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Université Paris-Est

Modélisation et Simulation
Multi-Echelle

MSME UMR 8208 CNRS
77454 Marne-la-Vallée Cedex 02

France
evangeline.capiez-lernout@u-pem.fr

Christian Soize
Université Paris-Est
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ABSTRACT
Recently, a methodology allowing a stochastic nonlinear

reduced-order model to be constructed in the context of the non-
linear mistuning induced by geometric nonlinearities has been
proposed. The present work is devoted to an industrial applica-
tion for which the centrifugal stiffening due to rotationaleffects is
also included. The nonlinear mistuned forced response is inves-
tigated in the time-domain by using a spatial cyclic load over a
given excitation frequency range. The geometric nonlinearmis-
tuned analysis is performed over the frequency range by using
the Fast-Fourier Transform of the time response. A sensitivity
analysis is conducted with respect to the load level, givingrise to
secondary resonances, which appear outside the excitationfre-
quency range and which can exhibit a particular sensitivityto
uncertainties. Such new complex dynamical situation, induced
by the coupling between the geometrical nonlinearities andthe
mistuning phenomenon, is analyzed in details.

NOMENCLATURE
bw,∞ Amplitude ratio
bν,∞ Frequency ratio
f0 Load level
g(t) Time domain of the load
ĝ(2πν) Frequency domain of the load
j0,k0 Blade number
t/t0 Dimensionless time
v(t) Displacement vector in the time domain

w(2πν) Frequency domain observation (mean NL-ROM)
P Dimension of the NL-ROM
W(2πν) Frequency domain observation (stochastic NL-ROM)
Y(2πν) Amplification factor (stochastic NL-ROM)
d Dispersion parameter
ν/ν0 Dimensionless frequency
Ω Angular speed (rotational motion)
B Frequency band of analysis
B

1
e, B

2
e Frequency band of excitation

Bs,Bsub Sub-frequency range
a Spatial discretization of the load
f(t) External load vector
u(t) Displacement vector in the time domain

˜u(t) Displacement vector in the time domain
̂̃u(2πν) Fourier transform of the displacement vector in the fre-

quency domain

INTRODUCTION
In general, the natural cyclic symmetry of turbomachin-

ery bladed disks is broken because of manufacturing tolerances
and material dispersions, which create small variations from one
blade to another one. Such phenomena, referred to mistuning,
can generate localization effects combined to a dynamic am-
plification of the forced response [1]. Many research efforts
have been carried out on this subject, including reduced-order
models with probabilistic approaches in the numerical modeling,
for taking into account the random character of mistuning [2–4]
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and giving rise to strategies for the robust design of such struc-
tures [5–8]. Another essential aspect is to pay a particularat-
tention to the various nonlinear effects that have to be taken into
account in the computational models. Various research efforts
have been made for the modeling of local nonlinearities suchas
nonlinear contact interfaces [9, 10] or nonlinear materialdamp-
ing [11]. Moreover, considering the constant growing of the
computational capabilities, including the possibility ofusing par-
allel computations, it seems appropriate to consider the geometri-
cally nonlinear effects in the computational models [12,13], that
can occur when exceptional operating speeds of bladed disksare
analyzed due to geometric nonlinearities induced by large defor-
mations and large displacements [14, 15]. The recent improve-
ments in turbomachinery design requires the analysis of excep-
tional operating regime of bladed disks for which large displace-
ments/deformations can occur. The case of severe loading isin-
vestigated in the context of elastodynamics. Such situation is
equivalent to nearly unstable cases induced by aerodynamiccou-
pling yielding flutter and thus very low damping levels. In such
case, the linearized elasto-dynamic theory can not be used any-
more because the geometrically nonlinear effects induced by the
large deformations and the large displacements are very strong
and need to be taken into account in the modeling.

Recently, a methodology has been proposed for the geomet-
ric nonlinear analysis of mistuned bladed disks [16], for which
all the terms including the rotational motion of the bladed-disk
are taken into account. The main steps of such methodology are
briefly summarized below in the context of three dimensional
solid finite elements with 8 nodes.

