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Abstract. Numerical programs performing floating-point computations
are very sensitive to the way formulas are written. These last years, sev-
eral techniques have been proposed concerning the transformation of
arithmetic expressions in order to improve their accuracy and, in this ar-
ticle, we go one step further by automatically transforming larger pieces
of code containing assignments and control structures. We define a set
of transformation rules allowing the generation, under certain conditions
and in polynomial time, of larger expressions by performing limited for-
mal computations, possibly among several iterations of a loop. These
larger expressions are better suited to improve the numerical accuracy
of the target variable. We use abstract interpretation-based static anal-
ysis techniques to over-approximate the roundoff errors in programs and
during the transformation of expressions. A prototype has been imple-
mented and experimental results are presented concerning classical nu-
merical algorithm analysis and algorithm for embedded systems.

Keywords: Program Transformation, Floating-Point Numbers, Static
Analysis, IEEE754 Standard.

1 Introduction

These last years, as the complexity of the floating-point computations [1, 23]
carried out in embedded systems and elsewhere increased, numerical accuracy
has become a more and more sensitive subject in computer science. Due to the
important impact of accuracy on the reliability of embedded systems, many
industries and companies encourage research to validate [5, 10, 14, 13] and im-
prove [16, 21] their software in order to avoid failures and eventually disasters in
aeronautics, automotives, robotics, etc.

In this article, we focus on the transformation [6, 8] of intra-procedural pieces
of code in order to automatically improve their accuracy. For automatic trans-
formation of single arithmetic expressions, several techniques have already been
proposed. We can mention [16] which introduces a new intermediary represen-
tation (IR) that manipulates in a single data structure a large set of equivalent
arithmetic expressions. This IR, called APEG [16, 17] for Abstract Program Ex-
pression Graphs, succeeds to reduce the complexity of the transformation in



polynomial size and time. Starting from this state of the art, we aim at going
a step further by automatically transforming larger pieces of code. Our interest
is to transform automatically sequences of commands that contain assignments
and control structures in order to improve their numerical accuracy. This trans-
formation consists in optimizing a target variable with respect to some given
ranges for the input variables of the program. Accuracy bounds are computed
by abstract interpretation [7] techniques for the floating-point arithmetic [13].

We start by motivating our work with a case study concerning an algorithm
frequently used in robotics for odometry. We show how to rewrite it into another
program which is more accurate numerically but equivalent semantically (in the
sense that both programs compute the same function in exact arithmetic). This
transformation operates by simplifying and developing the expressions and in-
lining them into other expressions. This allows one to generate new formulas and
to reduce the number of operations in programs. We also rewrite the codes by
unfolding the body of loops, manner to have more computations on a single iter-
ation. The transformation of the odometry program and the rewriting rules used
to automatically rewrite codes are the main contribution of this article. These
rules are presented as sequents containing conditions under which the transfor-
mation may be applied without breaking the semantical equivalence between
the source and target programs. In addition, these rules are applied determin-
istically, yielding a polynomial time transformation. This work is completed by
experimental results involving the transformation of codes coming from multiple
domains of science.

This article is organized as follows. Section 2 is consecrated to our case study
about odometry and Section 3 introduces related work concerning the analy-
sis and transformation of arithmetic expressions. In Section 4, we give the set
of transformation rules for commands together with the conditions required to
conserve the semantical equivalence of programs. Section 5 presents experimen-
tal results and shows various experimentations obtained using our prototype.
Finally, Section 6 concludes.

2 Case Study: Odometry

In this section, we are interested in an example widely used in embedded sys-
tems, taken from robotics and whose code is given in Figure 2. It concerns the
computation of the position of a two wheeled robot by odometry. Given the
instantaneous rotation speeds sl and sr of the left and right wheels, we aim at
computing the position of the robot in a cartesian space (x, y). Let C be the
circumference of the wheels of the robot and L the length of its axle (see Fig-
ure 1). We assume that sl and sr are updated by the system, by side-effect. The
computation of the position is given by

x(t+ 1) = x(t) +∆d(t+ 1)× cos

(
θ(t) +

∆θ(t+ 1)

2

)
, (1)

y(t+ 1) = y(t) +∆d(t+ 1)× sin

(
θ(t) +

∆θ(t+ 1)

2

)
, (2)
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It x (Odometry1) x (Odometry2)

1 8.681698 8.444116
2 17.038230 16.589474
3 24.756744 24.147995
4 31.549016 30.852965
5 37.163761 36.469708
6 41.398951 40.806275
7 44.114126 43.724118
8 45.242707 45.148775

Fig. 1. Left: Parameters of the two-wheeled robot. Right: Values of x in Odometry1
and Odometry2 at the first iterations.

with
θ(t+ 1) = θ(t) +∆θ(t), ∆d(t) =

(
∆dr(t) +∆dl(t)

)
× 0.5, (3)

∆θ(t) =
(
∆dr(t)−∆dl(t)

)
× 1

L
, ∆dl(t) = sl(t)× C, ∆dr(t) = sr(t)× C. (4)

