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A wellposed hypoelastic model derived from a hyperelastic one

I. INTRODUCTION

In the literature, two classes of models for a high strain dynamics of solids can be found: hypoelastic and hyperelastic ones. Hypoelastic models [START_REF] Wilkins | Calculation of elastic-plastic flow[END_REF] are widely used in industrial and military numerical codes (LS-Dyna, CTH (USA), OURANOS (France), EGIDA (Russia), ... ). For this class of models an empirical partial differential equation for the deviatoric part of the stress tensor is formulated to closure the governing equations. The deviatoric stress rate depends on the choice of a so called objective derivative (cf. Trusdell and Noll (2003) [START_REF] Truesdell | The Non-Linear Field Theories of Mechanics, 3rd Edition[END_REF], [START_REF] Gurtin | The mechanics and thermodynamics of continua[END_REF] [START_REF] Gurtin | The mechanics and thermodynamics of continua[END_REF]). These hypoelastic models presents two main drawbacks :

• in absence of dissipation, the entropy is not in general conserved for continuous motions (see Gavrilyuk et al. 2008 [7], and Maire et al. 2013(a,b) [START_REF] Maire | A simple elasticity model at large deformations or where does come from the Wilkins model? MULTIMAT Conference[END_REF], [START_REF] Maire | A nominally second-order cellcentered Lagrangian scheme for simulating elasticplastic flows on two-dimensional unstructured grids[END_REF] for details).

• the choice of the objective derivative is not unique, and thus the obtained results will strongly depend on such a choice (Szabo & Balla, 1989 [23], [START_REF] Rouhaud | Canonical frame-indifferent transport operators with the four-dimensional formalism of differential geometry[END_REF] [START_REF] Rouhaud | Canonical frame-indifferent transport operators with the four-dimensional formalism of differential geometry[END_REF], [START_REF] Korobeynikov | Objective tensor rates and applications in formulation of hyperelastic relations[END_REF] [START_REF] Korobeynikov | Objective tensor rates and applications in formulation of hyperelastic relations[END_REF]).

Hyperelastic models have been intensively studied in the last decades [START_REF] Godunov | Elements of Continuum Mechanics and Conservation Laws[END_REF] [10], Kulikovskii et al. 2000 [15], Miller and Collela (2002) [START_REF] Miller | A conservative three-dimensional Eulerian method for coupled fluid-solid shock capturing[END_REF], [START_REF] Gavrilyuk | Modeling wave dynamics of compressible elastic materials[END_REF] [START_REF] Gavrilyuk | Modeling wave dynamics of compressible elastic materials[END_REF], Kluth and Deprès (2008) [START_REF] Kluth | Perfect plasticity and hyperelastic models for isotropic materials[END_REF], [START_REF] Godunov | Symmetric hyperbolic equations in the nonlinear elasticity theory[END_REF] [9], Gorsse et al. (2014) [START_REF] Gorsse | A simple Cartesian scheme for compressible multimaterials[END_REF], ... ). In these models the stress tensor is obtained by variation of the internal energy. The models are conservative and hyperbolic if the internal energy is rank-one convex (Dafermos, 1999 [1]). An extension of this class of models can be given when viscoplastic effects are present. Also, a multiphase formulation of hyperelasticity allowing us to model solid-fluid interaction can be given ( Favrie et al. 2009 [2], Favrie and Gavrilyuk 2011(a,b), [START_REF] Favrie | Mathematical and numerical model for nonlinear viscoplasticity[END_REF], [START_REF] Favrie | Dynamics of shock waves in elastic-plastic solids[END_REF], 2012 [START_REF] Favrie | Diffuse interface model for compressible fluid -compressible elastic-plastic solid interaction[END_REF], [START_REF] Ndanou | Multi-solid and multi-fluid diffuse interface model: Applications to dynamic fracture and fragmentation[END_REF] [START_REF] Ndanou | Multi-solid and multi-fluid diffuse interface model: Applications to dynamic fracture and fragmentation[END_REF]). When the dissipation is added, these models verify the second law of thermodynamics. In general, the hyperelastic models have better mathematical and numerical properties.

In this paper, we propose a link between hypoelastic and hyperelastic models. This link is in some sense obvious and related to the problem of inversion of stress -strain relation (Romenskii, 1974 [22]). However, an explicit inversion is needed for practical applications. We give in this note an explicit example of a non-linear equation of state where such an inversion is performed. A natural objective derivative appears associated with such a law. This paper is organized as follows. The governing constitutive model for hyperelasticity is presented section II. The derivation of the hypoelastic model is presented in Section III.