1. Construction of the finite element model for the linear tuned
case.

2. Solving the linear eigenvalue problem of the tuned structure
for choosing the excitation frequency band known to yield
drastic mistuning effects [1].

3. Construction of the external load in the time domain corre-
sponding to a uniform sweep of the frequency band of exci-
tation [16,17]

4. Choosing the projection basis as the linear eigenmodes of
the tuned structure [18]

5. Direct construction of the nonlinear reduced-order model
(NL-ROM) by projection of the finite element operators on
the chosen projection basis [19,20]

6. Implementing the mistuning through the nonparametric
probabilistic framework [21] and controlling the mistuning
level by dispersion parameterd = (δM,δD,δC,δKc,δK), each
scalar controlling the dispersion of the random mass, damp-
ing, gyroscopic coupling, centrifugal stiffness, elasticstiff-
ness matrices.

7. Solving the stochastic nonlinear equations in the time-
domain with efficient algorithms based on the arc-length
methods [16,20]

The present manuscript is devoted to an industrial applica-
tion of such methodology, in order to not only demonstrate the
capability of the methodology for numerical models with large
number of dofs, but also to bring out a high complex dynamical
behavior. In the present case, the coupling between the geometric
nonlinearities and between the presence of uncertainties induced
by the mistuning, give rise to new complex situations, whichcan
be potentially dangerous for the predictions of life duration of
bladed-disks structures, and which have to be carefully analyzed.

The manuscript is organized as follows: in the first section,
the industrial numerical model of the bladed-disk is described.
Its tuned linear dynamic analysis is used for the construction
of two external loads, corresponding to situations known tobe
slightly and strongly sensitive to the mistuning. The second part
is devoted to the nonlinear tuned dynamic analysis, for which
both time domain and frequency domain are investigated. In par-
ticular, a sensitivity analysis is performed with respect to the load
level in order to quantify the effects of the geometric nonlineari-
ties. Then, a nonlinear sensitivity analysis with respect to the dif-
ferent classes of uncertainties induced by the mistuning iscarried
out in order to qualify the different mistuning effects thatcan oc-
cur in presence of geometric nonlinearities. Finally, a complete
nonlinear dynamical analysis of the mistuned response is carried
out and the confidence region of the response amplifications are
compared between the linear and nonlinear cases on the whole
frequency band of analysis.

DESCRIPTION OF THE INDUSTRIAL APPLICATION
Description of the structure

The structure under consideration is an industrial centrifu-
gal compressor belonging to the class of integrated bladed disks.
Due to confidentiality reasons, the number of blades characteriz-
ing the order of the cyclic symmetry of the structure is not given.
The finite element model of the structure is constructed withsolid
finite elements and is constituted of about 2,000,000 degrees of
freedom. Figure. 1 displays a part of the finite element mesh of
the investigated bladed disk. The structure is in rotation around
its revolution axis with a constant velocityΩ = 30,750rpm.
Since the dynamic analysis is carried out in the rotating frame
of the structure, the rigid body motion due to the rotation ofthe
structure corresponds to a fixed boundary condition at the inner
radius of the structure. The bladed disk is made up of a homo-
geneous isotropic material. A constant modal damping modelis
added for the bladed disk.

Choice of the external load
The cyclic symmetry is first used for constructing the re-

duced matrices of the mean linear reduced-order model (mean
L-ROM). The linear generalized eigenvalue problem relatedto
the tuned bladed-disk is then solved using this cyclic symmetry
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FIGURE 1. FINITE ELEMENT MESH OF A PART OF THE
STRUCTURE

property. Letν0 be the first eigenfrequency. Figure 2 displays
the dimensionless eigenfrequenciesνi/ν0 of the tuned structure
with respect to the circumferential wave numbern. The graph
is truncated ton = 5 because only a 5th engine-order excitation
is needed to be considered in the present industrial application.
Two dimensionless frequency excitation bandsB

