X

6 C

∥∥∥∥u∞ − uZ
µ ({1, · · · , Z})

∥∥∥∥2

L2([0,T ],U)

,

with C > 0 a constant.
Using Cauchy-Schwarz inequality, we obtain:∥∥∥∥∥∥

∞∑
ζ=Z+1

(∫ T

0
e(T−t)AζBζuZ(t) dt

)
θ∞ζ

∥∥∥∥∥∥
2

X

6 (1− µ({1, · · · , Z}))
∞∑

ζ=Z+1

∥∥∥∥∫ T

0
e(T−t)AζBζuZ(t) dt

∥∥∥∥2

X

θ∞ζ

6 (1− µ({1, · · · , Z}))
∞∑
ζ=1

∥∥∥∥∫ T

0
e(T−t)AζBζuZ(t) dt

∥∥∥∥2

X

θ∞ζ

But, according to the admissibility conditions (see Lemma 2.2), there exists a constant Ĉ > 0
such that:∥∥∥∥∥∥

∞∑
ζ=Z+1

(∫ T

0
e(T−t)AζBζuZ(t) dt

)
θ∞ζ

∥∥∥∥∥∥
2

X

6 (1− µ({1, · · · , Z})) Ĉ‖uZ‖2L2([0,T ],U) .
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Thus, taking the limit Z →∞, we obtain

∥∥∥∥∥∥
∞∑
ζ=1

(
yζ(T, u∞)− yfζ

)
θ∞ζ

∥∥∥∥∥∥
X

= 0, i.e. I∞(u∞) = 0.

2. Let us prove lim
Z→∞

Z∑
ζ=1

∥∥yζ(T ;uZ)− yfζ
∥∥2

X
θZζ =

∞∑
ζ=1

∥∥yζ(T ;u∞)− yfζ
∥∥2

X
θ∞ζ :

For every Z ∈ N∗, we have, by Cauchy-Schwarz inequality:

Z∑
ζ=1

∥∥yζ(T ;uZ)− yfζ
∥∥2

X
θZζ =

Z∑
ζ=1

∥∥yζ(T ;uZ)− yζ(T ;u∞)
∥∥2

X
θZζ +

Z∑
ζ=1

∥∥yζ(T ;u∞)− yfζ
∥∥2

X
θZζ

+ 2

Z∑
ζ=1

〈
yζ(T ;uZ)− yζ(T ;u∞), yζ(T ;u∞)− yfζ

〉
X
θZζ

6


 Z∑
ζ=1

∥∥yζ(T ;uZ)− yζ(T ;u∞)
∥∥2

X
θZζ

 1
2

+

 Z∑
ζ=1

∥∥yζ(T ;u∞)− yfζ
∥∥2

X
θZζ

 1
2


2

.

Using the admissibility of every system indexed by ζ, for every ζ ∈ N∗, there exists Cζ > 0
such that:

Z∑
ζ=1

∥∥yζ(T ;uZ)− yζ(T ;u∞)
∥∥2

X
θZζ 6

Z∑
ζ=1

Cζθ
Z
ζ ‖uZ − u∞‖2L2([0,T ],U) .

In addition, due to assumption (2.3) made in Lemma 2.2, we have lim
Z→∞

Z∑
ζ=1

Cζθ
Z
ζ < ∞ and

hence, since (uZ)Z is strongly convergent to u∞,

lim
Z→∞

Z∑
ζ=1

∥∥yζ(T ;uZ)− yζ(T ;u∞)
∥∥2

X
θZζ = 0 .

On the other hand, it remains clear, due to the construction of θZζ that:

lim
Z→∞

Z∑
ζ=1

∥∥yζ(T ;u∞)− yfζ
∥∥2

X
θZζ =

∞∑
ζ=1

∥∥yζ(T ;u∞)− yfζ
∥∥2

X
θ∞ζ .

