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Tensor decomposition of polarized seismic waves

En traitement d'antenne, les décompositions tensorielles permettent d'estimer conjointement les sources et de les localiser. Pour que ces dernières puissent être utilisées, il faut que les données présentent au moins trois diversités, qui sont habituellement le temps, l'espace, et la translation dans l'espace. L'approche présentée ici est basée sur la diversité de polarisation, une alternative très attractive lorsque l'antenne ne jouit pas d'invariance spatiale. Nous dérivons ensuite les bornes de Cramér-Rao dans ce contexte, en nous appuyant sur des conventions de différentiation de variables mixtes réelles et complexes.

Introduction

Starting from the ideas on vector sensor array developed for seismic waves in [START_REF] Anderson | Analysis of a polarized seismic wave model[END_REF] from the more general model for polarized waves in [START_REF] Nehorai | Vector-sensor array processing for electromagnetic source localization[END_REF] and [START_REF] Nehorai | Acoustic vector-sensor array processing[END_REF], we state the observation model in tensor form. Next we compute the Cramér-Rao Bounds (CRB) for the joint estimation of the four parameters of polarized seismic waves. The ultimate estimation performances are then compared to the CRB as a function of the Signal to Noise Ratio (SNR). A deterministic approach based on tensor decomposition has been introduced in [START_REF] Sidiropoulos | Parallel factor analysis in sensor array processing[END_REF]. The advantage of tensor decompositions lies in the need for shorter data records, since the estimation of statistical quantities from available samples is not a requirement (as opposed to traditional high resolution algorithms such as MUSIC [START_REF] Schmidt | Multiple emitter location and signal parameter estimation[END_REF] and ESPRIT [START_REF] Roy | ESPRIT-estimation of signal parameters via rotational invariance techniques[END_REF]). CRB for the low-rank decompositions of multidimensional array was derived in [START_REF] Liu | Cramér-Rao lower bounds for low-rank decomposition of multidimensional arrays[END_REF] and extended in [START_REF] Sahnoun | Tensor polyadic decomposition for antenna array processing[END_REF]. Polarization of waves has been first introduced in [START_REF] Guo | A Candecomp/Parafac perspective on uniqueness of doa estimation using a vector sensor array[END_REF] as a multidimensional diversity in the tensor approach. The same authors in [START_REF] Guo | The effect of polarization separation on the performance of Candecomp/Parafacbased vector sensor array processing[END_REF] explore the concept of polarization separation and its influence on performances.

Notation We shall assume throughout the following notations: matrices, column vectors and scalars are denoted respectively in bold uppercase, e.g. A, bold lowercase, e.g. v, and plain lowercase; in particular array entries are written e.g. vj or Aij. Transposition, complex conjugation and Hermitian ⇤ This work has been supported by the ERC project "DECODA" no. 320594, in the frame of the European program FP7/2007-2013.

transposition are denoted by ( T ), ( ⇤ ) and ( H ), respectively. Arrays with more than two indices are referred to as tensors, with some abuse of terminology [START_REF] Comon | Tensors: a brief introduction[END_REF], and are denoted in bold calligraphic, as T . The outer (tensor) product between two vectors is denoted by u⌦v. Finally, k•kF refers to the Frobenius norm; ⇥ denote Kronecker product. For the sake of conciseness, ai will represent the i-th column of matrix A.

Physical model

A 4-parameter far-field model

The physical quantity measured is the particle displacement vector recorded by a three-component particle displacement sensor (or geophone), located at a given point in space, in the direction of the x-, y-and z-axes of its reference system. The z-axis is required to be perpendicular to the earth's surface. The following parameterization is based on the definition of four angular parameters. First, the unit vector pointing to the source is given by u = Two models can be drawn respectively for transverse (TR)

waves and tilted generalized Rayleigh (TGR) waves [START_REF] Anderson | Analysis of a polarized seismic wave model[END_REF]. For a transverse wave, the polarization ellipse lies in the space orthogonal to the direction of propagation u, and is spanned by the columns {v 1 v 2 } of the matrix:

