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Differences in brain gene transcription profiles
advocate for an important role of cognitive
function in upstream migration and water
obstacles crossing in European eel
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Fabien Pierron7,8† and Francoise Daverat1†
Abstract

Background: European eel is a panmictic species, whose decline has been recorded since the last 20 years. Among
human-induced environmental factors of decline, the impact of water dams during species migration is questioned.
The main issue of this study was to pinpoint phenotypic traits that predisposed glass eels to successful passage by
water barriers. The approach of the study was individual-centred and without any a priori hypothesis on traits
involved in the putative obstacles selective pressure. We analyzed the transcription level of 14,913 genes.

Results: Transcriptome analysis of three tissues (brain, liver and muscle) from individuals sampled on three successive
forebays separated by water obstacles indicated different gene transcription profiles in brain between the two
upstream forebays. No differences in gene transcription levels were observed in liver and muscle samples among
segments. A total of 26 genes were differentially transcribed in brain. These genes encode for, among others, keratins,
cytokeratins, calcium binding proteins (S100 family), cofilin, calmodulin, claudin and thy-1 membrane glycoprotein. The
functional analysis of these genes highlighted a putative role of cytoskeletal dynamics and synaptic plasticity in fish
upstream migration.

Conclusion: Synaptic connections in brain are solicited while eels are climbing the obstacles with poorly designed
fishways. Successful passage by such barriers can be related to spatial learning and spatial orientation abilities when
fish is out of the water.

Keywords: Transcripomics, European eel, Water dams, Microarray, Synaptic plasticity, Fish brain
Background
Among anthropogenic environmental alterations, habitat
loss and fragmentation are considered as a major threat
to biological diversity [1] and dealing with these changes
is among the greatest challenges faced by conservation
biologists [2]. Habitat fragmentation of aquatic ecosys-
tems is mainly induced by anthropogenic barriers such
as dams and weirs [3]. Main effects of human-induced
barriers are: (1) modification of abiotic conditions [4],
(2) disruption of population and aquatic community
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structure in subsequent habitats [5-7] as well as (3) dis-
ruption of gene flow [8] and (4) biodiversity loss [9].
Endemic species as well as migratory species are the

most affected by water impoundment [10,11]. In the case
of migratory species, habitat switch can be sometimes
imperative in order to reach a particular ontogenetic stage.
For diadromous species (i.e. salmonids or eels), growth
and reproduction stages require different salinity environ-
ments and thus free-flowing corridors between habitats
are required to fulfill their life cycle [12]. Therefore, inves-
tigating the effects of fragmentation effects on their migra-
tory behavior is of great importance.
European eel Anguilla anguilla is a facultative catad-

romous fish species with a particularly complex life cycle
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that includes two trans-Atlantic migrations and two
metamorphoses. European eel spawns in the remote
Sargasso Sea [13]. After spawning, larvae of European
eel drift back towards Europe and cross the Atlantic
transported by the Gulf Stream system to the coasts of
Europe and North Africa. Upon reaching the continental
shelf, larvae metamorphose into glass eels and complete
the migration into continental (fresh, estuarine and
coastal) waters as yellow eels. After a highly variable
feeding period in the continent, yellow eels metamor-
phose into silver eels that migrate back to the Sargasso
Sea in a migration of 5,000-6,000 km. Upon reaching the
Sargasso Sea, silver adults reproduce once and die.
European eel is considered to be critically endangered of
extinction with a 90-99% decline observed throughout
the distribution range of the species in the last 30 years
[14]. The drop in population numbers has affected both
recruitment and pre-adult/adult stages and causes of the
decline include both anthropogenic (overfishing, man-
introduced parasites and diseases, pollution, habitat frag-
mentation) and natural factors. Among human-related
barriers, construction of dams and the consecutive frag-
mentation of habitats is one of the possible factors con-
tributing to this sharp decline, mainly because water
impondment preclude (1) the upstream migration of
glass eels to feeding grounds and (2) the spawning mi-
gration of adults from the feeding to the spawning
grounds in the Sargasso Sea.
Studies addressing the impact of migration barriers on

