Alin Bostan
email: alin.bostan@inria.fr

Xavier Caruso
email: xavier.caruso@normalesup.org

Éric Schost
email: eschost@uwo.ca

A Fast Algorithm for Computing the p-Curvature

Keywords: I.1.2 [Computing Methodologies]: Symbolic and Algebraic Manipulation -Algebraic Algorithms Algorithms, complexity, differential equations, p-curvature

We design an algorithm for computing the p-curvature of a differential system in positive characteristic p. For a system of dimension r with coefficients of degree at most d, its complexity is O˜(pdr ω) operations in the ground field (where ω denotes the exponent of matrix multiplication), whereas the size of the output is about pdr 2 . Our algorithm is then quasi-optimal assuming that matrix multiplication is (i.e. ω = 2). The main theoretical input we are using is the existence of a well-suited ring of series with divided powers for which an analogue of the Cauchy-Lipschitz Theorem holds.

INTRODUCTION

We study in this article algorithmic questions related to linear differential systems in positive characteristic. Let k be an arbitrary field of prime characteristic p, and A be an r × r matrix with entries in the field k(x) of rational functions over k. A simple-to-define, yet very important object attached to the differential system Y ′ = AY is its so-called p-curvature. It is the p-th iterate ∂ p A of the map ∂A : k(x) r → k(x) r that sends v to v ′ -Av. It turns out that it is k(x)-linear. It is moreover classical that its matrix with respect to the canonical basis of k(x) r is equal to the term Ap of the recursive sequence (Ai)i defined by

A1 = -A and Ai+1 = A ′ i -A • Ai for i ≥ 1. (1)
In all what follows, we will thus deliberately identify the matrix Ap with the p-curvature of Y ′ = AY . The above recurrence yields an algorithm for computing it, sometimes referred to as Katz's algorithm.

The p-curvature is related to solutions; it measures to what extent the usual Cauchy-Lipschitz theorem applies in characteristic p. More precisely, at an ordinary point, the system Y ′ = AY admits a fundamental matrix of power series solutions in k [[x]] if and only if the p-curvature Ap vanishes. In this case, the system Y ′ = AY even admits a fundamental matrix of solutions which are rational functions in k(x). More generally, the dimension of the kernel of Ap is equal to the dimension of the space of rational function solutions of Y ′ = AY .

The primary importance of the notion of p-curvature relies in its occurrence in one of the versions of the celebrated Grothendieck-Katz conjecture [START_REF] Katz | Algebraic solutions of differential equations (p-curvature and the Hodge filtration)[END_REF][START_REF] Katz | A conjecture in the arithmetic theory of differential equations[END_REF][START_REF] Chambert-Loir | Théorèmes d'algébricité en géométrie diophantienne[END_REF][START_REF] Tang | Algebraic solutions of differential equations over the projective line minus three points[END_REF]. This conjecture, first formulated by Alexandre Grothendieck in the late 1960s, is a local-global principle for linear differential systems, which states that a linear differential system with rational function coefficients over a function field admits a fundamental matrix of algebraic solutions if and only if its p-curvatures vanish for almost all primes p.

In computer algebra, p-curvature has been introduced by van der Put [START_REF] Van Der Put | Differential equations in characteristic p[END_REF][START_REF] Van Der Put | Reduction modulo p of differential equations[END_REF], who popularized it as a tool for factoring differential operators in characteristic p. Cluzeau [START_REF] Cluzeau | Factorization of differential systems in characteristic p[END_REF] generalized the approach to the decomposition of differential systems over k(x). The p-curvature has also been used by Cluzeau and van Hoeij [START_REF] Cluzeau | A modular algorithm for computing the exponential solutions of a linear differential operator[END_REF] as an algorithmic filter for computing exponential solutions of differential operators in characteristic zero.

Computing efficiently the p-curvature is in itself a challenging problem, especially for large values of p. Our initial motivation for studying this question emerged from concrete applications, in lattice path combinatorics [START_REF] Bostan | Automatic classification of restricted lattice walks[END_REF][START_REF] Bostan | The complete generating function for Gessel walks is algebraic[END_REF] and in statistical physics [START_REF] Bostan | Globally nilpotent differential operators and the square Ising model[END_REF]. In this article, we address the question of the computation of Ap in good complexity, with respect to three parameters: the dimension r of the system Y ′ = AY , the maximum degree d of the rational function entries of A, and the characteristic p of the ground field. In terms of these quantities, the arithmetical size of Ap is generically proportional to pdr 2 if r > 1.

Previous work. Cluzeau [START_REF] Cluzeau | Factorization of differential systems in characteristic p[END_REF]Prop. 3.2] observed that the direct algorithm based on recurrence (1) has complexity O˜(p 2 dr ω), where ω is the matrix multiplication exponent and the soft-O notation O˜() hides polylogarithmic factors. Compared to the size of the p-curvature, this cost is good with respect to r and d, but not to p. The first subquadratic algorithm in p, of complexity O˜(p 1+ω/3), was designed in [9, §6.3]. In some special cases, additional partial results were obtained in [START_REF] Bostan | Fast algorithms for differential equations in positive characteristic[END_REF], notably an algorithm of quasi-linear cost O˜(p) for certain systems of order r = 2. However, the question of designing a general algorithm for computing Ap with quasi-linear complexity in p remained open. In a related, but different direction, the article [START_REF] Bostan | A fast algorithm for computing the characteristic polynomial of the p-curvature[END_REF] proposed an algorithm for computing the characteristic polynomial of the p-curvature in time essentially linear in √ p, without computing Ap itself.

Contribution. We prove that the p-curvature Ap can be computed in quasi-linear time with respect to p. More precisely, our main result (Theorem 4.2) states that O˜ pdr ω) operations in k are sufficient for this task. This complexity result is quasi-optimal not only with respect to the main parameter p, but also to d; with respect to the dimension r, it is as optimal as matrix multiplication. Moreover the algorithm we obtain is highly parallelizable by design. The key tools underlying the proof of Theorem 4.2 are the notion of divided power rings in characteristic p, and a new formula for the p-curvature (Propositions 4.3 and 4.4) in terms of divided power series. Crucial ingredients are the fact that a Cauchy-Lipschitz theorem for differential systems holds over divided power rings (Proposition 3.4) and the fact that Newton iteration can be used to efficiently compute (truncations of) fundamental matrices of divided power solutions.