In equations (1) to (4), θ(t) is the direction of the robot, d(t) is the elementary
movement of the robot at time t and dl(t), dr(t) are the elementary movements
of the left and right wheels. We assume that cos and sin, not computed by a
library, are obtained by a Taylor Series development as shown in Equation (5).

cos(x) ≈ 1− x2

2! + x4

4! , sin(y) ≈ x− x3

3! + x5

5! . (5)

We aim at rewriting the initial program Odometry1 into a better program Odometry2

sl = [0.52,0.53]; sr = 0.785398163397;

theta = 0.0; t = 0.0; x = 0.0; y = 0.0; inv_l = 0.1; c = 12.34;

while (t < 100.0) do {

delta_dl = (c * sl) ;

delta_dr = (c * sr) ;

delta_d = ((delta_dl + delta_dr) * 0.5) ;

delta_theta = ((delta_dr - delta_dl) * inv_l) ;

arg = (theta + (delta_theta * 0.5)) ;

cos = (1.0 - ((arg * arg) * 0.5)) + ((((arg * arg)* arg)* arg) / 24.0);

x = (x + (delta_d * cos)) ;

sin = (arg - (((arg * arg)* arg)/6.0))

+ (((((arg * arg)* arg)* arg)* arg)/120.0);

y = (y + (delta_d * sin));

theta = (theta + delta_theta) ;

t = (t + 0.1) }

Fig. 2. Listing of the initial Odometry program.

which improves the numerical accuracy of the computed position. The speed of
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sl = [0.52,0.53] ; theta = 0.0 ; y = 0.0 ; x = 0.0 ; t = 0.0 ;

while (t < 100.0) do {

TMP_6 = (0.1 * (0.5 * (9.691813336318980 - (12.34 * sl)))) ;

TMP_23 = ((theta + (((9.691813336318980 - (sl * 12.34)) * 0.1) * 0.5))

* (theta + (((9.691813336318980 - (sl * 12.34)) * 0.1) * 0.5))) ;

TMP_25 = ((theta + TMP_6)*(theta + TMP_6))*(theta + (((9.691813336318980

- (sl * 12.34)) * 0.1) * 0.5)) ;

TMP_26 = (theta + TMP_6) ;

x = ((0.5 * (((1.0 - (TMP_23 * 0.5)) + ((TMP_25 * TMP_26) / 24.0))

* ((12.34 * sl) + 9.691813336318980))) + x) ;

TMP_27 = ((TMP_26 * TMP_26) * (theta + (((9.691813336318980

- (sl * 12.34)) * 0.1) * 0.5))) ;

TMP_29 = (((TMP_26 * TMP_26) * TMP_26) * (theta + (((9.691813336318980

- (sl * 12.34)) * 0.1) * 0.5))) ;

y = (((9.691813336318980 + (12.34 * sl)) * (((TMP_26 - (TMP_27 / 6.0))

+ ((TMP_29 * TMP_26) / 120.0)) * 0.5)) + y) ;

theta = (theta + (0.1 * (9.691813336318980 - (12.34 * sl)))) ;

t = t + 0.1 ; }

Fig. 3. Listing of the transformed Odometry program.

the left wheel is assumed to belong to an interval of [0.52, 0.53] radians per
second. Our prototype develops and simplifies the expressions δd, cos and sin

and then inline them within the loop, in x and y. In addition, it creates new
intermediary variables, called TMP, in order to avoid to have too large expres-
sions. This process makes it possible to produce constant formulas and, in the
same time, reduces the number of operations in the program. Furthermore, the
resulting expressions are rewritten using existing techniques for the transforma-
tion of arithmetic expressions based on the use of Abstract Program Equivalence
Graphs [16, 21]. We obtain the final program given in Figure 3. If we compare
the resulting values x1 and x2 of Odometry1 and Odometry2, we observe that the
transformation leads to a significant difference in the accuracy of the program
as shown in Figure 1. The results show an important difference on the third or
even on the second digit of the decimal values of the result. The difference in
the computed trajectory (x, y) of the robot is shown in Figure 4.

3 Transformation of Expressions

This section introduces related work concerning the static analysis of the accu-
racy and the transformation of expressions. The syntax of expressions is

Expr 3 e ::= id | cst | e+ e | e− e | e× e | e÷ e. (6)

Expressions in Equation (6) are made of variables id ∈ V with V a finite set,
constants cst ∈ F with F the set of floating-point numbers and of the four
elementary operations +, −, × and ÷.
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Fig. 4. Computed trajectories by the initial and the transformed odometry programs.

3.1 Static Analysis of the Accuracy

In order to compute safe bounds on the accuracy of arithmetic expressions, an
abstract value is defined by a pair of intervals representing the range of the
floating-point value seen by the program and the range of the error i.e., the
difference between the floating-point and the exact value [22]. An abstract value
is denoted by (x], µ]) ∈ E] where x] is the interval of values of the input and
µ] is the interval of errors on the input. It abstracts a set of concrete values
{(x, µ) : x ∈ x] and µ ∈ µ]} by intervals in a component-wise way. When
working with arithmetic expressions, the propagation of roundoff errors is given

by the following semantics. We denote by ↑]◦ (x]) the approximation of an interval
with real bounds by an interval with floating-point bounds. The bounds are
rounded to the nearest to reflect the fact this first interval corresponds to the
approximated values seen by the program.