eel upstream migration have mainly focused on quan-
titative aspects such as mortality of glass eels/elvers
downstream of dams due to predation, diseases or intra-
specific competition [15]. Such studies also quantified
barrier permeability by estimating the abundance of
eels on either site thereof. Indeed, many evaluations of
single-species specific fishways accounted for passage
and attraction efficiency and were only based on the
proportion of individuals approaching, engaging and
succeeding to pass designed apparatus [16,17]. Although
several phenotypic traits are expected to be associated
with glass eel upstream migration [18,19], none of them
has been studied in the context of passage by water obs-
tacle. In this sense, large individual size [20], swimming
speed and high energy reserves could facilitate the suc-
cess of passage, whereas activity, exploratory behavior
and sensibility to environmental cues [21] could increase
the probability to find the fishway entrance.
Several authors have proposed a hypothesis of energy-

or thyroid- dependent propensity to migrate in glass eels
[18,22,23]. According to this hypothesis, the thyroid hor-
mone metabolism is involved in the upstream migration
of glass eels. This is in agreement with previous ex-
perimental studies that showed that thyroxin (T4) is
involved in the migratory behavior of fish [24,25]. A role
of the thyroid hormone metabolism in climbing water-
falls has also been suggested in juvenile American eels
[26]. Thus, the interindividual variations in thyroid hor-
mone metabolism could be responsible for interindividual
variations in “motivation” of juvenile eels to swim against
the current and to climb water obstacles.
The aim of the present study was to investigate the in-

terindividual variation of phenotypic traits involved in
the passage of water barriers. The chosen approach re-
lied on the comparison of gene transcription (mRNA)
patterns among wild glass eels collected below and
above successive obstacles dispersed along the same
river course.
A non a priori approach was chosen to identify individ-

ual traits that could differ between downstream and
upstream fish. Microarray analysis was used to detect
interindividual patterns of gene transcription from a large
and functionally diverse set of genes (14,913 annotated
contigs [27]) from fish sampled above and directly below
the barriers in a river carefully selected for its homogenous
conditions.
Three different tissues were sampled: (1) muscle to pro-

vide information on fish swimming capacities [28], (2)
liver as a proxy for the physiological state of organism
[29], and (3) brain, to provide information on perception
of environmental cues, arousal, motivation, learning and
many other functions involved in behavioral patterns such
as those linked to hormone metabolism [22,23].

Methods
All procedures used in this study were approved by the
Aquitaine fish-birds ethic committee (a committee ap-
proved and registered by the French Ministry of Higher
Education and Research under number 73).

Sampling site
Canal des Etangs, a freshwater corridor in South-Western
France (44.75-44.95 N, 1.1-1.2 W) is a former artificial
canal, built in 1850, linking Arcachon Basin to Lacanau
Lake. The river line is linear, whereas the water flow re-
mains homogenous and controlled by several weirs. Three
successive low-distanced obstacles were built along the
river length. The first weir (1,5 m height) is located at
4 km from the tidal limit and equipped with a fish ladder
(6 m length, 45° slope) specifically designed for glass eels.
It determines the upper limit of the most downstream 4 km
section of the canal called segment 1 (Pas du Bouc; +44° 50’
27.95”, -1° 9’ 8.09”). The second (Langouarde, +44° 51’
32.92”, -1° 9’ 5.03”) and the third (Joncru; +44° 52’ 57.13”, -1°
8’ 11.70”) weirs are different from the first one, but similar
between them; they are larger (2,5 m height) and equipped
with identical fishways (rock ramp). The distances from
the first weir to the 2nd and 3rd one are respectively 2.3
and 5.3 km (Table 1).



Table 1 Number of pools of tissue samples from each
segment used for microarray analyses

Sampling site Tissue (number of pools
analyzed by DNA
microarray analyses)

Distance from the
1st segment (km)

