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Abstract

Physical phenomena are often studied using numerical simulators. Such computer codes are function of
uncertain input parameters and a global sensitivity analysis (GSA) can be performed to identify their impacts on
the simulator outputs. Sobol’ indices, based on output variance decomposition, are commonly used to perform
quantitative GSA. For many years now, other tools have been studied, closer to physical practices such as the
derivative-based global sensitivity measures (DGSM). However, numerical simulators rarely provide the output
gradient and DGSM estimation is not directly possible. To address this limitation, we propose to estimate the
DGSMs using a Gaussian process metamodel (GPM) which approximates the simulator.

Based on this GPM, we propose two DGSM estimators: a plug-in one defined by the DGSM of the GPM
predictor and another one defined by the expectation of the DGSM associated to the full-GPM. The latter is equal
to the first one completed by a variance term and can be accompanied by a credibility interval. For Gaussian kernel
and uniform input laws, analytical formula are given for both DGSM estimators. For all other situations, Monte-
Carlo methods for the expectation approximations are proposed: a propagative version of the Gibbs sampler
and a chi-square approximation. Moreover, a significance test for the full-GPM based estimator is proposed
for screening. The convergence of the two GPM-based DGSM estimators and the Monte-Carlo approaches are
compared on analytical test cases. Finally, we apply our work to an environmental application.

Keywords: Sensitivity analysis, derivative-based global sensitivity measures (DGSM), Gaussian process model,
significance test, screening.

1 Introduction

Computer models are widely used for the representation of physical phenomena in the industry. The main reasons
are the permanent increase of computational power and numerical method efficiency. Such models take as input
many numerical and physical explanatory variables. They can be used in computer experimentation to explore the
relationship between the variables and increase the knowledge about the physical phenomenon, while an accurate
physical experimentation is too costly [41]. However these numerical simulators often have a high number of uncer-
tain input parameters, what can lead to an important uncertainty over the model output [8, 22]. Commonly, the
input uncertainties are modeled by probability distributions and a quantification of their impacts on the output is
performed. These steps define a sensitivity analysis (SA) of the considered computer code. Then, the SA results
could be used to reduce the model output uncertainty by enhancing the characterization of the most influential input
parameters and using nominal values for the non-significant ones.

This SA can be either local (LSA), when it focus on the output behavior associated to input variations around a
specific input parameter value, or global (GSA), when it considers the output behavior for uncertainties based on the
whole variation space of the input parameters [39]. GSA methods are widely used for industrial problems involving
many variables [40]. They can distinguish the non-significant input parameters and the significant ones in a screening
context. They can also quantify and order the influences of the significant parameters and of their interactions on the
model output behavior. Recently, [17] propose a review on GSA in a methodological framework, presenting screening
methods, measures of importance and tools for the “deep exploration” of computer code behaviors. Any GSA method
has advantages and drawbacks: some approaches require a high number of computer experiments but cover a wide
scope of model behaviors, while other ones are less greedy but rely on hypotheses such as a monotonic or linear
behavior of the model output with respect to the input variables. The second ones are mainly used for qualitative
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purposes such as screening, while the first ones are used in a quantitative aim when an influence ranking of the input
parameters is wished. In this second case, the most popular are the variance-based indices, usually represented by the
Sobol’ index which measures the proportion of the output variance explained by an input parameter [44], considering
either its single contribution (first-order index), or its whole contribution including the interactions with the other
input parameters (total index, e.g. [16]). Recently, [12] introduced the Goal Oriented Sensitivity Analysis, providing
an unified framework for several sensitivity analyses based on the mean output value, on a specific output quantile for
excess probability considerations, and so on. With the same idea to go further than the Sobol’ indices, [6] proposes
new sensitivity measures considering the whole distribution of the output respect to those of the input parameters,
either comparing characteristic functions [48], or measuring the covariance between input and output parameters
in some reproducing kernel Hilbert spaces [14]. Based on these measures, [7] study their meaning with respect
to the Sobol’ indices, and propose extensions to screening. Likewise, [33] propose sensitivity indices measuring the
distance between the distribution of the model output conditioned by an input parameter with the unconditioned one.

From a more physical point of view, [42] introduced the derivative-based global sensitivity measure (DGSM) which
represents the mean of the squared partial derivative of the model output over the input domain. This approach can
be tied with the well-known Morris method [31] which considers finite differences instead of the local derivatives:
in a way, DGSMs can be viewed as a generalization of the indices obtained with the Morris method [49]. The
DGSMs often have the advantage of requiring much less model evaluations than the Sobol’ indices [23], especially for
high-dimensional problems (many tens of input parameters) or complex models (non linear and interaction effects).
Moreover, based on output partial derivatives, they provide more local information which can be complementary to
the one brought by the Sobol’ indices for example.

Various applications have illustrated the use of DGSMs such as an aquatic prey-predator chain [18], a biological
system model [21], a flood one [24] or a reservoir simulator [49]. For a screening purpose, it has been proved that
the total Sobol’ indices are upper bounded up to a constant by the DGSMs, firstly in the case of uniform or normal
probability distributions [43], and then in the case of a wider variety of continuous distributions [24]. Recently, lower
bounds depending on the DGSMs have been proposed for the total Sobol’ indices, in presence of uniformly or normally
distributed inputs [5]. These derivative-based sensitivity indices have also been extended to the interaction between
two input parameters in [35]. The authors call such a measure a crossed DGSM and define it by the mean of the
square partial derivative of the output model according to both input variables. They also provide an inequality link
between the crossed-DGSMs and the total Sobol’ indices.

For all these reasons, we focus here on the use of DGSMs, especially for a screening purpose. The computa-
tion of these sensitivity indices then requires that the model supplies the adjoint code to evaluate its output partial
derivatives. When this code is unavailable, the gradient can be estimated by a finite-difference method. However,
in presence of few numerical simulator evaluations, this alternative can lead to an important approximation error
of the output gradient, which increases the DGSM one associated to the integral quadratures. Another alternative
consists of replacing the time-expensive numerical simulator by a surrogate model [11] and using its gradient; this
is the choice that we make in this paper. A surrogate model, also called metamodel, is a fast mathematical model
built using some evaluations of the numerical simulator in order to approach its behavior. Polynomial chaos expan-
sions [45], artificial neural networks [9] and Gaussian process metamodels [34] are the most popular ones. Recently,
metamodeling techniques have been applied with polynomial chaos expansions to DGSMs [47] and Sobol’ indices
[46]. Gaussian process metamodels have also been used for the estimation of Sobol’ indices [28]; in particular, these
surrogate models can provide credibility intervals to quantify the approximation error of such sensitivity indices. More
recently, Sobol’ indices have been estimated combining the estimation method developed by [19] and the Gaussian
process metamodel approach [28] in order to take into account numerical and integration and metamodel errors [26].

In this paper, following the same approach of [28], we investigate the DGSM approximation based
on the replacement of the numerical simulator by a Gaussian process metamodel. Moreover, we propose
a DGSM-based significance test for a screening purpose, in order to separate the significant inputs from
the non-significant ones. We also deal with the meaning of the DGSM from local and global points of view.

Firstly, we introduce the definition of DGSM and Gaussian process metamodel (GPM). Then, we propose two
estimators of the DGSMs based on a GPM: one using the GPM predictor and another one considering the whole GPM
distribution. In this second section, we also propose a credibility interval for the DGSM, using the probability density
function of the metamodel. Then in Section 3, we give explicit formulations of these estimators for a particular
covariance function of the GPM and specific input parameter distributions. In all other cases, we propose to estimate
the DGSM formulas by several Monte-Carlo methods. Moreover, we build a significance test based on DGSM to
reject the non influential inputs for a screening purpose. Finally, the different DGSM estimations and associated
computational methods are compared on analytical models in Section 4. An application to an industrial test is also
proposed, for a screening purpose.
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2 DGSM formulation using a Gaussian process metamodel

We consider the computer code
y = f(x1, . . . , xd)

where x1, . . . , xd are d uncertain input parameters, resumed by the vector x = (x1, . . . , xd). The function f maps

from X =
∏d

k=1 Xk ⊂ R
d to R and is assumed to be square integrable. We are interested in the variability of

the output f(x) with respect to the different input parameters over their definition domain X . In the context of
Global Sensitivity Analysis (GSA) [39], the x1, . . . , xd are considered as realizations of the independent random vari-
ables X1, . . . , Xd whose probability density functions µX1 , . . . , µXd

are known, with µXk
(x) > 0 over Xk for any

k ∈ {1, . . . , d}. We want to measure the dependence between the random input parameters and the random output
Y = f(X) using sensitivity indices.

Usually, a GSA is based on a M -sample S =
(
X(i), Y (i)

)
1≤i≤M

made of M independent and identically distributed

(i.i.d.) computer code runs, where the output value Y (i) = f
(
X(i)

)
is function of the ith input vector value

X(i) =
(

X
(i)
1 , . . . , X

(i)
d

)
.
(
X(i), Y (i)

)
is called a computer experiment, or a code simulation.