Structure of the paper. In Section 2, we recall the main theoretical properties of the basic objects used in this article. Section 3 is devoted to the existence and the computation of solutions of differential systems in divided power rings.

In Section 4, we move to the main objective of the article, the computation of the p-curvature: after relating Ap to the framework of divided powers, we describe our main algorithm for Ap, of complexity O˜(pdr ω). We conclude in Section 5 by describing the implementation of our algorithm and some benchmarks.

Complexity measures. Throughout this article, we estimate the cost of our algorithms by counting arithmetic operations in the base ring or field at unit cost. We use standard complexity notations. The letter ω refers to a feasible exponent for matrix multiplication (i.e. there exists an algorithm for multiplying n × n matrices over a ring A with at most O(n ω) operations in A); the best known bound is ω < 2.3729 from [START_REF] Gall | Powers of tensors and fast matrix multiplication[END_REF]. The soft-O notation O˜(•) indicates that polylogarithmic factors are omitted; in particular, we will use the fact that many arithmetic operations on univariate polynomials of degree d can be done in O˜(d) operations: addition, multiplication, Chinese remaindering, etc, the key to these results being fast polynomial multiplication [START_REF] Schönhage | Schnelle Multiplikation großer Zahlen[END_REF][START_REF] Schönhage | Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2[END_REF][START_REF] Cantor | On fast multiplication of polynomials over arbitrary algebras[END_REF][START_REF] Harvey | Faster polynomial multiplication over finite fields[END_REF]. A general reference for these questions is [START_REF] Zur Gathen | Modern Computer Algebra[END_REF].

THEORETICAL SETTING

We introduce and briefly recall the main properties of the theoretical objects we are going to use in this article. All the material presented in this section is classical; a general reference is [START_REF] Van Der Put | Galois theory of linear differential equations[END_REF].

Definitions and notations.

Let A be a commutative ring with unit. We recall that a derivation on A is an additive map ′ : A → A, satisfying the Leibniz rule (f g) ′ = f ′ g + f g ′ for all f, g ∈ A. The image f ′ of f under the derivation is called the derivative of f . From now on, we assume that A is equipped with a derivation. A differential system with coefficients in A is an equation of the form Y ′ = AY where A is a given r × r matrix with coefficients in A (for a certain positive integer r), the unknown Y is a column vector of length r and Y ′ denotes the vector obtained from Y by taking the derivative component-wise. The integer r is called the dimension of the system. We recall briefly that a linear differential equation:

ary (r) + • • • + a1y ′ + a0y = 0 (with ai ∈ A) (2)
can be viewed as a particular case of a differential system. Indeed, defining the companion matrix

C =      -a 0 ar 1 -a 1 ar 1 - a r-1 ar      (3)
and A = t C, the solutions of the system Y ′ = AY are exactly the vectors of the form t (y, y ′ , . . . , y (r-1)) where y is a solution of (2). In this correspondence, the order of the differential equation agrees with the dimension of the associated differential system.

Differential modules. A differential module over A is a pair (M, ∂) where M is an A-module and ∂ : M → M is an additive map satisfying a Leibniz-like rule, which is:

∀f ∈ A, ∀x ∈ M, ∂(f x) = f ′ • x + f • ∂(x). (4)
There exists a canonical one-to-one correspondence between differential systems and differential modules (M, ∂) for which M = A r for some r: to a differential system Y ′ = AY of dimension r, we attach the differential module (A r , ∂A) where ∂A : A r → A r is the function mapping X to X ′ -AX. Under this correspondence, the solutions of Y ′ = AY are exactly vectors in the kernel of ∂A.

To a differential equation as [START_REF] Berthelot | Notes on crystalline cohomology[END_REF], one can associate the differential operator L = ar∂ r + ar-1∂ r-1 + • • • + a1∂ + a0; it lies in the non-commutative ring A ∂ , endowed with the usual addition of polynomials and a multiplication ruled by the relation

∂ • f = f • ∂ + f ′
for all f ∈ A (note that, as often in the literature, we are using ∂ to denote either the structure map of a differential module, and a non-commutative indeterminate).

Then, if ar is a unit in A, one can further associate to L the quotient A ∂ /A ∂ L ≃ A r . The differential structure inherited from A ∂ makes it a differential module with structure map X ∈ A r → X ′ + CX, where C is the companion matrix defined above; in other words, this is the module (A ∂ /A ∂ L, ∂-C), with the previous notation.

Scalar extension.

Let A and B be two rings equipped with derivations and let ϕ : A → B be a ring homomorphism commuting with derivation. From a given differential system Y ′ = AY with coefficients in A, one can build a differential system over B by applying ϕ: it is Y ′ = ϕ(A)Y , where ϕ(A) is the matrix obtained from A by applying ϕ entry-wise.

This operation admits an analogue at the level of differential modules: to a differential module (M, ∂) over A, we attach the differential module (M B , ∂ B) over B where

M B = B ⊗ ϕ,A M and ∂ B : M B → M B is defined by: ∀f ∈ B, ∀x ∈ M, ∂ B (f ⊗ x) = f ′ ⊗ x + f ⊗ ∂(x).
It is easily seen that if (M, ∂) is a differential module associated to the system Y ′ = AY then (M B , ∂ B) is that associated to the system Y ′ = ϕ(A)Y .

The p-curvature. Let k be any field of characteristic p. We assume here that A is the field k(x) -consisting of rational functions over k -equipped with the standard derivation.

The p-curvature of a differential module (M, ∂) over k(x) is defined as the mapping ∂ p : M → M . It follows from the Leibniz rule (4) and the fact that the p-th derivative of any element of k(x) vanishes that the p-curvature is k(x)-linear.

