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Abstract

Physical phenomena are often studied using numerical simulators. Such computer codes are func-
tion of uncertain input parameters and a global sensitivity analysis (GSA) can be performed to
identify their impacts on the simulator outputs. Sobol’ indices, based on output variance decom-
position, are commonly used to perform quantitative GSA. For many years now, other tools have
been studied, closer to physical practices such as the derivative-based global sensitivity measures
(DGSM). However, numerical simulators rarely provide the output gradient and DGSM estimation is
not directly possible. To address this limitation, we propose to estimate the DGSMs using a Gaussian
process metamodel (GPM) which approximates the simulator.

Based on this GPM, we propose two DGSM estimators: a plug-in one defined by the DGSM of
the GPM predictor and another one defined by the expectation of the DGSM associated to the full-
GPM. The latter is equal to the first one completed by a variance term and can be accompanied by a
confidence interval. For Gaussian kernel and uniform input laws, analytical formula are given for both
DGSM estimators. For all other situations, Monte-Carlo methods for the expectation approximations
are proposed: a propagative version of the Gibbs sampler and a chi-square approximation. Moreover,
a significance test for the full-GPM based estimator is proposed for screening. The convergence of the
two GPM-based DGSM estimators and the Monte-Carlo approaches are compared on the Ishigami
function. Finally, we apply our work to an environmental application, showing the interest of the
significance test and discussing the meaning of the DGSMs.

Keywords. Sensitivity analysis, derivative-based global sensitivity measures (DGSM), Gaussian
process model, significance test, screening.

AMS subject classification. 62G99, 65C60, 60G15, 62P30.

1 Introduction
Computer models are widely used for the representation of physical phenomena in the industry. The
main reasons are the permanent increase of computational power and numerical method efficiency. Such
models take as input many numerical and physical explanatory variables. They can be used in computer
experimentation to explore the relationship between the variables and increase the knowledge about the
physical phenomenon, while an accurate physical experimentation is too costly (Santner et al., 2003).
However these numerical simulators often have a high number of uncertain input parameters, what can
lead to an important uncertainty over the model output (de Rocquigny et al., 2008; Kleijnen, 1997).
Commonly, the input uncertainties are modeled by probability distributions and a quantification of their
impacts on the output is performed. These steps define a sensitivity analysis (SA) of the considered com-
puter code. Then, the SA results could be used to reduce the model output uncertainty by enhancing the
characterization of the most influential input parameters and using nominal values for the non-significant
ones.

This SA can be either local (LSA), when it focus on the output behavior associated to input varia-
tions around a specific input parameter value, or global (GSA), when it considers the output behavior
for uncertainties based on the whole variation space of the input parameters (Saltelli et al., 2008). GSA
methods are widely used for industrial problems involving many variables (Saltelli et al., 2004). They can
distinguish the non-significant input parameters and the significant ones in a screening context. They can
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also quantify and order the influences of the significant parameters and of their interactions on the model
output behavior. Recently, Iooss and Lemaître (2015) propose a review on GSA in a methodological
framework, presenting screening methods, measures of importance and tools for the “deep exploration” of
computer code behaviors. Any GSA method has advantages and drawbacks: some approaches require a
high number of computer experiments but cover a wide scope of model behaviors, while other ones are less
greedy but rely on hypotheses such as a monotonic or linear behavior of the model output with respect
to the input variables. The second ones are mainly used for qualitative purposes such as screening, while
the first ones are used in a quantitative aim when an influence ranking of the input parameters is wished.
In this second case, the most popular are the variance-based indices, usually represented by the Sobol’
index which measures the proportion of the output variance explained by an input parameter (Sobol,
1993), considering either its single contribution (first-order index), or its whole contribution including the
interactions with the other input parameters (total index, e.g. Homma and Saltelli (1996)). Recently,
Fort et al. (2013) introduced the Goal Oriented Sensitivity Analysis, providing an unified framework
for several sensitivity analyses based on the mean output value, on a specific output quantile for excess
probability considerations, and so on. With the same idea to go further than the Sobol’ indices, Da Veiga
(2014) proposes new sensitivity measures considering the whole distribution of the output respect to those
of the input parameters, either comparing characteristic functions (Székely et al., 2007), or measuring
the covariance between input and output parameters in some reproducing kernel Hilbert spaces (Gretton
et al., 2005). Based on these measures, De Lozzo and Marrel (2015) study their meaning with respect to
the Sobol’ indices, and propose extensions to screening. Likewise, Plischke et al. (2013) propose sensitiv-
ity indices measuring the distance between the distribution of the model output conditioned by an input
parameter with the unconditioned one.

From a more physical point of view, Sobol and Gresham (1995) introduced the derivative-based global
sensitivity measure (DGSM) which represents the mean of the squared partial derivative of the model
output over the input domain. This approach can be tied with the well-known Morris method (Morris,
1991) which considers finite differences instead of the local derivatives: in a way, DGSMs can be viewed as
a generalization of the indices obtained with the Morris method (Touzani and Busby, 2014). The DGSMs
often have the advantage of requiring much less model evaluations than the Sobol’ indices (Kucherenko
et al., 2009), especially for high-dimensional problems (many tens of input parameters) or complex models
(non linear and interaction effects). Moreover, based on output partial derivatives, they provide more
local information which can be complementary to the one brought by the Sobol’ indices for example.

Various applications have illustrated the use of DGSMs such as an aquatic prey-predator chain (Iooss
et al., 2012), a biological system model (Kiparissides et al., 2009), a flood one (Lamboni et al., 2013) or a
reservoir simulator (Touzani and Busby, 2014). For a screening purpose, it has recently been proved that
the Sobol’ indices are upper bounded up to a constant by the DGSMs, firstly in the case of uniform or
normal probability distributions (Sobol and Kucherenko, 2009), and then in the case of a wider variety of
continuous distributions (Lamboni et al., 2013). These sensitivity indices have also been extended to the
interaction between two input parameters in (Roustant et al., 2014). The authors call such a measure a
crossed DGSM and define it by the mean of the square partial derivative of the output model according
to both input variables. They also provide an inequality link between the crossed-DGSMs and the total
Sobol’ indices.

For all these reasons, we focus here on the use of DGSMs, especially for a screening purpose. The
computation of these sensitivity indices then requires that the model supplies the adjoint code to evaluate
its output partial derivatives. When this code is unavailable, the gradient can be estimated by a finite-
difference method. However, in presence of few numerical simulator evaluations, this alternative can lead
to an important approximation error of the output gradient, which increases the DGSM one associated
to the integral quadratures. Another alternative consists in replacing the time-expensive numerical simu-
lator by a surrogate model (Forrester et al., 2008) and using its gradient; this is the choice that we make
in this paper. A surrogate model, also called metamodel, is a fast mathematical model built using some
evaluations of the numerical simulator in order to approach its behavior. Polynomial chaos extansions
(Soize and Ghanem, 2004), artificial neural networks (Dreyfus, 2005) and Gaussian process metamodels
(Rasmussen and Williams, 2005) are the most popular ones. Recently, metamodeling techniques have
been applied with polynomial chaos expansions to DGSMs (Sudret and Mai, 2014) and Sobol’ indices
(Sudret, 2008). Gaussian process metamodels have also been used for the estimation of Sobol’ indices
(Marrel et al., 2009); in particular, these surrogate models can provide confidence intervals to quantify
the approximation error of such sensitivity indices.
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In this paper, following the same approach of Marrel et al. (2009), we investigate the
DGSM approximation based on the replacement of the numerical simulator by a Gaussian
process metamodel. Moreover, we propose a DGSM-based significance test for a screening
purpose, in order to separate the significant inputs from the non-significant ones. We also
deal with the meaning of the DGSM from local and global points of view.

Firstly, we introduce the definition of DGSM and Gaussian process metamodel (GPM). Then, we
propose two estimators of the DGSMs based on a GPM: one using the GPM predictor and another one
considering the whole GPM distribution. In this second section, we also propose a confidence interval
for the DGSM, using the probability density function of the metamodel. Then in Section 3, we give
explicit formulations of these estimators for a particular covariance function of the GPM and specific
input parameter distributions. In all other cases, we propose to estimate the DGSM formulas by several
Monte-Carlo methods. Moreover, we build a significance test based on DGSM to reject the non influential
inputs for a screening purpose. Finally, the different DGSM estimations and associated computational
methods are compared on an analytical model in Section 4. An application to an industrial test is also
proposed, for a screening purpose.

2 DGSM formulation using a Gaussian process metamodel
We consider the computer code

y = f(x1, . . . , xd)

where x1, . . . , xd are d input uncertain parameters, resumed by the vector x = (x1, . . . , xd). The function
f maps from X =

∏d
k=1 Xk ⊂ Rd to R and is assumed to be square integrable. We are interested in the

variability of the output f(x) with respect to the different input parameters over their definition domain
X . In the context of Global Sensitivity Analysis (GSA) (Saltelli et al., 2008), the x1, . . . , xd are consid-
ered as realizations of the independent random variables X1, . . . , Xd whose probability density functions
µX1

, . . . , µXd are known, with µXk(x) > 0 over Xk for any k ∈ {1, . . . , d}. We want to measure the
dependence between the random input parameters and the random output Y = f(X) using sensitivity
indices.