2.1 GSA based on Sobol’ indices

A classical approach in GSA consists of computing the first-order and total Sobol’ indices which are based on the
output variance decomposition [44, 16]. If the variables X1, . . . , Xd are independent and if E[f2(X)] < +∞, where
E is the expectation operator, we can apply the Hoeffding decomposition to the random variable f(X) [10]:

f(X) = f∅ +

d∑

i=1

fi(Xi) +

d∑

i=1

d∑

i<j

fij(Xi, Xj) + . . . + f1...d(X1, . . . , Xd)

=
∑

u⊂{1,...,d}
fu(Xu) (1)

where f∅ = E[f(X)], fi(Xi) = E[f(X)|Xi]−f∅ and fu(Xu) = E[f(X)|Xu]−∑v⊂u fv(Xv), with Xu = (Xi)i∈u, for

all u ⊂ {1, . . . , d}. All the 2d summands in (1) have zero mean and are mutually uncorrelated with each other. This
decomposition is unique and leads to the Sobol’ indices. These are the elements of the f(X) variance decomposition
according to the different groups of input parameter interactions in (1). More precisely for each u ⊂ {1, . . . , d}, the
first-order and total Sobol sensitivity indices of Xu are defined by

Su =
V [fu(Xu)]

V [f(X)]
and ST

u =
∑

v⊃u

Sv,

where V is the variance operator. Clearly 100Su is the percentage of the output variance explained by Xu, inde-
pendently from the other inputs, and 100ST

u is the percentage of the output variance explained by Xu considered
separately and in interaction with the other input parameters.

In practice, we are usually interested in the first-order sensitivity indices S1, . . . , Sd, the total ones ST
1 , . . . , ST

d

and sometimes in the second-order ones Sij , 1 ≤ i < j ≤ d, where Si, Sij and ST
i measure the output sensitivities

due to the main effect fi of Xi, to the interaction fij between Xi and Xj and to all the Xi contributions (fu)u∋i

respectively. The model f is devoid of interactions if
∑d

i=1 Si ≈ 1.

Sobol’ indices are widely used in GSA because of their efficiency and facility of interpretation. Indeed, for a given
input parameter, the Sobol’ index measures its contribution to the mean squared deviation of the model output from
its mean value. However, from a physical point of view, engineers can be more interested in its contribution
to the mean value of the output gradient. Indeed, such a consideration can highlight some sharp output effects
along an input direction, in addition to the contribution of this input to the output variance. The study of partial
derivatives can help to measure the granularity of the numerical simulator output according to the different input
parameters. It takes into account the important local variations of the numerical simulator and can be view as a
localized sensitivity measure of the phenomenon. It brings also rough to fine information about the output gradient
in a context of optimization.

2.2 Derivative-based global sensitivity measures

Introduced by [42], sensitivity indices based on the partial derivatives of the computer code f have recently been
studied by [43] and [24], generalizing the importance measures introduced in the Morris method [31]. They are based
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on the hypothesis that for a given input parameter xk, k ∈ {1, . . . , d}, an important partial derivative with respect to
this variable, over the whole probabilized input parameter space, leads to an important variation of the model output
f(x). These sensitivity indices are called “derivative-based global sensitivity measures” (DGSMs) and the kth, k in
{1, . . . , d}, is equal to:

Dk = E

[(
∂f(X)

∂xk

)2
]

. (2)

As mentioned by [49], the DGSMs are tied with the Morris method [31]. From a synthetic point of view, this

method associates to each input parameter xk the empirical mean M̂k = 1
R

∑R
r=1 d

[r]
k and the standard deviation

Σ̂k =

√
1

R−1

∑R
r=1

(
d

[r]
k − M̂k

)2

of the elementary effect d
[r]
k defined as

d
[r]
k =

f
(

X
[r]
1 , . . . , X

[r]
k−1, X

[r−1]
k + δ

[r]
k , X

[r−1]
k+1 , . . . , X

[r−1]
d

)
− f

(
X

[r]
1 , . . . , X

[r]
k−1, X

[r−1]
k , . . . , X

[r−1]
d

)

δ
[r]
k

where X
[r]
k = X

[r−1]
k + δ

[r]
k for any k ∈ {1, . . . , d}, with δ

[r]
k the ((r − 1)d + k)th random step. The construction of

the random design is studied in more details in [31], starting from an initial point X [0].

First, the DGSM of xk can be rewritten as Dk = M2
k + Σk where Mk = E

[
∂f(X)

∂xk

]
and Σk = V

[
∂f(X)

∂xk

]
. Then,

we note that Mk and Σk generalize M̂k and Σ̂k respectively: the first quantities consider the first centered moments
of the kth partial derivative while the second ones consider their empirical versions replacing the partial derivative by

a finite difference with step δ
[r]
k . Consequently, if the step δ

[r]
Xk

is greater than the characteristic dimension of the
physical problem, the Morris method focus on the global variation of the model output whereas the DGSM approach
focus on local changes averaged over the whole probabilized input parameter space.

Lastly, for some non-monotonic functions, the Morris index M̂k can be almost equal to zero even if xk has an
important influence on the model output; the DGSM Dk allows to detect this dependence, with the same idea than
the sensitivity measure proposed by [2] which replaces the elementary effect by its absolute value in the M̂k and Σ̂k

formulations.

Otherwise, [43] and [24] compare DGSMs and Sobol’ indices from a theoretical point of view and show that for
a large category of continuous distributions, the total Sobol’ index ST

k is bounded by the DGSM index Dk weighted
by a constant Ck, function of the probability law of Xk: ST

k ≤ CkDk. The constant Ck is equal to 4c2
k/V[Y ] where

ck is the Cheeger constant if the probability density function of Xk is a Boltzmann probability measure (cf. Table
1). If Xk follows the uniform law U(a, b), the constant ck is equal to ck = b−a

2π .

Normal Exponential Gumbel Weibull
N (µ, σ2) E(λ) G(µ, β) W(k, λ)

σ
2

1
λ

β
log(2)

λ(log(2))(1−k)/k

k

Table 1: Cheeger constant for different probability distributions.

Similarly, in order to compare DGSMs, it is possible to weight these quantities by the input variances. These
weighted DGSMs (∆k)1≤k≤d are defined by ∆k = σ2

kDk where σ2
k = V[Xk] and have the advantage of being

dimensionless. This approach is similar to the one discussed by [38] in their introduction, considering a SA index
equal to the output partial derivative weighted by the input standard deviation and normalized by the standard de-
viation of the output. In this way, a very important DGSM, due to a single strong local variation along the direction
of xk whose uncertainty is very small, can be transformed into a small weighted DGSM. Conversely, a very small
DGSM, due to many medium local variations along the direction of xk whose uncertainty is very important, can be
transformed into a medium or high DGSM. Such behaviors are more in agreement with global sensitivity measure
expectations: a high value when the input parameter strongly impacts the model output on average and a small one
for the inverse situation. Moreover, the comparison of weighted DGSMs is more reasonable than the comparison of
DGSMs. Indeed, while the first sensitivity measures are dimensionless, the second indices have different dimensions,
each of them corresponding to the associated input parameter one. As an intuitive justification, the choice of the
variance term σ2

k to weight the DGSM Dk makes sense in an output variance decomposition, using a linear expansion

of the function f(x) around x∗: f(x) ≈ f∗(x) = f(x∗) +
∑d

k=1
∂f(x)
∂xk

∣∣∣
x∗

(xk − x∗
k). In this case, we obtain for

independent input parameters the mean variance decomposition: E [V [f∗(X)]|x∗=X∗ ] =
∑d

k=1 ∆k.

Moreover, [23] show that the estimation of a DGSM index often requires much less model evaluations than the
estimation of a Sobol’ one. From this consideration, the weighted DGSMs could be used in screening to exclude the
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non-significant input parameters from the model specification, in a more economical way. This selection of influential
variables should be almost the same as the one obtained with the Sobol’ indices, because of the inequality linking
these sensitivity measures. Nevertheless, these studies mention that ranking the input parameters according to the
upper bound values does not lead necessarily to the same order than ranking these parameters according to the Sobol’
indices. These differences can be even more important that the numerical simulator output is rough. For example,
the sinus function f(x) = sin(ωx) governed by an uniform random variable leads to an upper bound increasing to
infinity with the frequency while the total Sobol’ index remains equal to 1.

Last but not least, the computer code does not always provide the adjoint code for the gradient evaluation.
Moreover, when this gradient can be get, which is not the case for the problems that we have to deal with, the
number of available computer experiments is often too low and the integrals are badly estimated in Expression (2).

Consequently in this paper, we propose to replace the computer code f by a surrogate model f̂ with a tractable
gradient which is less accurate but faster in execution [11], so allowing to have a much higher number M of Monte-
Carlo runs for the expectation estimation. More particularly, we focus on the Gaussian process metamodel [34],
in the same way as [3] and [28] for the estimation of the Sobol’ indices. This surrogate model is often powerful
for industrial studies and has a stochastic formulation which can usefully provide credibility intervals for the DGSM
estimation. Consequently, the GSA is realized using M independent and identically distributed evaluations of the
surrogate model according to the probabilistic law of the input variables X1, . . . , Xd.