V T R = [v 1 , v 2 ] = 2 4 sin ✓ cos ✓ sin cos ✓ sin ✓ sin 0 cos 3 5 (1) 
In the TGR model, the polarization ellipse is confined in the plane spanned by the columns of matrix:

V T GR = [u , v 2 ] = 2 
4
cos ✓ cos cos ✓ sin sin ✓ cos sin ✓ sin sin cos

3 5
If the complex envelope of the source signal is denoted by s(t), the general data model can be written as

y(t) = V (✓, ) Q(↵) w( ) s(t) 2 C 3⇥1 (2) 
where V (✓, ) is one of the above matrices,

Q =  cos ↵ sin ↵ sin ↵ cos ↵ , w =  cos
ı sin in the absence of noise, and ı = p 1.

Seismic waves and polarization

There exist several types of elastic waves associated with seismic activities [START_REF] Anderson | Analysis of a polarized seismic wave model[END_REF]. Primary waves (or P-Waves) are compressional elastic waves whose particle displacement vector is parallel to the direction of propagation. For these waves, ↵ = = 0, which leads to a linearly polarized wavefront with particle motion along the direction of propagation u. Rayleigh Waves are elliptically polarized surface waves. Therefore, = 0, provided that the xyplane corresponds to the earth surface. For these waves, it is obvious that ↵ = 0 and then Q = I. Secondary or Shear waves (or S-waves) are transverse elliptically polarized in general. P-Waves and Rayleigh Waves are particular cases of the TGR model described in Section 2.1 for elliptically polarized waveforms: the direction of propagation is located in the plane spanned by the ellipse major and minor axes. For reasons of space, we shall concentrate on TR waves in the remainder.

Tensor model

Now suppose that data are recorded on K polarized sensors located at points in space defined by vectors g(k

) := [g x k ; g y k ; g z k ] 2 R 3 , 1  k  K.
Also suppose that R farfield narrow-band sources impinge on this vector sensor array from direction u(r), 1  r  R, and denote ! their common angular pulsation. We make the assumption that impinging waves have elliptical polarization (neither linear nor circular). Then from (2) we can assume the following observation model in baseband about pulsation !:

T = Z + E, Z = R X r=1 a(r) ⌦ b(r) ⌦ s(r) (3) 
where

a k (r) = 1 K exp ı ! v g(k) T u(r) is the k-th en- try of the steering vector, v the wave celerity, b(r) = V (✓ r , r )Q(↵ r )w( r ) 2 C L⇥1 (L = 3
) characterizes the propagation type, (✓ r , r ) refers to the Direction of Arrival (DoA) of the r-th source and (↵ r , r ) its polarization, and s m (r) is the signal propagating from the r-th source and received at time t m , 1  m  M . The additive noise E is assumed to be i.i.d. circular Gaussian and independent of the sources. In terms of arrays of coordinates, model (3) rewrites:

Z k`m (✓, , ↵, , S) = R X r=1 a k (r)b `(r)s m (r) (4) 
or in column vector format:

z := vec Z = R X r=1 a(r) ⇥ b(r) ⇥ s(r) (5) 
3 Parameter identification

Model identification

It is always possible to decompose the data tensor into a sum of decomposable tensors [START_REF] Comon | Tensors: a brief introduction[END_REF][START_REF] Sidiropoulos | Parallel factor analysis in sensor array processing[END_REF] of the form D(r) = a(r)⌦b(r)⌦s(r), that is, in terms of array of coordinates:

