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Abstract

Recently, barrier certificates have been introduced to prove the safety of continuous or hybrid dynamical systems. A barrier
certificate needs to exhibit some barrier function, which partitions the state space in two subsets: the safe subset in which the
state can be proved to remain and the complementary subset containing some unsafe region. This approach does not require
any reachability analysis, but needs the computation of a valid barrier function, which is difficult when considering general
nonlinear systems and barriers. This paper presents a new approach for the construction of barrier functions for nonlinear
dynamical systems. The proposed technique searches for the parameters of a parametric barrier function using interval analysis.
Complex dynamics can be considered without needing any relaxation of the constraints to be satisfied by the barrier function.
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1 Introduction

Formal verification aims at proving that a certain behav-
ior or property is fulfilled by a system. Verifying, e.g., the
safety property for a system consists in ensuring that it
will never reach a dangerous or an unwanted configura-
tion. Safety verification is usually translated into a reach-
ability analysis problem [4,9,11,29,30]. Starting from an
initial region, a system must not reach some unsafe re-
gion. Different methods have been considered to address
this problem. One may explicitly compute the reach-
able region and determine whether the system reaches
the unsafe region [16]. An alternative idea is to compute
an invariant for the system, i.e., a region in which the
system is guaranteed to stay [9]. This paper considers a
class of invariants determined by barrier functions.
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A barrier function [23,24] partitions the state space and
isolates an unsafe region from the part of the state space
containing the initial region. In [24] polynomial barriers
are considered for polynomial systems and semi-definite
programming is used to find satisfying barrier functions.
Our aim is to extend the class of considered problems to
non-polynomial systems and to non-polynomial barriers.
This paper focuses on continuous-time systems.

The design of a barrier function is formulated as a quan-
tified constraints satisfaction problem (QCSP) [6, 25].
Interval analysis is then used to find the parameters
of a barrier function such that the QCSP is satisfied.
More specifically, the algorithm presented in [18] for ro-
bust controller design is adapted and supplemented with
some of the pruning schemes found in [7] to solve the
QCSP associated to the barrier function design.

The paper is organized as follows. Section 2 introduces
some related work. Section 3 defines the notion of barrier
functions and formulates the design of barrier functions
as a QCSP. Section 4 presents the framework developed
to solve the QCSP. Design examples are presented in
Section 5. Section 6 concludes the work.

In what follows small italic letters x represent real vari-
ables while real vectors x are in bold. Intervals [x] and in-
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terval vectors (boxes) [x] are represented between brack-
ets. We denote by IR the set of closed intervals over R,
the set of real numbers. Data structures or sets S are in
upper-case calligraphic. The derivative of a function x
with respect to time t is denoted by ẋ.

2 Related work

To prove the safety of a dynamical system, different ap-
proaches have been proposed [4,9,11,15,19,30,31]. One
way is to explicitly compute an outer approximation of
the reachable region from the initial region, i.e., the set of
possible values for the initial state. If it does not intersect
the unsafe region, then the system is safe. In [4,14,30] the
reachable region is computed for linear hybrid systems
for a finite time horizon using geometric representation
such as polyhedra. The reachable region for non-linear
systems is computed in [28] using an abstraction of the
non-linear systems by a linear system expressed in a new
system of coordinates. The reachability of a non-linear
system is formulated as an optimization problem in [10].
In [8], the Picard-Lindelöf operator is combined with
Taylor models to find the reachable region for non-linear
hybrid systems. The main downside of the reachabil-
ity approach is the introduction of over-approximations
during the computations which may lead to difficulties
to decide whether the system is safe.

An alternative way to address the safety problem is by
exhibiting an invariant region in which the system re-
mains. If the invariant does not intersect the unsafe re-
gion then the safety of the system is proved. One way to
find such an invariant is by using stability properties of
the considered dynamical system [13] and to search for
a Lyapunov function. In [22] a sum of squares decom-
position and a semi-definite programming approach are
employed to find a Lyapunov function for a system with
polynomial dynamics. A template approach is consid-
ered in [27] to find Lyapunov functions using a branch
and relax scheme and linear programming to solve the
induced constraints. A more general idea about invari-
ants is introduced in [24]. Instead of looking for a func-
tion that fulfills some stability conditions, a function is
searched that separates the initial region from the unsafe
region. This idea is extended in [16] to search for invari-
ants in conjunctive normal form for hybrid systems.

3 Formulation

This section recalls the safety characterization intro-
duced in [24] for continuous-time systems using barrier
functions.

3.1 Safety for continuous-time systems

Consider the autonomous continuous-time perturbed
dynamical system

ẋ = f(x,d), (1)

where x ∈ X ⊆ Rn is the state vector and d ∈ D is a
constant and bounded disturbance. The set of possible
initial states at t = 0 is denoted X0 ⊂ X . There is some
unsafe subset Xu ⊆ X that shall not be reached by the
system, whatever x0∈ X 0 at time t = 0 and whatever
d ∈ D. We assume that classical hypotheses (see, e.g.,
[5]) on f are satisfied so that (1) has a unique solution
x(t,x0,d) ∈ X for any given initial value x0∈ X 0 at time
t = 0 and any d ∈ D.