2.3 Gaussian process metamodel

Let Ω be a sample space. We suppose that the observed computer code f can be modeled as an instance of the
Gaussian process (GP) Z : (X , Ω) → R indexed by R

d and defined for any ω in Ω by

Z(·; ω) = Z1(·; ω) + Z2(·; ω) (3)

where Z1(·; ω) and Z2(·; ω) are independent GPs with means µZ1 : x 7→= h(x)T β and µZ2 : x 7→ 0, and covariance
functions cZ1 : (x, x′) 7→ σ2r(x, x′) and cZ2 : (x, x′) 7→ σ2τ2δx(x′). The random variable Z(·; ω) is defined
by its mean µZ : x 7→ h(x)T β and its covariance structure CZ : (x, x′) 7→ σ2

(
r(x, x′) + τ2δx(x′)

)
, β being

a regression parameter vector, (σ2, τ2) variance parameters and δ· being the Dirac delta function. The vector
h(·) = (h1(·), . . . , hp(·))T is made of p basis functions, which are commonly monomials, e.g. ∀x ∈ X , h(x) =
(1 x1 . . . xd)T ∈ R

d+1 with p = d + 1. r is a kernel function parameterized by an hyperparameter vector θ ∈ Θ.
The random field mentioned in (3) can be decomposed into the sum of a deterministic term h(·)T β and a stochastic
one Z0(·; ω), where Z0(·; ω) is a centered GP with same covariance.

From the GP formulation, we associate to a sample A =
(
x(i), y(i)

)
1≤i≤n

the matrices H ∈ Mn,p(R) and

R ∈ Mn(R) defined by H =
(
hj

(
x(i)
))

1≤i≤n
1≤j≤p

and R =
(
r
(
x(i), x(j)

)
+ τ2δij

)
1≤i,j≤n

, where δij is the Kronecker

delta. We also define the n-dimensional vectors y =
(
y(1) . . . y(n)

)T
and ρ(·) =

(
r
(
·, x(1)

)
. . . r

(
·, x(n)

))T
, where

y(i) is supposed to be a realization of Z at point x(i) for some ω∗ ∈ Ω. Note that R and ρ depend on the hyperpa-
rameters θ.

Then we note ZC the GP Z1 conditioned by this sample A and the parameters (β, σ2, τ2, θ). ZC is the new
Gaussian process from which the computer code f is supposed to be an instance:

ZC(·; ω) =
[
Z1(·; ω)|A, β, σ2, τ2, θ

]
(4)

with mean:
f̂ : x 7→ h(x)T β + ρ(x)T R−1(y − Hβ) = h(x)T β + ρ(x)T γ (5)

and covariance function:
s2 : (x, x′) 7→ σ2

(
r(x, x′) − ρ(x)T R−1ρ(x′)

)
. (6)

where γ = R−1(y − Hβ).

Predictor. As an instance of this posterior random field ZC(·; ω), the response of the computer code f at a given

location x is predicted by the conditional mean f̂ = E [ZC(·; ω)]. Moreover, for any x in X , the conditional covariance

s2 gives the quadratic risk s2(x) := s2(x, x) of f̂(x).

Estimation. Formula (5) and (6) can not be used directly because the parameters (β, σ2, θ) have to be estimated,
classically by cross-validation or likelihood maximization procedures. In this paper, we consider the second method;

precisely, we iterate explicit computation steps, β̂ =
(
HT R−1H

)−1
HT R−1y and σ̂2 = n−1(y−Hβ̂)T R−1(y−Hβ̂),

and a numerical minimization one, θ̂ ∈ argminθ∈Θ

{
σ̂2 n
√

det(R)
}

. Then, the parameter set (β, θ, σ2) in Equations
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(5) and (6) is replaced by (β̂, θ̂, σ̂2). Hereafter, we always consider the estimated parameters but write (β, θ, σ2) in
order to lighten up the equations. For a same purpose, we do not consider a full Bayesian framework and not not
take into account the variability of the estimators in Expressions (5) and (6).

Nugget effect. When the parameter τ2 is forced to zero, the predictor f̂ interpolates the learning sample A [34].
This situation can be too restrictive for the predictor shape, e.g. an important value of n can provide an ill-conditioned
correlation matrix R and a sharp predictor. On the contrary, allowing a non-null value for τ2 often leads to a smoother
predictor f̂ and a higher generalization ability; this change is called a nugget effect. The value of τ2 can be optimized
by maximum likelihood, jointly with the other hyperparameters.

In our situation, we deal with sparse problems characterized by a weak density of observations in the input param-
eter space. Consequently, the nugget effect plays a part in the good conditioning of the matrix R but it is usefulness
for the prediction step, due to the regularity of the computer codes to substitute. This is the reason why the random
process ZC is defined by the Gaussian process Z1 conditioned by the learning sample, rather by the Gaussian process
Z conditioned by this sample.

Covariance choice. Finally, we limit ourselves to the case where the kernel r is a tensorized product of monodimen-
sional stationary kernels: ∀x, x′ ∈ X , r(x, x′) =

∏d
i=1 ri(xi − x′

i). This common hypothesis allows the analytical
developments presented in this paper. Furthermore, we suppose that these monodimensional kernels come from a
same family of covariance functions that the user has to choose: exponential, Gaussian, Matérn, ... Complementary
informations about Gaussian process metamodels can be found in the book Gaussian Processes for Machine Learning
of [34].

2.4 GPM-based estimation for DGSMs

In this paper, we propose two approaches for the estimation of the DGSM Dk, k ∈ {1, . . . , d}, using a GPM in

the same way as [28]. The first one uses no more than the estimator f̂ of f defined by (5) and builds the plug-in
estimator:

D̂
(1)
k = E



(

∂f̂(X)

∂xk

)2

 .

The second approach uses the law of the stochastic DGSM R̂D
(2)

k (ω) defined by the random variable:

R̂D
(2)

k (ω) = E

[(
∂ZC(X ; ω)

∂xk

)2

|ω
]

. (7)

From this, the DGSM Dk is estimated by the full-GPM estimator which is the R̂D
(2)

k (ω) expectation:

D̂
(2)
k = E

[
R̂D

(2)

k (ω)

]
.

Similarly to the use of s2(x) = V [ZC(x; ω)] as an indicator of the f̂(x) error, we could quantify the D̂
(2)
k estimation

error using the R̂D
(2)

k (ω) variance:

ŝ2
k = V

[
R̂D

(2)

k (ω)

]
. (8)

This quantity can be estimated using intensive Monte-Carlo sampling of the random variable R̂D
(2)

k (ω). Similarly,

credibility intervals associated to D̂
(2)
k are developed in Section 3.

2.4.1 Plug-in estimation of a DGSM

The plug-in estimation of the DGSM consists of the computation of D̂
(1)
k , which corresponds to the DGSM directly

estimated from the GPM predictor f̂ given in Equation (5). Knowing that f̂(x) = h(x)T β + ρ(x)T γ, the kth partial

derivative of f̂(x) is:

∂f̂(x)

∂xk
=

∂h(x)T

∂xk
β +

∂ρ(x)T

∂xk
γ

where ∂h(x)
∂xk

=
(

∂h1(x)
∂xk

, . . . ,
∂hp(x)

∂xk

)T

and ∂ρ(x)
∂xk

=

(
∂r(x,x(1))

∂xk
, . . . ,

∂r(x,x(n))
∂xk

)T

.
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Under the hypothesis of a tensorized product of monodimensional kernels for the covariance (see Section 2.3),
we obtain for any i ∈ {1, . . . , n}:

∂r
(
x, x(i)

)

∂xk
=

∂rk

(
xk, x

(i)
k

)

∂xk

d∏

j=1
j 6=k

rj

(
xj , x

(i)
j

)
.

Then, considering element-wise mean for matrices, i.e. (E[A])ij = E[Aij ] for any real matrix A, we obtain a first
estimator of the sensitivity measure Dk:

D̂
(1)
k = βT

E

[
∂h(X)

∂xk

∂h(X)T

∂xk

]
β + γT

E

[
∂ρ(X)

∂xk

∂ρ(X)T

∂xk

]
γ + 2βT

E

[
∂h(X)

∂xk

∂ρ(X)T

∂xk

]
γ (9)

whose integrals have to be analytically or numerically computed.

In this paper, we present the most common situation where the prior mean is constant. Consequently, we have
h(x) = 1 and Equation (9) becomes:

D̂
(1)
k = γT

E

[
∂ρ(X)

∂xk

∂ρ(X)T

∂xk

]
γ.

Remark 1. Extensions of the following results to a more complex prior mean, such as a polynomial, are straightforward
from Equation (9).

Then, thanks to the tensorized form of the kernel functions and of the independence hypothesis of the input

parameters X1, . . . , Xd, the matrix A[k] = E

[
∂ρ(X)

∂xk

∂ρ(X)T

∂xk

]
can be better rewritten

A[k] = E

[
∂ρk(Xk)

∂xk

∂ρk(Xk)T

∂xk

]

︸ ︷︷ ︸
B[k]

d⊙

l=1
l 6=k

E
[
ρl(Xl)ρl(Xl)

T
]

︸ ︷︷ ︸
C[l]

(10)

where ρl(x) =
(

rl

(
xl, x

(1)
l

)
. . . rl

(
xl, x

(n)
l

))T

, for any l ∈ {1, . . . , d} and
⊙

is the element-wise multiplication

operator. The computation of A[1], . . . , A[d] requires n(n + 1)d monodimensional integral evaluations, because these

matrices are function of the symmetric matrices B[1], C[1], . . . , B[d], C[d], each of which having n(n+1)
2 different

elements of the form:
C

[k]
ij = E

[
rk

(
Xk, x

(i)
k

)
rk

(
Xk, x

(j)
k

)]
(11)

or

B
[k]
ij = E




∂rk

(
Xk, x

(i)
k

)

∂xk

∂rk

(
Xk, x

(j)
k

)

∂xk


 . (12)

For particular cases of covariance functions and input parameter laws, analytical simplifications can be applied to
Equation (10). More generally, these integrals can be quickly approached by Monte-Carlo sampling.