In this paper, the GSA is based on a n-sample
(
X(i), Y (i)

)
1≤i≤n made of n independent and identically

distributed (i.i.d.) computer code runs, where the output value Y (i) = f
(
X(i)

)
is function of the ith

input vector value X(i) =
(
X

(i)
1 , . . . , X

(i)
d

)
∈ X ;

(
X(i), Y (i)

)
is called a computer experiment, or a code

simulation.

2.1 GSA based on Sobol’ indices
A classical approach in GSA consists in computing the first-order and total Sobol’ indices which are
based on the output variance decomposition (Sobol, 1993; Homma and Saltelli, 1996). If the variables
X1, . . . , Xd are independent and if E[f2(X)] < +∞, we can apply the Hoeffding decomposition to the
random variable f(X) (Efron and Stein, 1981):

f(X) = f0 +

d∑
i=1

fj(Xj) +

d∑
i=1

d∑
i<j

fij(Xi, Xj) + . . .+ f1...d(X1, . . . , Xd)

=
∑

u⊂{1,...,d}

fu(Xu) (1)

where f0 = E[f(X)], fj(Xj) = E[f(X)|Xj ] − f0 and fu(Xu) = E[f(X)|Xu] −
∑
v⊂u fv(Xv), with Xu =

(Xi)i∈u, for all u ⊂ {1, . . . , d}. All the 2d summands in (1) have zero mean and are mutually uncorrelated
with each other. This decomposition is unique and leads to the Sobol’ indices. These are the elements
of the f(X) variance decomposition according to the different groups of input parameter interactions in
(1). More precisely for each u ⊂ {1, . . . , d}, the first-order and total Sobol sensitivity indices of Xu are
defined by

Su =
V [fu(Xu)]

V [f(X)]
and STu =

∑
v⊃u

Sv,
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Clearly 100Su is the percentage of the output variance explained by Xu, independently from the other
inputs, and 100STu is the percentage of the output variance explained by Xu considered separately and
in interaction with the other input parameters.

In practice, we are usually interested in the first-order sensitivity indices S1, . . . , Sd, the total ones
ST1 , . . . , S

T
d and sometimes in the second-order ones Sij , 1 ≤ i < j ≤ d, where Si, Sij and STi measure

the output sensitivities due to the main effect fi of Xi, to the interaction fij between Xi and Xj and to
all the Xi contributions (fu)u3i respectively. The model f is devoid of interactions if

∑d
i=1 Si ≈ 1.

Sobol’ indices are widely used in GSA because of their efficiency and facility of interpretation. Indeed,
for a given input parameter, the Sobol’ index measures its contribution to the mean squared deviation
of the model output from its mean value. However, from a physical point of view, engineers can
be more interested in its contribution to the mean value of the output gradient.

2.2 Derivative-based global sensitivity measures
Introduced by Sobol and Gresham (1995), sensitivity indices based on the partial derivatives of the
computer code f have recently been studied by Sobol and Kucherenko (2009) and Lamboni et al. (2013),
generalizing the importance measures introduced in the Morris method (Morris, 1991). They are based
on the hypothesis that for a given input parameter xk, k ∈ {1, . . . , d}, an important partial derivative
with respect to this variable, over the whole probabilized input parameter space, leads to an important
variation of the model output f(x). These sensitivity indices are called “derivative-based global sensitivity
measures” (DGSMs) and the kth, k in {1, . . . , d}, is equal to:

Dk = EX

[(
∂f(X)

∂xk

)2
]

(2)

with the notation EX [�] =
∫
X �µX(x) where µX , µX(x) > 0 over X , is the probability density function

of X.
As mentioned by Touzani and Busby (2014), the DGSMs are tied with the Morris method which

associates to each input parameter xk the empirical mean µk = 1
R

∑R
r=1 d

(r)
k and the standard deviation

σk =

√
1

R−1

∑R
r=1

(
d

(r)
k − µk

)2

of the elementary effect d(r)
k defined as

d
(r)
k =

f
(
X

(r)
1 , . . . , X

(r)
k−1, X

(r)
k + ∆, X

(r)
k+1, . . . , X

(r)
d

)
− f

(
X(r)

)
∆

with ∆ the step of the input variation. First, we can rewrite the DGSM of xk as Dk = M2
k + Σk where

Mk = EX
[
∂f(X)
∂xk

]
and Σk = VX

[
∂f(X)
∂xk

]
. Then, we note that Mk and Σk generalize µk and σ2

k respec-

tively: the first quantities consider Monte-Carlo approximations of the first centered moments of the kth

partial derivative while the second ones consider their empirical versions replacing the partial derivative
by a finite difference with step ∆. Consequently, if the step ∆ is greater than the characteristic dimension
of the physical problem, the Morris method focus on the global variation of the model output whereas
the DGSM approach focus on local changes averaged over the whole input parameter space according
to a probability measure. Lastly, for some non-monotonic functions, the Morris index µk can be almost
equal to zero even if xk has an important influence on the model output; the DGSM Dk allows to detect
this dependence, with the same idea than the sensitivity measure proposed by Campolongo et al. (2007)
which replaces the elementary effect by its absolute value in the µk and σk formulations.

Otherwise, Sobol and Kucherenko (2009) and Lamboni et al. (2013) compare DGSMs and Sobol’ in-
dices from a theoretical point of view and show that for a large category of continuous functions, the total
Sobol’ index STk is bounded by the DGSM index Dk weighted by a constant, function of the probability
law of Xk. Moreover, Kucherenko et al. (2009) show that the estimation of a DGSM index often requires
much less model evaluations than the estimation of a Sobol’ one. From both considerations, DGSMs
could be used in screening to exclude the non-significant input parameters from the model specification,
in a more economical way,. This selection of influential variables should be almost the same than the
one obtained with the Sobol’ indices, because of the inequality linking these sensitivity measures. Nev-
ertheless, these studies mention that ranking the input parameters according to the upper bound values
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does not lead necessarily to the same order than ranking these parameters according to the Sobol’ indices.

Last but not least, the computer code does not always provide the adjoint code for the gradient
evaluation. Moreover, when this gradient can be get, the number of available computer experiments
is often too low and the integrals are badly estimated in Expression (2). Consequently in this paper,
we propose to replace the computer code f by a surrogate model f̂ with a tractable gradient which is
less accurate but faster in execution (Forrester et al., 2008), so allowing to have a much higher number
of Monte-Carlo runs for the expectation estimation. In this paper, we focus on the Gaussian process
metamodel (Rasmussen and Williams, 2005), in the same way as Marrel et al. (2009) for the estimation
of the Sobol’ indices. This surrogate model is often powerful for industrial studies and has a stochastic
formulation which can usefully provide confidence intervals for the DGSM estimation.

2.3 Gaussian process metamodel
Let Ω be a sample space. We suppose that the computer code f can be modeled as an instance of the
Gaussian process (GP) Z : (Rd,Ω)→ R defined by

Z(x;ω) ∼ GP
(
h(x)Tβ, σ2

(
r(x, x′) + τ2δxx′

))
(3)

with mean h(x)Tβ and covariance structure σ2
(
r(x, x′) + τ2δxx′

)
, β being a regression parameter vector

and (σ2, τ2) variance parameters. The vector h(x) = (h1(x), . . . , hp(x))T is made of p basis functions,
which are commonly monomials, e.g. h(x) = (1 x1 . . . xd)

T ∈ Rd+1 with p = d + 1, and r(x, x′) is a
kernel function parameterized by an hyperparameter vector θ ∈ Θ. The random field mentioned in (3)
can be decomposed into the sum of a deterministic term h(x)Tβ and a stochastic one Z0(x;ω), where
Z0(x;ω) is a centered GP with same covariance.

From the GP formulation, we associate to the n-sample
(
X(i), Y (i)

)
1≤i≤n the matrices H ∈Mn,p(R)

and R ∈Mn(R) defined by H =
(
hj
(
X(i)

))
1≤i≤n
1≤j≤p

and R =
(
r
(
X(i), X(j)

)
+ τ2δij

)
1≤i,j≤n, as well as the

n-dimensional vectors k(x) =
(
r
(
x,X(1)

)
. . . r

(
x,X(n)

))T
and Y =

(
Y (1) . . . Y (n)

)T
. Note that R and k

depend on the hyperparameters θ.