This definition extends to differential systems as follows: the p-curvature of the system Y ′ = AY is the k(x)-linear map ∂ p A : MA → MA where (MA, ∂A) is the corresponding differential module. One can check that the matrix of ∂ p A (in the canonical basis of MA) is the p-th term of the recursive sequence (Ai) defined in [START_REF] Berthelot | Cohomologie cristalline des schémas de caractéristique p > 0[END_REF].

Considering again a differential operator L and the associated differential module (A ∂ /A ∂ L, ∂-C), for the associated companion matrix C, we obtain the usual recurrence A1 = C and Ai+1 = A ′ i + C • Ai. The p-curvature of A ∂ /A ∂ L will simply be called the p-curvature of L.

SERIES WITH DIVIDED POWERS

In all this section, we let ℓ be a ring in which p vanishes. We recall the definition of the divided power ring over ℓ, and its main properties -mainly, a Cauchy-Lipschitz theorem that will allow us to compute solutions of differential systems. We show how some approaches that are wellknown for power series solutions carry over without significant changes in this context. Most results in this section are not new; those from §3.1 and §3.2 are implicitly contained in [START_REF] Berthelot | Cohomologie cristalline des schémas de caractéristique p > 0[END_REF][START_REF] Berthelot | Notes on crystalline cohomology[END_REF], while the theoretical basis of §3.3 is similar to [START_REF] Keigher | Hurwitz series as formal functions[END_REF].

The ring ℓ[[t]] dp

Let ℓ[[t]] dp be the ring of formal series of the form:

f = a0 + a1γ1(t) + a2γ2(t) + • • • + aiγi(t) + • • • (5)
where the ai's are elements of ℓ and each γi(t) is a symbol which should be thought of as

t i i! . The multiplication on ℓ[[t]] dp is defined by the rule γi(t) • γj(t) = i+j i • γi+j(t).
Remark 3.1. The ring ℓ[[t]] dp is not the PD-envelope in the sense of [START_REF] Berthelot | Cohomologie cristalline des schémas de caractéristique p > 0[END_REF][START_REF] Berthelot | Notes on crystalline cohomology[END_REF] of ℓ[[t]] with respect to the ideal (t) but its completion for the topology defined by the divided powers ideals. Taking the completion is essential to have an analogue of the Cauchy-Lipschitz Theorem (cf Proposition 3.4).

Invertible elements of ℓ[[t]

] dp are easily described: they are exactly those for which the "constant" coefficient a0 is invertible in ℓ. The ring ℓ[[t]] dp is moreover endowed with a derivation defined by

f ′ = ∞ i=0 ai+1γi(t) for f = ∞ i=0 aiγi(t).

It then makes sense to consider differential systems over ℓ[[t]]

dp . A significant difference with power series is the existence of an integral operator: it maps f as above to f = ∞ i=0 aiγi+1(t) and satisfies (f) ′ = f for all f . Divided power ideals. For all positive integers N , we denote by ℓ

[[t]] dp ≥N the ideal of ℓ[[t]] dp consisting of series of the form i≥N aiγi(t). The quotient ℓ[[t]] dp /ℓ[[t]] dp
≥N is a free ℓmodule of rank N and a basis of it is (1, γ1(t), . . . , γN-1(t)). In particular, for

N = 1, the quotient ℓ[[t]] dp /ℓ[[t]] dp ≥1 is iso- morphic to ℓ: in the sequel, we shall denote by f (0) ∈ ℓ the reduction of an element f ∈ ℓ[[t]] dp modulo ℓ[[t]] dp
≥1 . On the writing (5), it is nothing but the constant coefficient a0 in the expansion of f . We draw the reader's attention to the fact that ℓ

[[t]] dp ≥N is not stable under derivation, so the quotients ℓ[[t]] dp /ℓ[[t]] dp ≥N do not inherit a derivation.

Relationship with ℓ[t].

There exists a natural map ε :

ℓ[t] → ℓ[[t]] dp taking a polynomial i ait i to p-1 i=0 aii!•γi(t)
. The latter sum stops at i = p-1 because i! becomes divisible by p after that. Clearly, the kernel of ε is the principal ideal generated by t p . Hence ε factors through ℓ[t]/t p as follows:

ℓ[t] pr -→ ℓ[t]/t p ι -→ ℓ[[t]] dp (6)
where pr is the canonical projection taking a polynomial to its reduction modulo t p . We observe moreover that the ideal t p ℓ[t] is stable under derivation and, consequently, that the quotient ring ℓ[t]/t p inherits a derivation. Furthermore, the two mappings in (6) commute with the derivation.

Computations with divided powers

It turns out that the γn(t)'s can all be expressed in terms of only few of them, resulting in a more flexible description of the ring ℓ[[t]] dp . To make this precise, we set ti = γ p i (t) and first observe that

t n i = n! • γ np i (t)
for all i and n; this is proved by induction on n, using the equalities

t n+1 i = n! • γ np i (t) • γ p i (t) = n! • (n+1)p i p i γ (n+1)p i (t),
since Lucas' Theorem shows that (n+1)p i p i ≡ n+1 (mod p). In particular t p i = 0 for all i.

Proposition 3.2. Let n be a positive integer and n = s i=0 nip i its writing in basis p. Then:

γn(t) = γn 0 (t) • γn 1 p(t) • • • γn s p s (t) = t n 0 0 n0! • t n 1 1 n1! • • • t ns s ns! .
Proof. The first equality is proved by induction on s using the fact that if n = a + bp with 0 ≤ a < p, then γaγ bp = γn, since a+bp a ≡ 1 (mod p). The second equality then follows from the relations

t n i i = ni! • γ n i p i (t).
A corollary of the above proposition is that elements of ℓ[[t]] dp can be alternatively described as infinite sums of monomials an 0 ,...,ns • t n 0 0 • t n 1 1 • • • t ns s where the ni's are integers in the range [0, p) and the coefficient an 0 ,...,ns lies in ℓ. The product in ℓ[[t]] dp is then the usual product of series subject to the additional rules t p i = 0 for all i. More precisely, restricting ourselves to some given precision of the form N = np s , we deduce from the above discussion the following corollary.

