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Abstract— In this paper, we present a simple and accurate 

analytical expression to compute the torque of axial-field 

magnetic couplings.  The torque expression is obtained by solving 

the three-dimensional (3D) Maxwell equations by the method of 

separation of variables. Here we adopt the assumption of 

linearization at the mean radius, the problem is then solved in 3D 

Cartesian coordinate (we neglect the curvature effects). To show 

the accuracy of the torque formula, the results are compared 

with those obtained with 3D finite-element simulations, and 

experimental tests. As the proposed formula needs very low 

computational time and depends directly on the geometrical 

parameters, it is used for a design optimization using 

multiobjective genetic algorithms.  

 

 
Index Terms— Genetic algorithms, magnetic coupling, 

permanent magnets, torque transmission, 3D analytical model. 

 

I. INTRODUCTION 

agnetic couplings (or couplers) can transmit a torque 

without mechanical contact. This is very interesting for 

applications requiring isolation between two different 

atmospheres. They can be used in the naval propulsion [1] for 

torque transmission between motors and propellers, or in 

chemical industry for health constraints. In addition, the 

absence of mechanical contact increases the lifetime of the 

system and reduces noise, vibrations and mechanical friction 

losses. Moreover, it provides natural protection against 

overloads. 

 

Magnetic couplings can have axial or radial flux topologies 

(Fig. 1). They both consist of two rotors, each of which is 

composed of an array of permanent magnets alternately 

magnetized along the θ-direction. The two rotors present the 

same number of pole pairs (p=6 in Fig.1).  

The axial-flux topology is studied in this paper.  It consists of 

two similar rotors facing each other. As shown in Fig. 2, the 

air-gap between the two rotors is noted e. 

The magnets are sector shaped with a thickness (along z-

direction) noted h for both rotors. The inner and outer radii are 

respectively noted Rin and Rout.  
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                                (a) Radial flux                              (b) Axial flux 
Fig. 1 Topologies of rotating magnetic couplings (p=6). 

 

The magnet angular opening to pole opening ratio is noted α 

and varies between 0 and 1. The angular lag (load angle) 

between the two rotors is noted φ.  
 

The electromagnetic computation of magnetic couplings is 

carried out using several methods. The Finite-element (FE) 

method is so far the preferred method of analysis. Indeed, it 

leads to accurate results taking into account the non-linearity 

of magnetic materials and the actual coupler geometry [2-4]. 

The main drawback of FE methods is the long computation 

time and the lack of flexibility. It is therefore unsuitable for 

optimization purposes which require many repetitive 

computations. In order to reduce the computation time, 

analytical models can be developed by solving the partial 

differential equations (PDE) arising from Maxwell’s 

equations. It is necessary to make some assumptions regarding 

the linearity of magnetic materials and geometry 

simplification [5-9]. Usually, the problem is solved under a 

two-dimensional (2D) approximation which, in some situation 

like in axial field couplers, results in a 30% overestimation of 

the torque compared to 3D FE prediction [10-12]. Three-

dimensional analytical models for magnetic couplings have 

been proposed in the literature [6],[13] and [14]. Biot-Savart 

like formulas are used to determine the magnetic field 

distribution in ironless structures (magnets in free space). 

 

The method of images could be used to consider infinitely 

permeable iron walls but the computation time increases. 

Recently, it has been shown that Fourier analysis can be used 

to solve 3D problems with ferromagnetic parts [7].  
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Fig. 2 Dimension of the permanent magnets of an axial flux coupler topology 

𝜑 = 0 (iron yokes not shown). 

 

In [5], the authors developed a 3D analytical model to 

compute the no load flux in axial-field permanent magnet 

synchronous machine. In this method (also called sub-domain 

method), it is necessary to numerically solve an algebraic 

system of linear equations to calculate the Fourier coefficients. 

 

Hence, even keeping its analytical formalism, the “fully 

analytical” meaning of the sub-domain method is somewhat 

lost. Nevertheless, in terms of computation time, such a 

method remains more efficient than a FE analysis. 