2.4.2 Full-GPM estimation of a DGSM

Another approach consists of the estimation of the sensitivity measure Dk based on the full Gaussian process ZC(x; ω),

rather than on its mean only. More precisely, we consider the full-GPM estimator D̂
(2)
k which can be easily developed

as

D̂
(2)
k = D̂

(1)
k + E

[
V

[
∂ZC(X ; ω)

∂xk
|X
]]

. (13)

In this way, the estimator D̂
(2)
k is equal to the plug-in one, D̂

(1)
k , completed by an additive positive term associated

to the variance of the GPM; consequently, we have D̂
(2)
k ≥ D̂

(1)
k . We explicit this new part in the following manner:

E

[
V

[
∂ZC(X ; ω)

∂xk
|X
]]

= σ2

{
E

[
∂2r(U, V )

∂uk∂vk

∣∣∣∣
(U,V ):=(X,X)

]
− 1T

(
R−1

⊙
A[k]

)
1

}
(14)

where 1 is the all-ones element of Rn. A new term appears in this expression:

E

[
∂2r(U, V ; θ)

∂uk∂vk

∣∣∣∣
(U,V ):=(X,X)

]
(15)

7



which is easily estimable by Monte-Carlo sampling. Derivations of (13) and (14) are given in Appendix.

In addition, the full-GPM estimator (13) can be completed by an approximation of its error using the variance
(8) or a credibility interval computed by simulations.

The next part of this paper deals with the computation of terms (11), (12) and (15) required for the approximation
of D̂(1) and D̂(2) and for the construction of credibility intervals. Significance tests are also proposed.

3 Numerical implementation of the GPM-based DGSM estimators

In this part, we propose different numerical implementations of the DGSM estimators derived from GPM and defined

in Section 2. Precisely, we compute the matrices (11), (12) and (15) used in D̂
(1)
k and D̂

(2)
k , analytically or with a

Monte-Carlo method.

3.1 Analytical results for uniform laws and Gaussian kernels

First, we consider a specific covariance function for the GP and a certain type of input distribution, in order to get

analytical results for the computation of the estimator D̂
(1)
k of the sensitivity index Dk. More precisely, we consider

classical Gaussian kernel functions

rk(xk, x′
k) = exp

(
− (xk − x′

k)2

2θ2
k

)
, k ∈ {1, . . . , d},

and independent input parameters X1, . . . , Xd following uniform laws:

Xk ∼ U ([mk, Mk]) , k ∈ {1, . . . , d}.

First of all, under these considerations and using Lemma 1 (see Appendix), we rewrite the term (11)

C
[k]
ij =

√
πθkP

[
W

[k]
i,j ∈ [mk, Mk]

]
e

− (x
(i)

k
−x

(j)

k )
2

4θ2
k

Mk − mk
(16)

where W
[k]
i,j ∼ N

(
x

(i)

k
+x

(j)

k

2 ,
θ2

k

2

)
.

Furthermore, using Lemma 2 (see Appendix), we can show that the term (12) is equal to

B
[k]
ij = − (x

(i)
k − x

(j)
k )2

4θ4
l

C
[k]
ij

+

√
π

2θk(Mk − mk)

{
a

[k]
i,jϕ

(
a

[k]
i,j

)
− b

[k]
i,jϕ

(
b

[k]
i,j

)
+ P

[
Z

[k]
i,j ∈

[
a

[k]
i,j , b

[k]
i,j

]]}
e

−(x
(i)

k
−x

(j)

k )
2

4θ2
k (17)

where Z
[k]
i,j ∼ N (0, 1), a

[k]
i,j =

2mk−x
(i)

k
−x

(j)

k√
2θk

, b
[k]
i,j =

2Mk−x
(i)

k
−x

(j)

k√
2θk

and ϕ(.) is the probability density function of the

standard normal law.

Finally, we have:

E

[
∂2r(U, V )

∂uk∂vk

∣∣∣∣
(U,V ):=(X,X)

]
=

1

θ2
k

.

Expressions (16) and (17) only use evaluations of probability density and distribution functions. Consequently,

the DGSM estimators D̂
(1)
k and D̂

(2)
k do not require integral quadratures to approach (11), (12) and (15) in presence

of Gaussian kernel functions and uniform distributions for the input parameters. Under these assumptions, Section 4
illustrates the computational superiority of this method in comparison to Monte-Carlo approaches.

3.2 Monte-Carlo approximation for general case

In spite of the exact formulations of the GPM-based DGSM estimators, kernel functions are not always Gaussian and
the input distributions are not always uniform in many industrial applications. Consequently, in such cases, numerical
methods are required for the approximation of both DGSM estimators defined by (9) and (13).
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The first estimator given in (9) is a plug-in one, which represents the mean of the squared estimator of a f
partial derivative. This estimator having a deterministic and analytical formulation, the mean is approached by crude
Monte-Carlo according to the specified input distributions. The computational cost is not high because the method
only requires to estimate monodimensional integrals. A similar sampling technique can approach the variance (8)
expressed in terms of simple and double integrals.

The second estimator given in (13) is more complex because it represents the stochastic mean of the squared
Gaussian process ZC averaged over the input parameter space X :

D̂
(2)
k = E

[
E

[(
∂ZC(X ; ω)

∂xk

)2

|ω
]]

.

In order to get the second GPM-based estimator D̂
(2)
k , we decide to approach numerically the distribution of the

stochastic DGSM E

[(
∂ZC(X;ω)

∂xk

)2

|ω
]

using N instances:

E

[(
∂ZC(X ; ω1)

∂xk

)2
]

, . . . ,E

[(
∂ZC(X ; ωN)

∂xk

)2
]

,

or more precisely using N instances:

M−1
M∑

i=1

(
∂ZC

(
X(i); ω1

)

∂xk

)2

, . . . , M−1
M∑

i=1

(
∂ZC

(
X(i); ωN

)

∂xk

)2

where X =
(
X(1), . . . , X(M)

)
are M i.i.d. instances of X . In this case, we have:

∂ZC(X; ω)

∂xk
:=




∂ZC(X(1);ω)
∂xk

...
∂ZC(X(M);ω)

∂xk


 ∼ N (bM , CM )

with

(bM )i =
∂h(X(i))T

∂xk
β +

∂ρ(X(i))T

∂xk
γ, i ∈ {1, . . . , M}

and

(CM )ij = σ2

(
∂2r(U, V )

∂uk∂vk

∣∣∣∣
(U,V )=(X(i),X(j))

− ∂ρ(X(i))T

∂xk
R−1 ∂ρ(X(j))

∂xk

)
, i, j ∈ {1, . . . , M}.

In the following, we propose two options for the simulation of instances of the random variable

M−1
M∑

i=1

(
∂ZC(X(i); ω)

∂xk

)2

, (18)

in order to estimate its mean and, in a second phase, an associated credibility interval. The first one is based on a

propagative version of the Gibbs sampler which approximates the law of the Gaussian vector ∂ZC(X;ω)
∂xk

and the second
one is based on a chi-square approximation of the probabilistic law of the quadratic form (18). Both approaches
directly use the vector bM and the matrix CM .

3.2.1 Use of a propagative version of the Gibbs sampler

Concerning the first option, we simulate realizations of the Gaussian vector ∂ZC(X;ω)
∂xk

using the propagative version
of the Gibbs sampler introduced by [25]. More precisely, we consider the blocking strategy of pivots presented in
this paper and described in Algorithm 1. This propagative version is more efficient than the classical Gibbs sampler
introduced by [13], because it does not require the inversion of the matrix CM which is high-dimensional. The default
value for the block length L is 5, which is used by [25].

With this method, it is possible to approach the distribution of the stochastic DGSM D̂
(2)
k (ω). For this end, we

define the ith instance of the estimation of R̂D
(2)

k based on Algorithm 1 by

D̂
(2),M
k,i =

1

M

M∑

l=1

(
∂ZC

(
X(l); ωi

)

∂xk

)2

(19)
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for all i ∈ {1, . . . , N}. Then, we propose to estimate D̂
(2)
k by:

D̂
(2),N,M
k =

1

N

N∑

i=1

D̂
(2),M
k,i (20)

and its credibility interval of level α by:

CIα (Dk) =
[
q

(2),M,N
k,α/2 , q

(2),M,N
k,1−α/2

]
(21)

where q
(2),M,N
k,α/2 and q

(2),M,N
k,1−α/2 are the α/2 and 1 − α/2 empirical quantiles of the sample

(
D̂

(2),M
k,i

)
1≤i≤N

. In this

paper, we compute the quantities using the quantile function of R with the default parametrization.

Data: the mean vector bM , the covariance matrix CM , the block length L and the number of instances N ;
Result: N realizations of the random vector ∂ZC(X;ω)

∂xk
;

Extract s =
(

1
(Cm)ii

)
1≤i≤M

;

Update CM := CM

⊙(
ssT
)

where ⊙ is the element-wise multiplication operator;

Let A(0) := 0RM ;
for i = 1, . . . , N do

1. Take a sample Si = {i1, . . . , iL} of L integers in {1, . . . , M} without replacement;

2. A(i) = A(i−1) + CM,iB
−1
i

(
Ui − A(i−1)[Si]

)
, where :

• Ui ∼ N (0RL , IL),

• Bi is the upper triangular matrix of the CM [Si, Si] Cholesky decomposition,

• CM,i := CM [:, Si].

end
for i = 1, . . . , N do

∂ZC(X;ω(i))
∂xk

:= bM + A(i) ⊙ s.

end

Algorithm 1: Propagative version of the Gibbs sampler with the blocking strategy of pivots.