1
e = [0.97, 1.10]

and B
2
e = [1.78, 2.34] are investigated. Frequency excitation

bandB1
e contains an insulated resonance whereas frequency band

B
2
e corresponds to a veering, which is known to intensify the

drastic effects of linear mistuning yielding the dynamicalre-
sponse to be usually consequently amplified.
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FIGURE 2. NATURAL FREQUENCIES WITH RESPECT TO CIR-
CUMFERENTIAL WAVE NUMBER

The external load can be written as

f(t) = f0ag(t) , (1)

in which the intensity of the external loadf0 is located in the
rangef0 ∈ [0, 6]N, which sweeps from a negligible rate until a
very high rate of geometrical nonlinearity for the numerical ap-
plication presented. A high rate of loading can be interpreted
as equivalent to a situation for which the damping of the bladed
disk structure would reach very small values. Such extreme sit-
uations are realistic when approaching flutter regimes. In Eq. 1,
the vectora characterizes the spatial distribution of the load, for
which point excitations are uniformly distributed at the tip of
each blade along the axial direction. The chosen frequency band
of excitations are described through the time domain functions
g(t) according to the methodology described in [17] and applied
in [20]. The frequency band of analysis is a broad frequency
band corresponding to the dimensionless frequency band of anal-
ysisB = [0, 3.34]. The Shannon theorem is carried out with a
higher sample frequencyνe/ν0 = 11.12, yielding the number
nt of time steps to bent = 4,096. The frequency resolution is
thenν/ν0,= 0.0054. Letĝ(2πν) be the Fourier transform of
functiong(t). Figures 3 and 4 show the graphst/t0 7→ g(t) and
ν/ν0 7→ ĝ(2πν) for both cases corresponding to excitation fre-
quency bandsB1

e andB
2
e.
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FIGURE 3. REPRESENTATION OF THE EXTERNAL LOAD
IN THE TIME DOMAIN AND IN THE FREQUENCY DOMAIN:
GRAPH OF t/t0 7→ g(t) (UPPER GRAPH) ANDν/ν0 7→ ĝ(2πν)
(LOWER GRAPH) FORB1

e = [0.97, 1.10] .

NONLINEAR TUNED DYNAMIC ANALYSIS
Concerning the choice of the vector basis for the construc-

tion of the mean NL-ROM, the nonlinear equations are solved
in the subspace spanned by the usual linear basis constituted of
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FIGURE 4. REPRESENTATION OF THE EXTERNAL LOAD
IN THE TIME DOMAIN AND IN THE FREQUENCY DOMAIN:
GRAPH OF t/t0 7→ g(t) (UPPER GRAPH) ANDν/ν0 7→ ĝ(2πν)
(LOWER GRAPH) FORB2

e = [1.78, 2.34] .

theP modal shapes related to the first increasing natural eigen-
frequencies, according to [19]. A convergence analysis is carried
out by increasing the sizeP of the reduced-order model. It can
be shown thatP = 65 yields a reasonable convergence quantified
by theL2-norm of the frequency-domain response. From now on,
the converged solution corresponding to the displacement obser-
vation from the mean NL-ROM is denoted byũ(t). For clarity,
when confusion is possible, superscriptsL andNL will be added
for distinguishing the linear case from the geometric nonlinear
one. The two excitation cases are investigated successively.

Nonlinear tuned analysis related to excitation fre-
quency band B

1
e

Being interested in the blade yielding the highest vibra-
tion amplitude, letj0 be j0 = arg maxj

(
maxt ũNL

j (t)
)
. The ob-

servationv(t) corresponding to the selected blade out-of-plane
displacement is defined byv(t) = ũ j0(t). Figure 5 displays
the grapht/t0 7→ vL(t) (upper graph) andt/t0 7→ vNL(t) (lower
graph), corresponding to a load levelf0 = 2.5N. Since the dy-
namical response related to these two cases is sensitively differ-
ent, it can be deduced thatf0 = 2.5N corresponds to a load level
for which the geometric nonlinear effects are significant, yielding
a blade softening characterized by a relative long-term amplifi-
cation of the blade displacement with respect to the linear case.
There is no reason to think that the blade response shape is es-
pecially different in the frequency domain because no noticeable
irregularity is observed in the time domain nonlinear response.