Then ZC , the GP (3) conditioned by this n-sample and the parameters (β, σ2, τ2, θ), is the new
probability law for the computer code f :

ZC(x;ω) =

[
Z(x;ω)|

(
X(i), Y (i)

)
1≤i≤n

, β, σ2, τ2, θ

]
∼ GP(f̂(x), s2(x, x′)). (4)

Predictor. As an instance of this posterior random field ZC(x;ω), the response of the computer code f
at a given location x is predicted by the conditional mean

f̂(x) = h(x)Tβ + k(x)TR−1(Y −Hβ) = h(x)Tβ + k(x)T γ (5)

with γ = R−1(Y −Hβ). The conditional covariance s2(x, x′) gives the quadratic risk s2(x) := s2(x, x)

of f̂(x) and it is defined by

s2(x, x′) = σ2
(
r(x, x′)− k(x)TR−1k(x′)

)
. (6)

Estimation. Formula (5) and (6) can not be used directly because the parameters (β, σ2, θ) have to be es-
timated, classically by cross-validation or likelihood maximization procedures. In this paper, we consider
the second method; precisely, we iterate explicit computation steps, β̂ =

(
HTR−1H

)−1
HTR−1Y and

σ̂2 = n−1(Y −Hβ̂)TR−1(Y −Hβ̂), and a numerical minimization one, θ̂ ∈ argminθ∈Θ

{
σ̂2 n
√

det(R)
}
.

Then, the parameter set (β, θ, σ2) in Equations (5) and (6) is replaced by (β̂, θ̂, σ̂2). Hereafter, we always
consider the estimated parameters but write (β, θ, σ2) in order to lighten up the equations.

Nugget effect. When the parameter τ2 is forced to zero, the predictor f̂(x) interpolates the learning
sample

(
X(i), Y (i)

)
1≤i≤n (Rasmussen and Williams, 2005). This situation is too restrictive for the predic-

tor shape, e.g. an important value of n can provide an ill-conditioned correlation matrix R and a sharp
predictor. On the contrary, allowing a non-null value for τ2 often leads to a smoother predictor f̂(x) and
a higher generalization ability; this change is called a nugget effect. The value of τ2 can be optimized by
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maximum likelihood, jointly with the other hyperparameters.

Covariance choice. Finally, we limit ourselves to the case where the kernel r(x, x′) is a tensorized
product of monodimensional stationary kernels: r(x, x′) =

∏d
i=1 ri(xi − x′i). This common hypothesis

allows the mathematical developments presented in this paper. Furthermore, we suppose that these
monodimensional kernels come from a same family of covariance functions that the user has to choose:
exponential, Gaussian, Matérn, ... Complementary informations about Gaussian process metamodels can
be found in the book Gaussian Processes for Machine Learning of Rasmussen and Williams (2005).

2.4 GPM-based estimation for DGSMs
In this paper, we propose two approaches for the estimation of the DGSM Dk, k ∈ {1, . . . , d}, using a
GPM in the same way as Marrel et al. (2009). The first one uses no more than the estimator f̂(x) of
f(x) defined by (5) and builds the plug-in estimator

D̂
(1)
k = EX

(∂f̂(X)

∂xk

)2
 .

The second approach uses the law of the stochastic DGSM R̂D
(2)

k (ω) defined by the random variable:

R̂D
(2)

k (ω) = EX

[(
∂ZC(X;ω)

∂xk

)2
]
. (7)

From this, the DGSM Dk is estimated by the full-GPM estimator which is the D̂(2)(ω) expectation:

D̂
(2)
k = Eω

[
R̂D

(2)

k (ω)

]
.

Similarly to the use of s2(x) = Vω [ZC(x, ω)] as an indicator of the f̂(x) error, we could quantify the D̂(2)
k

estimation error using the R̂D
(2)

k (ω) variance:

ŝ2
k = Vω

[
R̂D

(2)

k (ω)

]
. (8)

Confidence intervals associated to D̂(2)
k can also be computed using intensive Monte-Carlo sampling of

the random variable R̂D
(2)

k (ω), as developed in Section 3.

2.4.1 Plug-in estimation of a DGSM

The plug-in estimation of the DGSM consists in the computation of D̂(1)
k , which corresponds to the DGSM

directly estimated on the GPM predictor f̂ given in Equation (5). Knowing that f̂(x) = h(x)Tβ+k(x)T γ,
the kth partial derivative of f̂(x) is

∂f̂(x)

∂xk
=
∂h(x)T

∂xk
β +

∂k(x)T

∂xk
γ

where ∂h(x)
∂xk

=
(
∂h1(x)
∂xk

, . . . ,
∂hp(x)
∂xk

)T
and ∂k(x)

∂xk
=

(
∂r(x,X(1))

∂xk
, . . . ,

∂r(x,X(n))
∂xk

)T
.

Under the hypothesis of a tensorized product of monodimensional kernels for the covariance (see
Section 2.3), we obtain for any i ∈ {1, . . . , n}:

∂r
(
x,X(i)

)
∂xk

=
∂rk

(
xk, X

(i)
k

)
∂xk

d∏
j=1
j 6=k

rj

(
xj , X

(i)
j

)
.

Then, considering element-wise mean for matrices, i.e. (E[A])ij = E[Aij ] for any real matrix A, we
obtain a first estimator of the sensitivity measure Dk:

D̂
(1)
k = βTEX

[
∂h(X)

∂xk

∂h(X)T

∂xk

]
β + γTEX

[
∂k(X)

∂xk

∂k(X)T

∂xk

]
γ + 2βTEX

[
∂h(X)

∂xk

∂k(X)T

∂xk

]
γ (9)
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whose integrals have to be analytically or numerically computed.

In this paper, we consider the most common situation where the prior mean is constant; consequently,
we have h(x) = 1 and Equation (9) becomes

D̂
(1)
k = γTEX

[
∂k(X)

∂xk

∂k(X)T

∂xk

]
γ.

Remark. Extensions of the following results to a more complex prior mean, such as a polynomial, are
straightforward from Equation (9).

Then, thanks to the tensorized form of the kernel functions and of the independence hypothesis of
the input parameters X1, . . . , Xd, the matrix A[k] = EX

[
∂k(X)
∂xk

∂k(X)T

∂xk

]
can be better rewritten

A[k] = EXk

[
∂kk(Xk)

∂xk

∂kk(Xk)T

∂xk

]
︸ ︷︷ ︸

B[k]

d⊙
l=1
l6=k

EXl
[
kl(Xl)kl(Xl)

T
]︸ ︷︷ ︸

C[l]

(10)

where kl(x) =
(
rl

(
xl, X

(1)
l

)
. . . rl

(
xl, X

(n)
l

))T
, for any l ∈ {1, . . . , d} and

⊙
is the element-wise mul-

tiplication operator. The computation of A[1], . . . , A[d] requires n(n + 1)d monodimensional integral
evaluations, because these matrices are function of the symmetric matrices B[1], C [1], . . . , B[d], C [d], each
of which having n(n+1)

2 different elements of the form

C
[k]
ij = EXk

[
rk

(
Xk, X

(i)
k

)
rk

(
Xk, X

(j)
k

)]
, (11)

or

B
[k]
ij = EXk

∂rk
(
Xk, X

(i)
k

)
∂xk

∂rk

(
Xk, X

(j)
k

)
∂xk

 . (12)

For particular cases of covariance functions and input parameter laws, analytical simplifications can
be applied to Equation (10). More generally, these integrals can be quickly approached by Monte-Carlo
sampling.

2.4.2 Full-GPM estimation of a DGSM

Another approach consists in the estimation of the sensitivity measure Dk based on the full Gaussian
process ZC(x;ω), rather than on its mean only. More precisely, we consider the full-GPM estimator D̂(2)

k

which can be easily developed as

D̂
(2)
k = D̂

(1)
k + EX

[
Vω

[
∂ZC(X;ω)

∂xk

]]
. (13)

In this way, the estimator D̂(2)
k is equal to the plug-in one, D̂(1)

k , completed by an additive positive
term associated to the variance of the GPM; consequently, we have D̂(2)

k ≥ D̂
(1)
k . We explicit this new

part in the following manner:

EX

[
Vω

[
∂ZC(X;ω)

∂xk

]]
= σ2

{
EX

[
∂2r(U, V )

∂uk∂vk

∣∣∣∣
(U,V ):=(X,X)

]
− 1T

(
R−1

⊙
A[k]

)
1

}
(14)

where 1 is the all-ones element of Rn. A new term appears in this expression,

EX

[
∂2r(U, V ; θ)

∂uk∂vk

∣∣∣∣
(U,V ):=(X,X)

]
, (15)

which is easily estimable by Monte-Carlo sampling. Computational details about (13) and (14) are given
in Appendix.
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In addition, the full-GPM estimator (13) can be completed by an approximation of its error using the
variance (8) or a confidence interval computed by simulations.

The next part of this paper deals with the computation of terms (11), (12) and (15) required for the
approximation of D̂(1) and D̂(2) and for the construction of confidence intervals. Significance tests are
also proposed.

3 Numerical implementation of the GPM-based DGSM estima-
tors

In this part, we propose different numerical implementations of the DGSM estimators derived from GPM
and defined in Section 2. Precisely, we compute the matrices (11), (12) and (15) used in D̂(1)

k and D̂(2)
k ,

analytically or with a Monte-Carlo method.