 

In this paper, the sub-domain method is used to analytically 

determine the magnetic field distribution in the axial magnetic 

coupling shown in Fig. 1b. A new and purely analytical 

expression for the torque evaluation is then derived from the 

3D solution. The proposed torque formula, which depends 

directly on the physical and geometrical parameters, is 

obtained by solving the PDEs in 3D Cartesian coordinates by 

assuming a linearized geometry at the mean radius (we neglect 

the curvature effects). We also consider an infinite 

permeability of the iron yokes.  

The torque expression is obtained in two steps: 

- Firstly, we only consider the magnets on one side of the 

coupling (the magnets on the other rotor are turned off). Then, 

we compute the magnetic field by using a magnetic scalar 

potential formulation.  

- Secondly, using the analogy between the electrostatic and the 

magnetostatic fields, the magnetic force acting on the magnets 

placed on the opposite side is obtained by using the equivalent 

electrostatic Lorentz force. 

To analyze the accuracy of the proposed torque formula, the 

results are compared to those obtained from 3D finite-element 

simulations and from experimental investigations. Finally, the 

analytical formula is used for a genetic algorithm 

multiobjective optimization of the coupler. 

II. ANALYTICAL MODEL 

As stated above, the torque expression will be derived using 

the analogy that exists between the electrostatic and the 

magnetostatic fields. 

A. Magnetic force from the electrostatic-magnetostatic 

analogy  

For simplicity, let us consider, in free space, an electrostatic 

uniform surface charge density s (C/m2), subjected to an 

electric field �⃗�  [16]. The Lorentz force (N) exerted on s is  

 

𝐹𝑠
⃗⃗⃗  = 𝜎𝑠 ∬�⃗�  

 

𝑆

𝑑𝑆 
(1) 

where S is the surface which carries s.  

 

From the magnetostatic point of view, it is usual to use an 

equivalent magnetic surface charge m in A/m 

[7],[11],[14],[15],[16]. Unlike s, the magnetic charge m 

doesn’t have any physical meaning. However, it is introduced 

for modelling purposes in which it usefully replaces some 

magnetic field sources (magnets, current carrying 

solenoids,…).  

The magnetic force (N) which is analogous to the electrosatic 

one, given by (1), is then obtained by 

 

𝐹𝑚
⃗⃗ ⃗⃗  = 𝜎𝑚 ∬�⃗�  

 

𝑆

𝑑𝑆 
(2) 

  

Here, S is the surface which carries m. 

 

The force expressions (1) and (2) show that the electrostatic-

magnetostatic analogy links the electric field �⃗�  to the �⃗�  field 

(called flux density). 

 

Concerning the studied magnetic coupler, all what we need to 

compute the force is the magnet’s magnetic surface charge on 

one rotor and the magnetic field created by the magnets of the 

second rotor (the magnets on the first rotor are turned off). 

Furthermore, expression (2) which uses Lorentz force in free 

space gives, for our coupler, the right values of the force along 

the x and y directions only (no other material than air in these 

two direction). However, since ferromagnetic materials are 

present in the z-direction, (2) will not give the right value of 

the force and we have to use Maxwell stress tensor or virtual 

work methods. 

To deal with the presence of iron media an equivalent surface 

charge of the ferromagnetic material could be introduced [15]. 

 

B. Magnetic field due the magnets of one rotor  

The iron-yokes have an infinite permability. Hence, the 

magnetic field is null in the iron parts. 

The boundary condition on the iron interface is then 

 

�⃗� × �⃗⃗� = 0 (3) 

where �⃗⃗�  is the outward normal to the considered surface and 

�⃗⃗⃗�   the magnetic field strength. 

Rare-earth permanent magnets have a relative permeability 

close to that of air (µ𝑟 = 1). 

 



 3 

The studied coupler doesn’t contain any current source. To 

solve the magnetostatic problem, it is then more convenient to 

use a magnetic scalar potential (noted ) formulation 

(𝑠𝑢𝑐ℎ 𝑎𝑠 �⃗⃗� = − ∇). In the different media, the flux density 

�⃗�  is given by 

 

Air region:               �⃗� = −µ0 ∇ 

 

Magnets region:      �⃗� = µ0 (−∇ + �⃗⃗� )                                 

(4) 

 

(5) 

where �⃗⃗�  is the magnetization of the magnet. 