↑]◦ [(x, x)] = [↑◦ (x), ↑◦ (x)] (7)

where ↑◦ (x) denotes the rounding of x in the IEEE754 Standard [1] rounding
mode ◦ ∈ {−∞, +∞, 0, ∼}.

Conversely, the function ↓]◦ abstracts the concrete function ↓◦ which com-
putes the exact error ↓◦ (x) = x− ↑◦ (x). That means that for all x ∈ [x, x] we

have ↓◦ (x) ∈↓]◦ [(x, x)]. We have

↓]◦ [(x, x)] = [−y, y] with y =

{
1
2
ulp
(
max(|x|, |x|)

)
if ◦ =∼

ulp
(
max(|x|, |x|)

)
otherwise.

(8)

Note that the unit in the last place ulp(x) is the weight of the least significant
digit of the floating-point number x. A sample of the elementary operations over
E] are defined in equations (9) to (10), for other operations see [22].

(x]1, µ
]
1) + (x]2, µ

]
2) = (↑]◦ (x]1 + x]2), µ]1 + µ]2+ ↓]◦ (x]1 + x]2)), (9)
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2 a

×

+

b

□

+(a,a,b)

×

c ×

+

c b c

×

a a

+×

× +

Fig. 5. APEG for the expression e =
(
(a+ a) + b

)
× c.

(x]1, µ
]
1)×(x]2, µ2,

] ) = (↑]◦ (x]1×x
]
2), x]2×µ

]
1+x]1×µ

]
2+µ]1×µ

]
2+ ↓]◦ (x]1×x

]
2)). (10)

For example, if we add two numbers, the errors on the operands are added to the
error due to the roundoff of the result. For the product, the semantic consists of
the development of (x]1 + µ]1) × (x]2 + µ]2).

Note that more efficient abstract domains exist, e.g., [5, 14, 13] as well as
complementary techniques [3, 4]. Let us also mention that other methods exist
to transform, synthesize or repair arithmetic expressions in the integer or fixed
arithmetic [12, 20].

3.2 Accuracy Improvement of Expressions

Here, we briefly present former work [16, 21, 24] to semantically transform arith-
metic expressions using Abstract Program Expression Graph (APEG). This data
structure remains in polynomial size while dealing with an exponential number
of equivalent expressions. To prevent any combinatorial problem, APEGs hold
in abstraction boxes many equivalent expressions up to associativity and com-
mutativity. A box containing n operands can represent up to 1×3×5...×(2n−3)
possible formulas. In order to build large APEGs, two algorithms are used (prop-
agation and expansion algorithms). The first one searches recursively in the
APEG where a symmetric binary operator is repeated and introduces abstrac-
tion boxes. Then, the second algorithm finds a homogeneous part and inserts a
polynomial number of boxes. In order to add new shapes of expressions in an
APEG, one propagates recursively subtractions and divisions into the concerned
operands, propagate products, and factorizing common factors. Finally, an ac-
curate formula is searched among all the equivalent formulas represented in an
APEG using the abstract semantics of Section 3.1.

Example 1. An example of APEG is given in Figure 5. When an equivalence
class (denoted by a dotted ellipse) contains many APEGs p1, . . . , pn then one
of the pi, 1 ≤ i ≤ n, may be selected in order to build an expression. A box

∗(p1, . . . , pn) represents any parsing of the expression p1 ∗ . . .∗pn. For instance,

the APEG p of Figure 5 represents all the following expressions:

A(p) =


(
(a+ a) + b

)
× c,

(
(a+ b) + a

)
× c,

(
(b+ a) + a

)
× c,(

(2× a) + b
)
× c, c×

(
(a+ a) + b

)
, c×

(
(a+ b) + a

)
,

c×
(
(b+ a) + a

)
, c×

(
(2× a) + b

)
, (a+ a)× c+ b× c,

(2× a)× c+ b× c, b× c+ (a+ a)× c, b× c+ (2× a)× c

 . (11)
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For this example, the last step of transformation would consist of evaluating all
the expressions in A(p) with the abstract semantics of Section 3.1 in order to
select the most accurate one. 2

4 Transformation of Commands

In this section, we introduce the formal rules used to transform intra-procedural
pieces of code. The syntax of commands is given in Equation (12). It corresponds
to the core of an imperative language.

Com 3 c ::= id = e | c1 ; c2 | ifΦ e then c1 else c2 | whileΦ e do c | nop. (12)

The command language is made of assignments id = e, sequences of instructions,
the void operation nop, a conditional statement ifΦ b then c1 else c2 and a loop
statement whileΦ b do c. Programs are assumed to be written in SSA form [9]
and the Φ variables attached to conditional and while statements denote their
sets of Φ nodes. The Φ node Φ(id, id1, id2) is understood as an assignment of
form id = Φ(id1, id2) where Φ(id1, id2) = id1 or Φ(id1, id2) = id2 depending
on the control flow. The construction of Φ-nodes is classical and is left to the
reader [2, 9].