3.1 Analytical results for uniform laws and Gaussian kernels
First, we consider a specific covariance function for the GP and a certain type of input distribution, in
order to get analytical results for the computation of the estimator D̂(1)

k of the sensitivity index Dk. More
precisely, we consider classical Gaussian kernel functions

rk(xk, x
′
k) = exp

(
− (xk − x′k)2

2θ2
k

)
, k ∈ {1, . . . , d},

and independent input parameters X1, . . . , Xd following uniform laws:

Xk ∼ U ([mk,Mk]) , k ∈ {1, . . . , d}.

First of all, under these considerations and using Lemma 1 (see Appendix), we rewrite the term (11)

C
[k]
ij =

√
πθkP

[
W

[k]
i,j ∈ [mk,Mk]

]
e
− (X(i)

k
−X(j)

k )
2

4θ2
k

Mk −mk
(16)

where W [k]
i,j ∼ N

(
X

(i)
k +X

(j)
k

2 ,
θ2k
2

)
.

Furthermore, using Lemma 2 (see Appendix), we can show that the term (12) is equal to

B
[k]
ij = −

(X
(i)
k −X

(j)
k )2

4θ4
l

C
[k]
ij

+

√
π

2θk(Mk −mk)

{
a

[k]
i,jϕ

(
a

[k]
i,j

)
− b[k]

i,jϕ
(
b
[k]
i,j

)
+ P

[
Z

[k]
i,j ∈

[
a

[k]
i,j , b

[k]
i,j

]]}
e
− (X(i)

k
−X(j)

k )
2

4θ2
k (17)

where Z [k]
i,j ∼ N (0, 1), a[k]

i,j =
2mk−X(i)

k −X
(j)
k√

2θk
, b[k]

i,j =
2Mk−X(i)

k −X
(j)
k√

2θk
and ϕ(.) is the probability density

function of the standard normal law.

Finally, we have

EX

[
∂2r(U, V ; θ)

∂uk∂vk

∣∣∣∣
(U,V ):=(X,X)

]
=

1

θ2
k

.

Expressions (16) and (17) only use evaluations of probability density and distribution functions.
Consequently, the DGSM estimators D̂(1)

k and D̂(2)
k do not require integral quadratures to approach (11),

(12) and (15) in presence of Gaussian kernel functions and uniform distributions for the input parameters.
Under these assumptions, Section 4 illustrates the computational superiority of this method in comparison
to Monte-Carlo approaches.
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3.2 Monte-Carlo approximation for general case
In spite of the exact formulations of the GPM-based DGSM estimators, kernel functions are not always
Gaussian and the input distributions are not always uniform in many industrial applications. Conse-
quently, in such cases, numerical methods are required for the approximation of both DGSM estimators
defined by (9) and (13).

The first estimator given in (9) is a plug-in one, which represents the mean of the squared estimator
of a f partial derivative. This estimator having a deterministic and analytical formulation, the mean is
approached by crude Monte-Carlo according to the specified input distributions; the computational cost
is not high because the method only requires to estimate monodimensional integrals. A similar sampling
technique can approach the variance (8) expressed in terms of simple and double integrals.

The second estimator given in (13) is more complex because it represents the stochastic mean of a
squared Gaussian process averaged over the input parameter space X :

D̂
(2)
k = Eω

[
EX

[(
∂ZC(X;ω)

∂xk

)2
]]

.

In order to get the second GPM-based estimator D̂(2)
k , we decide to approach numerically the distribution

of the stochastic DGSM EX

[(
∂ZC(X;ω)

∂xk

)2
]
using N instances

EX

[(
∂ZC(X;ω1)

∂xk

)2
]
, . . . ,EX

[(
∂ZC(X;ωN )

∂xk

)2
]
,

or more precisely using N instances

M−1
M∑
i=1

(
∂ZC

(
X(i);ω1

)
∂xk

)2

, . . . ,M−1
M∑
i=1

(
∂ZC

(
X(i);ωN

)
∂xk

)2

where X =
(
X(1), . . . , X(M)

)
are M i.i.d. instances of X. In this case, we have

∂ZC(X;ω)

∂xk
:=


∂ZC(X(1);ω)

∂xk
...

∂ZC(X(M);ω)
∂xk

 ∼ N (bM , CM )

with

(bM )i =
∂h(X(i))T

∂xk
β +

∂k(X(i))T

∂xk
γ, i ∈ {1, . . . ,M}

and

(CM )ij = σ2

(
∂2r(U, V )

∂uk∂vk

∣∣∣∣
(U,V )=(X(i),X(j))

− ∂k(X(i))T

∂xk
R−1 ∂k(X(j))

∂xk

)
, i, j ∈ {1, . . . ,M}.

In the following, we propose two options for the simulation of instances of the random variable

M−1
M∑
i=1

(
∂ZC(X(i);ω)

∂xk

)2

, (18)

in order to estimate its mean and, in a second phase, an associated confidence interval. The first one
is based on a propagative version of the Gibbs sampler which approximates the law of the Gaussian
vector ∂ZC(X;ω)

∂xk
and the second one is based on a chi-square approximation of the probabilistic law of the

quadratic form (18).

3.2.1 Use of a propagative version of the Gibbs sampler

Concerning the first option, we simulate realizations of the Gaussian vector ∂ZC(X;ω)
∂xk

using the propagative
version of the Gibbs sampler introduced by Lantuéjoul and Desassis (2012). More precisely, we consider

9



the blocking strategy of pivots presented in this paper and described in Algorithm 1. This propagative
version is more efficient than the classical Gibbs sampler introduced by Geman and Geman (1984),
because it does not require the inversion of the matrix CM which is high-dimensional. The default value
for the block length L is 5, which is used by Lantuéjoul and Desassis (2012).

With this method, it is possible to approach the distribution of the stochastic DGSM D̂
(2)
k (ω). For

this end, we define the ith instance of the estimation of D̂(2)
k based on Algorithm 1 by

D̂
(2),M
k,i =

1

M

M∑
l=1

(
∂ZC(X;ω(i))

∂xk

)2

(19)

for all i ∈ {1, . . . , N}. Then, we propose to estimate D(2) by

D̂
(2),N,M
k =

1

N

N∑
i=1

D̂
(2),M
k,i (20)

and its confidence interval of level α by

CIα
(
D

(2)
k

)
=
[
q

(2),M,N
k,α/2 , q

(2),M,N
k,1−α/2

]
(21)

where q(2),M,N
k,α/2 and q(2),M,N

k,1−α/2 are the α/2 and 1−α/2 empirical quantiles of the sample
(
D̂

(2),M
k,i

)
1≤i≤N

. In

this paper, we compute the quantities using the quantile function of R with the default parametrization.

Data: the mean vector bM , the covariance matrix CM , the block length L and the number of
instances N ;

Result: N realizations of the random vector ∂ZC(X;ω)
∂xk

;

extract s =
(

1
(Cm)ii

)
1≤i≤M

;

update CM := CM
⊙(

ssT
)
where � is the element-wise multiplication operator;

let A(0) := 0RM ;
for i = 1, . . . , N do

1. take a sample Si = {i1, . . . , iL} of L integers in {1, . . . ,M} without replacement;

2. A(i) = A(i−1) + CM,iB
−1
i

(
Ui −A(i−1)[Si]

)
, where :

• Ui ∼ N (0RL , IL),

• Bi is the upper triangular matrix of the CM [Si, Si] Cholesky decomposition,

• CM,i := CM [:, Si].

end
for i = 1, . . . , N do

∂ZC(X;ω(i))
∂xk

:= bM +A(i) � s.
end
Algorithm 1: Propagative version of the Gibbs sampler with the blocking strategy of pivots.

Remark 1 This method based on the Gibbs sampler can be easily extended to the crossed DGSM intro-
duced by Roustant et al. (2014):

D̂ij = Eω

[
EX

[(
∂2ZC(X;ω)

∂xi∂xj

)2
]]

.

Such a sensitivity measure allows to quantify the influence of an interaction between two input parameters
on the output. Roustant et al. (2014) recommend their use for the detection of additive structure in the
model; indeed, the authors prove that a crossed DGSM Dij equal to zero implies that the input parameters
xi and xj do not interact together in the model.
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3.2.2 Use of a chi-square approximation

Concerning the second option, we consider a chi-square approximation of the stochastic DGSM D̂
(2)
2 (ω):

R̂D
(2)

k (ω) ≈ D̂(2),M
k (ω) =

1

M

M∑
i=1

(
∂ZC(X(i);ω)

∂xk

)2

=

(
∂ZC(X;ω)

∂xk

)T
A
∂ZC(X;ω)

∂xk
=: Qk(ω;X) (22)

where A = MIM ∈ MM (R). Recently, Liu et al. (2009) propose to approach the distribution of the
quadratic form Qk(ω;X) using a noncentral chi-squared distribution χ2

l (δ) with (l, δ) ∈ N∗ × R+. This
method does not require any matrix inversion or spectral decomposition, which is an advantage when
the dimension of the covariance matrix CM is important. More precisely, the authors rewrite Qk(ω;X)

as a weighted sum of non-central chi-squared variables whose weights are the eigenvalues of C1/2
M AC

1/2
M .