Corollary 3.3. For N = np s , with s ∈ N and n ∈ {1, . . . , p}, there is a canonical isomorphism of ℓ-algebras:

ℓ[[t]] dp /ℓ[[t]] dp ≥N ≃ ℓ[t0, . . . , ts]/(t p 0 , . . . , t p s-1 , t n s).
For instance, if we take s = 0 and N = n in {1, . . . , p}, we obtain the isomorphism ℓ

[[t]] dp /ℓ[[t]] dp ≥N ≃ ℓ[t]/t N .
In terms of complexity, the change of bases between leftand right-hand sides can both be done in O˜(N) operations in ℓ: all the factorials we need can be computed once and for all for O(min(N, p)) operations; then each monomial conversion takes O(s) = O(log(N)) operations, for a total of O(N log(N)) = O˜(N).

The previous corollary is useful in order to devise a multiplication algorithm for divided powers, since it reduces this question to multivariate power series multiplication (addition takes linear time in both bases). To multiply in ℓ[t0, . . . , ts]/(t p 0 , . . . , t p s-1 , t n s), one can use a direct algorithm: multiply and discard unwanted terms. Using for instance Kronecker's substitution and FFT-based univariate arithmetic, we find that a multiplication in ℓ[[t]] dp at precision N (i.e. modulo ℓ[[t]] dp ≥N) can be performed with O˜(2 log p N N) operations in k. A solution that leads to a cost N 1+ε for any ε > 0 is in [START_REF] Schost | Multivariate power series multiplication[END_REF], but the former result will be sufficient.

The Cauchy-Lipschitz Theorem

A nice feature of the ring ℓ[[t]] dp -which does not hold for ℓ[[t]] notably -is the existence of an analogue of the classical Cauchy-Lipschitz theorem. This property will have a fundamental importance for the purpose of our paper; see for instance [START_REF] Keigher | Hurwitz series as formal functions[END_REF]Proposition 4.2] for similar considerations.

Y ′ = A • Y Y (0) = V.
Proof. Let us write the expansions of A and Y :

A = ∞ i=0 Aiγi(t) and Y = ∞ i=0 Yiγi(t)
where the Ai's and Yi's have coefficients in ℓ. The Cauchy problem translates to Y0 = V and Yn+1 =

n i=0 n i • Ai • Yn-i. It is now clear that it has a unique solution.
Of course, Proposition 3.4 extends readily to the case where the initial data V is any matrix having r rows. In particular, taking V = Ir (the identity matrix of size r), we find that there exists a unique r × r matrix Y with coefficients in ℓ[[t]] dp such that Y (0) = Ir and Y ′ = A • Y . This matrix is often called a fundamental system of solutions.

Finding solutions using Newton iteration. In characteristic zero, it is possible to compute power series solutions of a differential system such as Y ′ = A • Y using Newton iteration; an algorithm for this is presented on [5, Fig. 1].

One can use this algorithm to compute a fundamental system of solutions in our context. For this, we first need to introduce two notations. Given an element f ∈ ℓ[[t]] dp written as f = i aiγi(t) together with an integer m, we set ⌈f ⌉ m = m-1 i=0 aiγi(t). Similarly, if M is a matrix with coefficients in ℓ[[t]] dp , we define ⌈M ⌉ m and M by applying the corresponding operations entry-wise.

Algorithm fundamental_solutions

Input: a differential system Y ′ = AY , an integer N Output: the fund. system of solutions modulo ℓ

[[t]] dp ≥N 1. Y = Ir + t A(0); Z = Ir; m = 2 2. while m ≤ N/2: 3. Z = Z + Z(Ir -Y Z) m 4. Y = Y -Y Z • (Y ′ -⌈A⌉ 2m-1 Y) 2m 5. m = 2m 6. return Y
Correction is proved as in the classical case [5, Lemma 1].

Let us take n ∈ {2, . . . , p} and s ∈ N such that n -1 is the last digit of N written in basis p, and s the corresponding exponent; then, we have (n -1)p s ≤ N < np s . Since we are only interested in costs up to logarithmic factors, we may assume that we do all operations at precision np s (a better analysis would take into account the fact that the precision grows quadratically).

By Corollary 3.3 and the discussion that follows, arithmetic operations in ℓ[[t]] dp /ℓ[[t]] dp ≥np s take time O˜(2 log p N N). This is also the case for differentiation and integration, in view of the formulas given in the previous subsection; truncation is free. The total complexity of Algorithm funda-mental_solutions is therefore O˜(2 log p N N r ω) operations in ℓ, where r is the dimension of the differential system. If N = p O (1) , which is what we need later on, this is O˜(N r ω).

The case of differential operators. We now consider the case of the differential system associated to a differential operator

L = ar∂ r +• • •+a1∂ +a0 ∈ ℓ[[t]
] dp ∂ . We will work under the following few assumptions: we assume that ar is invertible, and that there exists an integer d < p such that all ai's can be written ai = αi,0 + αi,1γ1(t)

+ • • • + α i,d γ d (t)
for some coefficients αi,j in ℓ; thus, by assumption, αr,0 is a unit in ℓ. Our goal is still to compute a basis of solutions up to precision N ; the algorithm is a direct adaptation of a classical construction to the case of divided powers.