The transformation defined by the rules of Figure 6 uses states of the form
〈c, δ, C, ν, β〉 where:

– c is a command, as defined in Equation (12),
– δ is an environment δ : V → Expr which maps variables to expressions. Intu-

itively, this environment, fed by Rule (A1), records the expressions assigned
to variables in order to inline them later on in larger expressions thanks to
Rule (A2),

– C ∈ Ctx is a single hole context [15] defined in Equation (13). It records the
program englobing the current expression to be transformed and which is
intended to fit in the hole denoted by [].

Ctx 3 C ::= [] | id = e | C1 ;C2 | ifΦ e then C1 else C2 | whileΦ e do C | nop. (13)

– let ν ∈ V denote the reference variable that we aim at optimizing.
– let β ⊆ V be a list of assigned variables that should not be removed from

the source program. Initially, β = {ν}, i.e., the target variable ν must not
be removed. The set β is modified by rules (C1), (C2), (C4) and (W2).

Let us now describe the rules of Figure 6. Rule (A1) allows one to discard an
assignment id = e by memorizing in δ the formal expression e in order to inline
it later, in a larger expression. The function V ar(e) returns the set of variables
occurring in the expression e while Dom(δ) denotes the domain of definition of
δ. When using Rule (A1), to get a semantically equivalent program, we must
respect some restrictions. The first one requires that the variables occurring in e
do not meet the domain of δ (otherwise we would break some data dependencies).
Finally, Rule (A1) requires that the transformation is done if the identifier id
does not belong to the set β of variables which may not be removed.
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δ′ = δ[id 7→ e] V ar(e) ∩Dom(δ) = ∅ id 6∈ β
〈id = e, δ, C, ν, β〉 → 〈nop, δ′, β〉 (A1)

e′ = δ(e) σ] = [[C[c]]]]ι] 〈e′, σ]〉; e′′

〈id = e, δ, C, ν, β〉 → 〈id = e′′, δ, β〉 (A2)

〈c , δ, C, ν, β〉 → 〈c′, δ′, β′〉
〈nop ; c , δ, C, ν, β〉 → 〈c′, δ′, β′〉 (S1)

〈c , δ, C, ν, β〉 → 〈c′, δ′, β′〉
〈c ; nop , δ, C, ν, β〉 → 〈c′, δ′, β′〉 (S2)

〈c1, δ, C
[
[]; c2

]
, ν, β〉 →∗ 〈c′1, δ′, β′〉 C′ = C[c′1; []]

〈c2, δ′, C′, ν, β′〉 →∗ 〈c′2, δ′′, β′′〉
〈c1 ; c2 , δ, C, ν, β〉 → 〈c′1 ; c′2, δ

′′, β′′〉 (S3)

σ] = [[C[ifΦ e then c1 else c2]]]]ι] [[e]]]σ] = true
β′ = β ∪Assigned(c1) 〈c1, δ, C, ν, β′〉 →∗ 〈c′1, δ′, β′′〉
〈ifΦ e then c1 else c2, δ, C, ν, β〉 → 〈c′1, δ′, β′′〉

(C1)

σ] = [[C[ifΦ e then c1 else c2]]]]ι] [[e]]]σ] = false
β′ = β ∪Assigned(c2) 〈c2, δ, C, ν, β′〉 →∗ 〈c′2, δ′, β′′〉
〈ifΦ e then c1 else c2, δ, C, ν, β〉 → 〈c′2, δ′, β′′〉

(C2)

V ar(e) ∩Dom(δ) = ∅ β′ = β ∪Assigned(c1) ∪Assigned(c2)
〈c1, δ, C, ν, β′〉 →∗ 〈c′1, δ1, β1〉 〈c2, δ, C, ν, β′〉 →∗ 〈c′2, δ2, β2〉δ′ = δ1 ∪ δ2
〈ifΦ e then c1 else c2, δ, C, ν, β〉 → 〈ifΦ e then c′1 else c′2, δ

′, β′〉 (C3)

V = V ar(e) c′ = AddDefs(V, δ) δ′ = δ|Dom(δ)\V
〈c′; ifΦ e then c1 else c2, δ

′, C, ν, β ∪ V 〉 →∗ 〈c′′, δ′, β′〉
〈ifΦ e then c1 else c2, δ, C, ν, β〉 → 〈c′′, δ′, β′〉

(C4)

V ar(e) ∩Dom(δ) = ∅ C′ = C[whileΦ e do []] 〈c, δ, C′, ν, β〉 →∗ 〈c′, δ′, β′〉
〈whileΦ e do c, δ, C, ν, β〉 → 〈whileΦ e do c′, δ′, β′〉 (W1)

V = V ar(e) ∪ V ar(Φ) c′ = AddDefs(V, δ) δ′ = δ|Dom(δ)\V
〈c′;whileΦ e do c, δ′, C, ν, β ∪ V 〉 →∗ 〈c′′, δ′, β′〉

〈whileΦ e do c, δ, C, ν, β〉 → 〈c′′, δ′, β′〉 (W2)

Fig. 6. Transformation rules used to improve the accuracy of programs.

