Xavier Caruso 
email: xavier.caruso@normalesup.org
  
David Roe 
  
Tristan Vaccon 
email: tristan.vaccon@univ-rennes1.fr
  
  
  
  
p-Adic Stability In Linear Algebra

Keywords: I.1.2 [Computing Methodologies]: Symbolic and Algebraic Manipulation -Algebraic Algorithms Algorithms, Theory p-adic precision, linear algebra, ultrametric analysis

come    

INTRODUCTION

For about twenty years, the use of p-adic methods in symbolic computation has been gaining popularity. Such methods were used to compute composed products of polynomials [START_REF] Bostan | From Newton sums to coefficients: complexity issues in characteristic p[END_REF], to produce hyperelliptic curves of genus 2 with complex multiplication [START_REF] Gaudry | The 2-adic CM method for genus 2 curves with application to cryptography[END_REF], to compute isogenies between elliptic curves [START_REF] Lercier | On Elkies subgroups of ℓ-torsion points in elliptic curves defined over a finite field[END_REF] and to count points on varieties using p-adic cohomology theories (cf. [START_REF] Kiran | Counting points on hyperelliptic curves using monsky-washnitzer cohomology[END_REF][START_REF] Lauder | Deformation theory and the computation of zeta functions[END_REF] and many followers). However, a general framework allowing a precise study of p-adic precision -the main issue encountered when computing with p-adic numbers -was designed only recently in [START_REF] Caruso | Tracking p-adic precision[END_REF].

In [START_REF] Caruso | Tracking p-adic precision[END_REF], we advocate the use of lattices to track the precision of vectors and points on p-adic manifolds. The main result of loc. cit., recalled in Proposition 2.1, allows for the propagation of precision using differentials. While representing precision by lattices carries a high cost in space and time Main Results. We give a number of contexts where latticebased precision methods outperform the standard coordinatewise methods. The two most striking examples are an analysis of matrix multiplication and of sums and intersections of subspaces. In Proposition 3.1, we give a formula for the lattice-precision of the product of two matrices. In Figure 2, we describe the precision loss in multiplying n matrices, which appears linear in n when using standard methods and logarithmic in n when using lattice methods. We also give an example in Figure 4 where lattice methods actually yield an increase in precision as the computation proceeds.

Organization of the paper. Section 2.1 recalls the theory of precision developed in [START_REF] Caruso | Tracking p-adic precision[END_REF] and defines a notion of diffuse precision for comparing to coordinate-wise methods. In particular, we recall Proposition 2.1, which allows the computation of precision using differentials. Proposition 2.5 in Section 2.2 is a technical result that will be used to determine the applicability of Proposition 2.1.

In Section 3.1, we analyze matrix multiplication and report on experiments that demonstrate the utility of latticebased precision tracking. Section 3.2 finds the precision of the determinant of a matrix, and Section 3.3 applies the resulting formula to characteristic polynomials. We define the precision polygon of a matrix, which gives a lower bound on the precision of the characteristic polynomial. This polygon lies above the Hodge polygon of the matrix; we give statistics on the difference and the amount of diffuse precision. Finally, we apply Proposition 2.1 to LU factorization and describe experiments with lattice-based precision analysis. Section 4.1 reviews the geometry of Grassmannians, which we apply in Section 4.2 to differentiating the direct image, inverse image, sum and intersection maps between Grassmannians. We then report in Section 4.3 on tracking the precision of subspace arithmetic in practice. In the appendix, we give a proof of Proposition 2.4.

The code used to make experiments presented in this paper is available at https://github.com/CETHop/padicprec. Notation. Throughout the paper, K will refer to a complete discrete valuation field. Usual examples are finite extensions of Qp and Laurent series fields over a field. We denote by val : K ։ Z ∪ {+∞} the valuation on K, by OK the ring of integers and by π ∈ K an element of valuation

THE THEORY OF P-ADIC PRECISION

The aim of this section is to briefly summarize the content of [START_REF] Caruso | Tracking p-adic precision[END_REF] and fill in certain details.

Lattices as precision data

In [START_REF] Caruso | Tracking p-adic precision[END_REF], we suggest the use of lattices to represent the precision of elements in K-vector spaces. We shall contrast this approach with the coordinate-wise method used in Sage, where the precision of an element is specified by giving the precision of each coordinate separately and is updated after each basic operation.

Consider a finite dimensional1 normed vector space E defined over K. We use the notation • E for the norm on E and B - E (r) (resp. B E (r)) for the open (resp. closed) ball of radius r centered at the origin. A lattice L ⊂ E is a sub-OKmodule which generates E over K. Since we are working in a ultrametric world, the balls B E (r) and B - E (r) are examples of lattices. Actually, lattices should be thought of as special neighborhoods of 0 and therefore are good candidates to model precision data. Moreover, as revealed in [START_REF] Caruso | Tracking p-adic precision[END_REF], they behave quite well under (strictly) differentiable maps: Proposition 2.1. Let E and F be two finite dimensional normed vector spaces over K and f : U → F be a function defined on an open subset U of E. We assume that f is differentiable at some point v0 ∈ U and that the differential f ′ (v0) is surjective. Then, for all ρ ∈ (0, 1], there exists a positive real number δ such that, for all r ∈ (0, δ), any lattice

H such that B - E (ρr) ⊂ H ⊂ B E (r) satisfies: f (v0 + H) = f (v0) + f ′ (v0)(H). (1) 
This proposition enables the lattice method of tracking precision, where the precision of the input is specified as a lattice H and precision is tracked via differentials of the steps within a given algorithm. The equality sign in Eq. [START_REF] Benoist | Introduction to random walks on homogeneous spaces[END_REF] shows that this method yields the optimum possible precision. We refer to [3, §4.1] for a more complete exposition.