In all that follows, we let f0, . . . , fr-1 be the solutions of L in ℓ[[t]] dp , such that fi is the unique solution of the Cauchy problem (cf Proposition 3.4):

L(fi) = 0 ; f (j) i (0) = δij for 0 ≤ j < r (7)
where δij is the Kronecker delta. For

f = ∞ j=0 ξjγj(t) in ℓ[[t]] dp , a direct computation shows that the n-th coefficient of L(f) is r i=0 n j=0 n j αi,j ξn+i-j. Assume L(f) = 0.
Then, extracting the term in ξn+r, and using that αi,j = 0 for j > d, we get ξn+r = -1 α r,0 r-1 i=0 d j=0 n j αi,j ξn+i-j. Letting m = i-j, we find ξn+r = r-1 m=-d Am(n)ξn+m with

Am(n) = -1 αr,0 r-1 i=0 n i-m αi,i-m = 0≤i≤r-1 0≤i-m≤d -αi,i-m αr,0(i -m)! n i-m and n i-m = n(n -1) • • • (n -(i -m -1)
) is a falling factorial. The expression above for Am is well-defined, since we assumed that d < p, and shows that Am is a polynomial of degree at most d.

From this, writing the algorithm is easy. We need two subroutines: from falling factorial(F), which computes the expansion on the monomial basis of a polynomial of the form F = 0≤j≤n fj n j , and eval(F, N), which computes the values of a polynomial F at the N points {0, . . . , N -1}. The former can be done using the divide-and-conquer algorithm of [8, Section 3] in time O˜(n); the latter by the algorithm of [START_REF] Zur Gathen | Modern Computer Algebra[END_REF]Chapter 10], in time O˜(deg(F) + N). The previous discussion leads to the algorithm solutions_operator below. In view of the previous discussion, the cost analysis is straightforward (at step 2., notice that all required factorials can be computed in time O(d)). The costs reported in the pseudo-code indicate the total amount of time spent at the corresponding line.

Algorithm solutions_operator

Input: a differential operator L ∈ ℓ[[t]] dp ∂ of bidegree (d, r), with d < p; an integer N Output: the solutions f0, . . . , fr-1 at precision N 1. for m = -d, . . . , r -1:

2.

Âm = 0≤i≤r-1,0≤i-m≤d

-α i,i-m α r,0 (i-m)! x i-m Cost: O(d(r + d))

3.

Am = from falling factorial(Âm) Cost: O˜(d(r + d)) 4.

Store eval(Am, N -r) Cost: O˜((d + N)(r + d)) 5. for i = 0, . . . , r -1:

6.

fi = [0, . . . , 0, 1, 0, . . . , 0] (ith unit vector of length r) Cost: O(r 2) 7.

for n = 0, . . . , N -r -1: 8.

fi,n+r = r-1 m=-d Am(n)fi,n+m Cost: O(rN (r + d)) 9. return f0, . . . , fr-1 Altogether, we obtain the following result, where we use the assumption N > d to simplify slightly the cost estimate. In particular, Algorithm solutions_operator has a better cost than fundamental_solutions when d = O(r ω-1).

COMPUTING THE P-CURVATURE

In all this section, we work over a field k of characteristic p > 0. We consider a differential system Y ′ = AY of dimension r and denote by Ap the matrix of its p-curvature. We write A = The goal of this section is to prove the following theorem. Theorem 4.2. There exists an algorithm (presented below) which computes the matrix of the p-curvature of the differential system Y ′ = AY in O˜ pdr ω) operations in k.

It is instructive to compare this cost with the size of the output. By Lemma 4.1, the latter is an r × r matrix whose entries are rational functions whose numerator and denominator have degree ≃ pd, so its size is roughly pdr 2 elements of k. Our result O˜ pdr ω) is quasi-optimal if we assume that matrix multiplication can be performed in quasi-optimal time.

A formula for the p-curvature

Let Ap denote the matrix of the p-curvature of the differential system Y ′ = AY (in the usual monomial basis). The expression of Ap given at the very end of §2 is unfortunately not well-suited for fast computation. The aim of this subsection is to give an alternative formula for Ap using the framework of divided powers.

In order to relate k(x) and a ring ℓ[[t]] dp , we pick a separable polynomial S ∈ k[x] which is coprime with fA and set ℓ = k[x]/S (which is thus not necessarily a field). Let a ∈ ℓ be the class of x. We consider the ring homomorphism:

ϕS : k[x] → ℓ[t]/t p f (x) → f (t + a) mod t p .
Regarding the differential structure, we observe that ϕS commutes with the derivation when ℓ[t]/t p is endowed with the standard derivation d dt . We furthermore deduce from the fact that S and fA are coprime that ϕS extends to a homomorphism of differential rings k

[x][1 f A] → ℓ[t]
/t p that we continue to denote by ϕS. We set ψS = ι • ϕS where ι is the canonical inclusion ℓ[t]/t p ֒→ ℓ[[t]] dp (cf §3). As before, ψS commutes with the derivation. Finally, because S is separable, we can check that ϕS is surjective and its kernel is the ideal generated by S p . Hence ϕS induces an isomorphism:

k[x]/S p = k[x][1 f A]/S p ∼ -→ ℓ[t]/t p . (8
)
Let YS be a fundamental system of solutions of the dif-

ferential system Y ′ = ψS(A) • Y , i.e. YS is an r × r ma- trix with coefficients in ℓ[[t]] dp such that YS(0) = Ir and Y ′ S = ψS(A) • YS.
The existence of YS is guaranteed by Proposition 3.4. Moreover, the matrix YS is invertible because YS(0) = Ir is. Proposition 4.3. Keeping the above notations, we have:

ϕS(Ap) = -Y (p) S • Y -1 S (9)
where Y (p) S is the matrix obtained from YS by taking the p-th derivative entry-wise.