 

To simplify the analysis, we make the assumption of 

linearization at the mean radius, so the curvature effect is not 

considered. However, this allows to solve the problem in a 

Cartesian coordinates system, which is simpler than to solve 

the problem in cylindrical coordinates where special functions 

appear [5]. The validity of the linearized model is discussed 

later in the paper. 

 

Fig.3 shows the problem to solve after linearization. The main 

dimensions of the linearized coupler are 

Due to the alternate polarity along the x-direction, only one 

pole is considered with anti-periodic boundary conditions 

along x. 

 

A second anti-periodic condition is applied at the external 

boundaries on the y-coordinate. This condition is a fictitious 

but a necessary one in order to get a solution. Nevertheless, by 

setting 𝐷𝑦  >>  𝑙𝑚𝑦, this anti-periodic condition leads to �⃗� =

0 at  𝑦 = ± 𝐷𝑦, which is of course a more realistic physical 

condition (Usually, 𝐷𝑦 =  2 𝑙𝑚𝑦  allows to obtain accurate 

results). 

 

As stated above, the whole resolution domain contains magnet 

and air regions, Fig.4. 

 

Domain I (0 ≤ 𝑧 ≤ ℎ) corresponds to the magnet region of 

height h. The magnetization vector is noted 𝑀 ⃗⃗ ⃗⃗ = 𝑀𝑧(𝑥, 𝑦)𝑒𝑧⃗⃗  ⃗ 
and it is obtained by expanding the magnetization into a 

double Fourier series along x and y-directions (Fig. 5).  

 

𝑀𝑧(𝑥, 𝑦) = ∑ ∑ 𝑀𝑛,𝑚  𝑐𝑜𝑠(𝑤𝑛 𝑥)  𝑐𝑜𝑠(𝑤𝑚 𝑦)

∞

𝑚=1

∞

𝑛=1

 

 

with      𝑀𝑛,𝑚 =
16 𝐵𝑟

µ0 𝑛 𝑚 𝜋2
 𝑠𝑖𝑛(𝑤𝑛 𝑙𝑚𝑥)  𝑠𝑖𝑛 (𝑤𝑚 𝑙𝑚𝑦) 

 

𝑤𝑛 =
𝑛 𝜋

2 𝐷𝑥
 ; 𝑤𝑚 =

𝑚 𝜋

2 𝐷𝑦
   

 

 

 

(7) 

 

 
Fig. 3 Dimensions of one magnet pole after linearization (axis of rotation, 

located at 𝑦 = −𝑅𝑚𝑒𝑎𝑛 not shown).  

 

where n, m are odd integers and Br is the residual flux density 

of the permanent magnets. Notice that the magnetization given 

by (7) is divergence free ∇. �⃗⃗� = 0. 

 

Domain II (ℎ ≤ 𝑧 ≤ ℎ𝑡) is composed of the actual air-gap 

and the second magnet (whose magnetization is turned off).  

 

The magnetic scalar potential is noted 𝐼 in domain I and 

𝐼𝐼 in domain II. 𝐼 and 𝐼 are the solution of Laplace 

equation 

 

∇²𝐼 = ∇. �⃗⃗� = 0  

∇²𝐼𝐼 = 0 
(8) 

 

 
Fig. 4 Domains and equations in the plan (x,z). 

 
Fig. 5 Magnetization Mz as a function of x and y (domain I). 

𝑙𝑚𝑦 =
𝑅𝑜𝑢𝑡−𝑅𝑖𝑛

2
  ;  𝑙𝑚𝑥 = 𝛼 𝐷𝑥 

 

  𝐷𝑥 =
𝜋 𝑅𝑚𝑒𝑎𝑛

2 𝑝
  ;  𝑅𝑚𝑒𝑎𝑛 =

𝑅𝑜𝑢𝑡+𝑅𝑖𝑛

2
 

 

(6) 
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By considering the anti-periodic boundary conditions along 

the x and y coordinates, the use of the method of separation of 

variables leads to the following form solutions for 𝐼 and 𝐼𝐼 

 

