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A wellposed hypoelastic model derived from a hyperelastic one

N. Favrie* and S. Gavrilyuk®
(Dated: June 16, 2015)

Hypoelastic models are widely used in industrial and military codes for numerical simulation
of high strain dynamics of solids. This class of model is often mathematically inconsistent. More
exactly, the second principle is not verified on the solutions of the model, and the initial state after a
reversible cycle is not recovered. In the past decades, hyperelastic models, which are mathematically
consistent, have been intensively studied. For their practical use, ones needs to entirely rewrite the
commercial codes. Moreover, calibration of equation of states would be needed. In this paper
two hypoelastic models for isotropic solids are derived from equivalent hyperelastic models. The
hyperelastic models are hyperbolic for all possible deformations. It allows us to use robust Godunov’s
schemes for numerical resolution of these models. Two new objective derivatives corresponding to
two different equations of state and defining the evolution of the deviatoric part of the stress tensor
naturally appear. These derivatives are compatible with the reversibility property of the model : it
conserves the specific entropy in a continuous motion. The most used hypoelastic model (Wilkins
model) is recovered in the small deformation limit.

Keywords: Hyperelasticity, hypoelasticity, ob-
jective derivatives

I. INTRODUCTION

In the literature, two classes of models for a high
strain dynamics of solids can be found: hypoelastic
and hyperelastic ones. Hypoelastic models (Wilkins,
1964) are widely used in industrial and military nu-
merical codes (LS-Dyna, CTH (USA), OURANOS
(France), EGIDA (Russia), ... ). For this class of
models an empirical partial differential equation for
the deviatoric part of the stress tensor is formulated
to closure the governing equations. The deviatoric
stress rate depends on the choice of a so called o0b-
jective derivative (cf. Trusdell and Noll (2003) [24],
Gurtin et al. (2010) [11]). These hypoelastic models
presents two main drawbacks :

e in absence of dissipation, the entropy is not
in general conserved for continuous motions
(see Gavrilyuk et al. 2008 [7], and Maire et
al. 2013(a,b) [16], [17] for details).

e the choice of the objective derivative is not
unique, and thus the obtained results will
strongly depend on such a choice (Szabo &
Balla, 1989 [23], Rouhaud et al. (2013) [21],
Korobeynikov (2008) [14]).
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Hyperelastic models have been intensively studied
in the last decades (Godunov and Romenskii (2003)
[10], Kulikovskii et al. 2000 [15], Miller and Collela
(2002)[18], Gavrilyuk et al. (2008)[7], Kluth and
Depres (2008) [13], Godunov and Peshkov (2008)
[9], Gorsse et al. (2014) [12], ... ). In these mod-
els the stress tensor is obtained by variation of the
internal energy. The models are conservative and
hyperbolic if the internal energy is rank-one convex
(Dafermos, 1999 [1]). An extension of this class of
models can be given when viscoplastic effects are
present. Also, a multiphase formulation of hypere-
lasticity allowing us to model solid-fluid interaction
can be given ( Favrie et al. 2009 [2], Favrie and
Gavrilyuk 2011(a,b),[3], [4], 2012 [5], Ndanou et al.
(2015) [20]). When the dissipation is added, these
models verify the second law of thermodynamics. In
general, the hyperelastic models have better mathe-
matical and numerical properties.

In this paper, we propose a link between hypoe-
lastic and hyperelastic models. This link is in some
sense obvious and related to the problem of inver-
sion of stress - strain relation (Romenskii, 1974 [22]).
However, an explicit inversion is needed for practical
applications. We give in this note an explicit exam-
ple of a non-linear equation of state where such an
inversion is performed. A natural objective deriva-
tive appears associated with such a law.

This paper is organized as follows. The governing
constitutive model for hyperelasticity is presented
section II. The derivation of the hypoelastic model
is presented in Section III.
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II. A GENERAL HYPERELASTIC MODEL
FORMULATION

The governing equations of isotropic elastic solids
can be written in the following form :

9p + div(pv) = 0,

t
%—I—div(pv@v—a) =0,
8575’ + div(pEv —ov) =0,
% + <g:’(>Teﬁ =0, rote® = 0,
with
d
ai o VTV

Here e?, 8 = 1,2, 3 are the columns of F~7, F is the
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deformation gradient, G = F~7F~1 = Y} e/ @ e/
B=1
is the Finger tensor, B = G~! is the left Cauchy-
Green strain tensor, p is the solid density considered
is an independent variable, v is the the velocity field,
o is the stress tensor, £ = e + %‘VF is the specific
total energy, e(G,n) is the specific internal energy
depending only on the invariants of G and the spe-
cific entropy 1. The symmetric stress tensor is given
by :

g =

e
prEG =—pI+8S (1)
where p is the hydrodynamic pressure, I is the iden-
tity matrix, and S is the deviatoric part of the stress
tensor. This model must be completed by giving the
equation of state e(G,n). We take the specific en-
ergy in separable form :