Proof. We set ZS = Y -1 S and let (M, ∂) denote the differential module over ℓ[[t]] dp associated to the differential system Y ′ = ψS(A)Y . Let y1, . . . , yr denote the column vectors of YS. They are all solutions of the system Y ′ = ψS(A)Y , meaning that ∂(yi) = 0 for all i. Furthermore, if (e1, . . . , er) is the canonical basis of (ℓ[[t]] dp) r , we have the matrix relations: t YS • e = y and e = t ZS • y where y (resp. e) is the column vector whose coordinates are the vectors yi's (resp. the ei's). Applying ∂ to the above relation, we find In our setting, the matrix Ap has coefficients in k

∂(e) = t Z ′ S •y + t ZS •∂(y) = t Z ′ S •
[x][1 f A] (cf Lemma 4.1)
, from which we deduce that ψS(Ap) has actually coefficients in the subring ℓ[t]/t p of ℓ[[t]] dp . Therefore, using Eq. (9), one can compute ψS(Ap) knowing only YS modulo the ideal ℓ[[t]] dp ≥2p . One can actually go further in this direction and establish a variant of Eq. (9) giving an expression of ψS(Ap) which involves only the reduction of YS modulo ℓ[[t]] dp ≥p . To make this precise, we need an extra notation. Given an integer i ∈ [0, p) and a polynomial f ∈ ℓ[t]/t p (resp. a matrix M with coefficients in ℓ[t]/t p), we write Coeff(f, i) (resp. Coeff(M, i)) for the coefficient in t i in f (resp. in M).

Proposition 4.4. Keeping the above notations, we have:

ψS(Ap) = -ȲS • Y (p) S (0) • Ȳ -1 S = ȲS • Coeff(A • ȲS, p-1) • Ȳ -1 S (
Y (p) S (0) = (A • YS) (p-1) (0) = -Coeff(A • ȲS, p-1)
the minus sign coming from (p -1)! ≡ -1 (mod p).

Remark 4.5. We can rephrase Proposition 4.4 as follows: letting y1, . . . , yr denote the column vectors of YS and ȳi ∈ (ℓ[t]/t p) r be the reduction of yi, the p-curvature of A modulo t p is the linear endomorphism of (ℓ[t]/t p) r whose matrix in the basis (ȳ1, . . . , ȳr) is Coeff(A • ȲS, p-1). It is worth remarking that the latter matrix has coefficients in the subring ℓ of ℓ[t]/t p .

Remembering Eq. (8), we conclude that Proposition 4.4 allows us to compute the image of the p-curvature Ap modulo S p . The strategy of our algorithm now becomes clear: we first compute Ap modulo S p for various polynomials S and, when we have collected enough congruences, we put them together to reconstruct Ap. The first step is detailed in §4.2 just below and the second step is the subject of §4.3.

Local calculations

In all this subsection, we fix a separable polynomial S ∈ k[x] and denote by m its degree. Our goal is to design an algorithm for computing the matrix Ap modulo S p . After Proposition 4.4, the main remaining algorithmic issue is the effective computation of the isomorphism ϕS and its inverse.

Applying ϕS and its inverse. We remark that ϕS factors as follows:

k[x]/S p → k[x, t]/ S, (t -x) p → k[x, t]/ S, t p x → t → t + a.
Applying the right-hand mapping, or its inverse, amounts to doing a polynomial shift in degree p with coefficients in k[x]/S. Using the divide-and-conquer algorithm of [START_REF] Zur Gathen | Fast algorithms for Taylor shifts and certain difference equations[END_REF], this can be done in O˜(p) arithmetic operations in k[x]/S, which is O˜(pm) operations in k. Thus, we are left with the lefthand factor, say ϕ ⋆ S . Applying it is straightforward and can be achieved in O˜(pm) operations in k. It then only remains to explain how one can apply efficiently ϕ ⋆ S -1 . We start by determining the image of x by ϕ ⋆ S -1 ; call it y = ϕ ⋆ S -1 (x); we may identify it with its canonical preimage in k[x], which has degree less than pm. Write y = 0≤i<p ζi(x p)x i , with every ζi in k[x] of degree less than m (so that ζi(x p) has degree less than pm).

Its image through ϕ ⋆ S is 0≤i<p ζi(t p)t i , which is 0≤i<p ζi(x p)t i , since x p = t p in k[x, t]/ S, (t -x) p .
Since ϕ ⋆ S (y) = x, we deduce that ζ0(x p) = x mod S and ζi(x p) = 0 mod S for i = 1, . . . , p -1. The first equality implies that x p generates k[x]/S, so the fact that ζ0 has degree less than m implies that ζ0 is the unique polynomial with this degree constraint such that ζ0(x p) = x mod S. The other equalities then imply that ζi = 0 for i = 1, . . . , p -1.

In order to compute ζ0, we first compute ν = x p mod S, using O˜(m log(p)) operations in k. Then, we have to find the unique polynomial ζ0 of degree less than m such that ζ0(ν) = x mod S. In general, one can compute ζ0 in O(m ω) operations in k by solving a linear system. In the common case where m < p, there exists a better solution. Indeed, denote by tr : k[x]/S → k the k-linear trace form and write ti = tr(ν i) and t ′ i = tr(xν i), for i = 0, . . . , m -1. Then formulas such as those in [START_REF] Rouillier | Solving zero-dimensional systems through the rational univariate representation[END_REF] allow us to recover ζ0 from t = (t0, . . . , tm-1) and t ′ = (t ′ 0 , . . . , t ′ m-1) in time O˜(m). These formulas require that m < p and that S ′ be invertible modulo S, which is ensured by our assumption that S is separable. To compute t and t ′ , we can use Shoup's power projection algorithm [START_REF] Shoup | Fast construction of irreducible polynomials over finite fields[END_REF], which takes O(m (ω+1)/2) operations in k.

Once ζ0 is known, to apply the mapping ϕ ⋆ S -1 to an element g(x, t), we proceed coefficient-wise in t. Write g = 0≤i<p gi(x)t i , with all gi of degree less than m. Then ϕ ⋆ S -1 (g) = 0≤i<p (gi(ζ0) mod T) (x p) x i where T is the polynomial obtained by raising all coefficients of S to the power p, so that S(x) p = T (x p).