Let k0 = arg maxj
(

maxν/ν0∈B
̂̃uNL

j (2πν)
)

for which
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FIGURE 5. TIME DOMAIN OBSERVATION t/t0 7→ v(t) RE-
LATED TO THE LINEAR (UPPER GRAPH) AND THE NONLIN-
EAR (LOWER GRAPH) CASES FORB1

e = [0.97, 1.10] and f0 =

2.5N.

̂̃uNL
j (2πν) is the Fourier transform of̃uNL

j (t). In the frequency
domain, the observationw(2πν) corresponding to the selected
blade related to the Fourier transform of out-of-plane displace-
ment is defined byw(2πν) = ̂̃uk0(2πν). Figure 6 displays the
graphsν/ν0 7→ wL(2πν) (upper graph) andν/ν0 7→ wNL(2πν)
(lower graph). As expected for the linear case, it can be seen
that the frequency content of the blade response coincides with
B

1
e. One can clearly see that there exist higher frequencies, which

are located in dimensionless frequency band[3, 3.5] that are ex-
cited through the geometric nonlinearities. Nevertheless, its con-
tribution is clearly negligible. Moreover, it is clearly seen that
the dimensionless eigenfrequencies corresponding to the series
of the three classes of tuned modal shapes located in dimension-
less frequency band[1.5, 2.8] (see Fig. 2) remain insensitive to
the presence of geometrical nonlinearities.

Finally, a sensitivity analysis is conducted in order to quan-
tify the geometric nonlinear effects with respect to the load level.
Let bw,∞ andbν,∞ be the amplitude ratio and frequency ratio de-
fined by

bw,∞ =
maxν∈B wNL(2πν)
maxν∈B wL(2πν)

bν,∞ =
argmaxν∈B wNL(2πν)
argmaxν∈B wL(2πν)

. (2)

Figure 7 displays the graphsf0 7→ bw,∞( f0) (upper graph) and
f0 7→ bν,∞( f0) (lower graph). Such graphs show if the analyzed
response belongs or not to the nonlinear domain of analysis.
When the values of observationsbw,∞ andbν,∞ are different from
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1, the domain of analysis is nonlinear. It can be seen that geomet-
ric nonlinear effects occur fromf0 = 0.5N. A non-monotonic
amplification of the main resonance peak combined to a 10%
shift to higher frequencies of its corresponding resonancefre-
quency is also observed.
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FIGURE 6. FREQUENCY DOMAIN OBSERVATION ν/ν0 7→

w(2πν) RELATED TO THE LINEAR (UPPER GRAPH) AND THE
NONLINEAR (LOWER GRAPH) CASES FORB1

e = [0.97, 1.10] and
f0 = 2.5N.
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FIGURE 7. SENSITIVITY ANALYSIS WITH RESPECT TO THE
LOAD LEVEL f0.

Nonlinear tuned analysis related to excitation fre-
quency band B

2
e

Figure 8 displays the grapht/t0 7→ vL(t) (upper graph) and
t/t0 7→ vNL(t) (lower graph), corresponding to a load levelf0 =
2.5N. On these graph, significant level of geometrical nonlin-
ear effect can be observed and the dynamical response is dras-
tically different from the previous case. It is seen that thegeo-
metric nonlinearities induce a blade stiffening characterized by
a reduction of the vibration amplitudes of the blades from 2mm
until 1mmwith respect to the linear case. This stiffening is also
combined with a strong irregularity of the blade response shape
over time, which shows an enrichment of the frequency content,
which has to be quantified.
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FIGURE 8. TIME DOMAIN OBSERVATION t/t0 7→ v(t) RE-
LATED TO THE LINEAR (UPPER GRAPH) AND THE NONLIN-
EAR (LOWER GRAPH) CASES FORB2

e = [1.78, 2.34] and f0 =

2.5N.