Remark 2. This method based on the Gibbs sampler can be easily extended to the crossed DGSM introduced by
[35]:

D̂ij = E

[
E

[(
∂2ZC(X ; ω)

∂xi∂xj

)2

|ω
]]

.

Such a sensitivity measure allows to quantify the influence of an interaction between two input parameters on the
output. [35] recommend their use for the detection of additive structure in the model; indeed, the authors prove
that a crossed DGSM Dij equal to zero implies that the input parameters xi and xj do not interact together in the
model.

3.2.2 Use of a chi-square approximation

Concerning the second option, we consider a chi-square approximation of the stochastic DGSM R̂D
(2)

k (ω):

R̂D
(2)

k (ω) ≈ D̂
(2),M
k (ω) =

1

M

M∑

i=1

(
∂ZC(X(i); ω)

∂xk

)2

=

(
∂ZC(X; ω)

∂xk

)T

A
∂ZC(X; ω)

∂xk
=: Qk(ω; X) (22)

where A = MIM ∈ MM (R). Recently, [27] propose to approach the distribution of the quadratic form Qk(ω; X)
using a noncentral chi-squared distribution χ2

l (δ) with (l, δ) ∈ N
∗ × R+. This method does not require any matrix

inversion or spectral decomposition, which is an advantage when the dimension of the covariance matrix CM is
important. More precisely, the authors rewrite Qk(ω; X) as a weighted sum of non-central chi-squared variables whose

weights are the eigenvalues of C
1/2
M AC

1/2
M . Then, they determine the hyperparameters of the χ2

l (δ) distribution so
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that its skewness is equal to the Qk(ω; X) one and the distance between the kurtoses of these random variables is
minimal.

From this chi-square approximation of the Qk(ω; X) distribution, it is possible to approach quickly the mean of

R̂D
(2)

k (ω) and its quantiles, in order to obtain an estimator D̂
(2)
k of Dk with a credibility interval. This method is

described in Algorithm 2.

Data: the mean vector bM , the covariance matrix CM and the number of instances N ;
Result: N realizations of the random variable D̂

(2),M

k (ω);
c1 = n−1 Tr(CM ) + n−1bT

M bM ;

c2 = n−2 Tr(C2
M ) + 2n−2bT

M CM bM ;

c3 = n−3
1

T
(
C2

M ⊙ CM

)
1 + 3n−3 (CM bM )T

CM bM ;

c4 = n−4
1

T
(
C2

M ⊙ C2
M

)
1 + 4n−4

((
CT

M

)T
bM

)T

CM bM ;

s1 = c3c−1.5
2 , s2 = c4c−2

2 , µ1 = c1 and σ1 =
√

2c2;
if s2

1 > s2 then

a = (s1 −
√

s2
1 − s2)−1;

δ = s1a−3 − a−2;
l = a−2 − 2δ;

else
a = s−1

1 ;
δ = 0;

l = c3
2c−2

3 ;

end
µ2 = l + δ;

σ2 =
√

2a;
for i = 1, . . . , N do

D̂
(2),M

k,i
= (ui − µ2)σ−1

2 σ1 + µ1 where ui ∼ χ2
l (δ);

end

Algorithm 2: Stochastic DGSM sampling using a noncentral chi-squared approximation.

At the end of Algorithm 2, we can compute the estimator D̂
(2),N,M
k and the credibility interval CIα

(
D

(2)
k

)
given

in Equations (20) and (21).

In Section 4, the different Monte-Carlo approaches are compared from accuracy and CPU time points of view.

3.3 Significance tests for screening

Finally, we would like to use the GPM-based DGSM estimators for a screening purpose, in order to distinguish the
non-significant input parameters and the significant ones. To this end, we propose to test the nullity of the DGSM Dk

using a statistical significance test. In this case, the null hypothesis is “H0: Dk = 0” and the alternative one is “H1:

Dk 6= 0”. These hypotheses can be rewritten “H0: ∀x ∈ X , ∂f(x)
∂xk

= 0” and “H1: ∃X0 ⊂ X , ∀x ∈ X0, ∂f(x)
∂xk

6= 0”.

Under H0, the mean mM of the Gaussian vector ∂ZC(X)
∂xk

is the null vector of R
M . Consequently, the p-value

associated to this statistical test and to the estimator D̂
(2)
k is

pval,k = P

[
Qk(ω; X) > D̂

(2)
k |H0

]
,

and we use the chi-square approximation or the Gibbs sampler propagative version in order to approximate this
probability under H0. In this way, we can sort the input parameters according to their p-values; this approach seems
more robust for us than sorting according to the values of the DGSM estimators because this method considers the
number of observations, the estimator variances and the sensitivity index sizes.

4 Numerical experiments

In this section, we propose some numerical experiments to compare the different GPM-based DGSM estimators
previously developed. In a first part, we study the convergence of the plug-in and full-GPM DGSM estimators and
compare, for the second one, the different Monte-Carlo approximations proposed in Section 3.2. In a second part, we
apply the DGSMs to an industrial application and compare the results with those obtained with the classical Sobol’
indices; we also apply the significance test proposed in Section 3.3 for a screening purpose.
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4.1 Comparison of the different estimators and numerical methods for the DGSM com-
putation

In this first part, we are interested in the convergence of the different DGSM estimators (plug-in and full-DGSM)
according to the learning sample size n and, for the full-GPM, in the comparison of the different Monte-Carlo
approximation methods. We consider the classical Ishigami function defined by

f(X) = sin(X1) + 7 sin2(X2) + 0.1X4
3 sin(X1)

where X1, X2, X3 are i.i.d. U([−π, π]). Its partial derivatives are:

∂f(X)

∂x1
= cos(X1)

(
1 + 0.1X4

3

)
,

∂f(X)

∂x2
= 14 cos(X2) sin(X2) and

∂f(X)

∂x3
= 0.4X3

3 sin(X1).

Table 2 contains the theoretical DGSMs and Sobol’ indices. The conclusions obtained with the total Sobol’ indices
and the DGSMs are qualitatively and quantitatively different. According to the first ones, the more influential input
is X1 (45% of the explained output variance) while X2 is the more significant according to the second ones (57% of
the DGSM sum). Concerning X3, results are roughly the same with both types of sensitivity indices.

X1 X2 X3

1st order Sobol 0.31 0.44 0
Total Sobol 0.56 (45%) 0.44 (36%) 0.24 (19%)

DGSM 7.7 (18%) 24.5 (57%) 11.0 (25%)

Table 2: Theoretical DGSMs and Sobol’ indices for the Ishigami function.

Procedure

In the following, the DGSM estimators are built from a GPM with a constant mean and a stationary tensorized
covariance based on Gaussian kernels (see Section 2.3). First, we consider a sample A =

(
x(i), f(x(i))

)
1≤i≤n

where(
x(i)
)

1≤i≤n
is an optimized Latin Hypercube Sample [30] of size n in [−π, π]3. This design of experiments is built

using the maximinSA_LHS function of the R package DiceDesign v 1.2, producing a low-discrepancy LHS based
on the centered L2-discrepancy criteria [20] and on the Enhanced Stochastic Evolutionary [37]. Then, the GPM is
obtained using this learning sample and the R package DiceKriging v 1.5.3 [36], the parameters being estimated
by likelihood maximization with a BFGS algorithm [1].

From this GPM, we want to:

1. compare the plug-in and full-GPM DGSM estimators using the analytical results presented in Section 3.1;

2. compare the Monte-Carlo approximation methods from accuracy and CPU time points of view.

But right before, we can look at the CPU time associated to the computation of the Sobol’ indices and DGSMs
from a Gaussian process model. Precisely, we consider a GPM built from n = 200 observations, with a constant
mean and a Gaussian covariance function. Total Sobol’ indices are approximated using the sobolGP function of the R
package sensitivity, with the option sobol2002, and DGSMs are approached using the chi-square approximation.
This calculation is repeated for 100 different designs of experiments and for both kind of sensitivity measures, the
number of X samplings is equal to 1000. Results show that the computation of the Sobol’ indices lasts 7.51 (+/-
1.96) seconds on average, while the DGSM one lasts 0.20 (+/-0.20) second, which demonstrates the computational
superiority of these indices. We also compare the distribution of the absolute error of estimation, normalized by
the maximum of the true sensitivity indices. We justify this choice of normalization by the desire to scale all the
sensitivity measures into the interval [0, 1] in order to compare quantities having the same variation range. Figure
1 represents the results associated to this normalized error for the previous GPM. We can see that the errors of the
estimated DGSMs is significantly lower than the estimated Sobol’ index one. Moreover, Sobol’ index estimators have
a greater variability than the DGSM ones. This difference is all the more important that the number of observations
n is high (e.g. for n = 300), and conversely (e.g. for n = 100).