Definition 1 The dynamical system (1) is safe if ∀x0 ∈
X0, ∀d ∈ D and ∀t > 0, x(t,x0,d) /∈ Xu.

3.2 Barrier certificates

Away to prove that (1) is safe is by the barrier certificate
approach introduced in [24]. A barrier is a differentiable
function B : X → R that partitions the state space X
into X− where B(x) 6 0 and X+ where B(x) > 0 such
that X0 ⊆ X− and Xu ⊆ X+. Moreover, B has to be
such that ∀x0 ∈ X0, ∀d ∈ D, ∀t > 0, B(x(t,x0,d)) 6 0.

Proving that B(x(t,x0,d)) 6 0 requires an evaluation
of the solution of (1) for all x0 ∈ X0 and d ∈ D. Alterna-
tively, [24] provides some sufficient conditions a barrier
function has to satisfy to prove the safety of a dynamical
system, see Theorem 1.

Theorem 1 Consider the dynamical system (1) and the
sets X , D, X0 and Xu. If there exists a function B : X →
R such that

∀x ∈X0, B(x) 6 0, (2)

∀x ∈Xu, B(x) > 0, (3)

∀x ∈ X , ∀d ∈ D,

B(x) = 0 =⇒
〈

∂B(x)

∂x
, f(x,d)

〉

< 0, (4)

then (1) is safe.

In (4) 〈., .〉 stands for the dot product in Rn. In Theo-
rem 1, (2) and (3) ensure that X0 ⊆ X−, and Xu ⊆ X+,
while (4) states that if x is on the border between X−

and X+ (i.e., B(x) = 0), then the dynamics f pushes
the state back in X− whatever the value of the distur-
bance d.
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3.3 Parametric barrier functions

The search for a barrier B is challenging since it is over
a functional space. As in [24], this paper considers bar-
riers belonging to a family of parametric functions (or
templates) B(x,p) depending on a parameter vector
p ∈ P ⊆ Rm. Then one may search for some parameter
value p such that B(x,p) satisfies (2)-(4).

If there is no p ∈ P such that B(x,p) satisfies (2)-(4),
this does not mean that the system is not safe: other
structures of functions B(x,p) could provide a barrier
certificate.

4 Characterization using interval analysis

This section presents an approach to find a barrier func-
tion that fulfills the constraints of Theorem 1. These
constraints are first reformulated to cast the design of
a barrier function as a quantified constraint satisfaction
problem (QCSP) [25].

4.1 Constraint satisfaction problem

Assume that there exist some functions g0 : X → R and
gu : X → R, such that

X0 = {x ∈ X | g0(x) 6 0} (5)

and
Xu = {x ∈ X | gu(x) 6 0}. (6)

Theorem 1 may be reformulated as follows.

Proposition 2 If ∃p ∈ P such that ∀x ∈ X , ∀d ∈ D

ξ (x,p,d) = (g0(x) > 0 ∨B(x,p) 6 0) (7)

∧ (gu(x) > 0 ∨B(x,p) > 0) (8)

∧
(

B(x,p) 6= 0 ∨
〈

∂B

∂x
(x,p), f(x,d)

〉

< 0

)

(9)

holds true, then the dynamical system (1) is safe.

PROOF. The first component of ξ (x,p,d),

ξ0 (x,p) = (g0(x) > 0 ∨B(x,p) 6 0) (10)

may be rewritten as

ξ0 (x,p) = (g0(x) 6 0 =⇒ B(x,p) 6 0) ,

see, e.g., [12]. If ξ0 (x,p) holds true for some p ∈ P
and x ∈ X , then one has either x ∈ X0 and B(x,p) 6
0, or x /∈ X0. In both cases, (2) is satisfied. A similar

derivation can be made for the second component of
ξ (x,p,d) to encode (3),

ξu(x,p) = (gu(x) > 0 ∨B(x,p) > 0) . (11)

Now, one may rewrite the last component of t (x,p,d),

ξb(x,p,d) =

(

B(x,p) 6= 0 ∨
〈

∂B

∂x
(x,p), f(x,d)

〉

< 0

)

(12)
as

ξb(x,p,d) =
(

B(x,p) = 0 =⇒
〈

∂B

∂x
(x,p), f(x,d)

〉

< 0

)

, (13)

which corresponds to (4). If ∃p ∈ P such that ∀x ∈ X ,
∀d ∈ D, ξ (x,p,d) holds true, then the conditions of
Theorem 1 are satisfied and (1) is safe. 2

In [24], (9) is relaxed into

ξb (x,p,d) =

(〈

∂B

∂x
(x,p), f(x,d)

〉

< 0

)

, (14)

with the consequence of possible elimination of barrier
functions that would satisfy (9) for some p but not (14).
Our aim in this paper is to design barrier functions with-
out resorting to this relaxation by considering meth-
ods from interval analysis [17] which allow to consider
strongly nonlinear dynamics and barrier functions.