D klm (r) = a k (r)b l (r)s m (r) Hence tensor Z takes the form: Z = R X r=1 & r D(r) (6) 
where coefficients & r can always be chosen to be real positive, and decomposable tensors D(r) to have unit norm, i.e. for L p norms, kDk = kak kbk kck = 1. The minimal value of R such that this decomposition holds is called rank of Z. If R is not too large, the corresponding decomposition is unique [START_REF] Sidiropoulos | Parallel factor analysis in sensor array processing[END_REF][START_REF] Lim | Blind multilinear identification[END_REF][START_REF] Comon | Tensors: a brief introduction[END_REF][START_REF] Chiantini | An algorithm for generic and low-rank specific identifiability of complex tensors[END_REF] and deserves to be referred to as Canonical Polyadic (CP); other terminologies include rank decomposition or Candecomp/Parafac. Note that decomposable tensors have a rank equal to 1. Because of the uniqueness of the CP decomposition, decomposable tensors of ( 4) and ( 6) coincide in the absence of noise. This means that vectors {a(r), b(r), s(r)} coincide up to some scaling factors [START_REF] Sidiropoulos | Parallel factor analysis in sensor array processing[END_REF][START_REF] Sahnoun | Tensor polyadic decomposition for antenna array processing[END_REF][START_REF] Comon | Tensors: a brief introduction[END_REF].

Model identifiability

There exist sufficient conditions ensuring uniqueness of the exact CP, e.g. the Kruskal condition [START_REF] Sidiropoulos | Parallel factor analysis in sensor array processing[END_REF]:

 A +  B +  C 2R + 2 (7) 
where the notation  A refers to the Kruskal -rank ⇤ of matrix A. However, less stringent conditions guaranteeing almost surely a unique solution can be found [START_REF] Lim | Blind multilinear identification[END_REF][START_REF] Comon | Tensors: a brief introduction[END_REF][START_REF] Chiantini | An algorithm for generic and low-rank specific identifiability of complex tensors[END_REF]:

R(K + L + M 2) < KLM
⇤ The Kruskal rank of a matrix A is the largest number  A such that any subset of  A columns are lineraly independent.

This hold true when data are not corrupted by noise. However, if noise is present, we have to solve a best rank-R approximation problem:

min ar,br,sr T R X r=1 a r ⌦ b r ⌦ s r 2 F (8) 
For d 3, the best approximation of a d-partite function of a sum of R product of d separable functions does not exist in general [START_REF] Lim | Blind multilinear identification[END_REF], as a sequence of rank-r functions can converge to a limit which is not rank-r. A sufficient condition ensuring existence of a solution to [START_REF] Sahnoun | Tensor polyadic decomposition for antenna array processing[END_REF] via the definition of a physical constraint, the coherence, is derived in [START_REF] Lim | Blind multilinear identification[END_REF]. Unlike the Kuskal rank, coherences are easy to compute and present the advantage of having a physical meaning, i.e. the best rank-R approximation exists and is unique if either impinging signals are not too correlated, or their directions of arrivals and polarization states are not too close.

Performances

Mixed real-complex gradients

Since the parameter of the array processing model are complex, a definition of the derivative of a real function h(z) 2 R p with respect to the complex variable z 2 C n , z = x + ı y, x, y 2 R, needs to be introduced.

[7] presents a derivation of Cramér-Rao bounds related to the CP decomposition of multidimensional arrays, using the same definition of complex derivative as in [START_REF] Sahnoun | Tensor polyadic decomposition for antenna array processing[END_REF][START_REF] Hjorungnes | Complex-valued matrix differentiation: Techniques and key results[END_REF]:

@h @z = 1 2 @h @x ı 2 @h @y (9)
For clarity, our notation of the derivative of a scalar function ⌥(z) with respect to a column vector z 2 C n is:

( @⌥
@z is a column vector @⌥ @z T is a line vector Given an holomorphic column vector function

f (z) 2 C m , we define [ @f @z T ] ij = @fi @zj so that ( @f T @z is an n ⇥ m matrix @f @z T is an m ⇥ n matrix
In the sequel, we shall need a complex derivative chain rule. Given a scalar function ⌥(z) 2 R, a complex function z(✓) = x + ı y 2 C p , and a real variable ✓ 2 R q , we have from the real derivative chaine rule: @⌥ @✓ T = @⌥ @x T @x @✓ T + @⌥ @y T @y @✓ T which, using [START_REF] Guo | A Candecomp/Parafac perspective on uniqueness of doa estimation using a vector sensor array[END_REF], yields the chaine rule:

@⌥ @✓ T = 2< ⇢ @⌥ @z T @z @✓ T (10) 

Gradient calculation

In order to compute Cramér-Rao bounds, we shall need the gradients of the log-likelihood, which turn out to be the same as those of the cost function f defined below, deduced from (5), if noise is i.i.d. circular Gaussian:

f (#) = 1 2 n kt z(#)k 2 2 , # := [✓; ; ↵; ; vec S; vec S ⇤ ] (11)
where 2 n denotes its variance. The gradient expressions will also be subsequently useful to implement descent algorithms. According to the chain rule [START_REF] Guo | The effect of polarization separation on the performance of Candecomp/Parafacbased vector sensor array processing[END_REF] and definition [START_REF] Guo | A Candecomp/Parafac perspective on uniqueness of doa estimation using a vector sensor array[END_REF], the partial derivatives of the cost function with respect to DoA parameters are given by where operator k • k 2 F indicates Frobenius norm. For a zero-mean, circularly complex Gaussian noise with covariance 2 n I the log-likelihood takes the form [START_REF] Comon | Tensors: a brief introduction[END_REF] up to an additive constant. Then, the mixed real-complex Fisher Information Matrix (FIM) can be shown to be given by [START_REF] Liu | Cramér-Rao lower bounds for low-rank decomposition of multidimensional arrays[END_REF][START_REF] Sahnoun | Tensor polyadic decomposition for antenna array processing[END_REF]:

@f @✓r = 2< ⇢ @f @a T r @ar @✓r + @f @b T r @br @✓r , @f @↵r = 2< ⇢ @f @b T r @br @↵r @f @ r = 2< ⇢ @f @a T r @ar @ r + @f @b T r @br @ r , @f @ r = 2< ⇢ @f @b T r @br @ r with @f @a T r = z R X r=1 ar ⇥ br ⇥ sr ! H ( IK ⇥ br ⇥ sr) @f @b T r = z R X r=1 ar ⇥ br ⇥ sr ! H ( ar ⇥ IL ⇥ sr) @f @s T r = z R X r=1 ar ⇥ br ⇥ sr ! H ( ar ⇥ br ⇥ IM ) @ar @✓r = h ı ! v ( g x k sin ✓r cos r + g y k cos ✓r cos r ) Akr i K k=1 Akr = 1 K exp ı ! v [g x k cos ✓r cos r + g y k sin ✓r cos r + g z k sin r ] @br @✓r = @V r @✓r Q r wr, @br @ r = @V r @ r Q r wr @V T R r @✓r = 2 
(#) = E ( ✓ @f (#) @# ◆ H ✓ @f (#) @# ◆ )
The CRB of any unbiased estimator of a vector parameter # is is given by the inverse of the FIM. It is useful to separate parameters to be estimated in three vectors: one real, [✓; ; ↵; ], and two complex, vec S and vec S ⇤ . With this organization, the FIM has 9 blocks [8]: 

= 1 2 n 0 @ 2<{G 11 } G 12 G ⇤ 12 G H 12 G 22 0 G T 12 0 G ⇤ 22 1 A where G ij = ⇣ @z @#i ⌘ H ⇣ @z @#j ⌘ .

Computer experiments
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 52222 ⇡, ⇡] refers to the azimuth and to the elevation of the source. Second, the polarization ellipse is described by the orientation angle ↵ 2 ( ⇡/2, ⇡/2] and the ellipticity angle 2 [ ⇡/4, ⇡/4].
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 22 Bounds (CRB) represent the lower bound on the variance of any unbiased estimator of a deterministic parameter. Define the Signal-to-Noise ratio (SNR) as[START_REF] Liu | Cramér-Rao lower bounds for low-rank decomposition of multidimensional arrays[END_REF]: SN R = 10 log 10 kZk KLM
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 1 Fig. 1: MSE vs SNR CRBs are obtained by summing the diagonal entries in the inverse of the first block, 2<{G 11 }, in the FIM. This