II. A GENERAL HYPERELASTIC MODEL FORMULATION

The governing equations of isotropic elastic solids can be written in the following form :

∂ρ ∂t + div(ρv) = 0, ∂ρv ∂t + div(ρv ⊗ v -σ) = 0, ∂ρE ∂t + div(ρEv -σv) = 0, de β dt + ∂v ∂x T e β = 0, rote β = 0, with d dt = ∂ ∂t + v • Here e β , β = 1, 2, 3 are the columns of F -T , F is the deformation gradient, G = F -T F -1 = 3 β=1 e β ⊗ e β
is the Finger tensor, B = G -1 is the left Cauchy-Green strain tensor, ρ is the solid density considered is an independent variable, v is the the velocity field, σ is the stress tensor, E = e + 1 2 |v| 2 is the specific total energy, e(G, η) is the specific internal energy depending only on the invariants of G and the specific entropy η. The symmetric stress tensor is given by :

σ = -2ρ ∂e ∂G G = -pI + S ( 1 
)
where p is the hydrodynamic pressure, I is the identity matrix, and S is the deviatoric part of the stress tensor. This model must be completed by giving the equation of state e(G, η). We take the specific energy in separable form :

e = e h (ρ, η) + e e (g), g = G det(G) 1/3 = b -1 .
Thus, the energy is the sum of he hydrodynamic energy e h (ρ, η) and the shear energy e e (g) depending only on the reduced Finger tensor g. The shear energy is unaffected by the volume change. For applications, the hydrodynamic part of the energy e h (ρ, η) can be taken in the form of stiffened gas equation of state :

e h (ρ, p) = p+γp∞ ρ(γ-1) , p + γp ∞ = A (η) ρ γ , γ = const, dA dη > 0, p = ρ 2 ∂e h ∂ρ .
We take the elastic energy e e (g) in the form :

e e (g) = µ 4ρ 0 1 -2a 3 j 2 1 + aj 2 + 3(a -1) , (2) 
j i = Tr(g i ), i = 1, 2,
where µ is the shear modulus, and a is a nonlinearity parameter. With such an EOS, for any value of a the classical Hooke law is recovered at the limit of small deformations. [START_REF] Gavrilyuk | One-parameter family of equations of state for isotropic compressible solids[END_REF]).

In the following, we will consider two limit cases:

• the case where a = -1 :

e e (g) = µ 4ρ 0 j 2 1 -j 2 -6 = µ 2ρ 0 (i 1 -3) , i 1 = Tr(b). (3) 
• the case where a = 0.5 :

e e (g) = µ 8ρ 0 (j 2 -3) , j 2 = Tr(g 2 ). (4) 
To increase the readability of the paper the calculation details will be given only in the case where a = -1 which corresponds to the equation of state for neo-hookean solids.

The equations for e β admit the following consequences :

B = dB dt -B ∂v ∂x T - ∂v ∂x B = 0, (5) 
G = dG dt + ∂v ∂x T G + G ∂v ∂x = 0. (6) 
(5) correspond to Lie derivative of a two times contravariant tensor, and (6) that of a two times covariant tensor (see [START_REF] Gurtin | The mechanics and thermodynamics of continua[END_REF] for definitions). These derivatives are objectives.

III. EVOLUTION EQUATION FOR THE DEVIATORIC PART OF THE STRESS TENSOR

For the energy in the form (3) the deviatoric part of the stress tensor can easily be calculated :

S = µ ρ ρ 0 5/3 B - 1 3 Tr(B)I .
Applying to this equation the material derivative and using the conservation of mass we have : 

dS dt = - 5 
We need now to express Tr(b) as a function of S to close [START_REF] Gavrilyuk | Modeling wave dynamics of compressible elastic materials[END_REF].