𝐼(𝑥, 𝑦, 𝑧) = ∑ ∑[𝐴𝐼 𝑒
𝑘 𝑧 + 𝐵𝐼  𝑒

−𝑘 𝑧]

∞

m=1

∞

n=1

× 𝑐𝑜𝑠(wn 𝑥) 𝑐𝑜𝑠(wm 𝑦) 

 

𝐼𝐼(𝑥, 𝑦, 𝑧) = ∑ ∑[𝐴𝐼𝐼 𝑒
𝑘 𝑧 + 𝐵𝐼𝐼  𝑒

−𝑘 𝑧]

∞

m=1

∞

n=1

× 𝑐𝑜𝑠(wn 𝑥) 𝑐𝑜𝑠(wm 𝑦) 

 

with     𝑘 = √𝑤𝑛² + 𝑤𝑚² 
 

 

 

 

 

(9) 

The coefficients AI, BI, AII and BII are obtained using the 

interface and boundary conditions.  

 

The Boundary condition in domains I and II are set at z=0 and 

z=ht, respectively. These conditions state that the tangential 

magnetic field components Hx and Hy are zero (iron 

boundaries). This leads to 

 

𝐴𝐼 + 𝐵𝐼 = 0 

AII e
k h𝑡 + BII e

−k h𝑡 = 0 
(10) 

 

Interface conditions between domains I and II are set at z=h. 

Domain I and II have the same magnetic permeability (µr=1), 

so the normal flux density (Bz) and the tangential magnetic 

fields (Hx and Hy) of the domain I and II will be equal at z=h. 

The two following expressions arise 

 

AI e
k h + BI e

−k h − AII e
k h − BII e

−k h = 0 
 

 AI e
k h − BI e

−k h − AII e
k h + BII e

−k h =
M𝑛,𝑚

𝑘
 

 

 

 

(11) 

Finally, the coefficients AI, BI, AII and BII are calculated by 

solving an algebraic system of linear equations arising from 

(10) and (11). They are given by 

 

𝐴𝐼 = −𝐵𝐼 =
𝑀𝑛,𝑚 (𝑒2 ℎ 𝑘 − 𝑒2 ℎ𝑡 𝑘)

2 𝑘 𝑒ℎ 𝑘  (𝑒2 ℎ𝑡 𝑘 − 1)
 

 

𝐴𝐼𝐼 = −
𝑀𝑛,𝑚 sinh(ℎ 𝑘) 𝑒−ℎ𝑡 𝑘

2 𝑘 sinh (ℎ𝑡  𝑘)
 

 

𝐵𝐼𝐼 =
𝑀𝑛,𝑚  sinh(ℎ 𝑘) 𝑒ℎ𝑡 𝑘

2 𝑘 sinh (ℎ𝑡  𝑘)
 

 

 

 

 

(12) 

 

 

 

C. Equivalent surface charge density of the second PM rotor  

The equivalent surface charge density of a magnet 

(Coulombian model) with uniform magnetization is given by  

 

 𝑚  = 𝑀 ⃗⃗ ⃗⃗ . �⃗�  (13) 

 

Where 𝑀 ⃗⃗⃗⃗ = 𝑀𝑒𝑧⃗⃗  ⃗ = 𝐵𝑟/𝜇0𝑒𝑧⃗⃗  ⃗ is the magnetization vector and 

�⃗�  represents the outward normal to the considered surface. 

This dot product has to be performed on all the external 

surfaces of the magnet volume. 

 

Fig.6 shows a rectangular permanent magnet with a uniform 

magnetization in the z-direction. From (13),  the magnet is 

then represented by two surface charge densities + and -.  

In our problem, the surface charge density 𝜎+ = 𝑀 is located 

at 𝑧 = ℎ𝑡  and the surface charge density 𝜎− = −𝑀 at 𝑧 = ℎ +
𝑒.  