Brain Muscle Liver

Pas du Bouc (segment 1) 3 3 3 0

Langouarde (segment 2) 3 3 3 2.3

Joncru (segment 3) 3 0 3 5.3

Each pool corresponds to 3 individuals from the same segment. Additionally,
the distance from the sampling site to the first segment is shown.
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Sampling
Eels were collected using electrofishing during three con-
secutive days 6-8th of June 2012 under similar climatic
and hydrological conditions. Individuals were sampled
below the obstacle, close to the fishway entry in segment 1
and 2. Fish from the segment 3 were sampled on the
fishway, as water depth before the obstacle, approximately
2 meters, precluded the use of electrofishing. Ten indivi-
duals were selected from each site according to their body
size (between 83 and 155 mm) and health status (no exter-
nally visible pathogens) to minimize the potential bias.
Sampled and selected fish were immediately sacrificed by
decapitation and the whole brain (ca. 3.5 mg), liver
(ca. 30 mg) and muscle tissues (ca. 40 mg, posterior bot-
tom body part, skin removed) were dissected and stored
in separate tubes with RNAlater buffer (1 mL, Qiagen)
for gene transcription analysis. Additionally, individual
weight was measured for relative condition factor (Kn)
calculation [30] and otoliths were extracted for further age
analysis.

Otolith analyses
Sagittal otoliths were embedded in glass slides and sub-
merged by a drop of glue. The otolith was then polished
until the core was reached, etched with 10% EDTA,
stained with 5% toluidine blue to enhance the annuli
and observed with optical microscope (Nikon Eclipse
90i, Japan). For each otolith, age estimation by counting
the annuli around the primordium was performed by
two independent readers.

Microarray analyses
Samples of brain, muscle and liver were homogenized by
measn of a bead mill homogenizer (45 sec at 3000
oscillations per sec, Mixer Mill MM 200, Retsch). Total
RNAs were extracted using the Absolutely RNA RT-
PCR Miniprep kit (Agilent) according to the manufac-
turer’s instructions. A total of 9 fish were used for each
sampling site, i.e. 3 pools of 3 individuals by site. RNA
quality was evaluated by electrophoresis on a 1% aga-
rose gel. RNA purity and concentration was determined
using a NanoDrop spectrophotometry and Agilent 2100
Bioanalyzer. Samples were considered as of good quality
RNA when showing A260/280 and A260/230 ratios
close to 2 and a minimum RIN (RNA Integrity Number)
of 8.
Microarray analysis was conducted using an European

eel-specific array consisting of a total of 14,913 probes
based on a large collection of high-throughput trans-
criptomic sequences [27]. Probe sequences and further
details on the microarray platform can be found on the
GEO database under accession number GPL15124. Sam-
ple labelling and hybridization were carried out follo-
wing the Agilent One-Color Microarray-Based Gene
Expression Analysis protocol (Low Input Quick Amp
Labelling) [31]. For each individual, 100 ng total RNA
were linearly amplified and labelled with the fluorescent
dye Cy3-dCTP. In order to monitor microarray analysis
work-flow, Agilent Spike-in Mix (a mixture of 10 diffe-
rent viral poly-adenylated RNAs) was added to each
RNA sample before amplification and labelling. Labelled
cRNA was purified with Qiagen RNAeasy Mini Kit and
sample concentration and Cy3 specific activity were mea-
sured using a Nanodrop ND-1000 spectrophotometer.
A Cy3 specific activity between 8 and 17 pmol Cy3 per

μg cRNA was considered adequate for hybridization.
Prior to hybridization, a total of 600 ng of labelled cRNA
was fragmented for 30 min at 60°C by adding 5 μl 10X
Blocking Agent and 1 μl Fragmentation buffer, and fi-
nally diluted with 25 μl 2X GE Hybridization buffer. A
volume of 40 μl was dispended into the backing slide,
assembled to the microarray slide (each slide containing
eight arrays) and placed in the hybridization chamber.
Slides were incubated for 17 h at 65°C in an Agilent
Hybridization Oven. Afterwards, slides were removed
from the hybridization chamber, disassembled in GE
Wash Buffer 1, and washed for 1 min in GE Wash Buffer
1 followed by one additional wash for 1 min in GE Wash
Buffer 2. Hybridized slides were scanned at 5 μm reso-
lution using an Agilent DNA microarray scanner. Slides
were scanned at two different sensitivity levels (XDR Hi
100% and XDR Lo 10%) to increase the power to detect
both lowly and highly expressed genes. The two linked
images generated were analyzed together. Data were ex-
tracted and background subtracted using the standard
procedure in Agilent Feature Extraction (FE) software v.
9.5.1. Data was normalized using a quantile normalization
procedure using R (http://www.rproject.org/). Normalized
fluorescence data from the arrays have been deposited in
the GEO database (http://www.ncbi.nlm.nih.gov/geo) under
accession number GSE56040. Differentially transcribed
genes across samples were identified using the program
SAM (Significance Analysis of Microarrays) version 4.0
[32], with the FDR cutoff of 5%. Groups (pools of indivi-
duals from each of three segments) were compared using
the two-class unpaired test and up-and-down regulated

