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ABSTRACT

Using the differential precision methods developed previ-
ously by the same authors, we study the p-adic stability
of standard operations on matrices and vector spaces. We
demonstrate that lattice-based methods surpass naive meth-
ods in many applications, such as matrix multiplication and
sums and intersections of subspaces. We also analyze de-
terminants, characteristic polynomials and LU factorization
using these differential methods. We supplement our obser-
vations with numerical experiments.

Categories and Subject Descriptors

I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation – Algebraic Algorithms

General Terms

Algorithms, Theory

Keywords

p-adic precision; linear algebra; ultrametric analysis

1. INTRODUCTION
For about twenty years, the use of p-adic methods in sym-

bolic computation has been gaining popularity. Such meth-
ods were used to compute composed products of polynomi-
als [2], to produce hyperelliptic curves of genus 2 with com-
plex multiplication [4], to compute isogenies between elliptic
curves [8] and to count points on varieties using p-adic co-
homology theories (cf. [5, 7] and many followers). However,
a general framework allowing a precise study of p-adic pre-
cision — the main issue encountered when computing with
p-adic numbers — was designed only recently in [3].

In [3], we advocate the use of lattices to track the preci-
sion of vectors and points on p-adic manifolds. The main
result of loc. cit., recalled in Proposition 2.1, allows for the
propagation of precision using differentials. While represent-
ing precision by lattices carries a high cost in space and time
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requirements, the reduced precision loss can sometimes over-
whelm these costs within a larger algorithm. In this paper,
we apply the ideas of [3] to certain linear algebraic tasks.

Main Results. We give a number of contexts where lattice-
based precision methods outperform the standard coordinate-
wise methods. The two most striking examples are an anal-
ysis of matrix multiplication and of sums and intersections
of subspaces. In Proposition 3.1, we give a formula for the
lattice-precision of the product of two matrices. In Figure
2, we describe the precision loss in multiplying n matrices,
which appears linear in n when using standard methods and
logarithmic in n when using lattice methods. We also give
an example in Figure 4 where lattice methods actually yield
an increase in precision as the computation proceeds.

Organization of the paper. Section 2.1 recalls the the-
ory of precision developed in [3] and defines a notion of dif-
fuse precision for comparing to coordinate-wise methods. In
particular, we recall Proposition 2.1, which allows the com-
putation of precision using differentials. Proposition 2.5 in
Section 2.2 is a technical result that will be used to deter-
mine the applicability of Proposition 2.1.

In Section 3.1, we analyze matrix multiplication and re-
port on experiments that demonstrate the utility of lattice-
based precision tracking. Section 3.2 finds the precision of
the determinant of a matrix, and Section 3.3 applies the re-
sulting formula to characteristic polynomials. We define the
precision polygon of a matrix, which gives a lower bound on
the precision of the characteristic polynomial. This poly-
gon lies above the Hodge polygon of the matrix; we give
statistics on the difference and the amount of diffuse preci-
sion. Finally, we apply Proposition 2.1 to LU factorization
and describe experiments with lattice-based precision anal-
ysis. Section 4.1 reviews the geometry of Grassmannians,
which we apply in Section 4.2 to differentiating the direct
image, inverse image, sum and intersection maps between
Grassmannians. We then report in Section 4.3 on track-
ing the precision of subspace arithmetic in practice. In the
appendix, we give a proof of Proposition 2.4.

The code used to make experiments presented in this pa-
per is available at https://github.com/CETHop/padicprec.

Notation. Throughout the paper, K will refer to a com-
plete discrete valuation field. Usual examples are finite ex-
tensions of Qp and Laurent series fields over a field. We
denote by val : K ։ Z ∪ {+∞} the valuation on K, by OK

the ring of integers and by π ∈ K an element of valuation
1. We let ‖ · ‖ be the norm associated to val.

https://github.com/CETHop/padicprec


2. THE THEORY OF P-ADIC PRECISION
The aim of this section is to briefly summarize the content

of [3] and fill in certain details.

2.1 Lattices as precision data
In [3], we suggest the use of lattices to represent the pre-

cision of elements in K-vector spaces. We shall contrast
this approach with the coordinate-wise method used in Sage,
where the precision of an element is specified by giving the
precision of each coordinate separately and is updated after
each basic operation.

Consider a finite dimensional1 normed vector space E de-
fined over K. We use the notation ‖ · ‖E for the norm on E
and B−

E (r) (resp. BE (r)) for the open (resp. closed) ball of
radius r centered at the origin. A lattice L ⊂ E is a sub-OK-
module which generates E overK. Since we are working in a
ultrametric world, the balls BE (r) and B−

E (r) are examples
of lattices. Actually, lattices should be thought of as spe-
cial neighborhoods of 0 and therefore are good candidates
to model precision data. Moreover, as revealed in [3], they
behave quite well under (strictly) differentiable maps:

Proposition 2.1. Let E and F be two finite dimensional

normed vector spaces over K and f : U → F be a function

defined on an open subset U of E. We assume that f is

differentiable at some point v0 ∈ U and that the differential

f ′(v0) is surjective. Then, for all ρ ∈ (0, 1], there exists a

positive real number δ such that, for all r ∈ (0, δ), any lattice

H such that B−
E (ρr) ⊂ H ⊂ BE (r) satisfies:

f(v0 +H) = f(v0) + f ′(v0)(H). (1)

This proposition enables the lattice method of tracking
precision, where the precision of the input is specified as a
latticeH and precision is tracked via differentials of the steps
within a given algorithm. The equality sign in Eq. (1) shows
that this method yields the optimum possible precision. We
refer to [3, §4.1] for a more complete exposition.

In [3], we also explained that if f is locally analytic, then
the constant δ appearing in Proposition 2.1 can be expressed
in terms of the growing function Λ(f) defined by

Λ(f)(v) = log
(

sup
h∈B

−

E
(ev)

‖f(h)‖
)

with the convention that Λ(f)(v) = +∞ if f does not con-
verge on B−

E (ev). We refer to [3, Proposition 3.12] for the
precise statement. We state here the case of integral polyno-
mial functions. A function f : E → F is said to be integral

polynomial if it is given by multivariate polynomial functions
with coefficients in OK in any (equivalently all) system of
coordinates associated to a OK -basis of BE(1).

