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Some background

Get started with RepLab
Online Reputation Monitoring on Twitter

What ?

Assist brand managers in their daily work

How ?

Learn experts behaviour about entities concerns

Automatically propagate these assessments

Justify the hypothesis
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3 years of RepLab

2012

Monitoring in unknown entity case

New challenge, is it possible to compute the issue ?

Features discovery

2013

Machine Learning

Messages selection/ranking

Raises new issues

2014

User pro�ling

Age, gender, occupation, in�uence, traits and so on
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RepLab: Author Pro�ling

Data

Large pro�les collection (7,000 pro�les manually labelled)

2 economic domains Automotive, Banking

Each pro�le comprises the last 600 posted tweets

Main objectives

Identify Opinion-Makers

70% are not in�uential - Search/IR

Categorize pro�le according to their activity

See PAN for gender and age identi�cation
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Twitter Pro�le

Piotr's pro�le

Is Piotr an in�uent Twitter user (in his community-domain) ?

What about Gender ? Age ? Traits ?
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RepLab: Author Pro�ling

RepLab Author Pro�ling

(Social) Network approaches

Content-based approaches
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You are what your network is

Features

Public pro�le (description and personal data)

(S)N features (followers, followees, etc.)

Writing behaviour (retweets, hashtag, links)

External data (Klout, Kred,Google)

Features issues

Features names

Features relevance to the problem

Data crawling, impossible to collect the complete network
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You are what you say

Pro�le representation

A pro�le is a Bag of Tweets where each tweet is processed
Tweets can be bag-of-words or set of features

A pro�le is a vocabulary or a set of features (User as Document)

Related content-based features

Bag of words binary representation (word presence)

Tweet length, Special characters, Hashtags, Links

Extra-features

Part-of-speech tagging, Named entities

Tweet enrichment
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You are what you say (2)

Proposed content-based features

Bag of N-grams with TF, IDF

Purity index (word distribution through classes) :

G(i) =
∑
c∈C

P2(i |c) =
∑
c∈C

(
DFi (c)

DFT(i)

)
2

(1)

Strategies

Monolingual and domain speci�c model VS global model

Majority vote over the pro�le
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What about performances ?

Is tweet content su�cient ?

Cosine distance between document and in�uents class' vocabulary

No speci�c training, parameters tuning, or features selection

Author ranking performances

System Automotive Banking Avg MAP
Cosine .803 .626 .714

LIA_Participation .764 .652 .708
REPLAB1 .721 .410 .565
Baseline .370 .385 .378
Klout .304 .275 .289

LIA_Participation is a manually tuned KNN* (not replicable)

REPLAB1 used hot topics information

Baseline rank according to the Followers number

Raw features (Tweets, followees etc.) are under Klout
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What about performances ?

In�uence detection classi�cation

System Automotive Banking Avg F
Cosine .833 .751 .792

LIA_new .702 .726 .714
Best_System .696 .693 .694
Baseline .500 .500 .500

Same con�guration ... same results
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Wrap up !

What we have done here ?

Distinguish in�uencers using their account characteristics

Distinguish in�uencers using contents they produce

Ranking them

Real in�uence is not node importance
* Results limited to this dataset and the annotation quality

What's next ?

Pro�le summarization in progress
How much we need ?
Does it work with only 50 tweets ?

Visual modelling
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In�uence Modelling

Features behaviour regarding in�uence for banking
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End

Thank you !

Contact:

jvcossu@gmail.com

www.jeanvalerecossu.fr
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