In [START_REF] Caruso | Tracking p-adic precision[END_REF], we also explained that if f is locally analytic, then the constant δ appearing in Proposition 2.1 can be expressed in terms of the growing function Λ(f ) defined by

Λ(f )(v) = log sup h∈B - E (e v ) f (h) with the convention that Λ(f )(v) = +∞ if f does not con- verge on B - E (e v
). We refer to [3, Proposition 3.12] for the precise statement. We state here the case of integral polynomial functions. A function f : E → F is said to be integral polynomial if it is given by multivariate polynomial functions with coefficients in OK in any (equivalently all) system of coordinates associated to a OK -basis of BE(1). Proposition 2.2. We keep the notation of Proposition 2.1 and assume in addition that f is integral polynomial. Let C be a positive real number such that BF (1)

⊂ f ′ (v0)(BE(C)). Then Proposition 2.1 holds with δ = C • ρ -1 .
In [3, Appendix A], the theory is extended to manifolds over K, where the precision datum at some point x is a lattice in the tangent space at x. Propositions 2.1 and 2.2 have analogues obtained by working in charts. We use this extension to compute with vector spaces in §4.

We will use the following definition in contrasting lattice and coordinate-wise methods. Suppose E is equipped with a basis (e1, . . . , en) and write πi : E → Kei for the projections. Definition 2.3. Let H ⊂ E be a lattice. The number of diffused digits of precision of H is the length of H0/H where

H0 = π1(H) ⊕ • • • ⊕ πn(H).
If H represents the actual precision of some object, then H0 is the smallest diagonal lattice containing H. Since coordinate-wise methods cannot yield a precision better than H0, k provides a lower bound on the number of p-adic digits gained by lattice methods over standard methods.

A bound on a growing function

In the next sections, we will compute the derivative of several standard operations and sometimes give a simple expression in term of the input and the output. In other words, the function f modeling such an operation satisfies a differential equation of the form f ′ = g • (f, id) where g is a given -and hopefully rather simple -function. The aim of this subsection is to study this differential equation and to derive from it certain bounds on the growing function Λ(f ). We will assume that K has characteristic 0.

Let E, F and G be finite-dimensional normed vector spaces with U ⊆ E and V ⊆ F and W ⊂ G open subsets. Generalizing the setting above, we consider the differential equation:

f ′ = g • (f, h). (2) 
Here g : V × W → Hom(E, F ) and h : U → W are known locally analytic functions and f : U → V is the unknown locally analytic function. In what follows, we always assume that V and W contain the origin, f (0) = 0, h(0) = 0 and g(0) = 0. These assumptions are harmless for two reasons: first, we can always shift f and h (and g accordingly) so that they both vanish at 0, and second, in order to apply Proposition 2.2 the derivative f ′ (0) needs to be surjective and therefore a fortiori nonzero.

We assume that we are given in addition two nondecreasing convex functions Λg and Λ h such that Λ(g) ≤ Λg and Λ(h) ≤ Λ h . We suppose further that there exists ν such that Λg is constant on the interval (-∞, ν]2 . We introduce the functions τν and Λ f defined by:

τν (x) = x if x ≤ ν, +∞ otherwise; and Λ f (x) = τν • (id + Λg • Λ h )(x + α),
where α is a real number satisfying n! ≥ e -αn for all n. If p is the characteristic of the residue field, a suitable value for α is α = -p p-1 • log p if p > 0 and α = 0 if p = 0. The next Proposition is proved in Appendix A.

Proposition 2.4. We have Λ(f ) ≤ Λ f . Figure 1 illustrates Proposition 2.4. The blue plain line represents the graph of the function Λ f . A quick computation shows that, on a neighborhood of -∞, this function is given by Λ f (x) = x + α + µ where µ is the value that Λg takes on the interval (-∞, ν]. Proposition 2.4 says that the graph of Λ(f ) lies below the plain blue line. Moreover, we remark that the Taylor expansion of f (z) starts

x y ν Λ -1 h (ν)-α Λ -1 h (ν)+µ y = x + l o g g ( 0 ) y = x + α + µ Figure 1: Admissible region for the graph of Λ(f )
with the term g(0)z. Hence, on a neighborhood of -∞, we have Λ(f )(x) = x + log g(0) . Using convexity, we get: Λ(f )(x) ≥ x + log g(0) for all x ∈ R. In other words, the graph of Λ(f ) lies above the brown line. Furthermore, we know that the slopes of Λ(f ) are all integral because f is locally analytic. Hence, Λ(f ) cannot lie above the dashed blue line defined as the line of slope 2 passing through the first break point of the blue plain line, which has coordinates (y0 -α -µ, y0) with y0 = min(Λ -1 h (ν) + µ, ν). As a conclusion, we have proved that the graph of Λ(f ) must coincide with the brown line until it meets the dashed blue line and then has to stay in the green area.