Thus,

lim
Z→∞

Z∑
ζ=1

∥∥yζ(T ;uZ)− yfζ
∥∥2

X
θZζ =

∞∑
ζ=1

∥∥yζ(T ;u∞)− yfζ
∥∥2

X
θ∞ζ .
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• Lower bound:
Set u∞ ∈ L2([0, T ], U). The aim is to prove that there exists a sequence (uZ)Z∈N∗ strongly conver-
gent to u∞ such that:

J∞κ (u∞) + I∞(u∞) > lim sup
Z→∞

(
J Zκ (u∞) + IZ(u∞)

)
.

If I∞(u∞) =∞ then this result can be easily obtained with uZ = u∞.
Let us now assume that I∞(u∞) = 0. From the previous point, it remains clear that if the sequence
(uZ)Z is converging to u∞ and if for every Z ∈ N∗, IZ(uZ) = 0 then:

J∞(u∞) = lim
Z→∞

J Zκ (uZ) .

Thus we only need to prove that such a sequence (uZ)Z exists.

Let us write uZ = u∞ + vZ . Then IZ(uZ) = 0 means:

Z∑
ζ=1

∫ T

0
e(T−t)AζBζvZ(t) dt θZζ = −

Z∑
ζ=1

(
yζ(T ;u∞)− yfζ

)
θZζ .

Since we assumed that the system (1.1) is controllable in average, such a vZ exists and in addition,
there exists a constant C > 0 independent of vZ such that:

‖vZ‖2L2([0,T ],U) 6 C

∥∥∥∥∥∥
Z∑
ζ=1

(
yζ(T ;u∞)− yfζ

)
θZζ

∥∥∥∥∥∥
2

X

.

But since
∑
ζ∈N∗

(
yζ(T ;u∞)− yfζ

)
θ∞ζ = 0, we have:

∥∥∥∥∥∥
Z∑
ζ=1

(
yζ(T ;u∞)− yfζ

)
θZζ

∥∥∥∥∥∥
X

=

∥∥∥∥∥∥
∞∑
ζ=1

(
yζ(T ;u∞)− yfζ

)
(θ∞ζ − θZζ )

∥∥∥∥∥∥
X

6
1− µ({1, · · · , Z})
µ({1, · · · , Z})

∥∥∥∥∥∥
Z∑
ζ=1

(
yζ(T ;u∞)− yfζ

)
θ∞ζ

∥∥∥∥∥∥
X

+

∥∥∥∥∥∥
∞∑

ζ=Z+1

(
yζ(T ;u∞)− yfζ

)
θ∞ζ

∥∥∥∥∥∥
X

,

which is going to 0 when Z →∞. Consequently, (vZ)Z converges to 0, that is to say, there exists a
sequence (uZ)Z convergent to u∞ such that IZ(uZ) = 0 for every Z > 1.

The final result follows from Γ-convergence property and J∞κ +I∞ admits one and only one minimizer.

Let us denote by uZκ (resp. u∞κ ) the minimizer of the truncated (resp. initial) minimisation problem.
We proved here that lim

Z→∞
uZκ = u∞κ . Thus, if lim

κ→∞
u∞κ = u∞∞ exists, we have: lim

κ→∞
lim
Z→∞

uZκ = u∞∞. But,

do we have lim
Z→∞

lim
κ→∞

uZκ = u∞∞?

This question is the aim of the next proposition.
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Proposition 5.4. Let us assume that the system (1.1) is controllable in average for the probability mea-
sure µ.
For every κ > 0 and every large enough Z ∈ N∗, there exists a minimizer uZκ ∈ L2([0, T ], U) of the
truncated minimisation problem (5.3).

Up to a subsequence, the sequence (uZκ )κ is strongly convergent to an element uZ∞ ∈ L2([0, T ], U) which
is a solution of the minimisation problem:

min 1
2‖u‖

2
L2([0,T ],U)

yζ(T ) = yZ,?ζ (ζ ∈ N∗ χZµ− a.e.) ,
(5.5)

where yZ,?ζ is a minimizer of the minimization problem:

min
∥∥yζ − yfζ

∥∥
L2(Ω,X;χZµ)

(yζ)ζ ∈ {yζ(T ;u) , u ∈ L2([0, T ], U)} ,
EZ(yζ)ζ = EZ(yfζ )ζ

(5.6)

and where we have set:

EZ(yζ) =
∑
ζ∈N∗

yζχZµ({ζ}) ((yζ)ζ ∈ L2(N∗, X;χZµ)) .