http://www.rproject.org/
http://www.ncbi.nlm.nih.gov/geo


Table 2 Size, weight, age and relative condition factor
(Kn) of glass eels sampled along the three segments
(mean ± SE, n = 9 per site)

Origin Length (mm) Weight (g) Age (y) Kn

Segment 1 125.22 ± 21.59 3.39 ± 1.70 1.33 ± 1.18 1.20 ± 0.13a

Segment 2 116.44 ± 19.13 2.32 ± 1.18 0.83 ± 0.72 1.06 ± 0.18a

Segment 3 117 ± 14.98 1.81 ± 0.75 1.50 ± 1.05 0.82 ± 0.16b

Means designated with different letters (a,b) are significantly different (Tukey’s
HSD test, P < 0.05).
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genes were identified. A minimum fold change of 1.5 bet-
ween groups was considered.
In total, 14,913 genetic sequences were analyzed from

brain and liver of 27 individuals (9 pools of three indi-
viduals) and from muscle of 18 individuals (no samples
from the third segment) (Table 1).

Quantitative RT-PCR validation of microarray results
A total of 6 genes showing different transcription levels
among segments (claud4, cfl1, s100a1, s100a6, s100a11,
thy1) were chosen to validate the microarray results by
means of quantitative real-time Reverse Transcription
Polymerase Chanin Reaction (qRT-PCR). For each gene,
specific primer pairs were determined using the Primer3-
Plus software [33] (see Additional file 1: Table S1). Gene
transcription level was measured by quantitative real-time
Reverse transcribed-Polymerase Chain Reaction (RT-PCR),
using the β-actin gene as reference. Amplification of
cDNA was monitored using the DNA intercaling dye
SyberGreen. Real-time PCR reactions were performed in a
MX3000P (Stratagene) following the manufacturer’s in-
structions (one cycle at 95°C for 10 min, and 40 amplifi-
cation cycles at 95°C for 30 s, 60°C for 30 s and 72°C for
30 s). Each 25 μL reaction contained 1 μL of reverse tran-
scribed product template, 12.5 μL of mix including the
SyberGreen fluorescent dye and the enzyme (GoTaq
Probe qPCR Master Mix, Promega), 9.5 μL of sterilized
pure-water and 2 μL of the gene-specific primer pair at a
final concentration of 200 nM for each primer. Reaction
specificity was determined for each reaction from the dis-
sociation curve of the PCR product and by electrophor-
esis. The dissociation curve was obtained by following the
SyberGreen fluorescence level during gradual heating of
the PCR products from 60 to 95°C. Relative quantification
of each gene transcription level was normalized according
to the β-actin gene transcription. Hence, during our ex-
periment, total RNAs were quantified and a same quantity
was used for reverse-transcription. During the subsequent
qPCR amplifications, the output cycle corresponding to
β-actin was examined. This output was always obtained
around the same output cycle and no significant variations
were observed among conditions, demonstrating the rele-
vance of the β-actin as reference gene in our conditions.