As a consequence, we derive the following proposition, which can be combined with Proposition 3.12 of [START_REF] Caruso | Tracking p-adic precision[END_REF]. Following [START_REF] Caruso | Tracking p-adic precision[END_REF], if ϕ is a convex function and v ∈ R, we define

ϕ ≥v : x → inf y≥0 ϕ(x + y) -vy .
It is the highest convex function with ϕ ≥v ≤ ϕ and ϕ ′ ≥v ≥ v.

Proposition 2.5. Keeping the above notation, we have:

Λ(f ) ≥2 (x) ≤ 2(x + α + µ) -min(Λ -1 h (ν) + µ, ν) for all x ≤ min(Λ -1 h (ν) -α, ν -µ -α).
Proof. The inequality follows from the fact that y = 2(x + α + µ) -y0 is the equation of the dashed blue line.

Remark 2.6. In certain situations, it may happen that the function f is solution of a simpler differential equation of the form

f ′ = g • f . If this holds, Proposition 2.5 gives the bound Λ(f ) ≥2 (x) ≤ 2(x + α + µ) -ν for x ≤ ν -µ -α.
Beyond this particular case, we recommend choosing the function h by endowing F with the second norm

x ′ F = e µ • x F (x ∈ F ) and taking h : (F, • F ) → (F, • ′ F
) to be the identity on the underlying vector spaces. The function Λ(h) : R → R then maps x to x + µ and we can choose Λ h = Λ(h).

MATRICES

Let Mm,n(K) denote the space of m × n matrices over K. We will repeatedly use the Smith decomposition for

M ∈ Mm,n(K), which is M = UM • ∆M • VM with UM
and VM unimodular and ∆M diagonal. Write σi(M ) for the valuation of the (i, i)-th entry of ∆M , and by convention set σi(M ) = +∞ if i > min(m, n). Order the σi(M ) so that σi(M ) ≤ σi+1(M ).

Multiplication

To begin with, we want to study the behavior of the precision when performing a matrix multiplication. Let r, s and t be three positive integers and assume that we want to multiply a matrix A ∈ Mr,s(K) by a matrix B ∈ Ms,t(K). This operation is of course modeled by the integral polynomial function:

Pr,s,t : Mr,s(K) × Ms,t(K) → Mr,t(K) (A, B) → AB.
According to Proposition 2.1, the behavior of the precision when computing AB is governed by P ′ r,s,t (A, B), the linear mapping that takes a pair (dA, dB)

to A • dB + dA • B.
To fix ideas, let us assume from now that the entries of A and B all lie in OK and are known at the same precision O(π N ). In order to apply Propositions 2.1 and 2.2, we then need to compute the image of the standard lattice L0 = Mr,s(OK) × Ms,t(OK ) under P ′ r,s,t (A, B). It is of course contained in Mr,t(OK ); this reflects the obvious fact that each entry of the product AB is also known with precision at least O(π N ). Nonetheless, it may happen that the above inclusion is strict, meaning that we are gaining precision in those cases.

Set ai = σi(A) and bi = σi(B), and define Mr,t((ai), (bj)) as the sublattice of Mr,t(OK ) consisting of matrices M = (Mi,j ) such that val(Mi,j ) ≥ min(ai, bj ) for all (i, j). Proposition 3.1. With the above notation, we have

P ′ r,s,t (A, B)(L0) = UA • Mr,t((ai), (bj)) • VB and length Mr,t(O K ) P ′ r,s,t (A,B)(L 0 ) = i,j min(ai, bj ) Proof. We write A • dB + dA • B = UA • M • VB with M = ∆A • VA • dA • V -1 B + U -1 A • dB • UB • ∆B. When dA varies in M a,b (OK) so does VA • dA • V -1 B
and therefore the first summand in M varies in the subspace of Mr,t(OK ) consisting of matrices whose entries on the ith row have valuation at least ai. Arguing similarly for the second summand, we deduce the first statement of the Proposition. The second statement is now clear.

From the perspective of precision, the second statement of Proposition 3.1 means that the computation of AB gains i,j min(ai, bj) significant digits in absolute precision3 as soon as N > min(ar, bt) (cf. Proposition 2.2). However, many of these digits are diffused in the sense of Definition 2.3. To change bases in order to make this increased precision visible with coordinates, write AB = UA • P • VB with P = ∆A • VA • UB • ∆B. Tracking precision in the usual way, the (i, j)-th entry of P is known at precision O(π N+min(a i ,b j ) ). Multiplication by UA and VB then diffuses the precision across the entries of AB. We now consider the impact of tracking this diffuse precision. Although the benefit is not substantial for a single product of matrices, it accumulates as we multiply a large number of matrices. We illustrate this phenomenon with the following simple example.

Algorithm 1: example_product Input: a list (M1, . . . , Mn) of square matrices of size d. 1. Set P to the identity matrix of size d 2. for j = 1, . . . , n do compute P = P Mi 3. return the top left entry of P Figure 2 compares the number of significant digits in relative precision we are losing on the output of Algorithm 1 when we are using, on the one hand, a standard coordinate-wise track of precision and, on the other hand, a lattice-based method to handle precision. We observe that, in the first case, the number of lost digits seems to grow linearly with respect to the number of multiplications we are performing (that is n) whereas, in the second case, the growth seems to be only logarithmic. It would be nice to have a precise formulation (and proof) of this heuristic.