D. Torque expression 

The force is computed using (2) where the integration is 

performed on the surfaces carrying 𝜎+ and 𝜎−. However, 

according to the boundary condition (3), the tangential 

components 𝐵𝑥 and 𝐵𝑦 of the flux density are null on the 

charged surface 𝜎+ (at 𝑧 = ℎ𝑡), so the forces that contribute to 

torque (Fx and Fy) also vanishes. Hence, the integation is only 

performed on the charged surface 𝜎− (at 𝑧 = ℎ + 𝑒).  

 

The axis of rotation (the shaft axis) is parallel to the Oz axis. 

This axis has constant coordinates noted (x0,y0) in the (Oxyz) 

reference frame. The z-component of the torque is then 

obtained by 

 

𝑇 = ∫ ∫ [(𝑥 − 𝑥0)𝑓𝑦 − (𝑦 − 𝑦0)𝑓𝑥]

𝑙𝑚𝑦

−𝑙𝑚𝑦

𝑙𝑚𝑥+𝑋𝑖

−𝑙𝑚𝑥+𝑋𝑖

 𝑑𝑥 𝑑𝑦 

 

 

(14) 

The variable 𝑋𝑖 in (14) corresponds, in cartesian coordinates, 

to the angular lag (load angle) 𝜑 between the two rotors of the 

coupling. 𝑋𝑖 and 𝜑 are related by 𝜑 = 𝑋𝑖/𝑅𝑚𝑒𝑎𝑛 . 

Notice that the maximum (pull-out) torque is obtained for a 

position 𝑋𝑖 = 𝐷𝑥 . 
 

 
Fig. 6 Equivalent surface charge density for a rectangular permanent magnet. 
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In (14), fx and fy represent the force densities in (N/m²) 

obtained by replacing the flux density expression (4) in the 

force expression (2).  

 

𝑓𝑥 = − µ0 𝜎−  
𝜕𝐼𝐼(𝑥, 𝑦, 𝑧)

𝜕𝑥
|
𝑧=ℎ+𝑒

 

 

𝑓𝑦 = −µ0 𝜎−  
𝜕𝐼𝐼(𝑥, 𝑦, 𝑧)

𝜕𝑦
|
𝑧=ℎ+𝑒

 

 

 

(15) 

 

The force density 𝑓𝑦 being symetrical along the y-direction, 

the corresponding torque obtained by integration between -𝑙𝑚𝑦  

and 𝑙𝑚𝑦  vanishes. Hence, for 2p poles, and y0=-Rmean the 

torque expression (14) becomes  

 

𝑇 = 2 𝑝 µ0 𝜎− ∫ ∫ (𝑦 + 𝑅𝑚𝑒𝑎𝑛)

𝑙𝑚𝑦

−𝑙𝑚𝑦

𝑙𝑚𝑥+𝑋𝑖

−𝑙𝑚𝑥+𝑋𝑖

×  
𝜕𝐼𝐼

𝜕𝑥
|
𝑧=ℎ+𝑒

𝑑𝑥 𝑑𝑦  

 

(16) 

 

Finally, from (9) and (12) an analytical closed-form 

expression for the torque is obtained after integration of (17) 

 

𝑇 = ∑ ∑
128 𝑝 𝐵𝑟

2𝑅𝑚𝑒𝑎𝑛

2
0
𝑛 𝑚 𝑘 𝑤𝑚

sin2 (𝑛


2
) sin²(𝑤𝑚𝑙𝑚𝑦)

𝑉

𝑚=1

𝑁

𝑛=1

×
sinh2(𝑘 ℎ)

sinh(𝑘 ℎ𝑡)
sin (𝑛 𝑝 ) 

 

 

 

(17) 

 

where N and V are the number of harmonic terms used for the 

torque calculation. 

 

Another useful quantity to compute is the flux over a pole 

surface. Indeed, this allows sizing the yoke thickness through 

the flux conservation law. This flux is higher on the iron 

surface (z=0 for instance) at no-load (φ=0). The integration of 

Bz(x,y,z=0), due to the two PMs rotors, over the pole surface 

gives then 

 

𝜓𝑚

= ∑ ∑
128 𝐵𝑟  𝑅𝑚𝑒𝑎𝑛  𝐷𝑦  

𝑛2 𝑚2 𝜋3 𝑝
 

𝑉

𝑚=1

𝑁

𝑛=1

× (
sinh(𝑘(ℎ − ℎ𝑡) + sinh (𝑘ℎ)

sinh (𝑘 ℎ𝑡)
+ 1)