Statistical analyses
Comparisons among fish groups were performed by ana-
lysis of variance (ANOVA), after testing the assumptions of
normality (Shapiro-Wilk test) and homoscedascity (Bartlett
test) of the error terms. When assumptions were not met,
the non-parametric Kruskal Wallis test was used. If signifi-
cant effects were detected, a Tukey HSD test was used to
determine whether means between pairs of samples were
significantly different from each other. Computations were
performed using R (http://www.r-project.org/).
Results
Morphometric data
First, no difference in length or weight were observed
among segments (p = 0.548). In addition, no age diffe-
rence was observed among segments (p = 0.497). At the
opposite, the relative body condition was significantly in-
fluenced by sampling site (Table 2) and post-hoc analysis
indicated significantly lower Kn values in fish sampled in
the 3rd segment (Joncru) in comparison with those sam-
pled from the 1st and the 2nd segments (p < 0.001 and
p = 0.012 respectively). No difference was observed bet-
ween the 1st and the 2nd segment (p = 0.12) (Table 2).
Microarray results
No differences in gene transcription levels were ob-
served in liver and muscle samples among segments.
The only differences were observed in the brain tissue
(Table 3). Only few differences (n = 5 genes, FDR cut-
off = 5%) were observed between segments 1 and 2
(Table 3). A larger number of genes was differentially tran-
scribed when comparing segment 3 with the other two
segments: 50 genes between segments 1-3 and 74 genes
between segments 2-3 (FDR cutoff = 5%).
A total of 40 genes were common to the comparisons

between segments 1-3 and segments 2-3. Moreover, all
these genes were up-regulated in the most upstream seg-
ment. Indeed, these common genes showed a progres-
sive pattern of expression, i.e. the more upstream the
segment (or distanced), the more the genes were over-
expressed. Differences in regulation of gene expression
between the most distanced segments were up to two
times higher (shown in bold, Table 4) than those deter-
mined between close-distanced segments.
qPCR validation of microarray results
To validate microarray data, the transcriptional level of
6 genes that showed strong variations in their trans-
cription levels among sampling sites was measured by
qRT-PCR method. These two independent measures, by
microarray and qRT-PCR, of transcript abundance gave
consistent results, i.e. similar fold changes were observed
(see Additional file 1: Figure S1).

http://www.r-project.org/


Table 3 Number of genes with significant transcription
level differences in fish brain sampled along three river
segments separated by water obstacles (SAM Pairwise
comparison; FC > 1.5; FDR cutoff = 5%)

COMPARISON UP-REGULATED DOWN-REGULATED

Segment 2 vs 1 0 5

Segment 3 vs 1 49 1

Segment 3 vs 2 54 20

For each comparison, the most downstream segment concerned was used
as reference.
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Discussion
Energetic costs of obstacle passage
Eels sampled in the upstream and downstream segments
of an impounded watercourse did not show any diffe-
rence in terms of age, weight or length, suggesting that
the ontogenetic stage of fish was homogenous along the
river. Indeed, size was previously found to be the best
proxy to assess the ontogenetic stage of glass eels and its
related locomotory behavior [34]. Thus, in the present
study, even if an effect of ontogenic stage cannot be
completely excluded, it appears unlikely that differences
observed in fish brain could be explained by the life
stage of fish.
In contrast, the fact that relative body condition (Kn)

was lower in eels from the most upstream group in
comparison to those sampled downstream could imply
that passage of water barriers is an energetically and meta-
bolically requiring event [35]. An alternative hypothesis
could be that since glass eels do not feed during their up-
stream migration [15], the distance covered to reach up-
stream segments might have reduced their energy reserves
[36]. Our results are contradictory to a previous study
[37], where tendency to migrate was associated with
higher energy reserves. In the present study, no diffe-
rences in muscle and liver gene transcription among fish
groups were found, which suggests that energy was not
the main cue explaining the difference in passage beha-
vior. However, it is important to notice that muscle sam-
ples from the third segment were missing (Table 3), thus
precluding a full inter-segment comparison for this tissue.

Differences in brain transcriptome profiles associated
with upstream migration
Microarray analysis of brain tissue revealed that some
genes were overexpressed in fish from the most up-
stream segment of the river compared to the two down-
stream sections.
Interestingly, most of these overexpressed genes were

common to the comparisons between segments 1-3 and
segments 2-3. In addition, the fold changes for most of
the genes were found to increase with the number of ob-
stacles crossed by glass eels. The analysis of the bio-
logical function of these common genes can provide
new insights into the phenotypic traits that are stimu-
lated and/or selected after obstacle passage (Figure 1).
Among the 40 common overexpressed genes, 4 genes
encoding for proteins belonging to the S-100 family pro-
teins were identified.
The S-100 proteins [38,39] are known to control the