Note that multiplication of many random matrices plays a central role in the theory of random walks on homogeneous spaces [START_REF] Benoist | Introduction to random walks on homogeneous spaces[END_REF]. Better stability in computing such products helps estimate Lyapunov exponents in that context.

Determinant

The computation of the differential of det : Mn,n(K) → K is classical: at a point M it is the linear map

det ′ (M ) : dM → Tr(Com(M ) • dM ),
where Com(M ) stands for the comatrix of M , which is det(M )M -1 when M is invertible. If rank(M ) < n -1, then det ′ (M ) is not surjective and we cannot apply Proposition 2.1. Therefore, we suppose that rank(M ) ≥ n -1 for the rest of this section.

As with matrix multiplication, we first determine the image of the standard lattice L0 = Mn,n(OK) under det ′ (M ).

Proposition 3.2. Setting v = σ1(M ) + • • • + σn-1(M ), we have det ′ (M )(L0) = π v OK.
Proof. From the description of det ′ (M ), we see that it is enough to prove that the smallest valuation of an entry of Com(M ) is v or, equivalently, that the ideal of OK generated by all minors of M of size (n -1) is π v OK . But this ideal remains unchanged when we multiply M on the left or on the right by a unimodular matrix. Thus we may assume that M = ∆M , and the result becomes clear.

In terms of precision, Proposition 3.2 implies that if M is given at flat precision O(π N ) with N > v, then det(M ) is known at precision O(π N+v ). Thus we are gaining v digits in absolute precision or, equivalently, losing σn(M ) digits of relative precision. Furthermore, one may compute det(M ) with this optimal precision by finding an approximate Smith decomposition with ∆M known at precision O(π N ) and multiplying its diagonal entries.

Characteristic polynomials

Write char : Mn,n(K) → K[X] for the characteristic polynomial, and K<n[X] ⊂ K[X] for the subspace consisting of polynomials of degree less than n. Then the differential of char at a point M is

char ′ (M ) : dM → Tr(Com(X -M ) • dM ).
The image is the K-span of the entries of Com(X-M ), which is clearly contained within K<n[X]. In fact, the image will equal K<n[X] as long as M does not have two Jordan blocks with the same generalized eigenvalue. For now on, we make this assumption.

Recall that the Newton polygon NP(f ) of a polynomial f (X) = i aiX i is the lower convex hull of the points (i, val(ai)) and the Newton polygon NP(M ) of a matrix M is NP(char(M )). The Hodge polygon HP(M ) of M is the lower convex hull of the points (i, n-i j=1 σj(M )). For any matrix M , the polygon NP(M ) lies above HP(M ) [START_REF]adic differential equations[END_REF]Thm. 4.3.11].

Such polygons arise naturally in tracking the precision of polynomials [3, §4.2]. Any such polygon P yields a lattice LP in K<n[X] consisting of polynomials whose Newton polygons lie above P . This lattice is generated by monomials aiX i , where val(ai) is the ceiling of the height of P at i. These polygons are used in a coordinate-wise precision tracking for polynomial arithmetic. We now introduce another polygon, bounded between NP(M ) and HP(M ), that will provide an estimate on the precision of char(M ).

Definition 3.3. The precision polygon PP(M ) of M is the lower convex hull of the Newton polygon of the entries of Com(X-M ).

It is clear from the definition L PP(M ) ⊂ char ′ (M )(L0) where L0 is the standard lattice Mn,n(OK ). More precisely, PP(M ) is the smallest polygon P for which the inclusion LP ⊂ char ′ (M )(L0) holds. By Proposition 2.1, the precision polygon determines the minimal precision losses possible when encoding polynomial precision using polygons.

It turns out that the precision polygon is related to the Hodge and Newton polygons. If a polygon P has vertices (xi, yi), we let Tn(P ) be the translated polygon with vertices (xi -n, yi).

Proposition 3.4. The precision polygon PP(M ) lies between T1(HP(M )) and NP(M ).

Moreover, PP(M ) and T1(HP(M )) meet at 0 and n-1.

Proof. The coefficients of char(M ) can be expressed as traces of exterior powers: the coefficient of X i is Tr(Λ i (M )), which is Tr(Λ i (UM )Λ i (∆M )Λ i (VM )). Computing Λ i (∆M ), we get the first statement of the Proposition. For i = 1, we further find that PP(M ) vanishes at the abscissa n-1. By definition so does T1(HP(M )). The fact that PP(M ) and T1(HP(M )) meet at abscissa 0 follows from Proposition 3.2.

It remains to prove the comparison with the Newton polygon. Set f = char(M ), set mi,j as the (i, j)-th entry of M , fi,j as the (i, j)-th entry of Com(X-M ) and µi,j = val(mi,j). We write f [k] for valuation of the coefficient of X k in f , and set f [-1] = +∞. The equation (X-M ) • Com(X-M ) = f • I yields, for all i and k,

f [k] ≥ inf(fi,i[k-1], µi,0 + f0,i[k], . . . , µi,n + fn,i[k]) ≥ inf(fi,i[k-1], fj,i[k]),
with the infimum over j. Taking lower convex hulls and noting that PP(M ) is nonincreasing, which follows from the comparison with the Hodge polygon, we get the result. For many matrices, PP(M ) = T1(HP(M )). For random matrices over Z2, the 2-adic precision polygon is equal to the Hodge polygon in 99.5% of cases in dimension 4, down to 99.1% in dimension 8. Over Z3, the fraction rises to 99.98%, with no clear dependence on dimension. Empirically, PP(M ) seems most likely to differ from T1(HP(M )) at 1, corresponding to the precision of the linear term of the characteristic polynomial.