× sin(𝑤𝑛 𝐷𝑥) sin(𝑤𝑛 𝑙𝑚𝑥) sin ²(𝑤𝑚 𝑙𝑚𝑦) 

 

 

 

 

(18) 

 

The thickness of iron yokes (hiron) can be determined using 

flux conservation law. If Bymax is the maximal wished value of 

the flux density in the yoke cross section area, then 

 

ℎ𝑖𝑟𝑜𝑛 >
𝜓𝑚

2 𝐵𝑦𝑚𝑎𝑥 (𝑅𝑜𝑢𝑡 − 𝑅𝑖𝑛)
 

(19) 

Bymax=1.2-1.4 T is a reasonable value to avoid saturation of 

mild steel. 

III. EVALUATION OF THE TORQUE FORMULA  

In this section, we analyze the accuracy of the developed 

torque formula whose results are compared to those issued 

from 3D FE computations (Comsol multiphysics®) carried out 

on the actual cylindrical coupling.  

The FE model is implemented under Comsol Multiphysics 

software. The “no current” module which uses a magnetic 

scalar potential (𝜙) formulation has been used. Mild steel 

B(H) curve is used for the yokes. However, the yoke thickness 

is choosen to avoid magnetic saturation. Hence, a linear model 

with a relative permeability value equals to 1000 is used for 

the ferromagnetic material so the computation time is reduced 

without any loose of accuracy. 

The 3D mesh consists of 300808 1st order tetrahedral 

elements leading to solve a global algebraic system having 

416231 degrees of freedom. An infinite box surrounds the 

studied system in order to set Dirichlet boundary conditions 

(𝜙=0). Only 1 pole of the coupler is considered with anti-

periodic boundary conditions in the azimuthal direction. 

 

In [11] and [12], the authors have constructed a prototype 

axial field coupling and developed a 2D formula to evaluate 

the torque. The main parameters of this prototype are given in 

Table I and a photograph is shown Fig. 7.  

The corresponding experimental and analytical results also 

serve to evaluate the torque formula (17).  

 

The measurements are carried out as follows, Fig.7 (more 

details can be found in [11] and [12]). 

The relative angular position δ was measured using an encoder 

with a resolution of 4096 steps per revolution (precision of 

0.088 degrees). The relative error on the full measured angle 

range of 15° does not exceed 0.6%. 

The static torque was measured thanks to precise weights (the 

weight scale is within 10g precision) suspended to a rod (1 

meter length) locked to one rotor, the other being fixed. The 

torque is obtained by multiplying the weight by the rod length 

(lever arm).  

 

 
Fig. 7 Axial flux magnetic coupling prototype [11],[12]. 
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TABLE I 

DIMENSIONS OF THE CONSTRUCTED MAGNETIC COUPLING [11],[12] 

Parameters Description Unit Value 

Rout Outer radius of magnets mm 60 

Rin Inner radius of magnets mm 30 

h Magnet thickness mm 7 

hiron Iron yoke thickness  mm 10 

e Thickness of the air gap mm variable 

 Magnet to pole opening ratio - 0.9 

p Number of pole pairs - 6 

Br Residual induction of permanent magnets T 1.25 

 

Hence, the absolute error on the torque measure is about 

0.1Nm (0.01×9.81×1) which is very low in regard to the 

torque values in presence here. 

Hence, all the measured torque values are rounded to the 

closest first digit (ie. 60.58 Nm becomes 60.6 Nm). 

 

The thickness of the iron yoke have been chosen to avoid 

saturation. The flux computed analytically using (18) is about 

0.67 mWb whereas the 3D FE computation gives 0.68 mWb. 

This shows the accuracy of the analytical expression (18). The 

mean flux density on the iron yoke surface is 0.95 T. 

 

A. Influence of the number of harmonic terms N and V in 

evaluating the torque 

The torque expression (17) contains a double sum which 

depends on the number of harmonic terms N and V (N and V 

correspond respectively to the number of harmonic terms in 

the x-direction and in the y-direction. A certain number of 

harmonic terms has to be used to get a stable solution. Of 

course, this number has to be as low as possible to ensure a 

good accuracy and the lowest possible computation time. 