intracellular homeostasis of calcium, which is one of
messengers mediating the effects of neurotransmitters
[40]. Moreover, S-100 proteins are also involved in mi-
crotubules and microfilaments synthesis [41,42]. They
contribute to a broad spectrum of biological processes
in the brain including cell migration, gene expression
and neural signaling and activity [43] and even learning
and memory at a higher biological level [44]. Calcium
signaling is indeed an important pathway controlling
neuronal activity, fast axonal flow and memory [45,46].
One of the S-100 members, S100A6 (Calcyclin), was
shown to be highly expressed in rat brain neurons [47],
and its suggested functions include cell proliferation, dif-
ferentiation [48] as well as cytoskeletal rearrangements
[49,50] and cellular signal transduction [51]. At a higher
biological level, S100A6 was shown to be associated with
memory formation in rats [52]. Another S-100 member
is S100A11 (Calgizzarin), involved in regulating growth
of cells [53] such as keratinocytes [54]. Interestingly,
both S100A11 and S100A6 are specific targets of S100B
[55], which is involved in neural plasticity [56]. S100A1
protein could be associated with synapsin and is involved
in calcium dependent synaptic vesicle trafficking [57].
Moreover, an association between exploratory behavior
and S100A1 has been suggested in mice [58]. Finally,
S100P protein is involved in cytoskeletal dynamics [59]
and cell proliferation [60].
Another overexpressed gene was the cytoskeletal Cofilin

(or ADF). This gene encodes for a protein that is in-
volved in actin filament destabilization [61], which in
turn allows dendritic development and differentiation,
as well as neural polarization in mammalian brain [62]
and axonal specialization [63]. Cofilin is also involved
in other similar functions, such as axogenogenesis,
growth cone guidance and dendritic spine formation
[64]. A role in synaptic plasticity in rats [65] and asso-
ciative learning has been proposed in both rats and
mice [66-68].
Another up-regulated gene was claudin 4, which is

involved in epithelial tight junction [69] which in turn
allows intercellular communication. Moreover, epithelial
tissue is rich in intermediate filaments and cytokeratins,
which could be linked with other genes overexpressed in
glass eels found upstream. Thus, the genes encoding for
the cytokeratin 1 and keratin 12 were found to be over-
expressed in migratory eels. Keratins are structural pro-
teins found in neurons and glial cells [70]. Keratins are
also known for their transient overexpression during



Table 4 Significant fold changes (FC) in gene transcription levels in eels from segment 3 as compared to individuals
from segment 2 (FC 3:2) or from segment 1 (FC 3:1) (SAM analysis, FDR cutoff = 5%)