Of course, the precision lattice E = char ′ (M )(L0) may contain diffuse precision which is not encapsulated in PP(M ). Diffuse precision arises in 11% of cases in dimension 3, up to 15% of cases in dimension 8. This percentage increases as val(det(M )) increases, reaching 34% in dimension 9 for matrices constrained to have determinant with 2-adic valuation 12. Moreover, one can construct examples with arbitrarily large amounts of diffuse precision. Suppose the σi(M ) are large. Proposition 3.4 implies that E is contained within OK,<n[X] with index at least n-1 i=1 σi(M ). The precision lattice of 1 + M is obtained from E via the transformation X → 1 + X, but PP(1 + M ) is now flat with height 0.

For randomly chosen matrices, approximating E using the Hodge polygon loses only a small amount of precision. However, if the σi(M )'s are large or if M is a translate of such a matrix, using lattice precision can be very useful.

LU factorization

In this section, we denote by • the subordinate matrix norm on Mn(K) and, given a positive real number C, we let B(C) be the closed ball in Mn(K) centered at the origin of radius C. We consider the following subsets of Mn(K):

• On is the open subset of matrices whose principal minors do not vanish (we recall that the latest condition implies the existence and the uniqueness of a LU factorization); • Un is the sub-vector space of upper-triangular matrices;

• L 0 n (resp. L u n )
is the sub-affine space of nilpotent (resp. unipotent) lower-triangular matrices.

Calculus and precision. We choose to normalize the LU factorization by requiring that L is unipotent and denote by D : On → L u n × Un the function modeling this decomposition. The computation of the differential of D has already been done in [START_REF] Caruso | Tracking p-adic precision[END_REF]Appendix B]. For M ∈ On with D(M ) = (L, U ), the linear mapping D ′ (M ) is given by:

dM → (L • low(dX), up(dX) • U ) with dX = L -1 • dM • U -1
where low (resp. up) denotes the canonical projection of Mn(K) onto L 0 n (resp. Un). It is easily checked that D ′ (M ) is bijective with inverse given by (A, B) → AU + LB.

We now want to apply Proposition 2.5 in order to derive a concrete result on precision. We then assume that K has ). Moreover, f satisfies the differential equation f ′ = g • f where g is defined by:

Loss of precision in

g(A, B)(X) = (L0 + A) • low(Y ), up(Y ) • (U0 + B) with Y = (L0 + A) -1 • X • (U0 + B) -1 . (3) 
Let κ(S) = S • S -1 denote the condition number of a matrix S. Remarking that S + T = S if T < S and (S +T )

-1 = S -1 if T < S -1 -1 , we deduce from (3) that g(A, B) ≤ max κ(L0) U -1 0 , κ(U0) L -1 0 provided that A < L -1 0 -1 and B < U -1 0 -1 .
Combining this with Proposition 2.5 and [3, Proposition. 3.12], we finally find that Eq. ( 1) holds as soon as

ρ r > p -2p p-1 • max( L0 , U0 ) • max( L -1 0 , U -1 0 ) • max κ(L0) U -1 0 , κ(U0) L -1 0 2 .
Numerical experiments. Let Bn = (Ei,j) 1≤i,j≤n be the canonical basis of Mn(K). It can be naturally seen as a basis of L 0 n ×Un as well. For a given M ∈ On, let us abuse notation and write D ′ (M ) for the matrix of this linear mapping in the above basis. We remark that D ′ (M ) is lower-triangular in this basis. Projecting D ′ (M ) onto each coordinate, we find the best coordinate-wise loss of precision we can hope for the computation of D is given by u (maxv (val(D ′ (M )u,v))). This number should be compared to val(det(D ′ (M ))), which is precision lost in the lattice method. The number of diffused digits of precision of D ′ (M )(Mn,n(OK)) is then the difference between these two numbers. Figure 3 summarizes the mean and standard deviation of those losses for a sample of 2000 random matrices in M d,d (Z2).

VECTOR SPACES

Vector spaces are generally represented as subspaces of K n for some n and hence naturally appear as points on Grassmannians. Therefore, one can use the framework of [3, Appendix A] to study p-adic precision in this context.

Geometry of Grassmannians

Given E, a finite dimensional vector space over K, and d, an integer in the range [0, dim E], we write Grass(E, d) for the Grassmannian of d-dimensional subspaces of E. It is well-known that Grass(E, d) has the natural structure of a K-manifold. The aim of this subsection is to recall standard facts about its geometry. In what follows, we set n = dim E and equip E with a distinguished basis (e1, . . . , en).

Description and tangent space. Let V denote a fixed subspace of E of dimension d. The Grassmannian Grass(E, d) can be viewed as the quotient of the set of linear embeddings f : V ֒→ E modulo the action (by precomposition) of GL(V ): the mapping f represents its image f (V ). It follows from this description that the tangent space of Grass(E, d) is canonically isomorphic to Hom(V, E)/ End(V ), which is Hom(V, E/V ).