Proposition 2.2. We keep the notation of Proposition 2.1

and assume in addition that f is integral polynomial. Let C
be a positive real number such that BF (1) ⊂ f ′(v0)(BE(C)).
Then Proposition 2.1 holds with δ = C · ρ−1.

In [3, Appendix A], the theory is extended to manifolds
over K, where the precision datum at some point x is a
lattice in the tangent space at x. Propositions 2.1 and 2.2
have analogues obtained by working in charts. We use this
extension to compute with vector spaces in §4.

1The framework of [3] is actually those of Banach spaces.
However, we will not need infinite dimensional spaces here.

We will use the following definition in contrasting lattice
and coordinate-wise methods. Suppose E is equipped with a
basis (e1, . . . , en) and write πi : E → Kei for the projections.

Definition 2.3. Let H ⊂ E be a lattice. The number of
diffused digits of precision of H is the length of H0/H where
H0 = π1(H)⊕ · · · ⊕ πn(H).

If H represents the actual precision of some object, then
H0 is the smallest diagonal lattice containing H . Since
coordinate-wise methods cannot yield a precision better than
H0, k provides a lower bound on the number of p-adic digits
gained by lattice methods over standard methods.

2.2 A bound on a growing function
In the next sections, we will compute the derivative of

several standard operations and sometimes give a simple
expression in term of the input and the output. In other
words, the function f modeling such an operation satisfies
a differential equation of the form f ′ = g ◦ (f, id) where g
is a given — and hopefully rather simple — function. The
aim of this subsection is to study this differential equation
and to derive from it certain bounds on the growing function
Λ(f). We will assume that K has characteristic 0.

Let E,F andG be finite-dimensional normed vector spaces
with U ⊆ E and V ⊆ F and W ⊂ G open subsets. General-
izing the setting above, we consider the differential equation:

f ′ = g ◦ (f, h). (2)

Here g : V ×W → Hom(E,F ) and h : U → W are known
locally analytic functions and f : U → V is the unknown
locally analytic function. In what follows, we always assume
that V and W contain the origin, f(0) = 0, h(0) = 0 and
g(0) 6= 0. These assumptions are harmless for two reasons:
first, we can always shift f and h (and g accordingly) so
that they both vanish at 0, and second, in order to apply
Proposition 2.2 the derivative f ′(0) needs to be surjective
and therefore a fortiori nonzero.

We assume that we are given in addition two nondecreas-
ing convex functions Λg and Λh such that Λ(g) ≤ Λg and
Λ(h) ≤ Λh. We suppose further that there exists ν such
that Λg is constant on the interval (−∞, ν]2. We introduce
the functions τν and Λf defined by:

τν(x) =

{

x if x ≤ ν,
+∞ otherwise;

and Λf (x) = τν ◦ (id + Λg ◦ Λh)(x+ α),

where α is a real number satisfying ‖n!‖ ≥ e−αn for all n.
If p is the characteristic of the residue field, a suitable value
for α is α = − p

p−1
· log ‖p‖ if p > 0 and α = 0 if p = 0. The

next Proposition is proved in Appendix A.

Proposition 2.4. We have Λ(f) ≤ Λf .

Figure 1 illustrates Proposition 2.4. The blue plain line
represents the graph of the function Λf . A quick computa-
tion shows that, on a neighborhood of −∞, this function is
given by Λf (x) = x + α + µ where µ is the value that Λg

takes on the interval (−∞, ν]. Proposition 2.4 says that
the graph of Λ(f) lies below the plain blue line. More-
over, we remark that the Taylor expansion of f(z) starts

2We note that this assumption is fulfilled if we take Λg =
Λ(g) because we have assumed that g(0) does not vanish.
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Figure 1: Admissible region for the graph of Λ(f)

with the term g(0)z. Hence, on a neighborhood of −∞, we
have Λ(f)(x) = x + log ‖g(0)‖. Using convexity, we get:
Λ(f)(x) ≥ x + log ‖g(0)‖ for all x ∈ R. In other words, the
graph of Λ(f) lies above the brown line. Furthermore, we
know that the slopes of Λ(f) are all integral because f is
locally analytic. Hence, Λ(f) cannot lie above the dashed
blue line defined as the line of slope 2 passing through the
first break point of the blue plain line, which has coordinates
(y0 − α− µ, y0) with y0 = min(Λ−1

h (ν) + µ, ν). As a conclu-
sion, we have proved that the graph of Λ(f) must coincide
with the brown line until it meets the dashed blue line and
then has to stay in the green area.

As a consequence, we derive the following proposition,
which can be combined with Proposition 3.12 of [3]. Follow-
ing [3], if ϕ is a convex function and v ∈ R, we define

ϕ≥v : x 7→ inf
y≥0

(

ϕ(x+ y)− vy
)

.

It is the highest convex function with ϕ≥v ≤ ϕ and ϕ′
≥v ≥ v.

Proposition 2.5. Keeping the above notation, we have:

Λ(f)≥2(x) ≤ 2(x+ α+ µ)−min(Λ−1
h (ν) + µ, ν)

for all x ≤ min(Λ−1
h (ν)− α, ν − µ− α).

Proof. The inequality follows from the fact that y =
2(x+α+µ)−y0 is the equation of the dashed blue line.

Remark 2.6. In certain situations, it may happen that the
function f is solution of a simpler differential equation of
the form f ′ = g ◦ f . If this holds, Proposition 2.5 gives the
bound Λ(f)≥2(x) ≤ 2(x+ α+ µ)− ν for x ≤ ν − µ− α.

Beyond this particular case, we recommend choosing the
function h by endowing F with the second norm ‖x‖′F =
eµ · ‖x‖F (x ∈ F ) and taking h : (F, ‖ · ‖F ) → (F, ‖ · ‖′F )
to be the identity on the underlying vector spaces. The
function Λ(h) : R → R then maps x to x + µ and we can
choose Λh = Λ(h).

3. MATRICES
Let Mm,n(K) denote the space of m × n matrices over

K. We will repeatedly use the Smith decomposition for

M ∈ Mm,n(K), which is M = UM · ∆M · VM with UM

and VM unimodular and ∆M diagonal. Write σi(M) for the
valuation of the (i, i)-th entry of ∆M , and by convention set
σi(M) = +∞ if i > min(m,n). Order the σi(M) so that
σi(M) ≤ σi+1(M).