NAME FUNCTION EelBase number FC 3:1 FC 3:2 FC 3:1/FC3:2

S100P calcium binding eeel2_rep_c5535 12.7 6.1 2.1

S100P calcium binding eeel2_s9035 12.4 6.0 2.1

S100P calcium binding eeel2_s8956 11.8 6.7 1.8

S100P calcium binding eeel2_s8475 9.8 6.1 1.6

S100A11 calcium binding eeel_rep_c16089 16.1 7.4 2.2

S100A11 calcium binding eeel_rep_c58988 15.1 7.4 2.0

S100A11 calcium binding eeel2_rep_c5969 14.0 7.3 1.9

S100A6 calcium binding eeel2_s6035 14.3 6.5 2.2

S100A1 calcium binding eeel2_rep_c8719 14.2 7.1 2.0

S100A1 calcium binding eeel_s9222 12.0 9.1 1.3

Keratin 5 cell structure eeel_rep_c59287 29.2 14.5 2.0

Keratin 12 cell structure eeel2_rep_c5249 5.2 4.4 1.2

Keratin 12 cell structure eeel_s8804 7.8 8.3 0.9

Keratin 12 cell structure eeel_c8960 8.0 8.5 0.9

Cytokeratin 1 cell structure eeel_rep_c58375 6.9 7.2 1.0

Cytokeratin 1 cell structure eeel_c10204 7.3 7.7 0.9

Keratin cell structure eeel_c5504 7.7 8.7 0.9

Keratin cell structure eeel_c13622 8.3 9.0 0.9

Non muscle cofilin 1 neuralgrowth eeel2_s5802 4.8 3.3 1.4

Non muscle cofilin 1 neuralgrowth eeel2_s5819 4.0 3.0 1.3

Non muscle cofilin 1 neuralgrowth eeel2_s5889 3.6 3.0 1.2

C59 protein bacterial infection eeel_c3624 9.2 3.0 3.1

Thy1 protein surface glycoprotein eeel_c9925 9.4 3.9 2.4

SH3 protein unknown in brain eeel2_rep_c5904 10.9 5.0 2.2

FABP protein neural growth eeel2_s8168 10.3 5.0 2.1

Mucin 2 unnown in brain defence system 13.5 8.4 1.6

Intelectin 1 defence system eeel2_c833 6.9 4.4 1.6

ATPase, Ca++ transporting unknown in brain eeel_2_rep_c8320 12.3 7.8 1.6

Calmodulin synaptic signaling eeel_c13874 11.5 7.4 1.6

Claudin 4 tight junction eeel2_c529 6.1 4.6 1.3

Unnamed unknown in brain eeel2_c497 4.6 3.7 1.2

L0C100135339 unknown in brain eeel2__rep_c4986 12.6 10.3 1.2

C2A protein unknown in brain eeel_rep_c35338 2.3 2.0 1.2

Zona pellucida-like protein unknown in brain eeel2_s8124 4.6 4.0 1.2

C13antigen unknown in brain eeel_c14624 10.2 8.9 1.2

Proteoglycan 4 unknown in brain eeel2_c3589 2.5 2.3 1.1

Serotriflin unknown in brain eeel2_rep_c5326 3.3 3.2 1.1

BRAFLDRAFT_63199 unknown in brain eeel2_s7960 2.4 2.5 1.0

Epiplakin unknown in brain eeel_rep_c28794 4.1 5.9 0.7

Mucin5 unknown in brain eeel2_c2120 5.3 9.3 0.6

The ratios of fold changes; i.e. FC 3:1/ FC 3:2 equal or superior to 2 are shown in bold. Only sequences with FC ≥ 2 are shown.
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Figure 1 Biological functions of main genes differentially transcribed
among segments 3:1 and segments 3:2. The font size is chosen
according to the ratios of fold changes; i.e. FC 3:1/ FC 3:2 (Table 4).
For more detailed information on each genetic sequence, BLAST
statistics, and gene ontology, please see Additional file 1: Table S1.
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neural differentiation from polymorphic cells in rabbits
[71]. Calmodulin is a well-studied protein involved in
calcium-related [72] synaptic neurotransmission [73] and
calcium-dependent gene expression [74]. Together with
several transcription factors from the IEG (Immediate
Early Genes) family under its regulation, calmodulin is
strongly linked to learning and memory [75-78], as found
in rats. Indeed, genes belonging to the IEG group are
among the first genes regulated in response to environmen-
tal stimuli [79]. They are involved in long term potentiating
(LTP) and in the establishment of long term memory that
requires rapid de novo synthesis of proteins [80]. Among the
other overexpressed genes, Thy1 encodes a neural surface
glycoprotein that was shown to play a role in axogenogen-
esis in rats [81] and in olfactory system development in mice
[82]. Fatty acid binding protein (FABP) are involved in sev-
eral functions in brain, among which neural development
and cognitive processes appear to be common to the func-
tions of other overexpressed genes in this study [83].
None of the overexpressed genes were related to thyroid

activity, such as iodothyronine deiodinase type I and III.
Thus, the hypothesis of thyroid dependent propensity to
migrate [84] or climb obstacles [26] was not supported by
our results. In contrast, overexpressed genes in upstream
eels were mainly involved in cellular signaling, neural de-
velopment and differentiation, as well as synaptic plasticity.