4.2 Solving the constraints

To find a valid barrier function one needs to find some
p ∈ P such that B(x,p) satisfies the conditions of
Proposition 2. For that purpose, the Computable Suf-
ficient Conditions-Feasible Point Searcher (CSC-FPS)
algorithm [18] is adapted.

In what follows, we assume that X , D, and P are boxes,
i.e., X = [x], D = [d], and P = [p]. CSC-FPS may also
be applied when X , D, and P consist of a union of non-
overlapping boxes.

Consider some function g : Rn×Rm → Rk and some box
[z] ∈ IRk. CSC-FPS is designed to determine whether

∃p ∈ [p] , ∀x ∈ [x] , g (x,p) ∈ [z] (15)

and to provide some satisfyingp.We extend CSC-FPS to
handle conjunctions and disjunctions of constraints and
supplement it with efficient pruning techniques involving
contractors provided by interval analysis [17].
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FPS branches over the parameter search box [p].
Branching is performed based on the results provided
by CSC. For a given box [p]0 ⊆ [p], CSC returns true
when it manages to prove that (15) is satisfied for some
p ∈ [p]0. CSC returns false when it is able to show
that there is no p ∈ [p]0 satisfying (15). CSC returns
unknown in the other cases.

In Proposition 2, ξ (x,p,d) consists of the conjunction
of three terms of the form

τ (x,p,d) = (u(x,p) ∈ A) ∨ (v(x,p,d) ∈ B) . (16)

For ξ0(x,p), defined in (7),

A = ]0,+∞] and B = ]−∞, 0] ; (17)

for ξu(x,p), defined in (8),

A = ]0,+∞] and B = ]0,+∞[ ; (18)

for ξb(x,p,d), defined in (9),

A = ]−∞, 0[ ∪ ]0,+∞[ and B = ]−∞, 0[ . (19)

To illustrate the main ideas of CSC-FPS combined with
contractors, one focuses on the generic QCSP

∃p ∈ [p] , ∀x ∈ [x] , ∀d ∈ [d] , τ (x,p,d) holds true.
(20)

Finding a solution for such QCSP involves three steps:
validation, reduction of the parameter and state spaces,
and bisection.

4.2.1 Validation

In the validation step, one tries to prove that some vector
p ∈ [p] is such that ∀x ∈ [x], ∀d ∈ [d], τ (x,p,d) holds
true. By definition of τ (x,p,d), one has to prove that

∃p ∈ [p] , ∀x ∈ [x] , ∀d ∈ [d] ,

(u(x,p) ∈ A) ∨ (v(x,p,d) ∈ B) . (21)

For that purpose, one chooses some arbitrary p ∈
[p] and evaluates the set of values u ([x] ,p) =
{u (x,p) | x ∈ [x]} and v ([x] ,p, [d]) = {v (x,p,d) |
x ∈ [x],d ∈ [d]} taken by u(x,p) and v(x,p,d) for
all x ∈ [x] and for all d ∈ [d]. Outer-approximations
of u ([x] ,p) and v ([x] ,p, [d]) are easily obtained using
inclusion functions provided by interval analysis.

Definition 3 An inclusion function [f ] : IRn → IRk

for a function f : Rn → Rk satisfies for all [x] ∈ IRn,

f ([x]) = {f(x) | x ∈ [x]} ⊆ [f ] ([x]) . (22)

The natural inclusion function is the simplest to obtain:
all occurrences of the real variables are replaced by their
interval counterpart and all arithmetic operations are
evaluated using interval arithmetic. More sophisticated
inclusion functions such as the centered form, or the
Taylor inclusion function may also be used, see [17].

Using inclusion functions, one may evaluate whether

[u]([x],p) ⊆ A or [v]([x],p, [d]) ⊆ B holds true

for the various A and B defined in (17), (18), and (19).

Different choices can be considered for p: one can take
a random point in [p], the middle, or one of the edges of
[p]. Here, only the middle of [p] is considered.

4.2.2 Reduction of the parameter and state spaces

To facilitate the search for p ∈ [p] one may previously
eliminate parts of [p] whichmay be proved not to contain
any p satisfying (21). The elimination process can be
done by evaluation or by using contractors [7].

4.2.2.1 Evaluation From (21) one deduces that a
box [p] can be eliminated, i.e., shown not to contain any
p satisfying (16), if

∀p ∈ [p], ∃x ∈ [x] , ∃d ∈ [d] ,

u(x,p) ⊆ A ∧ v(x,p,d) ⊆ B, (23)

whereA = R\A and B = R\B. Using again an inclusion
function, one may verify whether [u](x, [p]) ⊆ A and
[v](x, [p] ,d) ⊆ B for some x ∈ [x] and d ∈ [d] and thus
eliminate the box [p].

One may easily verify (7) and (8) since A and B are
unbounded andmay contain [u](x, [p]) and [v](x, [p] ,d).
For (9) the inclusion is impossible to prove except in
degenerate cases since A = {0}.