Then we have:

1. lim
Z→∞

yZ,?ζ = y?ζ , with y?ζ ∈ L2(Ω, X;µ) given by Theorem 4.1.

2. if the sequence (uZ∞)Z is bounded, then the system (1.1) can be exactly steered from yiζ to y?ζ and up

to a subsequence (uZ∞)Z is weakly convergent to such a control, otherwise, the system (1.1) can be
approximatively steered from yiζ to y?ζ .

Proof. Without loss of generality, we can assume µ({ζ}) > 0 for every ζ ∈ N∗ and the system (1.1) is
controllable in average for the measure χZµ for every Z ∈ N∗. As in the previous proofs, we set for

convenience, µ({ζ}) = θζ = θ∞ζ and θZζ = χZµ({ζ}) =


θζ∑Z
ζ=1 θζ

if ζ 6 Z ,

0 otherwise.

Finally, changing yfζ in yfζ − e
TAζyiζ , we can assume without loss of generality that yiζ = 0.

Let us notice that for every Z > 1, the control system (1.1) endowed with the measure χZµ can be
recast as a parameter dependent system whose parameters take place in a set of finite cardinal. Conse-
quently, Corollary 4.1 ensure that the sequence of minimizers (uZκ )κ>0 is convergent to uZ∞ ∈ L2([0, T ], U)
solution of the minimisation problem (5.5).

Let us prove the 1st item.
For every Z ∈ N∗ ∪∞, the minimisations problems (5.6) is:

min GZ(yζ) =
Z∑
ζ=1

∥∥yζ − yfζ
∥∥2

X
θZζ

yζ ∈ {(yζ(T ;u))ζ , u ∈ L2([0, T ], U)} ,
Z∑
ζ=1

(
yζ − yfζ

)
θZζ = 0 .
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Let us also define

I0(yζ) =

{
0 if yζ ∈ {(yζ(T ;u))ζ , u ∈ L2([0, T ], U)} ,
∞ otherwise

and IZ1 (yζ) =

{
0 if

∑Z
ζ=1(yζ − yfζ )θZζ = 0 ,

∞ otherwise.

So that the above minimisation problem is:

min
yζ∈L2(N∗,X;µ)

GZ(yζ) + I0(yζ) + IZ1 (yζ) .

In the next points, we will prove that
(
GZ + I0 + IZ1

)
Z

Γ-convergence to G∞ + I0 + I∞1 .

• Lower bound:
Let ((yZζ )ζ)Z ∈ L2(N∗, X;µ)N

∗
be a convergent sequence in L2(N∗, X;µ) to (y∞ζ )ζ . The aim is to

prove:
GZ(y∞ζ ) + I0(y∞ζ ) + I∞1 (y∞ζ ) 6 lim inf

Z→∞
GZ(yZζ ) + I0(yZζ ) + IZ1 (yZζ ) . (5.7)

First of all, if lim inf
Z→∞

GZ(yZζ ) + I0(yZζ ) + IZ1 (yZζ ) = ∞, the result is obvious. Consequently, we can

assume I0(yZζ ) + IZ1 (yZζ ) = 0 for every Z ∈ N∗.

Since I0(yZζ ) = 0 for every Z ∈ N∗ and since {(yζ(T ;u))ζ , u ∈ L2([0, T ], U)} is a closed set, then
I0(y∞ζ ) = 0.
Let us now prove that I∞1 (y∞ζ ) = 0. To this end, we notice that:∥∥∥∥∥∥