Rule (A2) offers an alternative way of processing assignments, when the con-
ditions of Rule (A1) are not fulfilled. The action of substituting the variables of
e by their definitions in δ is denoted by δ(e). Rule (A2) transforms the expres-
sion e′ = δ(e) into an expression e′′ by a call 〈e′, σ]〉 ; e′′ to the tool based
on APEGs and which transforms expressions, as described in Section 3. The
abstract environment σ] : V → E] used for this transformation results from a
static analysis using the domain E] also introduced in Section 3. As mentioned
earlier, in Rule (A2), ι] denotes the user-defined initial environment which binds
the free variables of the program to intervals. For example, in Section 2, the
variable sl is set to [0.52,0.53] in ι]. The program given to the static analyzer
is C[c], i.e. the program obtained by inserting the command c into the context
C. Accordingly to these notations, the expression e′ is transformed into an ex-
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pression e′′ by 〈e′, σ]〉; e′′ which transforms the source expression into a more
accurate one for the environment σ. In our implementation this corresponds to
a call to the APEG tool [16, 17]. The returned expression e′′ is inserted in the
new assignment id = e′′.

Remark that by inlining expressions in variables when transforming pro-
grams, we create large formulas. In our implementation, in order to facilitate
their manipulation, we slice these formulas at a defined level of the syntactic
tree on several sub-expressions and we assign them to intermediary variables.
Finally, we inject these new assignments into the main program.

Example 2. To explain the use of rules (A1) and (A2), let us consider the ex-
ample of Equation (14) in which three variables x, y and z are assigned. In
this example, ν consists of the variable z that we aim to optimize and a = 0.1,
b = 0.01, c = 0.001 and d = 0.0001 are constants.

〈x = a + b;y = c + d;z = x + y, δ, [], ν, ∅〉
−→
(A1)

〈nop;y = c + d;z = x + y, δ′ = δ[x 7→ a + b], [], ν, ∅〉

−→
(A1)

〈nop;nop;z = x + y, δ′′ = δ′[y 7→ c + d], [], ν, ∅〉

−→
(A2)

〈nop;nop;z = ((d + c) + b) + a, δ′′, [], ν, ∅〉

(14)

In Equation (14), initially, the environment δ is empty. If we apply the first
rule (A1), we may remove the variable x and memorize it in δ. So, the line corre-
sponding to the variable discarded is replaced by nop and the new environment
is δ = [x 7→ a+b]. We then repeat the same process by using (A1) on the variable
y. For the last step, we may not apply (A1) to z because the condition is not
satisfied (z = ν). Then we use (A2), we substitute x and y by their value in δ
and we transform the expression. 2

Rules (S1) to (S3) deal with sequences. Rules (S1) and (S2) are special
cases enabling the system to discard the nop statements while the general rule
for sequences is (S3). The first command c1 is transformed into c′1 in the cur-
rent environment δ, C, ν and β and a new context C ′ is built which inserts c′1
inside C. Then c2 is transformed into c′2 using the context C[c′1; []], the formal
environments δ′ and the list β′ resulting from the transformation of c1. Finally,
the state 〈c′1 ; c′2, δ

′′, β′′〉 is returned.
Rules (C1) to (C4) concern conditionals. The first two rules correspond

to a partial evaluation of the program [18], when the test evaluates to true
or false in the environment σ] which is computed by static analysis, σ] =
[[C[ifΦ e then c1 else c2]]]]ι]. In rules (C1) and (C2), the conditional is replaced
by the branch c1 or c2. In this case, the reference variable ν does not appear
necessarily in c1 or c2 but the variables assigned in these branches are used in
the Φ nodes. Consequently, they may not be removed from c1 or c2 and we have
to transform the command with β′ = β ∪ Assigned(ci), for i = 1 or 2. Here,
Assigned(c) denotes the set of identifiers assigned in the command c.

Example 3. Let us consider the program, in SSA form.

x1 = 0; ifΦ(x3,x1,x2) cond then x2 = a+ b else y1 = c+ d; ν = x3. (15)

9



Depending on the value of the test, we transform this program into{
ν = a+ b if cond,

ν = 0 if ¬cond.
(16)

However, when cond is true, without the blacklist, Rule (A1) would store x2 in
δ during the transformation of the branch. The Φ-node Φ(x3, x1, x2) would be
wrong. 2

Rule (C3) is the general rule for conditionals. The then and else branches
are transformed, assuming that the variables of the condition do not meet the
variables of δ. As for rules (C1) and (C2), the variables assigned in the branches
have to be added to β and the environment δ′ resulting from the transformation
joins the environments of both branches (note that thanks to the SSA form, the
variables assigned in both branches are distinct). Finally, Rule (C4) is used when
the conditions for Rule (C3) do not hold. In this case, V ar(e) ∩ Dom(δ) 6= ∅
and we need to reinsert the common variables into the source code. Let V ar(e)
be the list of variables occuring in the expression e. Firstly, a new command c′

corresponding to sequences of assignments of the form id = δ(id) is built for
all the variables id ∈ V ar(e) by AddDefs(V, δ) and, secondly, the variables of
V ar(e) are removed from the domain of δ, yielding δ′. The resulting command
is the command c′′ obtained by transforming c′; ifΦ e then c1 else c2 with δ′ and
β ∪ V ar(e).