4.2.2.2 Contractors Consider some function
g : Rn → Rk and some set Z ⊂ Rk.

Definition 4 A contractor Cc : IRn → IRn associated
to the generic constraint

c : g(x) ∈ Z (24)

is a function taking a box [x] as input and returning a
box Cc ([x]) satisfying

Cc ([x]) ⊆ [x] (25)
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and
g ([x]) ∩ Z = g (Cc ([x])) ∩ Z. (26)

Cc provides a box containing the solutions of g(x) ∈
Z included in [x]: (25) ensures that the returned box
is included in [x] and (26) ensures that no solution of
g(x) ∈ Z in [x] is lost.

Consider now two functions g1 : Rn → Rk1 and g2 :
Rn → Rk2 , two sets Z1 ⊂ Rk1 and Z2 ⊂ Rk2 , and
the associated constraints c1 : g1([x]) ⊆ Z1 and c2 :
g2([x]) ⊆ Z2. Assume that two contractors Cc1 and Cc2
are available for c1 and c2. A contractor Cc1∧c2 for the
conjunction c1 ∧ c2 of c1 and c2 may be obtained as

Cc1∧c2([x]) = Cc1([x]) ∩ Cc2([x]), (27)

or by composition of contractors

Cc1∧c2([x]) = Cc2(Cc1([x])). (28)

A contractor Cc1∨c2 for the disjunction c1 ∨ c2 of c1 and
c2 may be obtained as follows

Cc1∨c2([x]) = 2{Cc1([x]) ∪ Cc2([x])}, (29)

see [7], with 2{·} the interval hull of a set.

Using a contractor Cc for (24), one is able to characterize
some [x̃] ⊂ [x] such that ∀x ∈ [x̃], g(x) /∈ Z.

Proposition 5 Consider a box [x], the elementary con-
straint (24), and the contracted box Cc ([x]) ⊆ [x]. Then,

∀x ∈ [x] \Cc ([x]) , one has g(x) /∈ Z, (30)

where [x] \Cc ([x]) denotes the box [x] deprived from
Cc ([x]), which is not necessarily a box.

PROOF. Consider x ∈ [x] \Cc ([x]) and assume that
g(x) ∈ Z. Since g(x) ∈ Z and x ∈ [x], one should have
x ∈ Cc ([x]), according to (26), which contradicts the
fact that x ∈ [x] \Cc ([x]). 2

Proposition 5 can be used to eliminate [p] or a part of
[p] for which it is not possible to find any p satisfying
(21). Consider the constraint

τ : (u(x,p) ∈ A) ∨ (v(x,p,d) ∈ B) (31)

and a contractor Cτ for this constraint. It involves ele-
mentary contractors for the components of the disjunc-
tion in (31), combined as in (29). For the boxes [x], [p],
and [d], one gets

(

[x]
′
, [p]

′
, [d]

′

)

= Cτ
(

[x] , [p] , [d]
)

, (32)

[p]

[x] d], [

[p]’

[x] d], [’ ’

[p]

[x] d], [

[p]’

[x] d], [’ ’

( )a

( )b

p p

Fig. 1. Contractions using Cτ ; the set for which (31) is satis-
fied is in gray; (a) [p] \ [p]′ 6= ∅ and the search space for sat-
isfying p can be reduced to [p]′ ; (b) [x]′ 6= [x] or [d]′ 6= [d],
it is thus not possible to find some p ∈ [p] such that (31) is
satisfied for all x ∈ [x] and all d ∈ [d].

where [x]′, [p]′, and [d]′ are the contracted boxes. Three
cases may then be considered.

(1) If [p] \ [p]′ 6= ∅, then ∀p ∈ [p] \[p]′, ∀x ∈ [x], ∀d ∈
[d],

u(x,p) /∈ A ∧ v(x,p,d) /∈ B, (33)

and there is no p ∈ [p] \ [p]′ such that (31) holds
true for all x ∈ [x] and for all d ∈ [d]. Consequently,
the search space for p can be reduced to [p]

′
, see

Figure 1 (a).
(2) If [x] \ [x]

′ 6= ∅ then, from Proposition 5, one has
∀p ∈[p], ∀x ∈[x] \[x]′, ∀d ∈[d],

u(x,p) /∈ A ∧ v(x,p,d) /∈ B, (34)

and there is no p ∈ [p] such that (31) holds true for
all x ∈ [x], see Figure 1 (b).

(3) If [d] \ [d]
′ 6= ∅, then ∀p ∈ [p], ∀x ∈ [x], ∀d ∈

[d] \ [d]′,

u(x,p) /∈ A ∧ v(x,p,d) /∈ B, (35)

and there is no p ∈ [p] such that (31) holds true for
all d ∈ [d], see Figure 1 (b).