∞∑
ζ=1

(y∞ζ − yfζ )θ∞ζ

∥∥∥∥∥∥
X

=

∥∥∥∥∥∥
∞∑
ζ=1

(y∞ζ − yZζ )θ∞ζ +
1∑Z

ζ=1 θ
∞
ζ

Z∑
ζ=1

(yZζ − yfζ )θZζ +
∞∑

ζ=Z+1

(yZζ − yfζ )θ∞ζ

∥∥∥∥∥∥
X

=

∥∥∥∥∥∥
∞∑
ζ=1

(y∞ζ − yZζ )θ∞ζ +

∞∑
ζ=Z+1

(yZζ − yfζ )θ∞ζ

∥∥∥∥∥∥
X

6

∥∥∥∥∥∥
∞∑
ζ=1

(y∞ζ − yZζ )θ∞ζ

∥∥∥∥∥∥
X

+

∥∥∥∥∥∥
∞∑

ζ=Z+1

(yZζ − yfζ )θ∞ζ

∥∥∥∥∥∥
X

.

Thus, taking the limit Z →∞, we obtain

∞∑
ζ=1

(
y∞ζ − yfζ

)
θ∞ζ = 0, i.e. I∞1 (y∞ζ ) = 0.

To conclude, it is obvious that lim
Z→∞

GZ(yZζ ) = G∞(y∞ζ ).

• Upper bound:
Let (y∞ζ )ζ ∈ L2(N∗, X;µ), the aim is to prove that there exists ((yZζ )ζ)Z ∈ L2(N∗, X;µ)N

∗
, a

sequence converging to (y∞ζ )ζ such that:

GZ(y∞ζ ) + I0(y∞ζ ) + I∞1 (y∞ζ ) > lim sup
Z→∞

GZ(yZζ ) + I0(yZζ ) + IZ1 (yZζ ) .
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If I0(y∞ζ ) =∞, the result is clear with yZζ = y∞ζ .

If I∞1 (y∞ζ ) =∞, i.e. there exists ε > 0 such that

∥∥∥∥∥∥
∞∑
ζ=1

(y∞ζ − yfζ )θ∞ζ

∥∥∥∥∥∥
X

> ε. Consider the sequence

yZζ given by yZζ =

{
y∞ζ if ζ 6 Z ,

0 otherwise.
Then ((yZζ )ζ)Z converges to (y∞ζ )ζ in L2(N∗, X;µ) as Z → ∞

and ∥∥∥∥∥∥
Z∑
ζ=1

(yZζ − yfζ )θZζ

∥∥∥∥∥∥
X

=
1∑Z

ζ=1 θ
∞
ζ

∥∥∥∥∥∥
∞∑
ζ=1

(yZζ − y∞ζ + y∞ζ − yfζ )θ∞ζ

∥∥∥∥∥∥
X

>
1∑Z

ζ=1 θ
∞
ζ

∥∥∥∥∥∥
∞∑
ζ=1

(y∞ζ − yfζ )θ∞ζ

∥∥∥∥∥∥
X

−

∥∥∥∥∥∥
∞∑
ζ=1

(y∞ζ − yZζ )θ∞ζ

∥∥∥∥∥∥
X


>

1∑Z
ζ=1 θ

∞
ζ

ε−
√√√√ ∞∑

ζ=1

‖y∞ζ − yZζ ‖2Xθ∞ζ

 .

But, since ((yZζ )ζ)Z converges to (y∞ζ )ζ , we have for Z large enough,

∥∥∥∥∥∥
Z∑
ζ=1

(yZζ − yfζ )θZζ

∥∥∥∥∥∥
X

>
ε

2
, that

is to say IZ1 (yZζ ) =∞.

Now assume that I0(y∞ζ ) = I∞1 (y∞ζ ) = 0. First of all, it is easy to show that if the sequence ((yZζ )ζ)Z

converges to (y∞ζ )ζ then lim
Z→∞

GZ(yZζ ) = G∞(y∞ζ ). Consequently, in order to prove (5.7), we only

need to prove the existence of a sequence ((yZζ )ζ)Z ∈ L2(N∗, X;µ)N
∗

convergent to (y∞ζ )ζ such that

I0(yZζ ) = IZ1 (yZζ ) = 0 for every large enough Z.