Figure 9 displays the graphsν/ν0 7→wL(2πν) (upper graph)
andν/ν0 7→ wNL(2πν) (lower graph). The coupling issued from
the nonlinear geometric effects is now characterized through
secondary response peaks, whose frequency content covers the
whole frequency band of analysisB. Again, for high frequen-
cies, which are located outsideB2

e in dimensionless frequency
band[3, 3.5], the dynamical response induced by the geomet-
ric nonlinearities remains negligible. Nevertheless, some non-
negligible contributions appears through secondary resonances
with the same order of magnitude than the main resonance in the
dimensionless frequency range[1, 1.5]. One put then in evidence
a complex dynamical behavior, which can be dangerous because
non-expected resonances with non-negligible amplitudes appear
outside the excitation frequency band.
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FIGURE 9. FREQUENCY DOMAIN OBSERVATION ν/ν0 7→
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e = [1.78, 2.34] and
f0 = 2.5N.

Figure 10 displays the graphsf0 7→ bw,∞( f0) (upper graph)
and f0 7→ bν,∞( f0) (lower graph), which is very different from
the previous case. A quick decrease in the amplitude ratio ofthe
main resonance located in frequency band of analysisB is ob-
served with respect to the load level. More precisely, one detects
that the critical load level from which the geometric nonlinear-
ities affect the dynamical response isf0 = 0.375N. Concern-
ing the frequency ratio, one can see a slight shift of the reso-
nance frequency to higher frequencies for load levels lowerthan
f0 = 2.5N. Nevertheless, a chaotic behavior is brought out from
f0 = 2.75N. The resonance ratio suddenly falls down to very
low values of resonance ratio belonging to[0.5, 0.8]. A random
alternating between low resonance ratios and resonance ratios
slightly over 1 is shown. Such behavior means that there exist
situations for which the resonances excited from the geometric
nonlinearities and corresponding to subharmonics become the
most important. Such observation gives rise to a worrying dy-
namical behavior, which points out the necessity of taking into
account the geometric nonlinearities in the modeling.

Figure 11 displays the grapht/t0 7→ vL(t) (upper graph)
andt/t0 7→ vNL(t) (lower graph), corresponding to a load level
f0 = 2.75N. If no noticeable difference is observed in the non-
linear time domain response with respect to the case correspond-
ing to f0 = 2.5N, this appears not to be true in the frequency
domain. Figure 12 displays the graphsν/ν0 7→ wL(2πν) (upper
graph) andν/ν0 7→ wNL(2πν) (lower graph). It is seen that the
main resonance amplitude is nearly twice the resonance ampli-
tude located inB2

e. Moreover, a broad range of frequency band
[1, 1.5] is excited, yielding a large number of resonances with
the same order magnitude than the resonance amplitude located
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FIGURE 10. SENSITIVITY ANALYSIS WITH RESPECT TO THE
LOAD LEVEL f0.
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FIGURE 11. TIME DOMAIN OBSERVATION t/t0 7→ v(t) RE-
LATED TO THE LINEAR (UPPER GRAPH) AND THE NONLIN-
EAR (LOWER GRAPH) CASES FORB2

e = [1.78, 2.34] and f0 =

2.75N.

NONLINEAR SENSITIVITY ANALYSIS ACCORDING TO
THE TYPE OF UNCERTAINTIES

In the present case, the mean NL-ROM is constructed by
modal analysis without substructuring techniques. Thus, the un-
certainties are not considered as independent from one blade to
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another one, which is coherent with the structure under consid-
eration belonging to the class of integrated bladed disks, which
are manufactured from a unique solid piece of material. In the
present analysis, for a better understanding of the phenomenon,
only the nonlinear part of the operators are considered to bede-
terministic. The mistuning level is thus controlled by theR

5-
vectord = (δM,δD,δC,δKc,δK).
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The mistuning analysis is carried out in the frequency do-
main, which then requires a Fourier transform of the observation.
First, a sensitivity analysis is conducted in order to identify the
dispersion parameters yielding the most significant effects on the
mistuned response represented by the random variableW(2πν)
similar to observationw(2πν) in the tuned case.