One can reduce the size of the sets for the state x and the
disturbance d on which (31) has to be verified using the
contraction on the negation of this constraint. Consider
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[p]

[x] d], [

[p]’’

[x] d], [’’ ’’

( )b

p p

[p]

[x] d], [

[p]’’

[x] d], [’’ ’’

( )a

p p

Fig. 2. Contractions using Cτ ; the set for which (36) is satis-
fied is in white; (a) [x]” 6= [x] and/or [d]” 6= [d] and one has
only to find some suitable p ∈ [p] such that (31) is satisfied
for all x ∈ [x] ” and all d ∈ [d] ”; (b) [p]” 6= [p], one may
choose any p ∈ [p]\[p] ” (for example the value of p indicated
in red) and (31) will hold true for all (x,d) ∈ ([x]× [d]).

the negation τ of τ

τ =
(

u(x,p) ∈ A
)

∧
(

v(x,p,d) ∈ B
)

(36)

and a contractor Cτ for this constraint. Assume that after
applying Cτ for the boxes [x], [p], and [d], one gets

(

[x] ”, [p] ”, [d]”
)

= Cτ
(

[x] , [p] , [d]
)

. (37)

From Proposition 5, one knows that

∀ (x,p,d) ∈ ([x]× [p]× [d]) \ ([x] ”× [p] ”× [d] ”) ,

u(x,p) ∈ A ∨ v(x,p,d) ∈ B. (38)

Indeed, if [p] ” = [p], one can focus on the search for some
p ∈ [p] satisfying (31) by considering only [x]” × [d] ”,
since for all (x,d) ∈ ([x]× [d]) \ ([x] ”× [d] ”), (31) is
satisfied for all p ∈ [p], see Figure 2 (a).

Now, if [p] ” 6= [p], then any p ∈ [p] \ [p] ” will satisfy
(31) for all (x,d) ∈ ([x]× [d]), see Figure 2 (b).

4.2.3 Bisection

One is unable to decide whether some p ∈ [p] satisfies
(21) when

[u]([x],p) ∩ A 6= ∅ and [u]([x],p) * A (39)

or when

[v]([x],p, [d]) ∩ B 6= ∅ and [v]([x],p, [d]) * B. (40)

This situation occurs in two cases. First, when the se-
lectedp does not satisfy (21) for allx ∈ [x] and for alld ∈
[d]. Second, when inclusion functions introduce some
pessimism, i.e., they provide an over-approximation of
the range of functions over intervals.

To address both cases, one may perform bisections of
[x]× [d] and try to verify (21) on the resulting sub-boxes
for the same p. Bisection allows to isolate subsets of
[x] × [d] on which one may show that (23) holds true.
Bisections also reduce pessimism, and may thus facili-
tate the verification of (21). The bisection of [x] × [d]
is performed within CSC as long as the width of the bi-
sected boxes are larger than some εx > 0. When CSC is
unable to prove (21) or (23) and when all bisected boxes
are smaller than εx, CSC returns unknown.

FPS performs similar bisections on [p] and stops when
the width of all bisected boxes are smaller than εp > 0.

4.2.4 Composition of constraints

To prove the safety of the dynamical system (1), Propo-
sition 2 shows that one has to find some p ∈ [p] such
that ∀x ∈ [x], ∀d ∈ [d], ξ (x,p,d) holds true. Since
ξ (x,p,d) consists of the conjunction of three elemen-
tary constraints of the form (20), validation requires the
verification of (21) for the same p considering (7), (8),
and (9) simultaneously. Invalidation may be performed
as soon as one is able to prove that one of the constraints
(7), (8), or (9) does not hold true using (23). Contrac-
tion may benefit from the conjunction or disjunction of
these constraints, as introduced in (28) and (29).

4.3 CSC-FPS algorithms with contractors

The CSC-FPS algorithm, presented in [18] is supple-
mented with the contractors introduced in Section 4.2
to improve its efficiency.

FPS, described in Algorithm 1, searches for some sat-
isfying p ∈ [p], i.e., some p ∈ [p] such that ξ (x,p,d)
introduced in Proposition 2 holds true for all x ∈ [x]
and all d ∈ [d]. This may require to bisect [p] into sub-
boxes stored in a queue Q, which initial content is [p].
A sub-box [p]0 ⊆ [p] is extracted from Q. A reduction
of [p]0 is then performed at Line 1 to eliminate values of
p ∈ [p]0 which cannot be satisfying. To facilitate con-
traction, specific x ∈ [x] are chosen; here only the mid-
point m ([x]) of [x] is considered. If [p]

′

0 is empty, the
next box inQ has to be explored. Then CSC is called for
each constraint t0, tu, and tb to verify whether m

(

[p]′0
)

,

the midpoint of [p]
′

0, is satisfying. When all calls of CSC
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return true at Line 1, a barrier function with parameter
m
(

[p]′0
)

is found. When one of the calls of CSC returns

false at Line 1, [p]
′

0 is proved not to contain any sat-

isfying p. In all other cases, when w([p]
′

0), the width of

[p]
′

0, is larger than εp, [p]
′

0 is bisected and the resulting

subboxes are stored inQ. When [p]′0 is too small, even if
one was not able to decide whether it constains a satisfy-
ing p, it is not further considered to ensure termination
of FPS in finite time. The price to be paid in such situa-
tions is the impossibility to conclude that the initial box
[p] does not contain some satisfying p. This is done by
setting the flag to false at Line 1. Finally, when Q = ∅,
no satisying p has been found. Whether [p] may however
contain some satisfying p depends on the value of flag.