Charts. Let V and V c be two complementary subspaces of E (i.e. V ⊕ V c = E). We assume that V has dimension d and denote by π the projection E → V corresponding to the above decomposition. We introduce the set UV,V c of all embeddings f : V ֒→ E such that π • f = idV . Clearly, it is an affine space over Hom(V, V c ). Furthermore, we can embed it into Grass(E, d) by taking f as above to its image. This way, UV,V c appears as an open subset of Grass(E, d) consisting exactly of those subspaces W such that W ∩ V c = 0. As a consequence, the tangent space at each such W becomes isomorphic to Hom(V, V c ). The identification Hom(V,

V c ) → Hom(W, E/W ) is given by du → (du • f -1 ) mod W where f : V ∼ → W is the linear mapping defining W .
When the pair (V, V c ) varies, the open subsets UV,V c cover the whole Grassmannian and define an atlas. When implementing vector spaces on a computer, we usually restrict ourselves to the subatlas consisting of all charts of the form (VI , VIc ) where I runs over the family of subsets of {1, . . . , n} of cardinality d and VI is the subspace spanned by the ei's with i ∈ I. A subspace W ∈ E then belongs to at least one UV I ,V I c and, given a family of generators of W , we can determine such an I together with the corresponding embedding f : VI ֒→ E by row reducing the matrix of generators of W .

A variant. Alternatively, one can describe Grass(E, d) as the set of linear surjective morphisms f : E → E/V modulo the action (by postcomposition) of GL(E/V ). This identification presents the tangent space at a given point V as the quotient Hom(E, E/V )/ End(E/V ) ≃ Hom(V, E/V ). Given a decomposition E = V ⊕ V c as above, we let U ⋆ V,V c denote the set of surjective linear maps f : E → V c whose restriction to V c is the identity. It is an affine space over Hom(V, V c ) which can be identified with an open subset of Grass(E, d) via the map f → ker f .

It is easily seen that UV,V c and U ⋆ V,V c define the same open subset in Grass(E, d). Indeed, given f ∈ UV,V c , one can write f = idV + h with h ∈ Hom(V, V c ) and define the morphism g = idE -h • π ∈ U ⋆ V,V c . The association f → g then defines a bijection UV,V c → U ⋆ V,V c which commutes with the embeddings into the Grassmannian.

Duality. If E is a finite dimensional vector space over K, we use the notation E ⋆ for its dual (i.e. E ⋆ = Hom(E, K)). If we are also given a subspace V ⊂ E, we denote by V ⊥ the subspace of E ⋆ consisting of linear maps that vanish on V . We recall that the dual of V ⊥ (resp. E ⋆ /V ⊥ ) is canonically isomorphic to E/V (resp. V ). For all d, the association V → V ⊥ defines a continuous morphism ψE : Grass(E, d) → Grass(E ⋆ , n -d). The action of ψE on tangent spaces is easily described. Indeed, the differential of ψE at V is nothing but the canonical identification between Hom(V, E/V ) and Hom(V ⊥ , E ⋆ /V ⊥ ) induced by transposition. Furthermore, we observe that ψE respects the charts we have defined above, in the sense that it maps bijectively

UV,V c to U ⋆ V ⊥ ,(V c ) ⊥ ≃ U V ⊥ ,(V c ) ⊥ .

Differential computations

In this subsection, we compute the differential of various operations on vector spaces. For brevity, we skip the estimation of the corresponding growing functions (but this can be done using Proposition 2.5 as before if char(K) = 0). Direct images. Let E and F be two finite dimensional K-vector spaces of dimension n and m, respectively. Let d be an integer in [0, n]. We are interested in the direct image function DI defined on M = Hom(E, F ) × Grass(E, d) that takes the pair (f, V ) to f (V ). Since the dimension of f (V ) may vary, the map DI does not take its values in a welldefined Grassmannian. We therefore stratify M as follows: for each integer r ∈ [0, d], let Mr ⊂ M be the subset of pairs (f, V ) for which f (V ) has dimension r. The Mr's are locally closed in M and are therefore submanifolds. Moreover, DI induces differentiable functions DIr : Mr → Grass(F, r).

We would like to differentiate DIr around some point (f, V ) ∈ Mr. To do so, we use the first description of the Grassmannians we gave above: we see points in Grass(E, d) (resp. Grass(F, d)) as embeddings V ֒→ E (resp. W ֒→ F ) modulo the action of GL(V ) (resp. GL(W )). The point V ∈ Grass(E, d) is then represented by the canonical inclusion v : V → E whereas a representative w of W satisfies w • ϕ = f • v where ϕ : V → W is the linear mapping induced by f . The previous relation still holds if (f, v) is replaced by a pair (f ′ , v ′ ) ∈ Mr sufficiently close to (f, v). Differentiating it and passing to the quotient we find, first, that the tangent space of Mr at (f, v) consists of pairs (df, dv) ∈ Hom(E, F ) × Hom(V, E/V ) such that

d w = (df • v + f • dv) mod W ∈ Hom(V, F/W )
factors through ϕ (i.e. vanishes on ker ϕ = V ∩ ker f ) and, second, that the differential of DIr at (f, V ) is the linear mapping sending (df, dv) as above to the unique element dw ∈ Hom(W, F/W ) such that dw • ϕ = d w.