Then, they determine the hyperparameters of the χ2
l (δ) distribution so that its skewness is equal to the

Qk(ω;X) one and the distance between the kurtoses of these random variables is minimal.
From this chi-square approximation of the Qk(ω;X) distribution, it is possible to approach quickly

the mean of EX

[(
∂ZC(X;ω)

∂xk

)2
]
and its quantiles, in order to obtain an estimator D̂(2)

k of Dk with a

confidence interval. This method is described in Algorithm 2.

Data: the mean vector bM , the covariance matrix CM and the number of instances N ;
Result: N realizations of the random variable D̂(2),M

k (ω);
c1 = n−1 Tr(CM ) + n−1bTMbM ;
c2 = n−2 Tr(C2

M ) + 2n−2bTMCMbM ;
c3 = n−31T

(
C2
M � CM

)
1 + 3n−3 (CMbM )

T
CMbM ;

c4 = n−41T
(
C2
M � C2

M

)
1 + 4n−4

((
CTM

)T
bM

)T
CMbM ;

s1 = c3c
−1.5
2 , s2 = c4c

−2
2 , µ1 = c1 and σ1 =

√
2c2;

if s2
1 > s2 then
a = (s1 −

√
s2

1 − s2)−1;
δ = s1a

−3 − a−2;
l = a−2 − 2δ;

else
a = s−1

1 ;
δ = 0;
l = c32c

−2
3 ;

end
µ2 = l + δ;
σ2 =

√
2a;

for i = 1, . . . , N do
D̂

(2),M
k,i = (ui − µ2)σ−1

2 σ1 + µ1 where ui ∼ χ2
l (δ);

end
Algorithm 2: Stochastic DGSM sampling using a noncentral chi-squared approximation.

At the end of Algorithm 2, we can compute the estimator D̂(2),N,M
k and the confidence interval

CIα
(
D

(2)
k

)
given in Equations (20) and (21).

In Section 4, the different Monte-Carlo approaches are compared from accuracy and CPU time points
of view.
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3.3 Significance tests
Finally, we would like to use the GPM-based DGSM estimators for a screening purpose, in order to
distinguish the non-significant input parameters and the significant ones. To this end, we propose to
test the nullity of the DGSM Dk using a statistical significance test. In this case, the null hypothesis
is “H0: Dk = 0” and the alternative one is “H1: Dk 6= 0”. These hypotheses can be rewritten “H0:
∀x ∈ X , ∂f(x)

∂xk
= 0” and “H1: ∃X0 ⊂ X , ∀x ∈ X0,

∂f(x)
∂xk

6= 0”.
Under H0, the mean mM of the Gaussian vector ∂ZC(X)

∂xk
is the null vector of RM . Consequently, the

p-value associated to this statistical test and to the estimator D̂(2)
k is

pval,k = P
[
Qk(ω;X) > D̂

(2)
k |H0

]
,

and we use the chi-square approximation or the Gibbs sampler propagative version in order to approximate
this probability under H0. In this way, we conclude that Xk is significant if pval,k is lower than some
level α, usually equal to 5% or 10%. Such statistical tests are useful for a quick screening step.

4 Numerical experiments
In this section, we propose some numerical experiments to compare the different GPM-based DGSM
estimators previously developed. In a first part, we study the convergence of the plug-in and full-GPM
DGSM estimators and compare, for the second one, the different Monte-Carlo approximations proposed
in Section 3.2. In a second part, we apply the DGSMs to an industrial application and compare the
results with those obtained with the classical Sobol’ indices; we also apply the significance test proposed
in Section 3.3 for a screening purpose.

4.1 Comparison of the different estimators and numerical methods for the
DGSM computation

In this first part, we are interested in the convergence of the different DGSM estimators (plug-in and
full-DGSM) according to the learning sample size n and, for the full-GPM, in the comparison of the
different Monte-Carlo approximation methods. We consider the analytical Ishigami function defined by

f(X) = sin(X1) + 7 sin2(X2) + 0.1X4
3 sin(X1)

where X1, X2, X3 are i.i.d. U([−π, π]). Its partial derivatives are:

∂f(X)

∂x1
= cos(X1)

(
1 + bX4

3

)
,
∂f(X)

∂x2
= 14 cos(X2) sin(X2) and

∂f(X)

∂x3
= 0.4X3

3 sin(X1).

Table 1 contains the theoretical DGSMs and Sobol’ indices; the conclusions obtained with the total Sobol’
indices and the DGSMs are qualitatively and quantitatively different. According to the first ones, the
more influential input is X1 (45% of the explained output variance) while X2 is the more significant
according to the second ones (57% of the DGSM sum). Concerning X3, results are roughly the same
with both types of sensitivity indices.

X1 X2 X3

1st order Sobol 0.31 0.44 0
Total Sobol 0.56 (45%) 0.44 (36%) 0.24 (19%)

DGSM 7.7 (18%) 24.5 (57%) 11.0 (25%)

Table 1: Theoretical DGSMs and Sobol’ indices for the Ishigami function.

Procedure

In the following, the DGSM estimators are built from a GPM with a constant mean, a nugget effect
and a tensorized covariance based on Gaussian kernels (see Section 2.3). First, we consider a n-sample(
X(i), f(X(i))

)
1≤i≤n where

(
X(i)

)
1≤i≤n is an optimized Latin Hypercube Sample (McKay et al., 1979)

of size n in [−π, π]3. This design of experiments is built using the geneticLHS function of the R package
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lhs which is based on the S optimality criterion (Stein, 1987) and a genetic type algorithm. Then, the
GPM is obtained using this learning sample and the R package DiceKriging v 1.5.3 (Roustant et al.,
2012), the parameters being estimated by likelihood maximization with a BFGS algorithm (Byrd et al.,
1995).

From this GPM, we want to:

1. compare the plug-in and full-GPM DGSM estimators using the analytical results presented in
Section 3.1;

2. compare the Monte-Carlo approximation methods from accuracy and CPU time points of view.

4.1.1 Comparison of plug-in and full-GPM DGSM estimators

First of all, we run both estimators for different learning sample sizes n ∈ {50, 100, 150, 200} and, for
each learning sample, we measure the accuracy of the surrogate model using the predictivity coefficient

Q2 = 1−

∑ntest
i=1

(
Y test,(i) − Ŷ test,(i)

)2

∑ntest
i=1

(
Y test,(i) − Ȳ test

)2
where (Xtest,(i), Y test,(i))1≤i≤ntest is a test sample built from an uniform grid of ntest = 10000 nodes and
Ȳ test = 1

ntest

∑ntest
i=1 Y test,(i). Note that this accuracy criterion is also computed for the partial derivatives

of the Ishigami function. Finally, all these steps are repeated 1000 times and we look at the mean, the
0.025 and the 0.975 quantiles of the Monte-Carlo distributions of both estimators.

Figure 1 represents the evolution of the plug-in and full-GPM DGSM estimators in function of the
sample size n. It shows also the evolution of the full-GPM ones in function of the accuracy criterion Q2

associated to the corresponding f partial derivatives. In this case, each star represents a full-GPM DGSM
estimation associated to one sample size and one Monte-Carlo run. First of all, we can arrange the input
parameters according to their influences almost surely, when the number of observations is greater than
170. Moreover, we can conclude that the second variable is the most influential from 50 observations.
Thirdly, looking at the dashed lines which represent 0.025 and the 0.975 quantiles of the Monte-Carlo
estimator distribution, the full-GPM DGSM estimators lead to possibly much higher values than the plug-
in ones. This phenomenon can be explained by the difference between both estimators, which is positive
and equal to the mean variance of the stochastic squared partial derivative of the conditioned Gaussian
process (see Equation (13)). Indeed, this quantity can be important for small designs of experiments and
tends to zero when the number of observations increases. The same phenomenon has been observed with
a Matérn kernel.

Then, Figure 2 shows that the differences of convergence rate between the explanatory variable DGSMs
is due to the fitting quality of the different partial derivatives which differs from an input parameter to
another. Particularly, the performance of the GPM to predict the partial derivatives is weaker for the
input parameter X3 than for the other ones. This may be due to the presence of this variable only in an
interaction term, with a small coefficient and under the form of a non-linear effect almost equal to zero
over the half of the variation domain of X3. In this way, its influence could be hidden by the other input
parameters for weak sample size.