Example 4. Let us take another example to explain the Rules (C3) and (C4).

x1 = 0; ifΦ(y3,y1,y2) x1 > 1 then y1 = x1 + 2; else y2 = x1 − 1; ν = y3. (17)

By rule (A1), x1 is stored in δ. Then, we transform recursively the new program

ifΦ(y3,y1,y2) x1 > 1 then y1 = x1 + 2; else y2 = x1 − 1; ν = y3. (18)

This program is semantically incorrect since the test is undefined. However,
V ar(e)∩Dom(δ) 6= ∅ and we cannot apply Rule (C3). Instead Rule (C4) is used
to reinject the statements x1 = 0 in the program and to add x1 to the blacklist
β in order to avoid an infinite loop in the transformation. 2

The last two rules (W1) and (W2) are for the while statements. Rule (W1)
makes it possible to transform the body c of the loop assuming that the variables
of the condition e have not been stored in δ. In this case, c is optimized in the
context C[whileΦ e do []] where C is the context of the loop. Rule (W2) first
builds the list V = V ar(e) ∪ V ar(Φ) where V ar(Φ) is the list of variables read
and written in the Φ nodes of the loop. The set V is used to achieve two tasks:
firstly, it is used to build a new command c′ corresponding to the sequence of
assignments id = δ(id), for all id ∈ V (as for Rule (C4)). Secondly, the variables
of V are removed from the domain of δ and added to β. The resulting command
is the command c′′ obtained by transforming c′;whileΦ e do c with δ′ and β ∪V .
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We end this section with complexity considerations. At each step of the trans-
formation of a program p, only one rule of Figure 6 can be selected. Consequently,
the transformation would be linear in the size n of the program if we would not
reinject assignments. However, a given assignment cannot be removed twice, so
the transformation is quadratic. Finally, the entire transformation of a program
p is repeated until nothing changes, that is at most n times. Hence, the global
complexity for the transformation of a program of size n is O(n3).

5 Experimental Results

In this section, we evaluate the efficiency of the transformation presented in
Section 4 through a series of experiments using our prototype. We have chosen
several algorithms coming from various application fields (avionics, chemistry,
mathematics, etc.) In each case, we compare the numerical accuracy of the sam-
ple program with the accuracy of the generated code. The upper bounds on the
rounding errors are computed as in Section 3.1. We optimize the value of the
reference variable, named ν in Section 4. The original and the transformed codes
are shown in Figure 9 and their accuracy is given in Figure 8. This transforma-
tion is achieved almost instantaneously (less than one second) on a standard
laptop (Intel Core i5 with 4 Go memory).

5.1 Control Algorithms

In this section, we consider three classical algorithms from control theory, namely
a PID Controller, Lead-Lag Compensator and the running example of Odometry.

PID. The PID Controller [6] is an algorithm widely used in embedded and crit-
ical systems, like aeronautic and avionic systems. It keeps a physical parameter
at a specific value known as the setpoint. In other words, it tries to correct a
measure by maintaining it at a defined value. To compute this correction, the
controller incorporates three terms: the integral term i and the derivative term
d of the error, as well as a proportional error term p. The error e is the difference
between the setpoint c and the measure m. We have e = c−m,

p = kp × e, i = i+ ki × e× dt and d = kd × (e− eold)×
1

dt
.

The weighted sum of these terms contributes to improve the reactivity, the ro-
bustness and the speed of the program. We assume that m ∈ [4.5, 9.0].

Lead-Lag System. A second test has been performed on a dynamical system
illustrated in Figure 7. This system includes a single mass and a single spring and
is governed by an automatically synthesized controller [11] which tries to move
the mass from the initial position y to the desired one yd. The main variables
in this algorithm are: xc consists of the discrete-time controller state, yc is the
bounded output tracking error and u presents the mechanical system output.
We assume that the position y of the mass m ∈ [2.1,17.9].
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yc = max(min(y − yd, 1),−1);
u = Cc ∗ xc+Dc ∗ yc;
xc = Ac ∗ xc+Bc ∗ yc;
receive(y, 2);
receive(yd, 3);

Fig. 7. Left: The lead-lag system of section 5.1. Right: Parameters of the system.