3.1 Multiplication
To begin with, we want to study the behavior of the preci-

sion when performing a matrix multiplication. Let r, s and
t be three positive integers and assume that we want to mul-
tiply a matrix A ∈Mr,s(K) by a matrix B ∈Ms,t(K). This
operation is of course modeled by the integral polynomial
function:

Pr,s,t : Mr,s(K)×Ms,t(K) → Mr,t(K)

(A,B) 7→ AB.

According to Proposition 2.1, the behavior of the precision
when computing AB is governed by P ′

r,s,t(A,B), the linear
mapping that takes a pair (dA, dB) to A · dB + dA ·B.

To fix ideas, let us assume from now that the entries of
A and B all lie in OK and are known at the same precision
O(πN ). In order to apply Propositions 2.1 and 2.2, we then
need to compute the image of the standard lattice L0 =
Mr,s(OK) × Ms,t(OK) under P ′

r,s,t(A,B). It is of course
contained in Mr,t(OK); this reflects the obvious fact that
each entry of the product AB is also known with precision
at least O(πN ). Nonetheless, it may happen that the above
inclusion is strict, meaning that we are gaining precision in
those cases.

Set ai = σi(A) and bi = σi(B), and define Mr,t((ai), (bj))
as the sublattice of Mr,t(OK) consisting of matrices M =
(Mi,j) such that val(Mi,j) ≥ min(ai, bj) for all (i, j).

Proposition 3.1. With the above notation, we have

P ′
r,s,t(A,B)(L0) = UA ·Mr,t((ai), (bj)) · VB

and length
(

Mr,t(OK )

P′
r,s,t(A,B)(L0)

)

=
∑

i,j

min(ai, bj)

Proof. We write A · dB + dA · B = UA ·M · VB with

M = ∆A · VA · dA · V −1
B + U−1

A · dB · UB ·∆B .

When dA varies in Ma,b(OK) so does VA · dA · V −1
B and

therefore the first summand in M varies in the subspace
of Mr,t(OK) consisting of matrices whose entries on the i-
th row have valuation at least ai. Arguing similarly for
the second summand, we deduce the first statement of the
Proposition. The second statement is now clear.

From the perspective of precision, the second statement
of Proposition 3.1 means that the computation of AB gains
∑

i,j min(ai, bj) significant digits in absolute precision3 as

soon as N > min(ar, bt) (cf. Proposition 2.2). However,
many of these digits are diffused in the sense of Definition
2.3. To change bases in order to make this increased pre-
cision visible with coordinates, write AB = UA · P · VB

with P = ∆A · VA · UB · ∆B . Tracking precision in the
usual way, the (i, j)-th entry of P is known at precision

O(πN+min(ai,bj)). Multiplication by UA and VB then dif-
fuses the precision across the entries of AB.

3We note that, on the other side, the valuation of the entries
of AB may increase, meaning that we are also losing some
significant digits if we are reasoning in relative precision.



d n
Average loss of precision

Coord-wise method Lattice method

2 10 2.8 2.4

2 100 16.7 5.0

2 1000 157.8 7.9

3 10 2.2 1.9

3 100 12.8 4.0

3 1000 122.5 7.0

Results for a sample of 1000 random inputs in Md,d(Z2)n

Figure 2: Average loss of precision in Algorithm 1

We now consider the impact of tracking this diffuse pre-
cision. Although the benefit is not substantial for a single
product of matrices, it accumulates as we multiply a large
number of matrices. We illustrate this phenomenon with the
following simple example.

Algorithm 1: example_product

Input: a list (M1, . . . ,Mn) of square matrices of size d.

1. Set P to the identity matrix of size d
2. for j = 1, . . . , n do compute P = PMi

3. return the top left entry of P

Figure 2 compares the number of significant digits in relative

precision we are losing on the output of Algorithm 1 when
we are using, on the one hand, a standard coordinate-wise
track of precision and, on the other hand, a lattice-based
method to handle precision. We observe that, in the first
case, the number of lost digits seems to grow linearly with
respect to the number of multiplications we are performing
(that is n) whereas, in the second case, the growth seems
to be only logarithmic. It would be nice to have a precise
formulation (and proof) of this heuristic.

Note that multiplication of many random matrices plays a
central role in the theory of random walks on homogeneous
spaces [1]. Better stability in computing such products helps
estimate Lyapunov exponents in that context.

3.2 Determinant
The computation of the differential of det :Mn,n(K) → K

is classical: at a point M it is the linear map

det ′(M) : dM 7→ Tr(Com(M) · dM),

where Com(M) stands for the comatrix of M , which is
det(M)M−1 when M is invertible. If rank(M) < n − 1,
then det ′(M) is not surjective and we cannot apply Propo-
sition 2.1. Therefore, we suppose that rank(M) ≥ n− 1 for
the rest of this section.

As with matrix multiplication, we first determine the im-
age of the standard lattice L0 =Mn,n(OK) under det ′(M).

Proposition 3.2. Setting v = σ1(M) + · · ·+ σn−1(M), we
have det ′(M)(L0) = πvOK.

Proof. From the description of det ′(M), we see that it
is enough to prove that the smallest valuation of an entry of
Com(M) is v or, equivalently, that the ideal of OK generated
by all minors of M of size (n − 1) is πvOK . But this ideal
remains unchanged when we multiply M on the left or on
the right by a unimodular matrix. Thus we may assume
that M = ∆M , and the result becomes clear.

In terms of precision, Proposition 3.2 implies that if M is
given at flat precision O(πN ) with N > v, then det(M) is
known at precision O(πN+v). Thus we are gaining v digits
in absolute precision or, equivalently, losing σn(M) digits of
relative precision. Furthermore, one may compute det(M)
with this optimal precision by finding an approximate Smith
decomposition with ∆M known at precision O(πN ) and mul-
tiplying its diagonal entries.

3.3 Characteristic polynomials
Write char :Mn,n(K) → K[X] for the characteristic poly-

nomial, and K<n[X] ⊂ K[X] for the subspace consisting of
polynomials of degree less than n. Then the differential of
char at a point M is

char′(M) : dM 7→ Tr(Com(X −M) · dM).