Finally, both estimators converge to the same value which is the theoretical DGSM and for small
sample sizes, the full-GPM one can make some important excesses (here with the input X1) or get closer
to the right value (here with the inputX2). Even if these numerical tests do no illustrate the compensation
of the surrogate model error with the plug-in estimator, in absolute terms the full-GPM estimator
is more justified because it takes up the hypothesis underlying the GPM: “the model f(x)
is an instance ZC(x;ω∗) of the Gaussian process (4)”. Consequently, under this assumption,
the theoretical DGSM Dk is the DGSM of ZC(x;ω∗), with an unknown ω∗ ∈ Ω, and the best
estimator in a mean-square sense is the mean of D̂(2)

k (ω) over Ω.

4.1.2 Comparison of Monte-Carlo approximations for the stochastic DGSM

Now, we focus on the distribution of the random variable D̂(2)(ω) and compare the three following
Monte-Carlo methods:

1. sampling according to the multivariate Gaussian law of ∂ZC(X;ω)
∂xk

, using the mvrnorm function of
the R package MASS;
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Figure 1: Evolution of the plug-in (blue) and full-GPM (red) DGSM estimators associated to the Ishigami
function, in function of the number of observations n (three first figures). The solid lines represent the
mean while the dashed ones represent the 2.5% and 97.5% quantiles of the Monte-Carlo distribution. The
last picture represents the plug-in DGSM estimations associated to X1 (green), X2 (red) and X3 (blue)
in function of the accuracy criterion Q2 of their associated partial derivatives.
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Figure 2: Evolution of the fitting accuracy of the Ishigami function and its partial derivatives according
to the number of observations.

2. sampling using the propagative version of the Gibbs sampler based on a blocking strategy of pivots,
proposed in Section 3.2.1;

3. sampling using the chi-square approximation proposed in Section 3.2.2.

The first method, based on a eigendecomposition of the covariance matrix, is used for reference. Indeed,
from an accuracy point of view, this Monte-Carlo approach does not use any probability law approxi-
mation, contrary to the other ones. But this method is much more expensive from a CPU time point of
view and would not be used in practice afterwards.

In this study, for different sample sizes n, we compute N instances of the stochastic DGSM D̂
(2)
3 (ω)

associated to X3 according to the three Monte-Carlo methods and using M = 10000 simulations in the(
D̂

(2),M
3,i

)
1≤i≤N

computation (see Equation (19)), with n ∈ {50, 100, 200} andN ∈ {500, 1000, 5000, 10000}.

From these instances, we obtain the full-GPM estimator D̂(2)
3 and the 2.5% and 97.5% quantiles of the

D̂
(2)
3 (ω) law.

N = 500 N = 1000 N = 5000 N = 10000
Method 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
n = 50 0.0123 5.9 0.9 2.1 0.0124 6.8 1.3 2.0 0.0118 14.4 4.6 1.9 0.0121 24.1 8.7 1.9
n = 100 0.0361 6.1 1.1 2.2 0.0339 6.6 1.4 2.0 0.0339 14.5 4.7 2.0 0.0344 24.2 8.7 2.0
n = 200 0.1343 6.3 1.3 2.5 0.1280 6.8 1.7 2.3 0.1284 14.8 5.0 2.3 0.130 24.5 9.0 2.3

Table 2: Comparison of the mean computational time (in seconds) for the Monte-Carlo approximation
of the DGSM probabilistic laws using the mvrnorm function (1), the Gibbs sampler (2) or the chi-square
approximation (3); the method indexed by 0 is the analytical one for uniform input laws and Gaussian
kernels.
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After R = 100 repetitions of the previous steps, Table 2 presents the mean computational time asso-
ciated to the three Monte-Carlo methods, for different sample sizes n and different Monte-Carlo lengths
N . Firstly, the CPU time is almost insensitive to n. Secondly, when N is small with respect
to M , the propagative version of the Gibbs sampler is faster than the chi-square approxi-
mation. To the contrary, when N is of the same order as M , this second approach is quicker
than the first one. More generally, the chi-square approximation is all the more rapid than
M is small with respect to N . In the specific case where the estimator is the only quantity of inter-
est, that is to say when standard deviation or confidence interval are not required, the use of analytical
formula is very advised for uniform input laws and Gaussian kernels, with a CPU time between 10 and
100 times lower than the best one obtained with Monte-Carlo methods.

From an accuracy point of view, the differences between the different estimator errors
are negligible with respect to the surrogate model error and the choice of a particular
Monte-Carlo method has to be made according to CPU time considerations rather than
accuracy ones.

To conclude, the propagative version of the Gibbs sampler and the chi-square approxi-
mations presented in Sections 3.2.1 and 3.2.2 are accurate approximations of the reference
method using mvrnorm. From a CPU time point of view, we advise the use of the the
Gibbs sampler when N is small with respect to M , and otherwise the use of the chi-square
approximation.

4.2 Application to an environmental problem
Finally, we apply the DGSMs defined by Expression (2) to an environmental problem developed by CEA
(France) and Kurchatov Institute (Russia) and dealing with a radioactive waste temporary storage site
close to Moscow. The main objective is to predict the transport of strontium 90 between 2002 and 2010,
in order to determine the aquifer contamination. This transport in saturated porous media is modeled
by the MARTHE computer code (Volkova et al., 2008). In particular, this model returns in output the
strontium 90 concentration predicted for year 2010 in many piezometers located on the waster repository
site and we focus on one of them in this study. This quantity is function of 20 uncertain input parameters
representing the permeability of different geological layers, longitudinal dispersivity coefficients, transverse
dispersivity coefficients, sorption coefficients, porosity and meteoric water infiltration intensities. Marrel
et al. (2009) ran a global sensitivity analysis from the more influential input variables, estimating the
Sobol’ indices with a Gaussian process metamodel. In the same way, we estimate the DGSMs from a
GPM and from the tools developed in this paper, considering the whole set of input parameters.

Procedure

Concretely, we build a GPM from the 300 observations used by Marrel et al. (2009) with a constant mean,
a nugget effect and a tensorized covariance based on Gaussian kernels. Its accuracy is measured with
the predictivity coefficient Q2 estimated by leave-one-out cross-validation (Hastie et al., 2001). Because
of the high number of input parameters, we build this surrogate model iteratively using the efficient
methodology of Marrel et al. (2008).

For the global sensitivity analysis, 17 out of 20 input parameters follow uniform distributions and
the 3 remaining ones follow Weibull distributions, as mentioned in Table 3. So, we can not use the
analytical formula of the DGSM estimators dedicated to uniform laws. Instead, we estimate them using
the chi-square approximation approach with M = 1000.

Remark 2 Note that in the initial test case, some factors are dependent: d1-dt1, d2-dt2, d2-dt3 and i1-
i2-i3; this is not a problem for the DGSMs because the definition of these sensitivity indices is not based
on a independence assumption, contrarily to the Sobol’ indices for example. Furthermore, the DGSM es-
timation using the chi-square approximation method can deal with dependent input parameters, contrarily
to the analytical formula of the DGSM estimators. However the interpretation of the results is more
complicated in presence of dependent input variables and is beyond the remit of this study. Consequently,
we replace (dt1, dt2, dt3) by the ratios (dt1/d1, dt2/d2, dt3/d3), which are independent of the other input
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parameters, and we consider the variations of infiltration coefficients between consecutive layers rather
than their values. These modifications are mentioned by a bold italic index in Table 3.

Input parameters Notation Distribution Distribution
type parameters1

1 Hydraulic conductivity layer 1 per1 Uniform 1, 15
2 Hydraulic conductivity layer 2 per2 Uniform 5, 0
3 Hydraulic conductivity layer 3 per3 Uniform 1, 15
4 Hydraulic conductivity zone 1 perz1 Uniform 1, 15
5 Hydraulic conductivity zone 2 perz2 Uniform 1, 15
6 Hydraulic conductivity zone 3 perz3 Uniform 1, 15
7 Hydraulic conductivity zone 4 perz4 Uniform 1, 15
8 Longitudinal dispersivity layer 1 d1 Uniform 0.05, 2
9 Longitudinal dispersivity layer 2 d2 Uniform 0.05, 2
10 Longitudinal dispersivity layer 3 d3 Uniform 0.05, 2

Transversal dispersivity layer 1 dt1 Uniform 0.01× d1, 0.1× d1
11 Ratio of transversal to longitudinal dt1/d1 Uniform 0.01, 0.1

dispersivity layer 1
Transversal dispersivity layer 2 dt2 Uniform 0.01× d2, 0.1× d2

12 Ratio of transversal to longitudinal dt2/d2 Uniform 0.01, 0.1
dispersivity layer 2

Transversal dispersivity layer 3 dt3 Uniform 0.01× d3, 0.1× d3
13 Ratio of transversal to longitudinal dt3/d3 Uniform 0.01, 0.1

dispersivity layer 3
14 Volumetric distribution coefficient l.1 kd1 Weibull 1.1597, 19.9875
15 Volumetric distribution coefficient l.2 kd2 Weibull 0.891597, 24.4455
16 Volumetric distribution coefficient l.3 kd3 Weibull 1.27363, 22.4986
17 Porosity poros Uniform 0.3, 0.37
18 Infiltration type 1 i1 Uniform 0, 0.0001

Infiltration type 2 i2 Uniform i1, 0.01
19 Infiltration type 2 - type 1 δi2 Uniform 0, 0.0092

Infiltration type 3 i3 Uniform i2, 0.1
20 Infiltration type 3 - type 2 δi3 Uniform 0, 0.096

Table 3: Input parameter description for the Marthe test case.