Inverse images. We now consider the inverse image mapping II sending a pair (f, W ) ∈ W = Hom(E, F )×Grass(F, d) to f -1 (W ). As before, this map does not take values in a single Grassmannian, so we need to stratify W in order to get differentiable functions. For each integer s ∈ [0, n], we introduce the submanifold Ws of W consisting of those pairs (f, W ) such that dim f -1 (W ) = s. For all s, II induces a continuous function IIs : Ws → Grass(E, s). Pick (f, W ) ∈ Ws. Set V = f -1 (W ) and denote by w : F → F/W the canonical projection. Similarly to what we have done for direct images, one can prove that the tangent space of Ws at some point (f, W ) ∈ Ws is the subspace of Hom(E, F ) × Hom(W, F/W ) consisting of pairs (df, dw) such that dṽ = (w • df + dw • f ) |W factors through the linear mapping ϕ : E/V → F/W induced by f . Furthermore IIs is differentiable at (f, W ) and its differential is the linear mapping that takes (df, dw) as above to the unique element dv ∈ Hom(V, E/V ) satisfying ϕ • dv = dṽ.

Direct images and inverse images are related by duality as follows: if f : E → F is any linear map and W is a subspace of F , then f ⋆ (W ⊥ ) = f -1 (W ) ⊥ . We can thus deduce the differentials of DIs from those of IIs and vice versa.

Sums and intersections. Let d1 and d2 be two nonnegative integers. We consider the function Σ defined on the manifold C = Grass(E, d1) × Grass(E, d2) by Σ(V1, V2) = V1 +V2. As before, in order to study Σ, we stratify C according to the dimension of the sum: for each integer d ∈ [0, d1 + d2], we define C d as the submanifold of C consisting of those pairs (V1, V2) such that dim(V1 + V2) = d. We get a welldefined mapping C d → Grass(E, d) whose differential can be computed as before. The tangent space of C d at a given point (V1, V2) consists of pairs (dv1, dv2) ∈ Hom(V1, E/V1)× Hom(V2, E/V2) such that dv1 ≡ dv2 (mod V1 + V2) on the intersection V1∩V2, and the differential of Σ at (V1, V2) maps (dv1, dv2) to dv ∈ Hom(V, E/V ) (with V = V1 + V2) defined by dv(v1

+ v2) = dv1(v1) + dv2(v2) (v1 ∈ V1, v2 ∈ V2).
Using duality, we derive a similar result for the mapping (V1, V2) → V1 ∩ V2 (left to the reader).

Implementation and experiments

Standard representation of vector spaces. One commonly represents subspaces of K n using the charts UV I ,V I c (where I is a subset of {1, . . . , n}) introduced above. More concretely, a subspace V ⊂ K n is represented as the span of the rows of a matrix GV having the following extra property: there exists some I ⊂ {1, . . . , n} such that the submatrix of GV obtained by keeping only columns with index in I is the identity matrix. We recall that such a representation always exists and, when the set of indices I is fixed, at most one GV satisfies the above condition. Given a family of generators of V , one can compute GV and I as above by performing standard row reduction. Choosing the first non-vanishing pivot at every stage provides a canonical choice for I, but in the context of inexact base fields, choosing the pivot with the maximal norm yields a more stable algorithm.

The dual representation. Of course, one may alternatively use the charts U ⋆ V I ,V I c . Concretely, this means that we represent V as the left kernel of a matrix HV having the following extra property: there exists some I ⊂ {1, . . . , n} such that the submatrix of HV obtained by deleting rows with index in I is the identity matrix. As above, we can then compute I and HV by performing column reduction.

Note that switching representations is cheap and stable. If I = {1, . . . , d} with d = dim V and I d is the identity matrix of size d, the matrix GV has the form (Id G ′ V ). One can represent V with the same I and the matrix HV = -G ′ V I n-d .

A similar formula exists for general I.

Operations on vector spaces. The first representation we gave is well suited for the computation of direct images and sums. For instance, to compute f (V ) we apply f to each row of GV , obtaining a family of generators of f (V ), and then row reduce. Dually, the second representation works well for computing inverse images, including kernels, and intersections. Since translating between the two dual representations is straightforward, we get algorithms for solving both problems using either representation.

Some experiments. Let us consider the example computation given in the following algorithm. The expression high precision on line 3 means that the precision on α, β, γ and δ is set in such a way that it does not affect the resulting precision on Li+1. Figure 4 shows the losses of precision when executing Algorithm 2 with various inputs n (the input N is always chosen sufficiently large so that it does not affect the behavior of precision). The Coordwise column corresponds to the standard way of tracking precision. On the other hand, in the two last columns, the precision is tracked using lattices. The Diffused column gives the amount of diffused precision, factored to be comparible to the Coord-wise column. The fact that only negative numbers appear in this column means that we are actually always gaining precision with this model! Finally, the Projected column gives the precision loss after projecting the lattice precision onto coordinates.
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 2 Figure 2: Average loss of precision in Algorithm 1
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 35 Experiments actually support the following stronger result: PP(M ) is bounded above by T1(NP(M )).
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 3 Figure 3: Loss of precision for LU factorization

Algorithm 2 : 3 2 2 .