The image is the K-span of the entries of Com(X−M),
which is clearly contained withinK<n[X]. In fact, the image
will equal K<n[X] as long as M does not have two Jordan
blocks with the same generalized eigenvalue. For now on,
we make this assumption.

Recall that the Newton polygon NP(f) of a polynomial
f(X) =

∑

i aiX
i is the lower convex hull of the points

(i, val(ai)) and the Newton polygon NP(M) of a matrixM is
NP(char(M)). The Hodge polygon HP(M) ofM is the lower

convex hull of the points (i,
∑n−i

j=1 σj(M)). For any matrix

M , the polygon NP(M) lies above HP(M) [6, Thm. 4.3.11].
Such polygons arise naturally in tracking the precision

of polynomials [3, §4.2]. Any such polygon P yields a lat-
tice LP in K<n[X] consisting of polynomials whose Newton
polygons lie above P . This lattice is generated by monomi-
als aiX

i, where val(ai) is the ceiling of the height of P at
i. These polygons are used in a coordinate-wise precision
tracking for polynomial arithmetic. We now introduce an-
other polygon, bounded between NP(M) and HP(M), that
will provide an estimate on the precision of char(M).

Definition 3.3. The precision polygon PP(M) of M is the
lower convex hull of the Newton polygon of the entries of
Com(X−M).

It is clear from the definition LPP(M) ⊂ char′(M)(L0)
where L0 is the standard lattice Mn,n(OK). More precisely,
PP(M) is the smallest polygon P for which the inclusion
LP ⊂ char′(M)(L0) holds. By Proposition 2.1, the preci-
sion polygon determines the minimal precision losses possi-
ble when encoding polynomial precision using polygons.

It turns out that the precision polygon is related to the
Hodge and Newton polygons. If a polygon P has vertices
(xi, yi), we let Tn(P ) be the translated polygon with vertices
(xi − n, yi).

Proposition 3.4. The precision polygon PP(M) lies be-

tween T1(HP(M)) and NP(M).
Moreover, PP(M) and T1(HP(M)) meet at 0 and n−1.

Proof. The coefficients of char(M) can be expressed as
traces of exterior powers: the coefficient of Xi is Tr(Λi(M)),
which is Tr(Λi(UM )Λi(∆M )Λi(VM )). Computing Λi(∆M ),
we get the first statement of the Proposition. For i = 1, we
further find that PP(M) vanishes at the abscissa n−1. By
definition so does T1(HP(M)). The fact that PP(M) and
T1(HP(M)) meet at abscissa 0 follows from Proposition 3.2.

It remains to prove the comparison with the Newton poly-
gon. Set f = char(M), set mi,j as the (i, j)-th entry of



M , fi,j as the (i, j)-th entry of Com(X−M) and µi,j =
val(mi,j). We write f [k] for valuation of the coefficient of
Xk in f , and set f [−1] = +∞. The equation (X−M) ·
Com(X−M) = f · I yields, for all i and k,

f [k] ≥ inf(fi,i[k−1], µi,0 + f0,i[k], . . . , µi,n + fn,i[k])

≥ inf(fi,i[k−1], fj,i[k]),

with the infimum over j. Taking lower convex hulls and
noting that PP(M) is nonincreasing, which follows from the
comparison with the Hodge polygon, we get the result.

Remark 3.5. Experiments actually support the following
stronger result: PP(M) is bounded above by T1(NP(M)).

For many matrices, PP(M) = T1(HP(M)). For random
matrices over Z2, the 2-adic precision polygon is equal to
the Hodge polygon in 99.5% of cases in dimension 4, down
to 99.1% in dimension 8. Over Z3, the fraction rises to
99.98%, with no clear dependence on dimension. Empiri-
cally, PP(M) seems most likely to differ from T1(HP(M))
at 1, corresponding to the precision of the linear term of the
characteristic polynomial.

Of course, the precision lattice E = char′(M)(L0) may
contain diffuse precision which is not encapsulated in PP(M).
Diffuse precision arises in 11% of cases in dimension 3, up to
15% of cases in dimension 8. This percentage increases as
val(det(M)) increases, reaching 34% in dimension 9 for ma-
trices constrained to have determinant with 2-adic valuation
12. Moreover, one can construct examples with arbitrarily
large amounts of diffuse precision. Suppose the σi(M) are
large. Proposition 3.4 implies that E is contained within
OK,<n[X] with index at least

∑n−1
i=1 σi(M). The precision

lattice of 1 +M is obtained from E via the transformation
X 7→ 1 +X, but PP(1 +M) is now flat with height 0.

For randomly chosen matrices, approximating E using the
Hodge polygon loses only a small amount of precision. How-
ever, if the σi(M)’s are large or if M is a translate of such
a matrix, using lattice precision can be very useful.

3.4 LU factorization
In this section, we denote by ‖ · ‖ the subordinate matrix

norm on Mn(K) and, given a positive real number C, we let
B(C) be the closed ball in Mn(K) centered at the origin of
radius C. We consider the following subsets of Mn(K):
• On is the open subset of matrices whose principal minors
do not vanish (we recall that the latest condition implies the
existence and the uniqueness of a LU factorization);
• Un is the sub-vector space of upper-triangular matrices;
• L0

n (resp. Lu
n) is the sub-affine space of nilpotent (resp.

unipotent) lower-triangular matrices.

Calculus and precision. We choose to normalize the LU
factorization by requiring that L is unipotent and denote
by D : On → Lu

n × Un the function modeling this decom-
position. The computation of the differential of D has al-
ready been done in [3, Appendix B]. For M ∈ On with
D(M) = (L,U), the linear mapping D′(M) is given by:

dM 7→ (L · low(dX),up(dX) ·U) with dX = L−1 · dM ·U−1

where low (resp. up) denotes the canonical projection of
Mn(K) onto L0

n (resp. Un). It is easily checked that D′(M)
is bijective with inverse given by (A,B) 7→ AU + LB.

