Detecting Real-World Influence Through Twitter

Jean-Valère Cossu NLP team @ University of Avignon, France

ENIC 2015

22 September 2015

Participants

- J.-V. Cossu*, N. Dugue** and V. Labatut*
 - * Université d'Avignon
 - ** Université d'Orléans

Get started with RepLab Online Reputation Monitoring on Twitter

What ?

• Assist brand managers in their daily work

How ?

- Learn experts behaviour about entities concerns
- Automatically propagate these assessments
- Justify the hypothesis

2012

- Monitoring in unknown entity case
- New challenge, is it possible to compute the issue ?
- Features discovery

2013

- Machine Learning
- Messages selection/ranking
- Raises new issues

2014

- User profiling
- Age, gender, occupation, influence, traits and so on

Data

- Large profiles collection (7,000 profiles manually labelled)
- 2 economic domains Automotive, Banking
- Each profile comprises the last 600 posted tweets

Main objectives

- Identify Opinion-Makers
 70% are not influential Search/IR
- Categorize profile according to their activity
- See PAN for gender and age identification

Twitter Profile

Piotr's profile

- Is Piotr an influent Twitter user (in his community-domain) ?
- What about Gender ? Age ? Traits ?

RepLab Author Profiling

- (Social) Network approaches
- Content-based approaches

Features

- Public profile (description and personal data)
- (S)N features (followers, followees, etc.)
- Writing behaviour (retweets, hashtag, links)
- External data (Klout, Kred,Google)

Features issues

- Features names
- Features relevance to the problem
- Data crawling, impossible to collect the complete network

Profile representation

- A profile is a **Bag of Tweets** where each tweet is processed Tweets can be bag-of-words or set of features
- A profile is a vocabulary or a set of features (User as Document)

Related content-based features

- Bag of words binary representation (word presence)
- Tweet length, Special characters, Hashtags, Links

Extra-features

- Part-of-speech tagging, Named entities
- Tweet enrichment

Proposed content-based features

- Bag of N-grams with TF, IDF
- Purity index (word distribution through classes) :

$$G(i) = \sum_{c \in \mathbb{C}} \mathbb{P}^2(i|c) = \sum_{c \in \mathbb{C}} \left(\frac{DF_i(c)}{DF_{\mathbb{T}}(i)} \right)^2$$
(1)

Strategies

- Monolingual and domain specific model VS global model
- Majority vote over the profile

Is tweet content sufficient ?

- Cosine distance between document and influents class' vocabulary
- No specific training, parameters tuning, or features selection

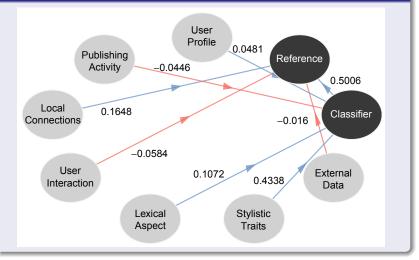
Author ranking performances

System	Automotive	Banking	Avg MAP
Cosine	.803	.626	.714
LIA Participation	.764	.652	.708
REPLAB1	.721	.410	.565
Baseline	.370	.385	.378
Klout	.304	.275	.289

- LIA_Participation is a manually tuned KNN* (not replicable)
- REPLAB1 used hot topics information
- Baseline rank according to the Followers number
- Raw features (Tweets, followees etc.) are under Klout

Influence detection classification

System	Automotive	Banking	Avg F
Cosine	.833	. 751	.792
LIA_new	.702	.726	.714
Best_System	.696	.693	.694
Baseline	.500	.500	.500


What we have done here ?

- Distinguish influencers using their account characteristics
- Distinguish influencers using contents they produce
- Ranking them
- Real influence is not node importance
 * Results limited to this dataset and the annotation quality

What's next ?

- Profile summarization in progress How much we need ? Does it work with only 50 tweets ?
- Visual modelling

Thank you !

Contact:

- jvcossu@gmail.com
- www.jeanvalerecossu.fr

References

- NLP-based classifiers to generalize experts assessments in E-Reputation monitoring Cossu J-V., Ferreira E., Gaillard J., Janod K. and El-Bèze M. @CLEF 2015
- Automatic Classification and PLS-PM Modeling for Profiling Reputation of Corporate Entities on Twitter Cossu J-V., SanJuan E., Torres J-M. and El-Bèze M. @NLDB 2015
- Overview of the 3rd Author Profiling task at PAN 2015. Rangel F., Rosso P., Potthast M., Stein B., and Daelemans W., D. @CLEF 2015
- Overview of RepLab 2014: Evaluating Online Reputation Monitoring Systems.

Amigó, E. and Carrillo de Albornoz, J. and Chugur, I. and Corujo, A. and Gonzalo, J. and Martín, T. and Meij, E. and de Rijke, M. and Spina, D. @CLEF 2014