Algorithm 1 FPS

1: procedure FPS(ξ0, ξu, ξb, [p],[x], [d]) ⊲ ξ0, ξu, ξb
from (7), (8) and (9)

2: queue Q := [p]
3: flag := true

4: while Q 6= ∅ do
5: [p]

0
:= dequeue(Q) ⊲ Reduction of the parameter

space using (28), (32), (33)
6: [p]′

0
:= Cξ0∧ξu(m([x]), [p]

0
) ⊲ When [p]′

0
= ∅,

there is no satisfying p ∈ [p]
0

7: if [p]′
0
= ∅ then

8: continue
9: end if

10: r0:= CSC(ξ0,[p]
′

0
, [x],[d]) ⊲ Call CSC for each

constraint
11: ru:= CSC(ξu,[p]

′

0
, [x],[d])

12: rb:= CSC(ξb,[p]
′

0
, [x],[d])

13: if (r0=true)∧(ru=true)∧(rb=true) then
14: return(true,m([p]′

0
) ⊲ m([p]′

0
) is satisfying if

CSCs hold true
15: end if
16: if (r0=false)∨(ru=false)∨(rb=false) then
17: continue ⊲ no solution in [p]′0 if one

constraint does not hold true
18: end if
19: if w([p]′

0
) ≤ εp then

20: flag:=false ⊲ no decision could be made for
[p]′0 and thus bisect

21: else
22: ([p]

1
, [p]

2
):=bisect([p]′)

23: enqueue([p]
1
) in Q

24: enqueue([p]
2
) in Q

25: end if
26: end while
27: if flag=false then
28: return(unknown,∅) ⊲ precision reached no

conclusion can be made for [p]
29: end if
30: return(false,∅) ⊲ no valid solution in [p]
31: end procedure

CSC, described in Algorithm 2, determines either
whether τ (x,m([p]),d) introduced in (16) holds true
for all x ∈ [x] and all d ∈ [d] or whether there is no
p ∈ [p] satisfying (16) for all x ∈ [x] and all d ∈ [d].
For that purpose, due to the pessimism of inclusion

functions, it may be necessary to bisect [x]× [d] in sub-
boxes stored in a stack S initialized with [x] × [d]. For
each subbox [x]0 × [d]0 ⊆ [x] × [d], CSC determines
at Line 7 whether m([p]0) is satisfying. CSC tries to
prove that [p]0 does not contain any satisfying p. This
is done at Line 10, for some (x,d) ∈ [x]0 × [d]0, here
taken as the midpoint of [x]0 × [d]0, by an evaluation of
τ . This is done at Line 12 using the result of a contrac-
tor, as described in (34) and (35). When one is not able
to conclude and provided that w([x]0 × [d]0) is larger
than εx, some parts of [x]0 × [d]0 for which m([p]0) is
satisfying are removed at Line 19, before performing a
bisection and storing the resulting subboxes in S. When
w([x]0 × [d]0) is less than εx it is no more considered.
As a consequence, one is not able to determine whether
m([p]0) is satisfying for all (x,d) ∈ [x]0× [d]0. One may
still prove that one [p]0 does not contain any satisfying
p considering other subboxes of [x] × [d], but not that
m([p]0) is satisfying for all (x,d) ∈ [x] × [d]. This is
indicated by setting flag to unknown at Line 17.

Algorithm 2 CSC

1: procedure CSC(τ ,[p]
0
,[x],[d]) ⊲ τ is of the form (16)

2: stack S := [x]× [d]
3: flag:=true

4: while S 6= ∅ do
5: [x]

0
× [d]

0
:=pop(S)

6: if [u]([x]
0
, m([p]

0
)) ⊆

A∨[v]([x]
0
, m([p]

0
), [d]

0
) ⊆ B then

7: continue ⊲ Validation using (21)
8: end if
9: if [u]

(

m
(

[x]
0

)

, [p]
0

)

∩ A = ∅ ∧

[v]
(

m
(

[x]
0

)

, [p]
0
,m

(

[d]
0

))

∩ B = ∅ then
10: return(false) ⊲ Reduction of the parameter

space using (23)
11: end if
12: ([x]′

0
, [p]′

0
, [d]′

0
) := Cτ ([x]0, [p]0, [d]0)⊲ Reduction

of the parameter space applying (32)
13: if [x]′

0
6= [x]

0
∨ [d]′

0
6= [d]

0
then

14: return(false) ⊲ Consequence of (34), (35)
15: end if
16: if (w([x]

0
× [d]

0
) ≤ εx) then

17: flag:=unknown

18: else
19: ([x]′′

0
, [d]′′

0
) := Cτ ([x]0,m([p]

0
), [d]

0
) ⊲ Reduc-

tion of the state space using (37), (38) and bisection
20: ([x]

1
× [d]

1
, [x]

2
× [d]

2
):=bisect([x]′′

0
× [d]′′

0
)

21: push([x]
1
× [d]

1
) in S

22: push([x]
2
× [d]

2
)in S

23: end if
24: end while
25: return(flag)
26: end procedure

5 Examples

This section presents experiments for the characteriza-
tion of barrier functions. The considered dynamical sys-
tems are described first before providing numerical re-
sults, comparison of different approaches and discus-
sions.
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5.1 Dynamical system descriptions

For the following examples, one provides the dynamics
of the system, the constraints g0 and gu for the definition
of the sets X0 and Xu, the state space [x], and the para-
metric expression of the barrier function. In all cases,
the parameter space is chosen as [p] = [−10, 10]m where
m is the number of parameters.