As expected for the linear mistuned case, it can be observed
that an uncertainty level of 0.1 for the gyroscopic coupling,
or/and the centrifugal stiffness or/and the dissipation terms, has
a very limited impact on the linear mistuned response, whether
the excitation band isB1

e or B
2
e. The confidence region of obser-

vationsWNL(2πν) with a probability level set to 0.95 has been
compared, when the frequency excitation band isB

1
e or B

2
e. In

the first case, it can be shown that the nonlinear response seems
to be insensitive to uncertainties on the whole band of analy-
sis B. In the second case, Fig. 13 shows that the nonlinear
mistuned behavior is substantially different. On one side,the
nonlinear mistuned response behaves almost like its tuned coun-
terpart in the part of the frequency band corresponding to the
frequency band of excitationB2

e. On the other side, the uncer-
tainties spread throughout the geometrical nonlinearities, yield-
ing large confidence regions for the nonlinear mistuned response
in B\B2

e, more particularly in the dimensionless sub-frequency
rangeBs = [1, 1.2]. The dynamical analysis inBs shows real-
izations with amplification levels around 2 whereas the mistuned
response remains almost unchanged inB

2
e. Note that a similar

nonlinear mistuned behavior can be observed for the cases ofun-
certain centrifugal stiffness or uncertain dissipation.
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Figures 14 and 16 (resp. 15 and 17) displays the graphs of
the confidence region of observationsWL(2πν) andWNL(2πν)
with a probability level set to 0.95 for a mass uncertainty level
δM = 0.1 and a load levelf0 = 2.5N in the excitation bandB1

e
(resp. B

2
e). By comparing Figures 14 and 15, it can be seen

for the usual linear mistuned case that the random response of
the blade is particularly sensitive to uncertainties yielding conse-
quent amplification response levels. For the case corresponding
to an excitation located inB1

e, the presence of geometric non-
linearities drastically improves the robustness of the random re-
sponse inB1

e, since the upper confidence region envelope of the
confidence region does not exceed the tuned resonance. More-
over, the response level outsideB

1
e is one order of magnitude

smaller, and the presence of uncertainties does not affect the non-
linear dynamical behaviour of the blades.

By comparing Figures 16 and 17, it can be seen again that
the presence of geometric nonlinearities tends to inhibit the non-
linear dynamical amplification induced by the mistuning in the
frequency bandB2

e corresponding to the excitation frequency
band, limiting the dynamical amplification level to a magnitude
1.2. Moreover, a widespread of uncertainties is observed inB\B2

e
with dynamic amplification levels of magnitude 2.5 when per-
forming the nonlinear dynamic analysis in subfrequency band
Bsub = [1, 1.6]. In this band, one then can see nonlinear mis-
tuned response levels similar to the nonlinear tuned response lo-
cated inB2

e. Note that a similar behavior is observed for the case
of elastic stiffness uncertainties.
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FIGURE 15. STOCHASTIC ANALYSIS: FREQUENCY DOMAIN
OBSERVATION RELATED TO THE LINEAR CASE WHENδM =

0.1: MEAN MODEL (THICK LINE), MEAN OF THE STOCHASTIC
MODEL (THIN DASHED LINE), CONFIDENCE REGION (GRAY
REGION). EXCITATION FREQUENCY BANDB
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FIGURE 16. STOCHASTIC ANALYSIS: FREQUENCY DOMAIN
OBSERVATION RELATED TO THE NONLINEAR CASE WHEN
δM = 0.1: MEAN MODEL (THICK LINE), MEAN OF THE
STOCHASTIC MODEL (THIN DASHED LINE), CONFIDENCE RE-
GION (GRAY REGION). EXCITATION FREQUENCY BANDB