Results

The GPM built with the learning sample has a Q2 = 0.97 using a leave-one-out cross-validation. Then we

compute N = 10000 instances of the stochastic DGSM R̂D
(2)

k (ω) to obtain the mean D̂(2)
k , which is the

estimator ofDk, the 2.5% and 97.5% quantiles and the p-value associated to the significance test described
in Section 3.3. These quantities are gathered in Table 4. On the one hand, a simple glance to the different
DGSM estimators leads to the conclusion that the input parameter i1 explains the output gradient in its
entirety, and the 95% intervals support these conclusion. On the other hand, statistical tests on the nul-
lity of these DGSMs with a level α = 5% conclude that i1 is one of the less influential parameters, while
the more influential ones are kd1, δi3, perz2, per3, d3, perz3 and δi2. Consequently, the DGSMs lead
to totally different conclusions, depending on whether the DGSMs or their significativities are considered.

In the face of these considerations, we propose a new sensitivity measure based on the stochastic
DGSM:

∆̂k(ω) = σ2
kEX

[(
∂ZC(X;ω)

∂xk

)2
]

and associates the normalized version:

ˆ̃∆k(ω) =
∆̂k(ω)∑d
i=1 ∆̂i(ω)

.
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This approach is similar to the one discussed by Saltelli et al. (2000) in their introduction, considering a SA
index equal to the output partial derivative weighted by the input standard deviation and normalized by
the standard deviation of the output. The index ∆̂k(ω) weights the square infinitesimal output variation
due to the variable xk and averaged on the whole input parameter space, by the variance σ2

k of Xk, which
characterizes the input parameter space spread along the xk direction. We call it “weighted DGSM”. In
this way,

• a very important DGSM, due to a single strong local variation along the direction of xk whose
uncertainty is very small, can be transformed into a small weighted DGSM, while

• a very small DGSM, due to many medium local variations along the direction of xk whose uncer-
tainty is very important, can be transformed into a medium or high DGSM.

Such behaviors are more in agreement with global sensitivity measure expectations: a high value when the
input parameter strongly impacts the model output on average and a small one for the inverse situation.
Moreover, the comparison of weighted DGSMs is more reasonable than the comparison of DGSMs. Indeed,
while the first sensitivity measures have the same dimension, the second indices have different ones, each
of them corresponding to the associated input parameter one. As an intuitive justification, the variance
term σ2

k makes sense in a output variance decomposition, using a linear expansion of the function f(x)
around x∗:

f(x) ≈ f∗(x) = f(x∗) +

d∑
k=1

∂f(x)

∂xk

∣∣∣∣
x∗

(xk − x∗k).

In this case, we obtain for independent input parameters:

V [f∗(X)] =

d∑
k=1

(
∂f(x)

∂xk

∣∣∣∣
x∗

)2

V [Xk] =

d∑
k=1

(
∂f(x)

∂xk

∣∣∣∣
x∗

)2

σ2
k

and then, the expectation with respect to x∗ leads to the mean variance decomposition:

EX∗ [V [f∗(X)]] =

d∑
k=1

σ2
kDk =

d∑
k=1

∆k.

The second part of Table 4 presents the results associated to the propose weighted DGSM. With this
perspective, the variable kd1 explains 88% of the global output uncertainty while the δi3 contribution is
equal to 7% and per1 and perz2 to around 2%. The explanation of the output uncertainty is radically
different from the DGSM point of view where these four variables are totally hidden by the input parame-
ter i1, especially for kd1 which is the most significant input according to the weighted DGSMs. Moreover,
the conclusions of the global sensitivity analysis obtained with the weighted DGSMs are
of the same order than those obtained with the Sobol’ indices. Lastly, these conclusions
are also similar to the ones based on the p-values, what numerically validates the screening
method proposed in Section 3.3.

Lastly, Figure 3 compares the p-values computed with the different Monte-Carlo methods and we
can see that despite of quantitative differences, screening conclusions are similar if we use a significance
test with a level α = 10% rather than 5%. Indeed, because of the law approximations and the chosen
M and N values, the estimation of the distribution tails can be rough, in particularly for chi-square
approximation whose associated significance test is too conservative. Consequently, for a more robust
screening, we recommend against using a too small level for screening.

To conclude, in addition to illustrating the use of DGSM-based tests for screening, this industrial
application led us to apply a new sensitivity measure derived from the classical DGSM: the weighted
DGSM. From the previous results, the comparison of weighted DGSMs can be considered as a method
from the global sensitivity analysis toolbox while classical DGSMs can be considered as tools from the local
sensitivity analysis toolbox. A classical DGSM focus on the mean square value of some partial derivative,
that is to say on a punctual information averaged over the whole probabilized input parameter space,
while a weighted DGSM focus on this value balanced by the associated input parameter uncertainty.
The comparison of weighted DGSMs makes sense because they have the same physical dimension (the
squared output one), contrary to the classical DGSMs whose physical dimensions differ. For both kinds
of sensitivity indices, significance tests lead to the same conclusions because the statistics only differ by
a constant multiplicative term.
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Stochastic DGSM R̂D
(2)

k (ω) Weighted DGSM Sobol
Xk Mean q(2.5%) q(97.5%) Screening Mean Mean 1st order

D̂
(2)
k using pval,k ∆̂k

ˆ̃∆k

kd1 2.2e-04 2.0e-04 2.4e-04 0.000 *** 5.4e-02 88% 0.75
δi3 5.6e+00 5.1e+00 6.2e+00 0.000 *** 4.1e-03 7% 0.16

perz2 5.8e-05 4.5e-05 7.3e-05 0.000 *** 9.3e-04 2% 0.03
d1 2.5e-04 1.8e-04 3.4e-04 0.006 ** 7.7e-05 0% 0.03
kd2 4.2e-08 2.9e-08 6.2e-08 0.113 3.5e-05 0% 0.03
per1 7.2e-05 6.0e-05 8.5e-05 0.000 *** 1.2e-03 2% 0.06
perz1 5.1e-06 3.6e-06 7.1e-06 0.001 ** 8.9e-05 0% 0.03
dt1/d1 1.2e-02 8.7e-02 1.7e-01 0.001 ** 8.4e-05 0% 0.03
per3 1.0e-05 7.1e-06 1.4e-05 0.000 *** 1.8e-04 0% 0.03
d3 2.7e-04 1.9e-04 3.6e-04 0.000 *** 8.4e-05 0% 0.03
per2 3.7e-06 2.7e-06 4.9e-06 0.022 * 6.9e-05 0% 0.03
perz4 4.0e-06 2.9e-06 5.3e-06 0.040 * 6.8e-05 0% 0.03
perz3 5.3e-06 3.7e-06 7.3e-06 0.000 *** 8.2e-05 0% 0.03
i1 8.0e+04 5.9e+04 1.1e+05 0.040 * 6.6e-05 0% 0.03

dt2/d2 1.1e-01 7.8e-02 1.5e-01 0.011 * 7.5e-05 0% 0.03
δi2 1.0e+01 7.1e+00 1.5e+01 0.000 *** 8.5e-05 0% 0.03
kd3 1.1e-07 7.4e-08 1.6e-07 0.215 2.8e-05 0% 0.03
d2 2.2e-04 1.6e-04 3.0e-04 0.037 * 6.8e-05 0% 0.03

dt3/d3 1.0e-01 7.6e-02 1.4e-01 0.034 * 6.7e-05 0% 0.03
poros 1.7e-01 1.2e-01 2.3e-01 0.028 * 7.0e-05 0% 0.03

Table 4: DGSM statistics for the MARTHE test case, using the classical formulation and weighted
versions.

5 Conclusion
This paper deals with the estimation of the derivative-based global sensitivity measures (DGSMs) asso-
ciated to a numerical simulator in global sensitivity analysis (GSA) (Sobol and Kucherenko, 2009). This
work falls within the scenario where this model does not provide the adjoint code to compute its output
gradient. Under this consideration, we replaced this simulator by a surrogate model, more precisely by
a Gaussian process metamodel (GPM) (Rasmussen and Williams, 2005). This idea has already been in-
vestigated with other surrogate models or sensitivity measures (Sudret, 2008; Marrel et al., 2009; Sudret
and Mai, 2014).