G

— = —p L.
det(G)1/3

e=c"(p,n) +e(g), g=
Thus, the energy is the sum of he hydrodynamic
energy e/ (p,n) and the shear energy e¢(g) depend-
ing only on the reduced Finger tensor g. The shear
energy is unaffected by the volume change. For
applications, the hydrodynamic part of the energy
e(p,m) can be taken in the form of stiffened gas
equation of state :
e"(p,p) = B2
v = const, % > 0,

P+ 700 = A(n) p7,

_ 29eM
P=pr""5,-

We take the elastic energy e®(g) in the form :

e M 1—20/,2 .
(g) = -1 2
e(g) I ( 5 +ajo + 3(a )>, (2)

ji = TI'(g7), 1= 17 27

where p is the shear modulus, and a is a non-
linearity parameter. With such an EOS, for any
value of a the classical Hooke law is recovered at
the limit of small deformations. The model is hyper-
bolic for any a € [—1,0.5] (Ndanou et al. (2013) [19],
Favrie et al. (2014)[6], Gavrilyuk et al. (2015) [8]).
In the following, we will consider two limit cases:

e the case where a = —1 :
e M .2 . . .

=2 (j2—jy—6) = — (i; — = Tr(b).
e“(8) = - (i =2 = 6) = 5 = (i = 3), ir = Tx(b)

3)

e the case where a = 0.5 :

e“(g) = (2—3), 2 =Tr(g?). (4)
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To increase the readability of the paper the calcu-
lation details will be given only in the case where
a = —1 which corresponds to the equation of state
for neo-hookean solids.

The equations for e” admit the following conse-
quences :

T
ﬁ:dB—B<8V> ~Np_o )

dt ox ox
&= (™M gia® 0 ()
Cdt 0x ox

(5) correspond to Lie derivative of a two times con-
travariant tensor, and (6) that of a two times covari-
ant tensor (see [L1] for definitions). These deriva-
tives are objectives.

III. EVOLUTION EQUATION FOR THE
DEVIATORIC PART OF THE STRESS
TENSOR

For the energy in the form (3) the deviatoric part
of the stress tensor can easily be calculated :

S=yu (/)"0)5/3 (B - ;Tr(B)I> .
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Applying to this equation the material derivative Here S; and b; are the eigenvalues of S and b. It

and using the conservation of mass we have : implies
s 5 p\?(aB 1 (dB b — L Te(b) 4+ 3
— = —-S8d — ——-Tr|{— |1]). i = 3Tr(b) + Si.
@~ 3Sdvtv) e (po) at 3 \dt 3
Since Since det(b) = 1 and Tr(S) = 0, we obtain :

dB ov\ 7’ N 8VB 1=g19293 = (%Tr(b) + Sl)(%Tr(b) + 52)(%Tr(b) +53)

dat o \ox ox =a’+patq+1,

(8)
we have with
» 5/3 B _ . Tr (gz) )
K 00 dt a==Tr(b), p=-— , q=det(S)—1.
ov\"  ov p 5/3 9 s 2
S| — —S — -Tr(B)D
Qk) +&(+u<m) >1(B) It
. ~.\\3
with ¢, r @ o1 (1))
A= "—+"— = — > 0,
L 70v\T  ov 427 4 216
o33
2 \ \ox ox we will have a unique real solution :

being the rate of deformation tensor. It comes: o éTr(b) _ \3/—;] VA 4+ i/_g _ VA,

S + 2Sdiv(v) + >Tr (SD)T = o . N .

3 5/3 ) 3 . In all)phcatlﬁns,lA 1sgalv§ays pﬁsrlu{n{e. Ir}ll Fllgurle 1,
_ P & L we plot in the plane 51,59 in thick line the level set
s ( ) 3Tr(B)(D tr(D)D) A = 0. In dashed lines we plot the yield surface for
% = 1.6. For metals or carbon fibers such a ratio is
almost vanishing, and the yield surface is reduced to
almost a dot. In the case where a = 0.5 we introduce

2/3 (7) §= 22
_u (2 2 _ 1, 2
=pu (po) 5 Tr(b)(D — Str(D)I). Hoo

An equivalent form is :

S 5y, 2
S+ ngw(v) + gTr (SD)I

. An analogous equation (8) is obtained where Tr(b)
We need now to express Tr(b) as a function of S 4 ¢ replaced by Tr(g?).

to close (7).