We now want to apply Proposition 2.5 in order to derive
a concrete result on precision. We then assume that K has

Loss of precision in LU decomposition
matrix coord-wise method lattice method
size

mean deviation mean deviation

2 3.0 5 1.5 1.4

3 9.4 11 2.3 2.3

4 20 20 3.8 3.1

Results for a sample of 2000 instances

Figure 3: Loss of precision for LU factorization

characteristic 0. We pick M0 ∈ On and write D(M0) =
(L0, U0). We consider the translated function f taking M
to D(M0 + M) − D(M0). We then have f(0) = 0 and
f ′(M) = D′(M0 + M). Using the explicit description of
the inverse of D′(M0 +M), we find B(1) ⊂ f ′(0) ·B(C) for
C = max(‖U0‖, ‖L0‖). Moreover, f satisfies the differential
equation f ′ = g ◦ f where g is defined by:

g(A,B)(X) =
(

(L0 + A) · low(Y ),up(Y ) · (U0 +B)
)

with Y = (L0 + A)−1 ·X · (U0 +B)−1.
(3)

Let κ(S) = ‖S‖ · ‖S−1‖ denote the condition number of a
matrix S. Remarking that ‖S+T‖ = ‖S‖ if ‖T‖ < ‖S‖ and
‖(S+T )−1‖ = ‖S−1‖ if ‖T‖ < ‖S−1‖−1, we deduce from (3)
that ‖g(A,B)‖ ≤ max

(

κ(L0)‖U
−1
0 ‖, κ(U0)‖L

−1
0 ‖

)

provided

that ‖A‖ < ‖L−1
0 ‖−1 and ‖B‖ < ‖U−1

0 ‖−1. Combining this
with Proposition 2.5 and [3, Proposition. 3.12], we finally
find that Eq. (1) holds as soon as

ρ

r
> ‖p‖

− 2p
p−1 ·max(‖L0‖, ‖U0‖) ·max(‖L−1

0 ‖, ‖U−1
0 ‖) ·

max
(

κ(L0)‖U
−1
0 ‖, κ(U0)‖L

−1
0 ‖

)2
.

Numerical experiments. Let Bn = (Ei,j)1≤i,j≤n be the
canonical basis ofMn(K). It can be naturally seen as a basis
of L0

n×Un as well. For a givenM ∈ On, let us abuse notation
and write D′(M) for the matrix of this linear mapping in the
above basis. We remark that D′(M) is lower-triangular in
this basis. Projecting D′(M) onto each coordinate, we find
the best coordinate-wise loss of precision we can hope for the
computation of D is given by

∑

u (maxv (val(D
′(M)u,v))).

This number should be compared to val(det(D′(M))), which
is precision lost in the lattice method. The number of dif-
fused digits of precision of D′(M)(Mn,n(OK)) is then the
difference between these two numbers. Figure 3 summarizes
the mean and standard deviation of those losses for a sample
of 2000 random matrices in Md,d(Z2).

4. VECTOR SPACES
Vector spaces are generally represented as subspaces of

Kn for some n and hence naturally appear as points on
Grassmannians. Therefore, one can use the framework of
[3, Appendix A] to study p-adic precision in this context.

4.1 Geometry of Grassmannians
Given E, a finite dimensional vector space over K, and

d, an integer in the range [0, dimE], we write Grass(E, d)
for the Grassmannian of d-dimensional subspaces of E. It is
well-known that Grass(E,d) has the natural structure of a
K-manifold. The aim of this subsection is to recall standard
facts about its geometry. In what follows, we set n = dimE
and equip E with a distinguished basis (e1, . . . , en).



Description and tangent space. Let V denote a fixed
subspace of E of dimension d. The Grassmannian Grass(E, d)
can be viewed as the quotient of the set of linear embed-
dings f : V →֒ E modulo the action (by precomposition) of
GL(V ): the mapping f represents its image f(V ). It follows
from this description that the tangent space of Grass(E, d)
is canonically isomorphic to Hom(V,E)/End(V ), which is
Hom(V,E/V ).

Charts. Let V and V c be two complementary subspaces
of E (i.e. V ⊕ V c = E). We assume that V has dimen-
sion d and denote by π the projection E → V corresponding
to the above decomposition. We introduce the set UV,V c

of all embeddings f : V →֒ E such that π ◦ f = idV .
Clearly, it is an affine space over Hom(V, V c). Further-
more, we can embed it into Grass(E, d) by taking f as
above to its image. This way, UV,V c appears as an open
subset of Grass(E, d) consisting exactly of those subspaces
W such that W ∩ V c = 0. As a consequence, the tangent
space at each such W becomes isomorphic to Hom(V, V c).
The identification Hom(V, V c) → Hom(W,E/W ) is given

by du 7→ (du ◦ f−1) mod W where f : V
∼
→ W is the linear

mapping defining W .
When the pair (V, V c) varies, the open subsets UV,V c cover

the whole Grassmannian and define an atlas. When imple-
menting vector spaces on a computer, we usually restrict
ourselves to the subatlas consisting of all charts of the form
(VI , VIc) where I runs over the family of subsets of {1, . . . , n}
of cardinality d and VI is the subspace spanned by the ei’s
with i ∈ I . A subspace W ∈ E then belongs to at least one
UVI ,VIc

and, given a family of generators ofW , we can deter-
mine such an I together with the corresponding embedding
f : VI →֒ E by row reducing the matrix of generators of W .

A variant. Alternatively, one can describe Grass(E, d) as
the set of linear surjective morphisms f : E → E/V modulo
the action (by postcomposition) of GL(E/V ). This iden-
tification presents the tangent space at a given point V
as the quotient Hom(E,E/V )/End(E/V ) ≃ Hom(V,E/V ).
Given a decomposition E = V ⊕ V c as above, we let U⋆

V,V c

denote the set of surjective linear maps f : E → V c whose
restriction to V c is the identity. It is an affine space over
Hom(V, V c) which can be identified with an open subset of
Grass(E,d) via the map f 7→ ker f .

It is easily seen that UV,V c and U⋆
V,V c define the same

open subset in Grass(E,d). Indeed, given f ∈ UV,V c , one
can write f = idV + h with h ∈ Hom(V, V c) and define the
morphism g = idE − h ◦ π ∈ U⋆

V,V c . The association f 7→ g
then defines a bijection UV,V c → U⋆

V,V c which commutes
with the embeddings into the Grassmannian.