 

We compare here the results obtained using (18) and the 

experimental ones which correspond to the axial coupling 

having the parameters of Table I. 

Fig. 8 shows the error on the pull-out torque evaluation vs. the 

number of harmonics N and V. The error is defined as 

 

% = 100 
𝑇𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 − 𝑇

𝑇𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙

 

(20) 

 

where 𝑇𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 = 60.6 𝑁𝑚 is the measured pull-out 

torque for an air gap e=4 mm. 

 

If we only consider the fundamental term for the x-direction 

(N = 1), we can observe in Fig. 8 that the calculation slightly 

overestimates the torque (% = −7%). If we add a 

supplementary harmonic (𝑁 = 3), the computation provides 

very accurate result with an error estimate lower than 2%.  

 

This good accuracy requires to consider only two harmonic 

terms along the y-direction (𝑉 = 3) to take into account the 

edge effects (3D effects).  

 
Fig. 8 Error on the torque prediction vs. the numbers of harmonics N and V. 

 

Anyhow, even when taking N = 20 and V = 20, the 

computation time remains very low (less than 12 ms). So we 

can conclude that we need very few harmonic terms in order 

to have a good precision. 

B. Comparison to experimental and 3D FE results 

In this section, we compare experimental measurements for 

the static torque with numerical and analytical computations. 

An analytical formula which is derived in [11] using a 2D 

analytical model (mean radius model and first harmonic 

approximation) is given by (21). This formula doesn’t take 

into account the edge effects. 

 

𝑇 =
16

3𝜋

𝐵𝑟
2

µ0

𝑅𝑜𝑢𝑡
3 (1 − (

𝑅𝑖𝑛

𝑅𝑜𝑢𝑡

)
3

)

× 𝑠𝑖𝑛² (𝛼
𝜋

2
)

sinh2(𝑎)

sinh(2 (1 + 𝑣) 𝑎)

× sin (𝑝 𝜑) 

 

with     𝑎 = 𝑝
ℎ

𝑅𝑚𝑒𝑎𝑛
      and     𝑣 =

𝑒

2ℎ
 

 

 

 

 

 

 

(21) 

Figs. 9 show the results of the torque calculation for two air-

gap values (e=4mm and e=9.5mm) obtained by all the 

methods in use. Whetever the air-gap, we note that the 

analytical expression (17) used with (N=20, V=20), the 3D FE 

model as well as the measurements give very close torque 

values.  
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(b) 𝑒 = 9.5 𝑚𝑚  

Fig. 9 Static torque of the magnetic coupling obtained with several methods in 

use - (18) used with N=V=20. 

 

However, the analytical expression (21) overestimates the 

maximum torque by approximately 30%. This clearly shows 

the necessity to consider the radial fringing effects in axial 

field couplings. 

 

C. Curvature effects  

In order to address the limits of the analytical formula 

regarding the curvature effects, the analytical computation 

(linearized coupling) are compared to 3D finite element 

simulations (actual cylindrical topology) for several 

dimensions of the magnet. For a given air gap, the error 

introduced by the linearization assumption depends on the 

radial excursion Rout-Rin and on the mean pole pitch which is 

equal to (𝑅𝑜𝑢𝑡 + 𝑅𝑖𝑛)/2𝑝. (see Fig.2). To analyze the 

influence of these parameters, we introduce a dimensionless 

number λ which allows comparing the pole pitch and the 

radial excursion. 

 

𝜆 = 𝑝 
1 − 𝛽

1 + 𝛽
  𝑤𝑖𝑡ℎ  𝛽 =

𝑅𝑖𝑛

𝑅𝑜𝑢𝑡

 

 

(22) 

 

It was possible to analyze the problem using each parameter as 

a variable while keeping the others constant. But finally, we 

found that this single parameter λ led to the same conclusions. 

 

Two computations are performed: the first one uses 3D FEM 

to obtain the torque of the cylindrical coupling.  