4.1.1 Comparison of plug-in and full-GPM DGSM estimators

Now, we run both estimators for different learning sample sizes n ∈ {50, 100, 150, 200} and, for each learning sample,
we measure the accuracy of the surrogate model using the prediction coefficient

Q2 = 1 −
∑ntest

i=1

(
ytest,(i) − ŷtest,(i)

)2

∑ntest

i=1

(
ytest,(i) − ȳtest

)2
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(c) n = 300

Figure 1: Comparison of the normalized error distributions for DGSM (D) and total Sobol’ index (S) estimations
from a GPM.

where (xtest,(i), ytest,(i))1≤i≤ntest is a test sample built from an uniform grid of ntest = 10000 nodes and ȳtest =
1

ntest

∑ntest

i=1 ytest,(i). Note that this accuracy criterion is also computed for the partial derivatives of the Ishigami
function. Finally, all these steps are repeated 1000 times and we look at the mean, the 0.025 and the 0.975 quantiles
of the Monte-Carlo distributions of both estimators.

Figure 2 represents the evolution of the plug-in and full-GPM DGSM estimators in function of the sample size n.
It shows also the evolution of the plug-in ones in function of the accuracy criterion Q2 associated to the corresponding
f partial derivatives. In this case, each star represents a plug-in DGSM estimation associated to one sample size and
one Monte-Carlo run. First of all, we can arrange the input parameters according to their influences almost surely,
when the number of observations is greater than 170. Moreover, we can conclude that the second variable is the most
influential from 50 observations. Thirdly, looking at the dashed lines which represent 0.025 and the 0.975 quantiles
of the Monte-Carlo estimator distribution, the full-GPM DGSM estimators lead to possibly much higher values than
the plug-in ones. This phenomenon can be explained by the difference between both estimators, which is positive
and equal to the mean variance of the stochastic squared partial derivative of the conditioned Gaussian process (see
Equation (13)). Indeed, this quantity can be important for small designs of experiments and tends to zero when the
number of observations increases. The same phenomenon has been observed with a Matérn kernel.

Then, Figure 3 shows that the differences of convergence rate between the explanatory variable DGSMs is due to
the fitting quality of the different partial derivatives which differs from an input parameter to another. Particularly,
the performance of the GPM to predict the partial derivatives is weaker for the input parameter X3 than for the
other ones. This may be due to the presence of this variable only in an interaction term, with a small coefficient and
under the form of a non-linear effect almost equal to zero over the half of the variation domain of X3. In this way,
its influence could be hidden by the other input parameters for weak sample size.

Finally, both estimators converge to the same value which is the theoretical DGSM and for small sample sizes, the
full-GPM one can make some important excesses (here with the input X2) or get closer to the right value (here with
the input X1). In absolute terms, the full-GPM estimator is more justified because it takes up the hypothesis
underlying the GPM: “the model f(x) is an instance ZC(·; ω∗) of the Gaussian process (4)”. Consequently,
under this assumption, the theoretical DGSM Dk is the DGSM of ZC(·; ω∗), with an unknown ω∗ ∈ Ω, and

the best estimator in a mean-square sense is the mean of D̂
(2)
k (ω) over Ω.

4.1.2 Comparison of Monte-Carlo approximations for the stochastic DGSM

Now, we focus on the distribution of the random variable R̂D
(2)

(ω) and compare the three following Monte-Carlo
methods:

1. sampling according to the multivariate Gaussian law of ∂ZC(X;ω)
∂xk

, using the mvrnorm function of the R package
MASS;

2. sampling using the propagative version of the Gibbs sampler based on a blocking strategy of pivots, proposed
in Section 3.2.1;

3. sampling using the chi-square approximation proposed in Section 3.2.2.

The first method, based on a eigendecomposition of the covariance matrix, is used for reference. Indeed, from an
accuracy point of view, this Monte-Carlo approach does not use any probability law approximation, contrary to the

13
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Figure 2: Evolution of the plug-in (blue) and full-GPM (red) DGSM estimators associated to the Ishigami function,
in function of the number of observations n (three first figures). The solid lines represent the mean while the dashed
ones represent the 2.5% and 97.5% quantiles of the Monte-Carlo distribution. The last picture represents the plug-in
DGSM estimations associated to X1 (green), X2 (red) and X3 (blue) in function of the accuracy criterion Q2 of
their associated partial derivatives.
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Figure 3: Evolution of the fitting accuracy of the Ishigami function and its partial derivatives according to the number
of observations.
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other ones. But this method is much more expensive from a CPU time point of view and would not be used in
practice afterwards.

In this study, for different sample sizes n, we compute N instances of the stochastic DGSM D̂
(2)
3 (ω) associated

to X3 according to the three Monte-Carlo methods and using M = 10000 simulations in the
(

D̂
(2),M
3,i

)
1≤i≤N

com-

putation (see Equation (19)), with n ∈ {50, 100, 200} and N ∈ {500, 1000, 5000, 10000}. From these instances, we

obtain the full-GPM estimator D̂
(2)
3 and the 2.5% and 97.5% quantiles of the D̂

(2)
3 (ω) law.

N = 500 N = 1000 N = 5000 N = 10000
Method 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
n = 50 0.0123 5.9 0.9 2.1 0.0124 6.8 1.3 2.0 0.0118 14.4 4.6 1.9 0.0121 24.1 8.7 1.9
n = 100 0.0361 6.1 1.1 2.2 0.0339 6.6 1.4 2.0 0.0339 14.5 4.7 2.0 0.0344 24.2 8.7 2.0
n = 200 0.1343 6.3 1.3 2.5 0.1280 6.8 1.7 2.3 0.1284 14.8 5.0 2.3 0.130 24.5 9.0 2.3

Table 3: Comparison of the mean computational time (in seconds) for the GPM-based Monte-Carlo estimators using
the mvrnorm function (1), the Gibbs sampler (2) or the chi-square approximation (3). The method indexed by 0 is
the analytical one for uniform input laws and Gaussian kernels.

After R = 100 repetitions of the previous steps, Table 3 presents the mean computational time associated to the
three Monte-Carlo methods, for different sample sizes n and different Monte-Carlo lengths N . Firstly, the CPU
time is almost insensitive to n. Secondly, when N is small with respect to M , the propagative version of the
Gibbs sampler is faster than the chi-square approximation. To the contrary, when N is of the same order as
M , this second approach is quicker than the first one. More generally, the chi-square approximation is all
the more rapid than M is small with respect to N . In the specific case where the estimator is the only quantity
of interest, that is to say when standard deviation or credibility interval are not required, the use of analytical formula
is very advised for uniform input laws and Gaussian kernels, with a CPU time between 10 and 100 times lower than
the best one obtained with Monte-Carlo methods.

From an accuracy point of view, the differences between the different estimator errors are negligible
with respect to the surrogate model error and the choice of a particular Monte-Carlo method has to be
made according to CPU time considerations rather than accuracy ones.

To conclude, the propagative version of the Gibbs sampler and the chi-square approximations presented
in Sections 3.2.1 and 3.2.2 are accurate approximations of the reference method using mvrnorm. From a
CPU time point of view, we advise the use of the the Gibbs sampler when N is small with respect to M ,
and otherwise the use of the chi-square approximation.

4.1.3 Comparison for a high-dimensional test case

We also compare both DGSM estimators in a high-dimensional context. For this, we consider the following function:

f(X) = α

d∑

i=1


Xi + β

d∑

j>i

(
d + 1 − i

d

)2

XiXj




where α =
√

12 − 6
√

0.1(d − 1) and β = 12
√

0.1(d − 1). This function is related to the one proposed by [32], with

a decay term
(

d+1−i
d

)2
for the interaction between the input variables Xi and Xj . In our case, we consider d = 20

independent random inputs, identically distributed according to the uniform distribution on the interval [0, 1]. For
the inputs X1, . . . , X9, the associated DGSMs are respectively equal to 15%, 12%, 10%, 8%, 7%, 6%, 5%, 4% and
4% of the mean squared gradient component sum; for the other inputs, the contribution is lower than 3%. Then, we
compare the plug-in and full-GPM estimators for different sample sizes n ∈ {50, 100, 200, 300}. More precisely, for a

given input, we consider the errors of the scaled DGSM estimators
(

D̂k−Dk

maxj Dj

)
in Figure 4 and the errors of the DGSM

estimator ratios D̂k∑
d

j=1
D̂j

− Dk∑
d

j=1
Dj

in Figure 5. Firstly, we can see that the full-GPM estimators lead to better

results in terms of the DGSM approximation (see Figure 4), especially for the most significant input parameters.
It is interesting to notice that the full-GPM DGSM estimators are greater than the true DGSM values for the less
significant variables while their are lower for the more significant ones, while the plug-in DGSM estimators underesti-
mate the DGSMs whatever the level of significativity. Then, Figure 5 compares the estimated and theoretical ratios
of the DGSMs and conclusions are clear: the mean plug-in estimators lead to the better results for all the input
parameters, while the full-GPM estimators are biased, with a behavior similar to the one observed in Figure 4 when
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the significativity level decreases. Conversely, the full-GPM estimator quality is less dependent to the sample, as we
can see it through the boxplot widths. To conclude, full-GPM and plug-in DGSMs seem to be complementary
in terms of scaled estimation errors for the individual DGSMs and errors of their individual contribution to
the mean squared gradient component sum.