Duality. If E is a finite dimensional vector space over K,
we use the notation E⋆ for its dual (i.e. E⋆ = Hom(E,K)).
If we are also given a subspace V ⊂ E, we denote by V ⊥

the subspace of E⋆ consisting of linear maps that vanish
on V . We recall that the dual of V ⊥ (resp. E⋆/V ⊥) is
canonically isomorphic to E/V (resp. V ). For all d, the
association V 7→ V ⊥ defines a continuous morphism ψE :
Grass(E,d) → Grass(E⋆, n − d). The action of ψE on tan-
gent spaces is easily described. Indeed, the differential of
ψE at V is nothing but the canonical identification between
Hom(V,E/V ) and Hom(V ⊥, E⋆/V ⊥) induced by transposi-
tion. Furthermore, we observe that ψE respects the charts
we have defined above, in the sense that it maps bijectively
UV,V c to U⋆

V ⊥,(V c)⊥ ≃ UV ⊥,(V c)⊥ .

4.2 Differential computations
In this subsection, we compute the differential of various

operations on vector spaces. For brevity, we skip the esti-
mation of the corresponding growing functions (but this can
be done using Proposition 2.5 as before if char(K) = 0).

Direct images. Let E and F be two finite dimensional
K-vector spaces of dimension n and m, respectively. Let d
be an integer in [0, n]. We are interested in the direct image
function DI defined on M = Hom(E,F )×Grass(E, d) that
takes the pair (f, V ) to f(V ). Since the dimension of f(V )
may vary, the map DI does not take its values in a well-
defined Grassmannian. We therefore stratify M as follows:
for each integer r ∈ [0, d], let Mr ⊂ M be the subset of pairs
(f, V ) for which f(V ) has dimension r. The Mr’s are locally
closed in M and are therefore submanifolds. Moreover, DI
induces differentiable functions DIr : Mr → Grass(F, r).

We would like to differentiate DIr around some point
(f, V ) ∈ Mr. To do so, we use the first description of the
Grassmannians we gave above: we see points in Grass(E, d)
(resp. Grass(F, d)) as embeddings V →֒ E (resp. W →֒ F )
modulo the action of GL(V ) (resp. GL(W )). The point
V ∈ Grass(E, d) is then represented by the canonical inclu-
sion v : V → E whereas a representative w of W satisfies
w ◦ ϕ = f ◦ v where ϕ : V → W is the linear mapping
induced by f . The previous relation still holds if (f, v) is
replaced by a pair (f ′, v′) ∈ Mr sufficiently close to (f, v).
Differentiating it and passing to the quotient we find, first,
that the tangent space of Mr at (f, v) consists of pairs
(df, dv) ∈ Hom(E,F )× Hom(V,E/V ) such that

dw̃ =
(

(df ◦ v + f ◦ dv) mod W
)

∈ Hom(V, F/W )

factors through ϕ (i.e. vanishes on kerϕ = V ∩ ker f) and,
second, that the differential of DIr at (f, V ) is the linear
mapping sending (df, dv) as above to the unique element
dw ∈ Hom(W,F/W ) such that dw ◦ ϕ = dw̃.

Inverse images. We now consider the inverse image map-
ping II sending a pair (f,W ) ∈ W = Hom(E,F )×Grass(F, d)
to f−1(W ). As before, this map does not take values in
a single Grassmannian, so we need to stratify W in or-
der to get differentiable functions. For each integer s ∈
[0, n], we introduce the submanifold Ws of W consisting of
those pairs (f,W ) such that dim f−1(W ) = s. For all s,
II induces a continuous function IIs : Ws → Grass(E, s).
Pick (f,W ) ∈ Ws. Set V = f−1(W ) and denote by w :
F → F/W the canonical projection. Similarly to what we
have done for direct images, one can prove that the tangent
space of Ws at some point (f,W ) ∈ Ws is the subspace
of Hom(E,F ) × Hom(W,F/W ) consisting of pairs (df, dw)
such that dṽ = (w◦df+dw◦f)|W factors through the linear
mapping ϕ : E/V → F/W induced by f . Furthermore IIs
is differentiable at (f,W ) and its differential is the linear
mapping that takes (df, dw) as above to the unique element
dv ∈ Hom(V,E/V ) satisfying ϕ ◦ dv = dṽ.

Direct images and inverse images are related by duality as
follows: if f : E → F is any linear map and W is a subspace
of F , then f⋆(W⊥) = f−1(W )⊥. We can thus deduce the
differentials of DIs from those of IIs and vice versa.

Sums and intersections. Let d1 and d2 be two nonneg-
ative integers. We consider the function Σ defined on the
manifold C = Grass(E, d1) × Grass(E, d2) by Σ(V1, V2) =
V1+V2. As before, in order to study Σ, we stratify C accord-
ing to the dimension of the sum: for each integer d ∈ [0, d1+



d2], we define Cd as the submanifold of C consisting of those
pairs (V1, V2) such that dim(V1 + V2) = d. We get a well-
defined mapping Cd → Grass(E, d) whose differential can
be computed as before. The tangent space of Cd at a given
point (V1, V2) consists of pairs (dv1, dv2) ∈ Hom(V1, E/V1)×
Hom(V2, E/V2) such that dv1 ≡ dv2 (mod V1 + V2) on the
intersection V1∩V2, and the differential of Σ at (V1, V2) maps
(dv1, dv2) to dv ∈ Hom(V,E/V ) (with V = V1 +V2) defined
by dv(v1 + v2) = dv1(v1) + dv2(v2) (v1 ∈ V1, v2 ∈ V2).

Using duality, we derive a similar result for the mapping
(V1, V2) 7→ V1 ∩ V2 (left to the reader).

4.3 Implementation and experiments

Standard representation of vector spaces. One com-
monly represents subspaces of Kn using the charts UVI ,VIc

(where I is a subset of {1, . . . , n}) introduced above. More
concretely, a subspace V ⊂ Kn is represented as the span of
the rows of a matrix GV having the following extra property:
there exists some I ⊂ {1, . . . , n} such that the submatrix of
GV obtained by keeping only columns with index in I is the
identity matrix. We recall that such a representation always
exists and, when the set of indices I is fixed, at most one GV

satisfies the above condition. Given a family of generators
of V , one can compute GV and I as above by performing
standard row reduction. Choosing the first non-vanishing
pivot at every stage provides a canonical choice for I , but
in the context of inexact base fields, choosing the pivot with
the maximal norm yields a more stable algorithm.