Example 1 Consider the system

(

ẋ1

ẋ2

)

=

(

x1 + x2

x1x2 − 0.5x2
2

)

with g0(x) = (x1 +1.25)2+(x2 − 1.25)2− 0.05, gu(x) =
(x1 + 2.5)2 + (x2 − 0.8)2 − 0.05, and [x] = [−103, 0] ×
[−103, 103]. The parametric barrier function isB(x,p) =
p1p2(x0+p3)
(x0+p3)2+p2

2

+ x1 + p4.

Example 2 Consider the system from [2]

(

ẋ1

ẋ2

)

=

(

−x1 + x1x2

−x2

)

with g0(x) = (x1 − 1.125)2 + (x2 − 0.625)2 − 0.0125,
gu(x) = (x1 − 0.875)2 + (x2 − 0.125)2 − 0.0125, and
[x] = [−100, 100]× [−100, 100]. The parametric barrier
function used is B(x,p) = ln(p1x1)− ln(x2)+p2x2+p3.

Example 3 Consider the system from [21]

(

ẋ1

ẋ2

)

=





x2

− x1+x2√
1+(x1+x2)2





with g0(x) = x1
2 + x2

2 − 0.5, gu(x) = (x1 − 3.5)2 +
(x2 − 0.5)2 − 0.5 , and[x] = [−103, 103] × [−100, 100].
A quadratic parametric barrier function is chosen
B(x,p) = p1x

2
1 + p2x

2
2 + p3x1x2 + p4x1 + p5x2 + p6.

Example 4 Consider the disturbed system from [24]

(

ẋ1

ẋ2

)

=

(

x2

−x1 +
d
3x

3
1 − x2

)

with g0(x) = (x1 − 1.5)2 + x2
2 − 0.25, gu(x) = (x1 +

0.8)2+(x2+1)2−0.25, [x] = [−100, 100]×[−10, 10], and
d ∈ [0.9, 1.1]. The parametric barrier function B(x,p) =
p1x

2
1 + p2x

2
2 + p3x1x2 + p4x1 + p5x2 + p6 is considered.

Example 5 Consider the system with a limit cycle

(

ẋ1

ẋ2

)

=

(

x2 + (1− x2
1 − x2

2)x1 + ln(x2
1 + 1)

−x1 + (1− x2
1 − x2

2)x2 + ln(x2
2 + 1)

)

with g0(x) = (x1 − 1)2 + (x2 + 1.5)2 − 0.05, gu(x) =
(x1 + 0.6) + (x2 − 1)2 − 0.05, and [x] = [−103, 103] ×
[−103, 103]. The parametric barrier function used is

B(x,p) =
(

x1+p1

p2

)2

+
(

x2+p3

p4

)2

− 1.

Example 6 Consider the Lorenz system from [32]









ẋ1

ẋ2

ẋ3









=









10(x2 − x1)

x1(28− x3)− x2

x1x2 − 8
3x3









with g0(x) = (x1+14.5)2+(x2+14.5)2+(x3− 12.5)2−
0.25, gu(x) = (x1 +16.5)2+(x2+14.5)2+(x3− 2.5)2−
0.25, and [x] = [−20, 20]× [−20, 0]× [−20, 20]. The con-
sidered parametric barrier function is B(x,p) = p1x

2
1 +

p2x1 + p3x3 + p4.

Example 7 Consider the system from [20]

























ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

























=

























−x1 + 4x2 − 6x3x4

−x1 − x2 + x3
5

x1x4 − x3 + x4x6

x1x3 + x3x6 − x3
4

−2x3
2 − x5 + x6

−3x3x4 − x3
5 − x6

























with g0(x) = (x1− 3.05)2+(x2− 3.05)2+(x3− 3.05)2+
(x4−3.05)2+(x5−3.05)2+(x6−3.05)2−0.0001, gu(x) =
(x1−7.05)2+(x2−3.05)2+(x3−7.05)2+(x4−7.05)2+
(x5 − 7.05)2 + (x6 − 7.05)2 − 0.0001, and [x] = [0, 10]×
[0, 10]× [2, 10]× [0, 10]× [0, 10]× [0, 10]. The considered
parametric barrier function is B(x,p) = p1x

2
1 + p2x

4
2 +

p3x
2
3 + p4x

2
4 + p5x

4
5 + p6x

2
6 + p7.