Computing T takes O(m log(p)) operations in k; then, computing each term gi(ζ0) mod T can be done using the Brent-Kung modular composition algorithm for O(m (ω+1)/2) operations in k; the total is O(m (ω+1)/2 p). Finally, the evaluation at x p and the summation needed to obtain ϕ ⋆ S -1 (g) do not involve any arithmetic operations. Remark 4.6. In the case where S = x m -c (where c ∈ k and p does not divide m), there actually exists a quite simple explicit formula for ϕ ⋆ S -1 : it takes t to x and x to c q x pn where n and q are integers satisfying the Bézout's relation pn + qm = 1. Using this, one can compute ϕ ⋆ S -1 (g) in O˜(pm) operations in k in this special case.

Conclusion.

Let us call phiS and phiS_inverse the two subroutines described above for computing ϕS and its inverse respectively. Proposition 4.4 leads to the following algorithm for computing the p-curvature modulo S p . To conclude with, it is worth remarking that implementing the algorithm local_p_curvature can be done using usual power series arithmetic: indeed, we only need to perform computations in the quotient ℓ

Algorithm

[[t]] dp /ℓ[[t]] dp
≥p which is isomorphic to ℓ[t]/t p by Corollary 3.3. Furthermore, we note that if we are using the algorithm fundamental_solutions at line 2, then Y -1 S can be computed by performing an extra loop in fundamental_solutions; indeed the matrix Z we obtain this way is exactly Y -1 S .

Gluing

We recall that we have started with a differential system Y ′ = AY (with A = 1 f A Ã) and that our goal is to compute the matrix Ap of its p-curvature. Lemma 4.1 gives bounds on the size of the entries of Ap. We need another lemma, which ensures that we can find enough small "evaluation points" (lying in a finite extension of k). Let Fp denote the prime subfield of k. Proof. Let m be the smallest integer such that p m ≥ D+ deg f . Clearly m ≤ 1+log q (D+deg f) ≤ 1+log p (D+deg f). Let Fpm be an extension of Fp of degree m and K be the compositum of k and Fpm . Let S1, . . . , St be the minimal polynomials over Fp (without repetition) of all elements in Fpm ⊂ K which are not a root of f . We then have deg Si ≤ m for all i and The above proof yields a concrete algorithm for producing a sequence S1, . . . , Sn satisfying the properties of Lemma 4.7: we run over elements in Fpm and, for each new element, append its minimal polynomial over Fp to the sequence (Si) unless it is not coprime with f . We continue this process until the condition n i=1 deg Si ≥ D holds. Keeping in mind the logarithmic bound on m, we find that the complexity of this algorithm is at most O˜(D + deg f) operations in k. Let us call generate_points the resulting routine: it takes as input the parameters f and D and return an admissible sequence S1, . . . , Sn.

We are now ready to present our algorithm for computing the p-curvature:

Algorithm p_curvature Input: a matrix A written as A =

• B

In view of the previous discussion and Lemma 4.1, the correctness and the cost analysis of the algorithm p_curvature are both straightforward. Hence, Theorem 4.2 is proved. We conclude this subsection with three remarks. First, when applying Chinese Remainder Theorem (CRT) on line 3 of Algorithm p_curvature, we notice that all moduli S p i are polynomials in x p . This allows the following optimization. Writing f p A • Bi ≡ p-1 j=0 Bi,j (x p)x j (mod S p i (x)) and denoting by Cj the unique solution of degree at most d to the congruence system: Bj(x) ≡ Bi,j (x) (mod Ti(x)) where Ti(x p) = S p i (x) we have B = p-1 j=0 Bj (x)x j . This basically allows us to replace one CRT with polynomials of degree dp by p CRT with polynomials of degree d. We save this way the polynomial factors in log(p) in the complexity.

Second, instead of working with n polynomials Si, one may alternatively choose a unique polynomial S of the form S = X m -a where m ≥ d is an integer not divisible by p and a ∈ k are such that S and fA are coprime. This avoids the use of Chinese Remainder Theorem and the resulting complexity stays in O˜(pdr ω) provided that we use Remark 4.6 in order to compute the inverse of ϕS.

Third, we observe that the algorithm p_curvature is very easily parallelizable. Indeed, each iteration of the main loop (on line 2) is completely independent from the others. Thus, they all can be performed in parallel. Moreover, according to the first remark (just above), the application of the Chinese Remainder Theorem (on line 3) splits into pr 2 smaller independent problems and can therefore be efficiently parallelized as well.

The case of differential operators

To conclude with, we would like to discuss the case of a differential operator L = ar∂ r + ar-1∂ r-1 + • • • + a1∂ + a0 with ai ∈ k[x] for all i, of maximal degree d.

Recall that the p-curvature of L is that of the differential module (A ∂ /A ∂ L, ∂-C), where C is the companion matrix associated to L as in [START_REF] Bostan | Globally nilpotent differential operators and the square Ising model[END_REF]. Applying directly the formulas in Proposition 4.4 requires the knowledge of the solutions of the system Y ′ = -CY . It is in fact easier to compute solutions for the system X ′ = t CX, since we saw that these solutions are the vectors of the form t (y, y ′ , . . . , y (r-1)), where y is a solution of L. This is however harmless: the p-curvatures Ap and Bp of the respective systems Y ′ = -CY and X ′ = t CX (which are so-called adjoint) satisfy Ap = -t Bp. Thus, we can use the formulas given above to compute ϕS(Bp), and deduce ϕS(Ap) for a negligible cost. Equivalently, one may notice that the fundamental matrices of solutions of our two systems are transpose of one another, up to sign.

Moreover, instead of using the second formula of Proposition 4.4 to compute the local p-curvatures, we recommend using the first one, which is ϕS(Bp) = -XS • X

S

where XS is a fundamental system of solutions of X ′ = t CX and XS denotes its reduction in Mr(ℓ[t]/t p). If f0, . . . , fr-1 are solutions of the system [START_REF] Bostan | The complete generating function for Gessel walks is algebraic[END_REF], the (i, j)-th entry of XS is just f As for the fi's, they can be computed by the algorithm so-lutions_operator (provided its assumptions are satisfied). We need finally to compute X -1 S : since XS(0) is the identity matrix, this can be done either using Newton iterator, a divide-and-conquer approach or a combination of both, which computes the inverse of XS at a small precision, and uses divide-and-conquer techniques for higher ones (the latter being the most efficient in practice). All these remarks do speed up the execution of our algorithms when d is not too large compared to r.