Remark 3. Note that the partial derivatives are complicated to estimate from a GPM with a constant mean, because
the model f is linear while the GPM predictor is a kind of radial basis function. Consequently, even if the GPM is
robust for the approximation of f , with a Q2 criterion close to 1 when the sample size is important, the function
gradient can be not sufficiently well estimated. This can explain the 10% error occurring for the first input variables,
even for a sample size n equal to 300.
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Figure 4: Errors of the DGSM estimators for different sample sizes.
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Figure 5: Errors of the DGSM estimator ratios for different sample sizes.

4.2 Application to an environmental problem

Finally, we apply the DGSMs defined by Expression (2) to an environmental problem developed by CEA (France)
and Kurchatov Institute (Russia) and dealing with a radioactive waste temporary storage site close to Moscow. The
main objective is to predict the transport of strontium 90 between 2002 and 2010, in order to determine the aquifer
contamination. This transport in saturated porous media is modeled by the MARTHE computer code [50]. In
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particular, this model returns in output the strontium 90 concentration predicted for year 2010 in many piezometers
located on the waster repository site. In this study, we focus on this concentration for a piezometer of interest.
This output is function of 20 uncertain input parameters representing the permeability of different geological layers,
longitudinal dispersivity coefficients, transverse dispersivity coefficients, sorption coefficients, porosity and meteoric
water infiltration intensities. [28] ran a global sensitivity analysis from the more influential input variables, estimating
the Sobol’ indices with a Gaussian process metamodel. In the same way, we estimate the DGSMs from a GPM and
from the tools developed in this paper, considering the whole set of input parameters.

Procedure

Concretely, we build a GPM from the 300 observations used by [28] with a constant mean and a stationary tensorized
covariance based on Gaussian kernels. Its accuracy is measured with the prediction coefficient Q2 estimated by
leave-one-out cross-validation [15]. Because of the high number of input parameters, we build this surrogate model
iteratively using the efficient methodology of [29].

For the global sensitivity analysis, 17 out of 20 input parameters follow uniform distributions and the 3 remaining
ones follow Weibull distributions, as mentioned in Table 4. So, we can not use the analytical formula of the DGSM
estimators dedicated to uniform laws. Instead, we estimate them using the chi-square approximation approach with
M = 1000.

Remark 4. Note that in the initial test case [50], some factors are dependent: d1-dt1, d2-dt2, d2-dt3 and i1-i2-i3;
this is not a problem for the DGSMs because the definition of these sensitivity indices is not based on a independence
assumption, contrarily to the Sobol’ indices for example. Furthermore, the DGSM estimation using the chi-square
approximation method can deal with dependent input parameters, contrarily to the DGSM estimators D̂(1) and D̂(2).
However, the interpretation of the results is more complicated in presence of dependent input variables and is beyond
the remit of this study. Consequently, we replace (dt1, dt2, dt3) by the ratios (dt1/d1, dt2/d2, dt3/d3), which
are independent of the other input parameters, and we consider the variations of infiltration coefficients (i1, δi2, δi3)
between consecutive layers rather than their values. These modifications are mentioned by a bold italic index in Table
4.

Results

The GPM built with the learning sample has a Q2 = 0.97 using a leave-one-out cross-validation. Then we compute

N = 10000 instances of the weighted stochastic DGSM R̂∆
(2)

k (ω) to obtain the mean ∆̂
(2)
k , which is the estimator

of ∆k, the 2.5% and 97.5% quantiles and the p-value associated to the significance test described in Section 3.3.
These quantities are gathered in Table 5. Firstly, the DGSM estimations lead to the conclusion that the variable
kd1 explains 88% of the global output uncertainty while the δi3 contribution is equal to 7% and per1 and perz2

to around 2%. Secondly, the 95% intervals support these conclusion. Finally, we compute statistical tests on the
nullity of these DGSMs and sort the input parameters according to their p-values. With this approach, kd1, δi3,
per1, perz2, per3 and dt1/d1 are the most significant variables while kd2 and kd3 can be fixed to nominal values
if we consider a level α = 5%. In the case of a level α = 1%, the input parameters dt3/d3, poros, dt2/d2, d2,
perz4 and i1 can also be fixed to nominal values, what remove nine uncertainty sources in the Marthe model and
consequently reduce its complexity.

5 Conclusion

This paper deals with the estimation of the derivative-based global sensitivity measures (DGSMs) associated to a
numerical simulator in global sensitivity analysis (GSA) [43]. This work falls within the scenario where this model does
not provide the adjoint code to compute its output gradient. Under this consideration, we replaced this simulator
by a surrogate model, more precisely by a Gaussian process metamodel (GPM) [34]. This idea has already been
investigated with other surrogate models or sensitivity measures [46, 28, 47].

We proposed two kinds of GPM-based DGSM estimators. A first-one consists of substituting the numerical
model by the GPM predictor; we called it “plug-in estimator”. A second one uses the full GPM and we showed that
this DGSM estimator is equal to the plug-in one, completed by an additive variance term; we called it “full-GPM
estimator”. This second estimator is the expectation of a stochastic DGSM where the numerical model is replaced
by the whole GPM, not only its mean contrarily to the plug-in estimator; in this way, it takes into account the
metamodel error, contrarily to the plug-in one. Consequently, we can also approach the distribution of this stochastic
DGSM, build many statistics and more particularly provide a credibility interval for the DGSM estimator. Using this
full-GPM estimator, we also proposed a significance test for eliminating the non-influential variables in a screening
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Input parameters Notation Distribution Distribution
type parameters1

1 Hydraulic conductivity layer 1 per1 Uniform 1, 15
2 Hydraulic conductivity layer 2 per2 Uniform 5, 0
3 Hydraulic conductivity layer 3 per3 Uniform 1, 15
4 Hydraulic conductivity zone 1 perz1 Uniform 1, 15
5 Hydraulic conductivity zone 2 perz2 Uniform 1, 15
6 Hydraulic conductivity zone 3 perz3 Uniform 1, 15
7 Hydraulic conductivity zone 4 perz4 Uniform 1, 15
8 Longitudinal dispersivity layer 1 d1 Uniform 0.05, 2
9 Longitudinal dispersivity layer 2 d2 Uniform 0.05, 2
10 Longitudinal dispersivity layer 3 d3 Uniform 0.05, 2

Transversal dispersivity layer 1 dt1 Uniform 0.01× d1, 0.1× d1
11 Ratio of transversal to longitudinal dt1/d1 Uniform 0.01, 0.1

dispersivity layer 1
Transversal dispersivity layer 2 dt2 Uniform 0.01× d2, 0.1× d2

12 Ratio of transversal to longitudinal dt2/d2 Uniform 0.01, 0.1
dispersivity layer 2

Transversal dispersivity layer 3 dt3 Uniform 0.01× d3, 0.1× d3
13 Ratio of transversal to longitudinal dt3/d3 Uniform 0.01, 0.1

dispersivity layer 3
14 Volumetric distribution coefficient l.1 kd1 Weibull 1.1597, 19.9875
15 Volumetric distribution coefficient l.2 kd2 Weibull 0.891597, 24.4455
16 Volumetric distribution coefficient l.3 kd3 Weibull 1.27363, 22.4986
17 Porosity poros Uniform 0.3, 0.37
18 Infiltration type 1 i1 Uniform 0, 0.0001

Infiltration type 2 i2 Uniform i1, 0.01
19 Infiltration type 2 - type 1 δi2 Uniform 0, 0.0092

Infiltration type 3 i3 Uniform i2, 0.1
20 Infiltration type 3 - type 2 δi3 Uniform 0, 0.096

Table 4: Input parameter description for the Marthe test case.

Weighted stochastic DGSM R̂C
(2)

k (ω) Sobol
Xk Mean Standard Quantiles Screening Total

∆̂
(2)
k = CkD̂

(2)
k deviation 2.5% 97.5% using pval,k

kd1 6.5e-2 (88.0%) 2.4e-3 6.0e-2 6.9e-2 0.000 *** 0.75
δi3 4.7e-3 (6.4%) 2.5e-4 4.2e-3 5.2e-3 0.000 *** 0.18

per1 1.1e-3 (1.6%) 1.1e-4 9.4e-4 1.4e-3 0.000 *** 0.03
perz2 1.0e-0 (1.4%) 1.3e-4 8.0e-4 1.3e-4 0.000 *** 0.02
per3 2.1e-4 (0.3%) 3.4e-5 1.5e-4 2.8e-4 0.000 *** 0.00

dt1/d1 1.4e-4 (0.2%) 2.3e-5 1.0e-4 1.9e-4 0.000 *** 0.00
perz1 1.4e-4 (0.2%) 2.3e-5 1.0e-4 1.9e-4 0.001 ** 0.00
perz3 1.4e-4 (0.2%) 2.1e-5 1.0e-4 1.9e-4 0.001 ** 0.00

d3 1.4e-4 (0.2%) 2.1e-5 1.0e-4 1.8e-4 0.001 ** 0.00
d1 1.3e-4 (0.2%) 2.0e-5 9.4e-5 1.7e-4 0.001 ** 0.00

per2 1.3e-4 (0.2%) 2.0e-5 9.1e-5 1.6e-4 0.005 ** 0.00
dt3/d3 1.2e-4 (0.2%) 1.8e-5 9.1e-5 1.6e-4 0.018 * 0.00
poros 1.2e-4 (0.2%) 1.8e-5 8.9e-5 1.6e-4 0.026 * 0.00

dt2/d2 1.2e-4 (0.2%) 1.7e-5 9.1e-5 1.6e-4 0.017 * 0.00
d2 1.2e-04 (0.2%) 1.7e-5 9.0e-5 1.6e-4 0.027 * 0.00

perz4 1.2e-4 (0.2%) 1.8e-5 8.8e-5 1.6e-4 0.018 * 0.00
i1 1.2-4 (0.2%) 1.6e-5 8.9e-5 1.5e-4 0.019 * 0.00
δi2 1.1e-4 (0.2%) 1.7e-5 8.3e-5 1.5e-4 0.001 ** 0.00
kd2 5.6e-5 (0.1%) 1.0e-5 4.1e-5 8.1e-5 0.140 0.00
kd3 4.8e-5 (0.1%) 8.2e-6 3.5e-5 6.7e-5 0.180 0.00

Table 5: DGSM statistics for the MARTHE test case using the weighted DGSM formulation.
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context. For all these reasons, the full-GPM is more relevant than the plug-in one, especially in presence of the small
learning sample.