5.2 Experimental conditions and results

CSC-FPS, presented in Section 4, has been implemented
using the IBEX library [3, 7]. The selection of candi-
date barrier functions is performed choosing polynomi-
als with increasing degree, except for Examples 1, 2, and
4, where parametric functions taken from [1, 2] are con-
sidered.

For each example, the computing time to get a valid bar-
rier function and the number of bisections of the search
box [p] are provided. Table 1 summarizes the results for
the versions of CSC-FPS with and without contractors.
As in [18], we choose εx = 10−1 and εp = 10−5. Com-
putations were done on an Intel core 1.7 GHz processor
with 8 GB of RAM. If after 30 minutes of computations
no valid barrier function has been found, the search is
stopped. This is denoted by T.O. (time out) in Table 1.
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x1

x2

gu( ) 06x

g0( ) 06x

x x0( , )t

B( , )=0x p

-2.5 -2 -1.5 -1 -0.5 0

0.5

1

-3-3.5

1.5

2

Fig. 3. Results for Example 1.

x1

x2

gu( ) 06x

g0( ) 06x

x x0,d( , )t

B( , )=0x p

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-1.6

-0.8

1.6

0.8

Fig. 4. Results for Example 4 with various values of the
disturbance d.

x1

gu( ) 06x

g0( ) 06x

x x0( , )t

B( , )=0x p

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-0.5

0.5

1

1.5

2

x2

Fig. 5. Results for Example 5.

Moreover, for Examples 1, 4, and 5, graphical represen-
tation of the computed barrier functions are provided.
In Figures 3, 4, and 5, X0 is in green, Xu is in red, the
bold line is the barrier function and some trajectories
starting from X0 are also represented.

The results in Table 1 show the importance of contrac-
tors which are beneficial in all cases. Thanks to contrac-
tors, valid barrier functions were obtained for all exam-
ples, which is not the case employing the original version
of CSC-FPS proposed in [18]. In theory, both FPS and
CSC are of exponential complexity in the dimension m
of the parameter space and n of the state space. In prac-
tice, contractors allow, on the considered examples, to
break this complexity and to consider high-dimensional

Table 1
Results of CSC-FPS without and with contractors

Without contr. With contr.

Example n m time bisect. time bisect.

1 2 4 36s 4520 16s 4553

2 2 3 T.O. / 1s 159

3 2 6 1133s 20388 1s 6

4 2 6 253s 14733 7s 435

5 2 4 T.O. / 98s 4072

6 3 4 167s 1753 21s 47

7 6 7 697s 67600 1s 261

problems.

The search for barrier functions using the relaxed ver-
sion (14) of the constraint (12) as in [24], has also been
performed using the version of our algorithms with con-
tractors considering the same parametric barrier func-
tions. We were not able to find a valid barrier function in
less than 30 minutes. This shows the detrimental effect
of the relaxation (14) on the search technique.

Some examples were also addressed using RSolver, which
is a tool to solve some classes of QCSP [25]. Nevertheless,
this requires some modifications of the examples, since
RSolver does not address dynamics or constraints in-
volving divisions [26]. Moreover, the type of constraints
processed by RSolver, for problems such as (20), allows
only parametric barrier functions that are linear in the
parameters. Outer-approximating boxes for the initial
and the unsafe regions X0, Xu defined by g0 and gu are
given to Rsolver. As a consequence, Examples 1, 2 and
3 could not be considered. Only Examples 4, 5, and 6
were tested by Rsolver, which was able to find a satis-
fying barrier function only for Lorenz in less than 1s.
RSolver was unable to find a solution for Examples 4 and
5. Rsolver is well designed for problems with paramet-
ric barriers linear in the parameters, but has difficulties
for non-linear problem and non-convex constraints such
as (12).

6 Conclusion

This paper presents a new method to find paramet-
ric barrier functions for nonlinear continuous-time per-
turbed dynamical systems. The proposed technique has
no restriction regarding the dynamics nor the form of
the barrier function. The search for barrier functions
is formulated as an interval quantified constraint stat-
isfaction problem. A branch-and-prune algorithm pro-
posed in [18] has been supplemented with contractors to
address this problem. Contractors are instrumental in
solving problems with large number of parameters. The
proposed approach can thus find barrier functions for a
large class of possibly perturbed dynamical systems.
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Alternative techniques based on RSolver may be signifi-
cantly more efficient for some specific classes of problems
where the parameters appear linearly in the parametric
barrier functions. A combination of RSolver and our ap-
proach may be useful to improve the global efficiency of
barrier function caracterization.

Future work will be dedicated to the search for the class
of parametric barrier functions to consider. This may be
done by exploring a library of candidate barrier func-
tions. In our approach rejection of a candidate function
occurs mainly after a timeout. Even if contractors aim-
ing at eliminating some parts of the parameter space
were defined, their efficiency is limited. Better contrac-
tors for that purpose may be very helpful.

An other future research direction is to extend the pro-
posed method to hybrid systems as done in [24], i.e., to
consider a set of quantified constraints for each location
of an hybrid automaton and the constraints associated
to the transitions.
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