Last but not least, we notice that, in the case of differential operators, the matrix Ap is easily deduced from its first column. Indeed, writing Ap = (ai,j) 0≤i,j<r and letting cj = ar-1,j∂ r-1 + • • • + a1,j ∂ + a0,j ∈ k(x) ∂ be the differential operator obtained from the j-column of Ap, it is easily checked that cj+1 is the remainder in the Euclidean division of ∂cj by L. Comparing orders, we further find cj+1 = ∂cj -lc(c j) ar L where lc(cj) is the leading coefficient of cj . This remark is interesting because it permits to save memory: indeed, instead of storing all local p-curvatures A p,ℓ , we can just store their first column. Doing this, we can reconstruct the first column of Ap using the Chinese Remainder Theorem (cf §4.3) and then compute the whole matrix Ap using the recurrence.

IMPLEMENTATION AND TIMINGS

We implemented our algorithms in Magma in the case of differential operators; the source code is available at https://github.com/schost. Figure 1 gives running times for random operators of degrees (d, r) in k[x] ∂ and compares them with running times of (a fraction free version of) Katz's algorithm which consists in computing the recursive sequence (Ai) until i = p. In each cell, the first line (resp. the second line) corresponds to the running time obtained with our algorithm (resp. Katz's algorithm); a dash indicates that the corresponding running time exceeded one hour. Our benchmarks rather well reflect the predicted dependence with respect to p: quasi-linear for our algorithm and quadratic for Katz's algorithm.

Larger examples (than those presented in Fig. 1) are also reachable: for instance, we computed the first column of the p-curvature of a "small" multiple of the operator φ

Proposition 3 . 4 .

 34 Let Y ′ = AY be a differential system of dimension r with coefficients in ℓ[[t]] dp . For all initial data V ∈ ℓ r (considered as a column vector) the following Cauchy problem has a unique solution in ℓ[[t]] dp :

Lemma 3 . 5 .

 35 Suppose that p < d. Given a positive N > d, the classes of f0, . . . , fr-1 modulo ℓ[[t]] dp ≥N can be computed with at most O(rN (r + d)) operations in ℓ.

 1 f A Ã, where fA is in k[x] and à is a matrix with polynomial entries. Let d = max(deg fA, deg Ã), where deg à is the maximal degree of the entries of Ã. We recall ([13, Prop. 3.2], [9, Lemma 1]) a bound on the size of Ap. The bound follows from the recurrence (1), and it is tight. Lemma 4.1. The entries of the matrix f p A •Ap are all polynomials of degree at most dp.

 y and iterating this p times, we deduce ∂ p (e) = t Z (p) S • y = t Z (p) S • t YS • e. On the other hand, the matrix ψS(Ap) of the p-curvature is defined by the relation ∂ p (e) = t ψS(Ap)•e. Therefore we get ψS(Ap) = YS • Z (p) S . Now differentiating p times the relation YSZS = Ir, we find Y (p) S ZS + YS • Z (p) S = 0. Combining this with the above formula for ψS(Ap) concludes the proof.

10)

 10 where we have set ȲS = YS mod ℓ[[t]] dp ≥p . Proof. Differentiating p times the relation Y ′ S = ψS(A) • YS, we observe that Y (p) S is solution of the same differential system Y ′ = ψS(A)Y . Hence, thanks to uniqueness in Cauchy-Lipschitz Theorem, we have the relation Y (p) S = YS • Y (p) S (0). The first part of the Proposition follows by plugging this in Eq. (9) and reducing the result modulo ℓ[[t]] dp ≥p . To establish the second part, it is now enough to notice that the relation Y ′ S = ψS(A) • YS implies:

1 S

 1 local_p_curvature Input: a polynomial S and a matrix AS ∈ Mr(k[x]/S p) Output: the p-curvature of the system Y ′ = AS Y 1. A S,ℓ = phiS(AS) Cost: O˜(pr 2 m) operations in k (with m = deg S) 2. compute a fund. system of solutions YS ∈ Mr(ℓ[t]/t p) of the system Y ′ = A S,ℓ Y at precision p. Cost: O˜(pr ω) op. in ℓ using fundamental_solutions Remark: Here ℓ = k[x]/S 3. A p,ℓ = YS • Coeff(AYS, p-1) • Y -at precision O(t p) Cost: O˜(pr ω) operations in ℓ 4. Ap = phiS_inverse(A p,ℓ) Cost: O˜(pr 2 m ω) operations in k in general O˜(pr 2 m (ω+1)/2) operations in k if m < p 5. return Ap.

Lemma 4 . 7 .

 47 Given a positive integer D and a nonzero polynomial f ∈ k[x], there exist pairwise coprime polynomials S1, . . . , Sn ∈ Fp[x] with n ≤ D such that:• n i=1 deg Si ≥ D • for all i, the polynomial Si is coprime with f and has degree at most 1 + log p (D + deg f).

t

 i=1 deg Si ≥ p m -deg f ≥ D. It remains now to define n as the smallest integer such that n i=1 deg Si ≥ D. Minimality implies n-1 i=1 deg Si < D and thus n ≤ D. Therefore S1, . . . , Sn satisfy all the requirements of the lemma.

 (i) j . Hence the matrices XS and X (p) S (0) can be obtained from the knowledge of the image of fi's modulo

Figure 1 :

 1 Figure 1: Average running time on random inputs of various sizes

(5)

 5 H considered in[START_REF] Boukraa | Singularities of n-fold integrals of the Ising class and the theory of elliptic curves[END_REF] Appendix B.3] modulo the prime 27449. This operator has bidegree (d, r) = (108, 28). The computation took about 19 hours and the size of the output in human-readable format is about 1GB (after bzip2 compression, it decreases to about 300MB).