The second one uses the analytical expression (17) to calculate 

the torque of the linearized cylindrical coupling (we have 

considered N=20 and V=20). 

 

For a magnet height h=10mm and for two values of the air gap 

(e=5mm and e=10mm), we vary Rout, Rin and p in the 

following intervals: 

- 𝑅𝑜𝑢𝑡 = [0.1 𝑚 𝑡𝑜 0.3 𝑚] with a step of 0.1 m (three 

values); 

- 𝑅𝑖𝑛 = [0.3 × 𝑅𝑜𝑢𝑡  𝑡𝑜 0.8 × 𝑅𝑜𝑢𝑡] with a step of 0.1 ×
𝑅𝑜𝑢𝑡 (six values); 

- 𝑝 = [2 𝑡𝑜 8] with a step of 1 (seven values); 

 

This corresponds to 504 combinations (252 for each 

topology). 

 

Fig. 10 presents the error on the torque calculation between 

the analytical expression (17) and the 3D FEM. It can be seen 

that the error doesn’t exceed 3% for an airgap of 5mm. This 

error rises to 6% when the airgap value is 10mm but this 

concerns very few points.  

 

These results clearly validate the linearization hypothesis. 

Regarding the computation time for the 504 combinations, the 

3D finite-element simulations have taken several hours while 

the analytical computations needed less than one second. 

D. Optimization of the coupler using genetic algorithms 

Genetic Algorithms (GA) are widely used as a robust and 

effective tool in optimization problems. We use here the 

NSGA2 implementation of GA under Matlab [17]. 

The airgap in axial coupling could be easily varied to deal 

with several operating situations (i.e. hermetic isolation of 2 

media with variable axial lengths). Hence, we propose to deal 

with the multiobjective optimization of the following problem: 

- The design variables vector is: X=(p; Rout; Rin; h; 

- The objective function are: maximize (T2), minimize (MPM), 

- The constraints are: T1=100 Nm, Bmean< 0.9T. 

The objective T2 (Nm) is the torque for an air gap e=10 mm 

and the objective MPM corresponds to the total mass of the 

PMs. 

The remanence of the PMs is Br=1.25T and their mass density 

is equal to 7600 kg/m3. 

The constraints T1 corresponds to the desired torque for 

e=5mm and the constraint Bmean is set to limit the iron 

saturation. Bmean=𝜓m/Sp is the average flux density over the 

iron pole surface 𝑆𝑝 = 𝜋(𝑅𝑒𝑥𝑡
2 − 𝑅𝑖𝑛

2 )/2𝑝, and 𝜓m is given by 

(18).  

The bounds of the variables in the vector X are: p=2-20; 

Rout=20-100 mm; Rin=10-90 mm; h=2-10 mm,  

The optimization procedure uses 100 individuals evolving 

during 100 generations, but 50 generations are enough to 

reach a stable solution. The computation time for 100 

generations is about 1 minute.  

Topological groups having different pole-pair values appear in 

the obtained Pareto front of Fig.11.  

  
Fig. 10 Error on the torque calculation between the analytical expression 

(linearized geometry) and the 3D FE model (cylindrical topology). 
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Fig. 11 Pareto front: Torque T2 vs. PMs mass MPM. 

 

As expected, the highest numbers of p lead to the lowest PM 

mass but also to lower torque T2. It can be observed that to 

increase T2 from 50 to 65 Nm (30% increase) we need a 70% 

increase of the PM mass (from 0.7 to 1.2 kg). 

Notice that many of the solutions of Fig.11 have checked by 

the 3D FE model and the error in the worst case is less than 

3%. This, again, demonstrates the effectiveness and accuracy 

of the analytical formula. 

IV. CONCLUSION 

A new analytical expression to compute the torque of a PM 

axial field magnetic coupling has been derived. This 

expression has been obtained thanks to 3D magnetostatic 

analytical. By introducing a surface charge density, the torque 

computation used the electrostatic-magnetostatic analogy to 

evaluate the Lorentz force. We have shown that the proposed 

torque formula is very accurate and computationally very 

efficient. Thus, it has been used to optimize the studied 

coupler by a multiobjective genetic algorithm. 
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