These estimators require many integral evaluations which can be computed by Monte-Carlo sampling. To this
end, we proposed efficient methods based either on a propagative version of the Gibbs sampler, or on a chi-square
approximation. We advise the first approach when the number of Monte-Carlo replications is small with respect to
the number of GPM simulations required to the approximation of a stochastic DGSM instance, and conversely, and
vice versa. Both methods can be used for the significance test computation. Furthermore, we showed that these
plug-in and full-GPM estimators are analytically tractable when the input parameters are uniformly distributed and
when the kernel functions of the GPM are Gaussian, considerably reducing the computational time.

Finally, we ran numerical studies with the Ishigami function and a high-dimensional one, and consider an industrial
application with a complex hydrogeological computer code. For the first point, the convergence rates of the DGSM
estimators differ from an input parameter to another, which can be explained by the accuracy differences between
the GPM partial derivatives. This is due to the fact that the GPM maximizes the likelihood on a set of computer
code output observations, not on the corresponding partial derivative values. In other words, the metamodel is built
without any idea of the behavior of the model gradient. However, we showed that, from a few observations, the
estimators using the full-GPM can be used in a screening context to rank the input parameters according to their level
of influence on the model output, and provide an idea of their relative significance. The results are also convenient for
the high-dimensional function approximated by a GPM built from a few simulations. For the industrial application,
the results obtained with DGSMs weighted by the input variances give the same input parameter order as the one
obtained with Sobol’ indices [28] and the significant test lead to the same conclusion about the influential variables.
This reinforces the pertinence of these DGSM estimators for screening purposes.

To conclude, the GPM-based DGSM estimators developed in this paper are encouraging for global sensitivity
analysis and for screening from a few evaluations of the numerical simulator. A criticism of this approach is that
these estimators consider the gradient of the GPM which has been built using observations of the simulator output, not
of its gradient. Consequently, nothing guarantees that the partial derivatives of the GPM are accurate approximations
of the associated partial derivative of the simulator. For future research, adaptive sampling dedicated to the gradient
approximation enhancement could be investigated: a strategy could be to add, as a new code simulation, the input
parameter vector maximizing the trace of the GPM gradient covariance or the reduction of this trace. Moreover,
the GPM-based DGSM estimations should be improved if some observations of the model output partial derivatives
were available or if the prior mean of the Gaussian process was function of the input parameters. In the case where
the adjoint code is present, developments could be done about the integration of some model gradient simulations
completing the output evaluations. Finally, it would be relevant to connect the DGSMs with the active subspace
methodology [4], an emerging domain of computer experiments dealing with the identification of the main directions
in the input parameter space. These directions are the first eigenvectors of the eigenvalue decomposition applied to
the matrix composed of the pairwise products of the numerical simulator partial derivatives.
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Appendix: Mathematical details

Computation of D̂
(2)
k

From the Gaussian process metamodel and the definition D̂
(2)
k = E

[
E

[(
∂ZC(X;ω)

∂xk

)2

|ω
]]

, we obtain the relation

(13):

D̂
(2)
k = E

[
E

[(
∂ZC(X ; ω)

∂xk

)2

|ω
]]

= E

[
E

[(
∂ZC(X ; ω)

∂xk

)2

|X
]]

= E

[(
E

[
∂ZC(X ; ω)

∂xk
|ω
])2

+ Vω

[
∂ZC(X ; ω)

∂xk

]]

= E



(

∂f̂(X)

∂xk

)2

+ E

[
V

[
∂ZC(X ; ω)

∂xk
|X
]]

= D̂
(1)
k + E

[
V

[
∂ZC(X ; ω)

∂xk
|X
]]

.

Then we develop the second term E

[
V

[
∂ZC(X;ω)

∂xk
|X
]]

and get the result (14):

E

[
V

[
∂ZC(X ; ω)

∂xk
|X
]]

= E

[
Cov

[
∂ZC(X ; ω)

∂xk
,

∂ZC(X ; ω)

∂xk
|X
]]

= E

[
∂2

∂uk∂vk
Covω [ZC(U ; ω), ZC(V ; ω)]

∣∣∣∣
(U,V ):=(X,X)

]

= E

[
∂2

∂uk∂vk

(
σ2r(U, V ) − σ2k(U)T R−1k(V )

)∣∣∣∣
(U,V ):=(X,X)

]

= σ2
E

[
∂2r(U, V )

∂uk∂vk

∣∣∣∣
(U,V ):=(X,X)

]
− σ2

E

[
∂k(U)T

∂uk
R−1 ∂k(V )

∂vk

∣∣∣∣
(U,V ):=(X,X)

]

= σ2
E

[
∂2r(U, V )

∂uk∂vk

∣∣∣∣
(U,V ):=(X,X)

]

− σ2
n∑

i,j=1

(
R−1

)
ij
EX

[
∂r(X, X(i))

∂xk

∂r(X, X(j))

∂xk

]

= σ2
E

[
∂2r(U, V )

∂uk∂vk

∣∣∣∣
(U,V ):=(X,X)

]

− σ2
n∑

i,j=1

(
R−1

)
ij
E

[
∂rk(Xk, X

(i)
k )

∂xk

∂rk(Xk, X
(j)
k )

∂xk

]

×
d∏

l=1
l 6=k

E

[
rl(Xl, X

(i)
l )rl(Xl, X

(j)
l )
]

.

Gaussian kernel and uniform laws

Lemma 1. Let X ∼ U([m, M ]) and r(x, x′) = exp
(

− (x−x′)2

2θ2

)
. Then

E [r(X, y)r(X, z)] =
√

πθ(M − m)−1 exp

(
− (y − z)2

4θ2

)
P [Z ∈ [m, M ]]

where Z ∼ N
(

y+z
2 ; θ2

2

)
.
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Proof.

E [r(X, y)r(X, z)] = E

[
exp

(
−2X2 − 2X(y + z) + y2 + z2

2θ2

)]

= E

[
exp

(
− (X − y+z

2 )2 + 1
4 (y − z)2

2( θ√
2
)2

)]

=
√

πθ exp

(
− (y − z)2

4θ2

)
E


 1√

2π θ2

2

exp

(
− (X − y+z

2 )2

2( θ√
2
)2

)


=
√

πθ exp

(
− (y − z)2

4θ2

)
(M − m)−1

∫ M

m

ϕN
(

y+z
2 ; θ2

2

)(x)dx

where ϕN (m;σ2)(x) is the probability density function of the normal law with mean m and variance σ2.

Lemma 2. Let X ∼ U([m, M ]) and r(x, x′) = exp
(

− (x−x′)2

2θ2

)
. Then

E

[
∂r(X, y)

∂x

∂r(X, z)

∂x

]
= − (y − z)2

4θ4
E [r(X, y)r(X, z)]

+

√
π

2θ(M − m)
exp

(
− (y − z)2

4θ2

)
{aϕ(a) − bϕ(b) − P [Z ∈ [a, b]]}

where Z ∼ N (0, 1), a = 2m−y−z√
2θ

, b = 2M−y−z√
2θ

and where ϕ(.) is the probability density function of the standard

normal law.

Proof.

E

[
∂r(X, y)

∂x

∂r(X, z)

∂x

]
= E

[
(X − y)(X − z)

θ4
r(X, y)r(X, z)

]

= E

[(
(X − y+z

2 )2

θ4
− 1

4

(y − z)2

θ4

)
r(X, y)r(X, z)

]

= E

[
(X − y+z

2 )2

θ4
r(X, y)r(X, z)

]
− 1

4

(y − z)2

θ4
E [r(X, y)r(X, z)]

where

E

[
(X − y+z

2 )2

θ4
r(X, y)r(X, z)

]
=

√
πθ exp

(
− (y − z)2

4θ2

)
E

[
(X − y+z

2 )2

θ4
ϕN ( y+z

2 , θ2

2 )
(X)

]

︸ ︷︷ ︸
∆

with, using w = (x − y+z
2 )/(θ/

√
2),

∆ = (M − m)−1

∫ M

m

(x − y+z
2 )2

θ4

1√
2π θ√

2

exp

(
− (X − y+z

2 )2

2( θ√
2
)2

)
dx

= (M − m)−1

∫ b

a

w2

2θ2
ϕ(w)dw with a =

2m − y − z√
2θ

and b =
2M − y − z√

2θ

=
1

2θ2(M − m)

∫ a

b

wϕ′(w)dw

=
1

2θ2(M − m)

(
aϕ(a) − bϕ(b) −

∫ a

b

ϕ(w)dw

)
.
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