5.2 Numerical Algorithms

Runge-Kutta Methods. This example concerns Runge-Kutta methods [19]. We
consider an order 2 and an order 4 method. They are employed to solve the
equation describing the dynamics of a chemical reaction A+B → C. The order
2 method integrates a differential equation whose solution is y(t). The second
order method uses the derivative on the starting point xi in order to find the
intermediary point. Then, it uses this intermediary point to have the next value
of the function. The derivative of y(x) at the points xi and xi + h

2 are

k1 = (
dy

dx
) = h× f(xi, yi) and k2 = (

dy

dx
) = h× f(xi +

h

2
, yi +

h

2
). (19)

Finally, we have yi+1 = yi+k2+O(h3). We assume that initially, y0 ∈ [−10.1, 10.1].
For the order 4 method, we obtain as final formula:

yi+1 = y1 + 1
6

[k1 + 2× k2 + 2× k3 + k4]× h. (20)

The Trapezoidal Rule. This example concerns with an algorithm for the trape-
zoidal rule [19], well known in numerical analysis to approximate the definite

integral
∫ b
a
f(x) dx. This trapezoidal rule works by approximating the region

between x and x + h under the graph of the function f(x) as a trapezoid and

calculates its area. Here, we compute the integral
∫ 5000

0.25
g(x)dx of some function:

g(x) =
u

0.7x3 − 0.6x2 + 0.9x− 0.2
. (21)

Code Initial Error New Error s %

PID 0.453945103062736 ×10−14 0.440585745442590 ×10−14 5 2.94

Odometry 0.106578865995068 ×10−10 0.837389354639250 ×10−11 5 21.43

RK2 0.750448486755706 ×10−7 0.658915054553695 ×10−7 5 12.19

RK4 0.201827996912328 ×10−1 0.169791306481639 ×10−1 5 15.87

Lead-Lag 0.294150262243136 ×10−11 0.235435212105148 ×10−11 10 19.96

Trapezoid 0.536291684923368 ×10−9 0.488971110442931 ×10−9 20 8.82

Fig. 8. Initial and new errors on the examples programs of Section 5.
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We assume that u is a user defined parameter in the range [1.11, 2.22]. In addi-
tion, we have unfold the body of the loop twice to obtain better results with our
prototype.

Code Source Code Optimized Code

PID
ν = m

m = [4.5,9.0]; ki = 0.69006; kp = 9.4514;
kd = 2.8454; t = 0.0; i = 0.0; c = 5.0;
dt = 0.2; invdt = 5.0; eold = 0.0;

while (t < 20.0) do {
e = c - m ;
p = kp * e ;
i = i + ((ki * dt) * e) ;
d = ((kd * invdt) * (e - eold)) ;
r = ((p + i) + d) ;
m = m + (0.01 * r) ;
eold = e ; t = t + dt }

m = [4.5,9.0]; t = 0.0; eold = 0.0;
i = 0.0;

while (t < 20.0) do {
i = (i + (0.138012 * (5.0 - m))) ;
eold = (5.0 - m) ;
m = (m + (0.01 * ((((5.0 - m)

* 9.4514) + i) + (((5.0 - m)
- eold) * 14.227)))) ;

t = t + 0.2 }

Lead-
Lag
ν = xc1

y = [2.1,17.9] ; xc0 = 0.0 ; xc1 = 0.0
; t = 0.0 ; yd = 5.0; Ac00 = 0.499;
Ac01 = -0.05; Ac10 = 0.01; Ac11 = 1.0;
Bc0 = 1.0; Bc1 = 0.0; Cc0 = 564.48;
Cc1 = 0.0; Dc = -1280.0;

while (t < 5.0) do {
yc = (y - yd) ;
if (yc < -1.0) then {yc = -1.0} ;
if (1.0 < yc) then {yc = 1.0} ;
xc0 = (Ac00*xc0)+(Ac01*xc1)+(Bc0*yc);
xc1 = (Ac10*xc0)+(Ac11*xc1)+(Bc1*yc);
u = (Cc0* xc0)+(Cc1* xc1)+(Dc* yc);
t = (t + 0.1) }

y = [2.1,17.9]; t = 0.0; xc1 = 0.0;
xc0 = 0.0;

while (t < 5.0) do {
yc = (-5.0+y) ;
if (yc < -1.0) then {yc = -1.0} ;
if (1.0< yc) then {yc = 1.0} ;
u = (((564.48*xc0)+(0.0*xc1))

+(-1280.0*yc)) ;
xc0 = (((-0.05*xc1)+(1.0*yc))

+(0.499*xc0)) ;
xc1 = (((0.01*xc0)+(0.0*yc))

+(1.0*xc1)) ;
t = (t + 0.1) }

Fig. 9. Original and optimized codes for the examples of Section 5.1.

5.3 Results

Our prototype consists of an implementation of the rules described in Section 4
coupled to the APEG tool for the transformation of expressions. For the demon-
stration of its efficiency, we evaluate through it the examples described previously
in this section. Our tool takes as input an initial program and intervals for some
parameters and returns another program mathematically equivalent but numer-
ically more accurate as long as the parameters remain in the given ranges. We
compare then the initial error and the new error of each program before and
after transformation. Figures 9 and 10 show the source and target program as
well as how much our tool improves the numerical accuracy of these programs.
For example, if we take the case of odometry, we observe that we optimize it by
21.43%. If we compare the implementation of Runge-Kutta method, we remark
that the order four methods is improved of 15.87%. The Lead-Lag system is
optimized by 19.96%. The improvement of the error is given in Figure 8, where
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Code Source Code Optimized Code