We proposed two kinds of GPM-based DGSM estimators. A first-one consists in substituting the
numerical model by the GPM predictor; we called it “plug-in estimator”. A second one uses the full
GPM and we showed that this DGSM estimator is equal to the plug-in one, completed by an additive
variance term; we called it “full-GPM estimator”. This second estimator is the expectation of a stochastic
DGSM where the numerical model is replaced by the whole GPM, not only its mean contrarily to the
plug-in estimator; in this way, it takes into account the metamodel error, contrarily to the plug-in one.
Consequently, we can also approach the distribution of this stochastic DGSM, build many statistics and
more particularly provide a confidence interval for the DGSM estimator. Using this full-GPM estimator,
we also proposed a significance test for eliminating the non-influential variables in a screening context.
For all these reasons, the full-GPM is more relevant than the plug-in one, especially in presence of the
small learning sample.

These estimators require many integral evaluations which can be computed by Monte-Carlo sampling.
To this end, we proposed efficient methods based either on a propagative version of the Gibbs sampler, or
on a chi-square approximation. We advise the first approach when the number of Monte-Carlo replications
is small with respect to the number of GPM simulations required to the approximation of a stochastic
DGSM instance, and conversely, and vice versa. Both methods can be used for the significance test
computation. Furthermore, we showed that these plug-in and full-GPM estimators are analytically
tractable when the input parameters are uniformly distributed and when the kernel functions of the

19



Figure 3: Comparison of the p-values computed by the different Monte-Carlo methods for the Marthe
test case: reference method (mvrnorm), Gibbs sampler (Gibbs) and chi-squared approximation (chisq).

GPM are Gaussian, considerably reducing the computational time.
Finally, we ran numerical studies with the Ishigami function and consider an industrial application

with a complex hydrogeological computer code. For the first point, the convergence rates of the DGSM
estimators differ from an input parameter to another, which can be explained by the accuracy differences
between the GPM partial derivatives. This is due to the fact that the GPM maximizes the likelihood
on a set of computer code output observations, not on the corresponding partial derivative values. In
other words, the metamodel is built without any idea of the behavior of the model gradient. However,
we showed that, from a few observations, the estimators using the full-GPM can be used in a screening
context to rank the input parameters according to their level of influence on the model output, and
provide an idea of their relative significance. For the industrial application, the results give an input
parameter order different than the one obtained with Sobol’ indices (Marrel et al., 2009) but lead to the
same conclusion about the influential variables using a significant test. This reinforces the pertinence
of these DGSM estimators for screening purposes. Furthermore, we proposed a weighted version of the
DGSM, after having established that the classical DGSMs do not take into account the uncertainty of
their associated input parameters. To a certain extent, the classical DGSMs are useful for probabilized
local sensitivity analysis while weighted DGSMs are useful for global sensitivity analysis.

To conclude, the GPM-based DGSM estimators developed in this paper are encouraging for local
or global sensitivity analysis and for screening from a few evaluations of the numerical simulator. A
criticism of this approach is that these estimators consider the gradient of the GPM which has been built
using observations of the simulator output, not of its gradient. Consequently, nothing guarantees that
the partial derivatives of the GPM are accurate approximations of the associated partial derivative of the
simulator. For future research, adaptive sampling dedicated to the gradient approximation enhancement
could be investigated: a strategy could be to add, as a new code simulation, the input parameter vector
maximizing the trace of the GPM gradient covariance or the reduction of this trace. Moreover, the
GPM-based DGSM estimations should be improved if some observations of the model output partial
derivatives were available. In the case where the adjoint code is present, developments could be done
about the integration of some model gradient simulations completing the output evaluations.
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Mathematical details

Computation of D̂(2)
k

From the Gaussian process metamodel and the definition D̂(2)
k = Eω

[
EX

[(
∂ZC(X;ω)

∂xk

)2
]]

, we obtain the

relation (13):

D̂
(2)
k = Eω

[
EX

[(
∂ZC(X;ω)

∂xk

)2
]]

= EX

[
Eω

[(
∂ZC(X;ω)

∂xk

)2
]]

= EX

[(
Eω

[
∂ZC(X;ω)

∂xk

])2

+ Vω

[
∂ZC(X;ω)

∂xk

]]

= EX

(∂f̂(X)

∂xk

)2
+ EX

[
Vω

[
∂ZC(X;ω)

∂xk

]]

= D̂
(1)
k + EX

[
Vω

[
∂ZC(X;ω)

∂xk

]]
.

Then we develop the second term EX
[
Vω
[
∂ZC(X;ω)

∂xk

]]
and get the result (14):

EX

[
Vω

[
∂ZC(X;ω)

∂xk

]]
= EX

[
Covω

[
∂ZC(X;ω)

∂xk
,
∂ZC(X;ω)

∂xk

]]
= EX

[
∂2

∂uk∂vk
Covω [ZC(U ;ω), ZC(V ;ω)]

∣∣∣∣
(U,V ):=(X,X)

]

= EX

[
∂2

∂uk∂vk

(
σ2r(U, V )− σ2k(U)TR−1k(V )

)∣∣∣∣
(U,V ):=(X,X)

]

= σ2EX

[
∂2r(U, V )

∂uk∂vk

∣∣∣∣
(U,V ):=(X,X)

]
− σ2EX

[
∂k(U)T

∂uk
R−1 ∂k(V )

∂vk

∣∣∣∣
(U,V ):=(X,X)

]

= σ2EX

[
∂2r(U, V )

∂uk∂vk

∣∣∣∣
(U,V ):=(X,X)

]

− σ2
n∑

i,j=1

(
R−1

)
ij

EX

[
∂r(X,X(i))

∂xk

∂r(X,X(j))

∂xk

]

= σ2EX

[
∂2r(U, V )

∂uk∂vk
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(U,V ):=(X,X)

]

− σ2
n∑

i,j=1

(
R−1

)
ij

EXk

[
∂rk(Xk, X

(i)
k )

∂xk

∂rk(Xk, X
(j)
k )

∂xk

]

×
d∏
l=1
l6=k

EXl
[
rl(Xl, X

(i)
l )rl(Xl, X

(j)
l )
]
.

Gaussian kernel and uniform laws
Lemma 1 Let X ∼ U([m,M ]) and r(x, x′) = exp

(
− (x−x′)2

2θ2

)
. Then

E [r(X, y)r(X, z)] =
√
πθ(M −m)−1 exp

(
− (y − z)2

4θ2

)
P [Z ∈ [m,M ]]

where Z ∼ N
(
y+z

2 ; θ
2

2

)
.
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Proof 1

E [r(X, y)r(X, z)] = E

[
exp

(
−2X2 − 2X(y + z) + y2 + z2

2θ2

)]
= E

[
exp

(
−

(X − y+z
2 )2 + 1

4 (y − z)2

2( θ√
2
)2

)]

=
√
πθ exp

(
− (y − z)2

4θ2

)
E

 1√
2π θ

2

2

exp

(
−

(X − y+z
2 )2

2( θ√
2
)2

)
=
√
πθ exp

(
− (y − z)2

4θ2

)
(M −m)−1

∫ M

m

ϕN
(
y+z
2 ; θ

2

2

)(x)dx

where ϕN (m;σ2)(x) is the probability density function of the normal law with mean m and variance σ2.

Lemma 2 Let X ∼ U([m,M ]) and r(x, x′) = exp
(
− (x−x′)2

2θ2

)
. Then

E

[
∂r(X, y)

∂x

∂r(X, z)

∂x

]
= − (y − z)2

4θ4
E [r(X, y)r(X, z)]

+

√
π

2θ(M −m)
exp

(
− (y − z)2

4θ2

)
{aϕ(a)− bϕ(b)− P [Z ∈ [a, b]]}

where Z ∼ N (0, 1), a = 2m−y−z√
2θ

, b = 2M−y−z√
2θ

and where ϕ(.) is the probability density function of the
standard normal law.

Proof 2

E

[
∂r(X, y)

∂x

∂r(X, z)

∂x

]
= E

[
(X − y)(X − z)

θ4
r(X, y)r(X, z)

]
= E

[(
(X − y+z

2 )2

θ4
− 1

4

(y − z)2

θ4

)
r(X, y)r(X, z)

]

= E

[
(X − y+z

2 )2

θ4
r(X, y)r(X, z)

]
− 1

4

(y − z)2

θ4
E [r(X, y)r(X, z)]

where

E

[
(X − y+z

2 )2

θ4
r(X, y)r(X, z)

]
=
√
πθ exp

(
− (y − z)2

4θ2

)
E

[
(X − y+z

2 )2

θ4
ϕN ( y+z2 , θ

2

2 )
(X)

]
︸ ︷︷ ︸

∆

with, using w = (x− y+z
2 )/(θ/

√
2),

∆ = (M −m)−1

∫ M

m

(x− y+z
2 )2

θ4

1√
2π θ√

2

exp

(
−

(X − y+z
2 )2

2( θ√
2
)2

)
dx

= (M −m)−1

∫ b

a

w2

2θ2
ϕ(w)dw with a =

2m− y − z√
2θ

and b =
2M − y − z√

2θ

=
1

2θ2(M −m)

∫ a

b

wϕ′(w)dw

=
1

2θ2(M −m)

(
aϕ(a)− bϕ(b)−

∫ a

b

ϕ(w)dw

)
.
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