Since y∞ζ ∈ {(yζ(T ;u))ζ , u ∈ L2([0, T ], U)}, there exists a sequence (uZ)Z ∈ L2([0, T ], U)N
∗

such

that lim
Z→∞

∞∑
ζ=1

‖yζ(T, uZ)−y∞ζ ‖θ∞ζ = 0 and in addition, since Ey∞ζ = Eyfζ , we have lim
Z→∞

∞∑
ζ=1

(yζ(T ;uZ)−

yfζ )θ∞ζ = 0. Moreover, the system (1.1) is controllable in average for the measure χZµ, thus the
minimisation problem:

min 1
2‖v‖

2
L2([0,T ],U)

EZ
(
yζ(T ; v)

)
ζ

= EZ
(
yfζ − yζ(T ;uZ)

)
ζ
,

admits a minimum which is obtained for v = vZ . In addition, since lim
Z→∞

EZ
(
yfζ − yζ(T ;uZ)

)
ζ

= 0,

we obtain lim
Z→∞

‖vZ‖L2([0,T ],U) = 0. Consequently, we have build a sequence ((yζ(T ;uZ + vZ))ζ)Z ,

satisfying I0(yζ(T ;uZ + vZ)) = IZ1 (yζ(T ;uZ + vZ)) = 0 for every Z ∈ N∗ and convergent to (y∞ζ )ζ ,
since,

‖y∞ζ − yζ(T ;uZ + vZ)‖L2(N∗,X;µ) 6 ‖y∞ζ − yζ(T ;uZ)‖L2(N∗,X;µ) + ‖yζ(T ; vZ)‖L2(N∗,X;µ)

is going to 0 as Z →∞.
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All in all, from Γ-convergence tools and the fact that G∞ + I0 + I∞1 admits one and only one minimizer,

we obtain lim
Z→∞

∥∥yZ,?ζ − y?ζ
∥∥
L2(N∗,X;µ)

= 0.

Let us now prove the 2nd item.
Firstly, we have for every Z ∈ N∗, yζ(T ;uZ∞) = yZ,?ζ and hence, from the above point, the sequence(
(yζ(T ;uZ∞))ζ

)
Z

is strongly convergent to (y?ζ)ζ in L2(N∗, X;µ).

In addition, if the sequence (uZ∞)Z is bounded, then up to a subsequence, this sequence is weakly con-
vergent to a control u∞∞ and hence the sequence

(
(yζ(T ;uZ∞))ζ

)
Z

is weakly convergent to (yζ(T ;u∞∞))ζ

in L2(N∗, X;µ). But from the above point, the sequence
(
(yZ,?ζ )ζ

)
Z

=
(
(yζ(T ;uZ∞))ζ

)
Z

is convergent to
(y?ζ)ζ . Thus, yζ(T ;u∞∞) = y?ζ .

6 Concluding remarks

In this paper, we have presented a theoretical link between the averaged controllability and the exact
simultaneous controllability. But there still exist many practical questions to be addressed. We list here
some of them:

• The problem of convergence rates both for variances and controls as κ → ∞ is open. Such results
would be helpful in order to validate numerical simulations, since from a computational viewpoint,
it is hard to determine what the decay or convergence rate is or even if the limit vanishes or not.

• When the probability space Ω is of infinite cardinal, we have introduced a truncation parameter Z.
In that case, we have to parameters (Z and κ) going to infinity. Propositions 5.3 and 5.4 show that
the limits in κ and Z commute. But, in practice, it would be interesting to be in condition to bound
the analysis and simulations to deal with a single parameter. To this end, we should establish some
explicit relation between both of them, for instance, find a function Z 7→ κ(Z) such that when
letting Z → ∞, the correct asymptotic behavior in ensured. This problem is related to the one of
convergence rates mentioned in the previous item.

• Similar results as those in section 5 could be obtained with a continuous measure and under
Lipschitz-regularity assumptions on ζ 7→ (Aζ , Bζ). In this situation, instead of truncating the
system, one could use the approximation of Lipschitz functions by piecewise constant functions.

• Finally, the penalization procedure proposed here could be extended in the PDE context.
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