Water obstacle effects on gene expression
The difference in gene transcription in fish brain bet-
ween the most upstream group and the two others could
be interpreted either as a difference in brain develop-
ment [85] or as a difference in cognitive, learning and
memory abilities between groups. Fish brain growth is
allometric and development of its various parts is linked
to environmental conditions [86-89]. Previous expe-
rimental investigations pointed out the association bet-
ween behavioral flexibility and cognitive abilities [90].
Indeed, personality and coping style concepts were both
related to individual capacities in spatial memory and
learning abilities, where differential regulation of genes
involved in neurogenesis was emphasized [91].
Phenotypic traits highlighted in our study seemed to be

related to cognition. In our case study, passage through
river impoundments would stand for a hard cognitive task
as it involves spatial recognition while climbing the walls
and route choice based on perception of visual cues,
which is rather unusual for juvenile eels [85]. Indeed,
water obstacle passage often requires to climb and to get
out of the water, where the extremely developed olfactive
system of eel could be less useful than in the aquatic
environment, making any behavioral decision demanding
higher cognitive appraisal than relying on environmental
cues. Passing non-natural obstacles such as water dams
could represent a real conundrum for eels and could
impede the upstream migration for those with unde-
veloped or with no ability to develop cognitive functions.

Gene induction by obstacle crossing?
The overall results suggested a difference in brain func-
tioning between individuals successfully crossing the water
obstacles and those situated on the downstream part of
water impoundment. Whether gene transcription was
temporarily induced by the passage event or whether
these differences pre-existed in glass eels before they met
the obstacle is difficult to decipher. Indeed, transcriptomic
analysis provided phenotypic data, but also represented an
intermediary step from genotype towards functional
phenotype [92]. Gene expression could be therefore inter-
preted as a physiological acclimatation or phenotypic plas-
ticity [93,94]. Other studies used gene transcription
patterns as indicators of adaptive divergence [95,96].
Several studies on European eel considered trans-

generational local adaptation hypothesis as less likely, all
the more so because of random mating and absence of
habitat choice at least during larval dispersal [97]. Previous
studies failed to reveal a clear inter-location genetic hetero-
geneity of eels across Europe [98], and selection on locally
adaptive traits may be too costly for eel [99]. Instead,
phenotypic plasticity was hypothesized as the best strategy
to deal with habitat heterogeneity in such cases [100,101].
A recent experimental study on American eel has pro-
posed an effect of both origin and environment (salinity),
as well as its interaction on gene expression [102]. How-
ever, differences in plastic responses were higher between
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environments within origin than gene expression variation
between origins for both rearing environments, suggesting
that phenotypic plasticity is not the only cause of pheno-
typic variation in eel, yet its contribution to the process re-
mains overwhelming in front of (epi) genetic differences
related to sampling location.
In our case study, changes in gene transcription pro-

files could be temporarily induced when eels cross the
obstacle. The highest differences in gene transcription in
brain were found for fish sampled at the third most up-
stream group while fish were passing the fishway. The
hypothesis of temporary induction of gene transcription
while crossing the obstacle could be strengthened, not
only by the phenotypic plasticity of eel per se, but also
by the acknowledged and functionally pertaining high
plasticity of the brain [91,103,104].

Conclusion
Our results showed significant differences in gene transcrip-
tion in the brain of glass eels sampled above and below the
water obstacles. Although the influence of swimming dis-
tance on molecular phenotypes has to be taken into account
by further analyses of non-impounded watercourse, brain
plasticity and cognitive function seem to play an important
role in the capacity of glass eels to cross aquatic obstacles.
Two main directions for the further studies could be pro-
posed. First, a comparison between climbing and remaining
eels within the same location would allow focusing on the
climbing event only. Next, the persistence of gene expression
patterns could be tested by a long-term common garden
experiment, thus explaining its proximate cause by separat-
ing the phenotypic plasticity and genetic components.

Availability of supporting data
Probe sequences and further details on the microarray plat-
form can be found on the GEO database under accession
number GPL15124. Normalized fluorescence data have
been deposited in the GEO database (http://www.ncbi.nlm.
nih.gov/geo/) under accession number GSE56040.
Additional file

Additional file 1: Figure S1. Comparison of fold changes (FC) between
the transcription levels of brain genes encoding for Claudin 4, Cofilin 1,
S100A1, S100A11 and S100A6 proteins and Thy-1, obtained by microarray
(white bars) and RT-qPCR analysis (black bars). Two fold changes are
compared: A) between the segments 3:1 and B) between the segments
3:2. Table S1. Sequences of specific primers pairs used in quantitative
RT-PCR analyses. Table S2. Details about the genes that were differentially
transcribed in eels from segment 3 as compared to individuals from
segment 2 (FC 3:2) or from segment 1 (FC 3:1).
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