 232 example_vector_space Input: two integers n and N1. Set L0 = (1 + O(2 N ), O(2 N ), O(2 N )) ⊂ Q for i = 0, . . . , n -1 3. pick randomly α, β, γ, δ ∈ M3,3(Z2) with high precision 4. compute Li+1 = α(Li) + β(Li) ∩ γ(Li) + δ(Li)
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 4 Figure 4: Average loss of precision in Algorithm 2

  Results for a sample of 1000 random inputs in M d,d (Z 2 ) n

	d	n	Average loss of precision Coord-wise method Lattice method
	2	10	2.8	2.4
	2	100	16.7	5.0
	2	1000	157.8	7.9
	3	10	2.2	1.9
	3	100	12.8	4.0
	3	1000	122.5	7.0

  Results for a sample of 1000 executions (with N ≫ n)

		Average loss of precision
	n	Coord-wise	Lattice method
		method	Projected	Diffused
	10	7.3	2.7	-2.4 × 2
	20	14.8	5.5	-4.7 × 2
	50	38.6	13.1	-12.0 × 2
	100	78.1	26.5	-23.5 × 2
	5. return Ln			

The framework of[START_REF] Caruso | Tracking p-adic precision[END_REF] is actually those of Banach spaces. However, we will not need infinite dimensional spaces here.

We note that this assumption is fulfilled if we take Λg = Λ(g) because we have assumed that g(0) does not vanish.

We note that, on the other side, the valuation of the entries of AB may increase, meaning that we are also losing some significant digits if we are reasoning in relative precision.

APPENDIX A. PROOF OF PROPOSITION 2.4

We prove Proposition 2.4 in the slightly more general context of K-Banach spaces.

A.1 Composite of locally analytic functions

Let U , V and W be three open subsets in K-Banach spaces E, F and G, respectively. We assume that 0 ∈ U , 0 ∈ V . Let f : U → V and g : V → W be two locally analytic functions around 0 with f (0) = 0. The composition h = g • f is then locally analytic around 0 as well. Let f = n≥0 fn g = n≥0 gn and h = n≥0 hn be the analytic expansions of f , g and h. Here fn, gn and hn are the restrictions to the diagonal of some symmetric n-linear forms Fn, Gn and Hn, respectively. The aim of this subsection is to prove the following intermediate result.

Proposition A.1. With the above notation, we have

for all nonnegative integers r, where the supremum is taken over all pairs (m, (ni)) where m is a nonnegative integer and (ni) 1≤i≤m is a sequence of length m of nonnegative integers such that n1 + . . . + nm = r.

A computation gives the following expansion for g • f : Moreover, in the argument of Gm, the variable fn i is repeated ki times. The degree of Gm(fn 1 , . . . , fn 1 , . . . , fn ℓ , . . . , fn ℓ ) is r = k1n1 + . . . + k ℓ n ℓ and then contributes to hr. As a consequence hr is equal to (4) where the sum is restricted to sequences (ki), (ni) such that k1n1 + . . . + k ℓ n ℓ = r. Proposition A.1 now follows from the next lemma.

Lemma A.2. Let E be a K-vector space. Let ϕ : E m → K be a symmetric m-linear form and ψ : E → K defined by ψ(x) = ϕ(x, x, . . . , x). Given positive integers k1, . . . , k ℓ whose sum is m and x1, . . . , x ℓ ∈ E, we have

where, in the LHS, the variable xi is repeated ki times.

provided that all the xi's have norm at most 1. We proceed by induction on ℓ. The ℓ = 1 case follows directly from the definition of ψ . We now pick (ℓ + 1) integers k1, . . . , k ℓ+1 whose sum equals m, together with (ℓ + 1) elements x1, . . . , x ℓ+1 lying in the unit ball of E. We also consider a new variable λ varying in OK . We set

. By the induction hypothesis, we know that the inequality

holds for all λ ∈ K. Furthermore, the LHS of the inequality is a polynomial P (λ) of degree

with x j = (x1, . . . , x1, . . . , x ℓ+1 , . . . , x ℓ+1 ) where xi is repeated ki times if i < ℓ and x ℓ (resp. x ℓ+1 ) is repeated j times (resp. k ′ ℓ -j times). Since P (λ) ≤ ψ for all λ in the unit ball, the norm of all its coefficients must also be at most ψ . From the coefficient of λ k ℓ , the result follows.

A.2 Bounding a growing function

We return to the setting of Proposition 2.4. Let f = n≥0 fn, g = n≥0 gn and h = n≥0 hn be the analytic expansions of f , g and h. Here fn, gn and hn are the restrictions to the diagonal of some symmetric n-linear forms Fn, Gn and Hn, respectively. We recall that Λ(f ) is the Legendre transform of the Newton polygon NP(f ) defined in Section 3 [3, Proposition 3.9], and that α is a real number such that n! ≥ e -αn for all positive integers n.

for all nonnegative integers r, where the supremum runs over all pairs (m, (ni)) where m is a nonnegative integer and (ni) 1≤i≤m is a sequence of length m of nonnegative integers such that n1+. . .+nm = r. We set ur = r!fr . Multiplying the above inequality by r! , we obtain:

since the multinomial coefficient r n1 • • • nm is an integer and hence has norm at most 1. We now pick two real numbers a and b satisfying the hypothesis of the Lemma. Set d = Λ(h)(a). Going back to the definitions of Λ(h) and Legendre transform, we get hn ≤ e -an+d for all n. Similarly, from our hypothesis on (a, b), we find gm ≤ e -max(b,d)•m+b-a for all m. We are now ready to prove ur ≤ e -ar+b by induction on r. When r = 0, it is obvious because u0 vanishes.

Otherwise, the induction follows from

= e b-a-ar = e -a(r+1)+b .

From the definition of ur, we obtain fr ≤ ur

We can now conclude the proof of Proposition