B. H lastic fi lati
A. Expression of Tr(b) as a function of the ypoeiastic foriuiation

invariants of S
The hypoelastic model can be rewritten under the

To simplify the notations, we introduce following form :

§_ S 9 + div(pv) =0
B A dpv ot
u(?{)) ai—kdiv(pv@v—{—p—S):O

9
In the orthogonal basis of eigenvectors of S we have % + div(pEv +pv —Sv) =0 ©)
2/3
~ 1 doS p Tr(b) 1
_p = P — — =2ul = D--Tr(D)I
Si=bi—ZTi(b), i=1,23. i u(po) 5 (D - 3Tr(D)L)
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FIG. 1. The limit of the domain where the discriminant
is positive A = 0 is represented in thick lines. The Von
Mises yield surface for Carbon fibbers is almost a dot.
In dashed lines we plot the yield surface for % = 1.6.
The validity domain of the unique solution for Tr(b) is
much bigger than the yield limit of usual materials

with a new objective derivative

dos 4 5 i 2
— = = =-Tr (SD) I 1
o S+ 3de(v) + 3 r (SD) (10)
Here
h 3
E=e"(p,p)+—(a-1)+zv-v,
2p0

T
o= Li(g)
3
208 poS
_ 3 det(p#)—‘rl—’_\/g—’_?: det(p#)—i_l_\/g
2 2 ’

In the small deformation limit where £ ~ 1 and
Po
a = 1, equation (9) becomes :

doS 1
—— =2pu(D — -tr(D)I
O — 2(D ~ 5tr(D)I),

which is similar to the classical Wilkins model (see
Wilkins (1964) [25]) with a new objective derivative.
An analogous inversion, but with a different objec-
tive derivative is obtained in Appendix in the case
where a = 0.5, i.e. the energy is taken in the form
(4). This choice leads to (see details in Appendix

(11)
1 S

with g2 = gTr(g2)If 2P0 > So, g can be obtained
p 1

as the square root of g2, while Tr(g?) is obtained as
in the case of Tr(b).

IV. CONCLUSIONS

From two particular models of nonlinear hypere-
lasticity, we derive two hypoelastic models which are
equivalent to the original hyperelastic ones. New ob-
jective derivatives appear which are specific to the
equations of state used.
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Appendix A: case where a = 0.5

1. Evolution equation for the deviatoric part
of the stress tensor

In the case where a = 0.5, i.e. the energy is taken
in the form (4) , the deviatoric part of the stress
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tensor can be expressed in the form :

—1/3 ]
s=_F# <”> (G2 - Tr(G2)1> .
2 \po 3

Applying the material derivative and using the con-

servation of mass we have :

as 1., . wlp\ P rdG? 1. [dG?
22 = SSdiv(v)-= (£ = om (S ) 1),
@~ 3543 <p0> a3\ dt )

(A1)
Since
dG ov\" ov
dt—‘Qg>G‘Gma
it comes :
dG? ov\" ov
= = _92GD _ (=T 2 _ 27"
o= epe - (5) et -e
we have

with

G = \/;TT(GQ)I P <p> v (A2)

It comes:

An alternative form is :
A1 2
S - §de(v) - gTr (SD)I =

p\1 2 1 B p
=u( L) Tr D-—-tr(D)I)+=2egD
u(p0)3 (g87)( 3()) &P

with

g = \/;)Tr(gQ)I _oSm (Ad)

Expression of Tr(g) as a function of the
invariants of S

The stress can be rewritten in term of g under the
form:

w2 1o o
S=-CL (g2 - —Tr(g))1).
2p0(g 3r(g))

To simplify the notations, we introduce

i=1,2,3.

Here S; and g? are the eigenvalues of S and g? It
implies
1

9 = gTr(g2) +5;.

Since det(g) = 1 and Tr(S) = 0, we obtain :

- 1=ygig3g} i
= (5Tr(g?) + 51)(§TY(g2) +52)(5Tr(g?) + S3)
=a’ +patq+l,

with
Tr (SQ>

p=—— . q=det(S) —1.

1
o = 3Tr(g),

This equation is identical to equation (8).



	A wellposed hypoelastic model derived from a hyperelastic one
	Abstract
	Introduction
	A general hyperelastic model formulation
	Evolution equation for the deviatoric part of the stress tensor
	Expression of Tr(b) as a function of the invariants of S
	Hypoelastic formulation

	Conclusions
	Acknowledgment

	References
	case where a=0.5
	Evolution equation for the deviatoric part of the stress tensor
	Expression of Tr(g) as a function of the invariants of S