A. Expression of Tr(b) as a function of the invariants of S

To simplify the notations, we introduce

S = S µ ρ ρ0 5/3 .
In the orthogonal basis of eigenvectors of S we have

Si = b i - 1 3 Tr(b), i = 1, 2, 3.
Here Si and b i are the eigenvalues of S and b. It implies

b i = 1 3 Tr(b) + Si .
Since det(b) = 1 and Tr( S) = 0, we obtain :

1 = g 1 g 2 g 3 = ( 1 3 Tr(b) + S1 )( 1 3 Tr(b) + S2 )( 1 3 Tr(b) + S3 ) = α 3 + pα + q + 1, (8) with α 
= 1 3 Tr(b), p = - Tr S2 2 , q = det( S) -1. If ∆ = q 2 4 + p 3 27 = (det( S) -1) 2 4 - Tr S2 3 216 > 0,
we will have a unique real solution :

α = 1 3 Tr(b) = 3 - q 2 + √ ∆ + 3 - q 2 - √ ∆.
In applications, ∆ is always positive. In Figure 1, we plot in the plane S1 , S2 in thick line the level set ∆ = 0. In dashed lines we plot the yield surface for Y µ = 1.6. For metals or carbon fibers such a ratio is almost vanishing, and the yield surface is reduced to almost a dot. In the case where a = 0.5 we introduce

S = -2 S µ ρ ρ0 .
An analogous equation ( 8) is obtained where T r(b) should be replaced by T r(g 2 ).

B. Hypoelastic formulation

The hypoelastic model can be rewritten under the following form : 

∂ρ ∂t + div(ρv) = 0 ∂ρv ∂t + div(ρv ⊗ v + p -S) = 0 ∂ρE ∂t + div(ρEv + pv -Sv) = 0 d O S dt = 2µ ρ ρ 0 2/3 Tr(b) 3 (D - 1 3 Tr(D)I) (9) 
Here

E = e h (p, ρ) + 3µ 2ρ 0 (α -1) + 1 2 v • v, α = Tr(g) 3 = 3 det ρ0S ρµ + 1 2 + √ ∆ + 3 det ρ0S ρµ + 1 2 - √ ∆, ∆ =      det ρ0S ρµ + 1 2 4 - Tr ρ0S ρµ 2 3 216      .
In the small deformation limit where ρ ρ 0 ≈ 1 and α ≈ 1, equation ( 9) becomes :

d O S dt = 2µ(D - 1 3 tr(D)I),
which is similar to the classical Wilkins model (see [START_REF] Wilkins | Calculation of elastic-plastic flow[END_REF] [START_REF] Wilkins | Calculation of elastic-plastic flow[END_REF]) with a new objective derivative. An analogous inversion, but with a different objective derivative is obtained in Appendix in the case where a = 0.5, i.e. the energy is taken in the form (4). This choice leads to (see details in Appendix A): 

S - 1 3 Sdiv(v) - 2 

IV. CONCLUSIONS

From two particular models of nonlinear hyperelasticity, we derive two hypoelastic models which are equivalent to the original hyperelastic ones. New objective derivatives appear which are specific to the equations of state used.

FIG. 1 .

 1 FIG. 1. The limit of the domain where the discriminant is positive ∆ = 0 is represented in thick lines. The Von Mises yield surface for Carbon fibbers is almost a dot. In dashed lines we plot the yield surface for Y µ = 1.6. The validity domain of the unique solution for Tr(b) is much bigger than the yield limit of usual materials

  g can be obtained as the square root of g 2 , while Tr(g 2 ) is obtained as in the case of Tr(b).

  The model is hyperbolic for any a ∈ [-1, 0.5] (Ndanou et al. (2013) [19], Favrie et al. (2014)[6], Gavrilyuk et al. (2015)
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Appendix A: case where a = 0.5

Evolution equation for the deviatoric part of the stress tensor

In the case where a = 0.5, i.e. the energy is taken in the form (4) , the deviatoric part of the stress tensor can be expressed in the form :

Applying the material derivative and using the conservation of mass we have :

it comes :

we have

It comes:

GDG

An alternative form is :

Expression of Tr(g) as a function of the invariants of S

The stress can be rewritten in term of g under the form:

Tr(g 2 )I .

To simplify the notations, we introduce

In the orthogonal basis of eigenvectors of S we have Si = g 2 i -

Tr(g 2 ), i = 1, 2, 3.

Here Si and g 2 i are the eigenvalues of S and g 2 . It implies

Tr(g 2 ) + Si .

Since det(g) = 1 and Tr( S) = 0, we obtain : This equation is identical to equation [START_REF] Gavrilyuk | One-parameter family of equations of state for isotropic compressible solids[END_REF].