1
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NONLINEAR DYNAMICAL ANALYSIS OF THE MIS-
TUNED RESPONSE

From now on, the analysis is focused on the excitation fre-
quency bandB2

e, which exhibits the complex dynamic situa-
tion described above. The load level is fixed tof0 = 2.5N
and the uncertainty level is set tod = (δM,δD,δC,δKc,δK) =
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FIGURE 17. STOCHASTIC ANALYSIS: FREQUENCY DOMAIN
OBSERVATION RELATED TO THE NONLINEAR CASE WHEN
δM = 0.1: MEAN MODEL (THICK LINE), MEAN OF THE
STOCHASTIC MODEL (THIN DASHED LINE), CONFIDENCE RE-
GION (GRAY REGION). EXCITATION FREQUENCY BANDB

2
e
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(δ ,0.2,0.2,0.2,δ ). Thus, the effects of mass and elastic un-
certainties combined to the uncertainties issued from the rota-
tional effects are taken into account in the analysis. A para-
metric analysis according parameterδ is carried out in order
to establish a comparison of the mistuning effects between the
linear and the nonlinear mistuned cases. For fixedν/ν0 ∈
B, let Y(2πν) be the random dynamic observation defined

by Y(2πν) =
W(2πν)

maxν/ν0∈B w(2πν)
. Figures 18 and 19 show

the confidence region of the linear and nonlinear observations
YL(2πν) andYNL(2πν) whenδ = 0.16. In frequency bandB2

e,
it can be observed that an increase of the mistuning yields a uni-
form spread in the frequency domain around the main resonance,
yielding a weak robustness with respect to uncertainties. It is also
clearly seen that the linearized assumption tends to increase the
extreme values of the response levels. The geometric nonlinear
effects clearly inhibit the amplification of the random response.
More particularly, the extreme values related toYNL(2πν) yield
moderate amplification even if the confidence region remainsrel-
atively broad.
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FIGURE 18. STOCHASTIC ANALYSIS: FREQUENCY DOMAIN
OBSERVATION RELATED TO THE LINEAR CASEYL(2πν) when
δK = δM = 0.16 AND δKc = δC = δD = 0.2: MEAN MODEL
(THICK LINE), MEAN OF THE STOCHASTIC MODEL (THIN
DASHED LINE), CONFIDENCE REGION (GRAY REGION).

CONCLUSION
A novel methodology adapted for the mistuning analysis of

bladed disks in the context of high loads inducing strong geo-
metric nonlinear effects has been applied to an industrial bladed
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FIGURE 19. STOCHASTIC ANALYSIS: FREQUENCY DOMAIN
OBSERVATIONYNL(2πν) RELATED TO THE NONLINEAR CASE
WHENδK = δM = 0.16 ANDδKc = δC = δD = 0.2: MEAN MODEL
(THICK LINE), MEAN OF THE STOCHASTIC MODEL (THIN
DASHED LINE), CONFIDENCE REGION (GRAY REGION).

disk. The main goal of the approach is to quantify those geomet-
ric nonlinear effects on the dynamical response of the mistuned
structure. On this basis, two load cases have been investigated,
corresponding to situations which are known to yield moderate
and drastic dynamical amplifications in the usual linear mistuned
case. Numerical results display new complex dynamical behav-
iors of the dynamical response of the blades.

For an excitation corresponding to pure blade modes, in the
very low-frequency range, the nonlinear tuned response exhibits
higher amplitude levels, while mainly remaining located inthe
frequency band of excitation. On the opposite, when the excita-
tion is located around a veering, characterizing a strong coupling
between the blade modes and the disk modes, a sudden stiffening
of the vibration motion is observed and the nonlinear tuned re-
sponse is spread outside the frequency band of excitation, yield-
ing secondary resonances corresponding to sub-harmonics and
whose contribution cannot be longer neglected. In this case, a
sensitivity analysis with respect to the load level exhibits in this
case a load threshold, for which an irregular behavior is observed.

Considering the nonlinear mistuned case, it is seen that the
geometric nonlinear effects acts like an opportune ground for the
propagation of uncertainties. In particular, the robustness of the
random response remains strong in the frequency band of excita-
tion, yielding reasonable amplification levels. Nevertheless, such
robustness suddenly falls in the sub-harmonic range givingrise
to consequent local amplification levels.
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