The dual representation. Of course, one may alterna-
tively use the charts U⋆

VI ,VIc
. Concretely, this means that

we represent V as the left kernel of a matrix HV having the
following extra property: there exists some I ⊂ {1, . . . , n}
such that the submatrix of HV obtained by deleting rows
with index in I is the identity matrix. As above, we can
then compute I and HV by performing column reduction.

Note that switching representations is cheap and stable. If
I = {1, . . . , d} with d = dimV and Id is the identity matrix
of size d, the matrix GV has the form (Id G′

V ). One can

represent V with the same I and the matrix HV =
(

−G′
V

In−d

)

.

A similar formula exists for general I .

Operations on vector spaces. The first representation we
gave is well suited for the computation of direct images and
sums. For instance, to compute f(V ) we apply f to each
row of GV , obtaining a family of generators of f(V ), and
then row reduce. Dually, the second representation works
well for computing inverse images, including kernels, and
intersections. Since translating between the two dual repre-
sentations is straightforward, we get algorithms for solving
both problems using either representation.

Some experiments. Let us consider the example compu-
tation given in the following algorithm.

Algorithm 2: example_vector_space

Input: two integers n and N

1. Set L0 = 〈(1 +O(2N ), O(2N ), O(2N ))〉 ⊂ Q3
2

2. for i = 0, . . . , n− 1
3. pick randomly α, β, γ, δ ∈M3,3(Z2) with high precision
4. compute Li+1 =

(

α(Li) + β(Li)
)

∩
(

γ(Li) + δ(Li)
)

5. return Ln

n

Average loss of precision

Coord-wise Lattice method

method Projected Diffused

10 7.3 2.7 −2.4× 2

20 14.8 5.5 −4.7× 2

50 38.6 13.1 −12.0× 2

100 78.1 26.5 −23.5× 2

Results for a sample of 1000 executions (with N ≫ n)

Figure 4: Average loss of precision in Algorithm 2

The expression high precision on line 3 means that the pre-
cision on α, β, γ and δ is set in such a way that it does not
affect the resulting precision on Li+1. Figure 4 shows the
losses of precision when executing Algorithm 2 with various
inputs n (the input N is always chosen sufficiently large so
that it does not affect the behavior of precision). The Coord-
wise column corresponds to the standard way of tracking
precision. On the other hand, in the two last columns,
the precision is tracked using lattices. The Diffused col-
umn gives the amount of diffused precision, factored to be
comparible to the Coord-wise column. The fact that only
negative numbers appear in this column means that we are
actually always gaining precision with this model! Finally,
the Projected column gives the precision loss after projecting
the lattice precision onto coordinates.

APPENDIX

A. PROOF OF PROPOSITION 2.4
We prove Proposition 2.4 in the slightly more general con-

text of K-Banach spaces.

A.1 Composite of locally analytic functions
Let U , V and W be three open subsets in K-Banach

spaces E, F and G, respectively. We assume that 0 ∈ U ,
0 ∈ V . Let f : U → V and g : V → W be two locally
analytic functions around 0 with f(0) = 0. The composi-
tion h = g ◦ f is then locally analytic around 0 as well. Let
f =

∑

n≥0 fn g =
∑

n≥0 gn and h =
∑

n≥0 hn be the ana-
lytic expansions of f , g and h. Here fn, gn and hn are the
restrictions to the diagonal of some symmetric n-linear forms
Fn, Gn and Hn, respectively. The aim of this subsection is
to prove the following intermediate result.

Proposition A.1. With the above notation, we have

‖hr‖ ≤ sup
m,(ni)

‖gm‖ · ‖fn1
‖ · · · ‖fnm‖

for all nonnegative integers r, where the supremum is taken

over all pairs (m, (ni)) where m is a nonnegative integer and

(ni)1≤i≤m is a sequence of length m of nonnegative integers

such that n1 + . . .+ nm = r.

A computation gives the following expansion for g ◦ f :

∑

(

m
k1 · · · kℓ

)

Gm(fn1
, . . . , fn1

, . . . , fnℓ
, . . . , fnℓ

) (4)

where
(

m
k1 · · · kℓ

)

denotes the multinomial coefficient and

the sum runs over:
(a) all finite sequences (ki) of positive integers whose length
(resp. sum) is denoted by ℓ (resp. m), and



(b) all finite sequences (ni) of positive integers of length ℓ.
Moreover, in the argument of Gm, the variable fni

is re-
peated ki times.

The degree of Gm(fn1
, . . . , fn1

, . . . , fnℓ
, . . . , fnℓ

) is r =
k1n1 + . . . + kℓnℓ and then contributes to hr. As a con-
sequence hr is equal to (4) where the sum is restricted to
sequences (ki), (ni) such that k1n1 + . . .+ kℓnℓ = r. Propo-
sition A.1 now follows from the next lemma.

Lemma A.2. Let E be a K-vector space. Let ϕ : Em →
K be a symmetric m-linear form and ψ : E → K defined

by ψ(x) = ϕ(x, x, . . . , x). Given positive integers k1, . . . , kℓ
whose sum is m and x1, . . . , xℓ ∈ E, we have

∥

∥

∥

(

m
k1 k2 · · · kℓ

)

· ϕ(x1, . . . , x1, . . . , xℓ, . . . , xℓ)
∥

∥

∥

≤ ‖ψ‖ · ‖x1‖
k1 · · · ‖xℓ‖

kℓ

where, in the LHS, the variable xi is repeated ki times.