RK4
ν =
yn+1

yn = [-10.1,10.1]; t = 0.0; k = 1.2;
c = 100.1; h = 0.1;

while (t < 1.) do {
k1 = (k*(c-yn))*(c-yn) ;
k2 = (k*(c-(yn+((0.5*h)*k1))))

*(c-(yn+((0.5*h)*k1)));
k3 = (k*(c-(yn+((0.5*h)*k2))))

*(c-(yn+((0.5*h)*k2)));
k4 = (k*(c-(yn+(h*k3))))

*(c-(yn+(h*k3)));
yn+1 = yn+((1/6*h)*(((k1+(2.0*k2))

+(2.0*k3))+k4));
t = (t + h) }

yn = [-10.1,10.1] ; t = 0.0 ;

while (t < 1.0) do {
TMP_7 = (1.2 * (100.099 - yn)) ;
TMP_8 = (100.099 - yn) ;
TMP_13 = (1.2*(100.099-(yn+(0.05*((1.2

* (100.099-(yn+(0.05*(TMP_7*TMP_8)))))
* (100.099-(yn+(0.05*((1.2*TMP_8)
* (100.099-yn)))))))))) ;

TMP_14 = (100.099-(yn+(0.05*((1.2*(100.099
- (yn+(0.05*(TMP_7*TMP_8)))))*(100.099
- (yn+(0.05*((1.2*TMP_8)*(100.099-yn));

TMP_18 = (yn+(0.05*((1.2*(100.099-(yn+(0.05
* (TMP_7*TMP_8)))))*(100.099-(yn+(0.05
* ((1.2*TMP_8)*(100.099-yn))))))));

TMP_28 = ((1.2*(100.099-(yn+(0.05*(TMP_7
* TMP_8)))))*(100.099-(yn+(0.05*((1.2
* TMP_8)*(100.099-yn))))));

TMP_38 = ((TMP_14*TMP_13)*0.1) + yn ;
TMP_40 = 0.1*((1.2*TMP_14)*(100.099-TMP_18));
yn_plus_1 = (yn+(0.016666667*((((TMP_7*TMP_8)

+ (2.0*TMP_28))+(2.0*(TMP_13*TMP_14)))
+((1.2*(100.099-TMP_38))*(100.099-(yn
+TMP_40)))))); + [...] ;

t = (t + 0.1) }

Trapeze
ν = r

u = [1.11, 2.22]; a = 0.25; b = 5000.0;
n = 25.0 ; r = 0.0 ; xa = 0.25 ;
h = ((b - a) / n) ;

while (xa < 5000.0) do {
xb = (xa + h) ;
if (xb > 5000.) then { xb = 5000.0 };
gxa = (u / ((((((0.7 * xa) * xa) * xa)

- ((0.6*xa) * xa))+(0.9*xa))-0.2));
gxb = (u / ((((((0.7 * xb) * xb) * xb)

- ((0.6*xb)* xb))+(0.9*xb))-0.2));
r = (r + (((gxb + gxa) * 0.5) * h));
xa = (xa + h) }

u = [1.11, 2.22] xa = 0.25; r = 0.0;

while (xa < 5000.) do {
TMP_1 = (0.7 * (xa + 199.99)) ;
TMP_2 = (xa + 199.99) ;
TMP_9 = ((((0.7*xa)*xa)*xa)-((0.6*xa)*xa))

+ (0.9*xa);
TMP_11= (((199.99+xa)*(TMP_2*TMP_1))-((199.99

+ xa)*(TMP_2*0.6)))+(0.9*TMP_2);
r = (r +((((u/(TMP_11-0.2))+(u/(TMP_9-0.2)))

* 0.5)*199.99));
xa = (xa + 199.99)
}

Fig. 10. Original and optimized codes for the examples of Section 5.2.

s is the slice size, i.e., the parameter defining at which height of the syntactic
tree we cut the expressions.

6 Conclusion

In our search for automatic transformation of programs, we have developed a
tool which rewrites codes to improve their numerical accuracy. More precisely, we
have shown how to perform intra-procedural rewritings of commands and how
to transform assignments. In the rules of Figure 6, correctness conditions have
been defined to guarantee that the dependencies are respected and to ensure the
correctness of the rewritings in conditions and loops. In order to validate our
tool, we have chosen a set of representative programs taken from various fields of
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science and engineering. We have automatically tuned them and analyzed their
accuracy before and after transformation.

The further research directions consists of generalizing our techniques to
other kinds of programming patterns like for loops, arrays and, specially func-
tions in order to obtain an intra-procedural program transformation with func-
tion refactoring and specialization with respect to the values of arguments. An-
other extension looks at extending our approach to optimize several reference
variables simultaneously. A difficulty is that the optimization of one variable
may decrease the accuracy of other variables. Compromises have to be done. Fi-
nally, our transformation relies on a static analysis of the source codes. Indeed,
we select the optimized program by using the abstract semantics in Section 3.1,
we compute certified error bounds which can be over-approximated. We would
like to improve it by using more accurate relational domains in order to obtain
finer error bounds completed by statistical results on the actual accuracy gains
on concrete executions.
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