Proof. It is enough to prove that
∥

∥

∥

(

m
k1 k2 · · · kℓ

)

· ϕ(x1, . . . , x1, . . . , xℓ, . . . , xℓ)
∥

∥

∥ ≤ ‖ψ‖

provided that all the xi’s have norm at most 1. We pro-
ceed by induction on ℓ. The ℓ = 1 case follows directly
from the definition of ‖ψ‖. We now pick (ℓ + 1) integers
k1, . . . , kℓ+1 whose sum equals m, together with (ℓ + 1) el-
ements x1, . . . , xℓ+1 lying in the unit ball of E. We also
consider a new variable λ varying in OK . We set x′

i = xi,
k′i = ki when i < ℓ and x′

ℓ = xℓ +λxℓ+1 and k′ℓ = kℓ + kℓ+1.
By the induction hypothesis, we know that the inequality

∥

∥

∥

(

m
k′1 · · · k′ℓ

)

· ϕ(x′
1, . . . , x

′
1, . . . , x

′
ℓ, . . . , x

′
ℓ)
∥

∥

∥ ≤ ‖ψ‖

holds for all λ ∈ K. Furthermore, the LHS of the inequality
is a polynomial P (λ) of degree k′ℓ whose coefficient in λj is

(

m
k′1 · · · k′ℓ

)

·
(

k′ℓ
j

)

· ϕ(xj) =
(

m
k1 · · · kℓ−1 j

)

· ϕ(xj)

with xj = (x1, . . . , x1, . . . , xℓ+1, . . . , xℓ+1) where xi is re-
peated ki times if i < ℓ and xℓ (resp. xℓ+1) is repeated j
times (resp. k′ℓ − j times). Since ‖P (λ)‖ ≤ ‖ψ‖ for all λ in
the unit ball, the norm of all its coefficients must also be at
most ‖ψ‖. From the coefficient of λkℓ , the result follows.

A.2 Bounding a growing function
We return to the setting of Proposition 2.4. Let f =

∑

n≥0 fn, g =
∑

n≥0 gn and h =
∑

n≥0 hn be the analytic
expansions of f , g and h. Here fn, gn and hn are the re-
strictions to the diagonal of some symmetric n-linear forms
Fn, Gn and Hn, respectively. We recall that Λ(f) is the
Legendre transform of the Newton polygon NP(f) defined
in Section 3 [3, Proposition 3.9], and that α is a real number
such that ‖n!‖ ≥ e−αn for all positive integers n.

Lemma A.3. We keep the above notation. If (a, b) satisfies
b ≥ a+ Λ(g)

(

max(b, Λ(h)(a))
)

then b ≥ Λ(f)(a− α).

Proof. We have f ′ =
∑

n≥0 f
′
n where

f ′
n : U → L(E,F ), x 7→

(

h 7→ n · Fn(h, x, x, . . . , x)
)

.

Taking h = x, we find ‖f ′
n‖ ≥ ‖nfn‖ = ‖n‖ · ‖fn‖. Combin-

ing this with Proposition A.1, we get

‖(r + 1)fr+1‖ ≤ sup
m,(ni)

‖gm‖ ·
m
∏

i=1

max(‖fni
‖, ‖hni

‖)

for all nonnegative integers r, where the supremum runs
over all pairs (m, (ni)) where m is a nonnegative integer and
(ni)1≤i≤m is a sequence of length m of nonnegative integers
such that n1+. . .+nm = r. We set ur = ‖r!fr‖. Multiplying
the above inequality by ‖r!‖, we obtain:

ur+1 ≤ sup
m,(ni)

‖gm‖ ·
m
∏

i=1

max(uni
, ‖ni!hni

‖) (5)

since the multinomial coefficient
(

r
n1 · · · nm

)

is an integer

and hence has norm at most 1. We now pick two real num-
bers a and b satisfying the hypothesis of the Lemma. Set d =
Λ(h)(a). Going back to the definitions of Λ(h) and Legendre
transform, we get ‖hn‖ ≤ e−an+d for all n. Similarly, from

our hypothesis on (a, b), we find ‖gm‖ ≤ e−max(b,d)·m+b−a

for all m. We are now ready to prove ur ≤ e−ar+b by induc-
tion on r. When r = 0, it is obvious because u0 vanishes.
Otherwise, the induction follows from

ur+1 ≤ sup
m,(ni)

e−max(b,d)·m+b−a+
∑m

i=1
(−ani+max(b,d))

= eb−a−ar = e−a(r+1)+b.

From the definition of ur, we obtain ‖fr‖ ≤ ur · ‖r!‖−1 ≤

e−(a−α)r+b. Thus b ≥ Λ(f)(a− α).

We can now conclude the proof of Proposition 2.4 as fol-
lows. Given a ∈ R and b = a+Λg ◦Λh(a), we have to prove
that Λ(f)(a−α) ≤ b provided that b ≤ ν. Thanks to Propo-
sition 2.4, it is enough to check that such pairs (a, b) satisfy
the hypothesis of Lemma A.3. Clearly: b ≥ a+Λ(g)◦Λ(h)(a)
since Λg ≥ Λ(g), Λh ≥ Λ(h) and Λg is nondecreasing. Fur-
thermore, from b ≤ ν, we get Λg(b) = minx∈R Λg(x) ≤ Λg ◦
Λh(a), from which we derive a+Λg(b) ≤ a+Λg ◦Λh(a) = b.
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and Éric Schost, From Newton sums to coefficients:
complexity issues in characteristic p, MEGA’05, 2005.

[3] Xavier Caruso, David Roe, and Tristan Vaccon,
Tracking p-adic precision, LMS Journal of Computation
and Mathematics 17 (2014), no. A, 274–294.

[4] Pierrick Gaudry, Thomas Houtmann, Annegret Weng,
Christophe Ritzenthaler, and David Kohel, The 2-adic
CM method for genus 2 curves with application to
cryptography, Asiacrypt 2006, 2006, pp. 114–129.

[5] Kiran S. Kedlaya, Counting points on hyperelliptic
curves using monsky–washnitzer cohomology, J.
Ramanujan Math. Soc. 16 (2001), 323–338.

[6] , p-adic differential equations, Cambridge
Studies in Advanced Mathematics, vol. 125, Cambridge
UP, Cambridge, UK, 2010.

[7] Alan Lauder, Deformation theory and the computation
of zeta functions, Proc. London Math. Soc. 88 (2004),
no. 3, 565–602.

[8] Reynald Lercier and Thomas Sirvent, On Elkies
subgroups of ℓ-torsion points in elliptic curves defined
over a finite field, J. Théorie des Nombres des
Bordeaux 20 (2008), 783–797.


	Introduction
	The theory of p-adic precision
	Lattices as precision data
	A bound on a growing function

	Matrices
	Multiplication
	Determinant
	Characteristic polynomials
	LU factorization

	Vector spaces
	Geometry of Grassmannians
	Differential computations
	Implementation and experiments

	Proof of Proposition 2.4
	Composite of locally analytic functions
	Bounding a growing function


