
HAL Id: hal-01164153
https://hal.science/hal-01164153

Submitted on 16 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A coarse to fine 3D acquisition system
V Daval, F Truchetet, Olivier Aubreton

To cite this version:
V Daval, F Truchetet, Olivier Aubreton. A coarse to fine 3D acquisition system. Twelfth International
Conference on Quality Control by Artificial Vision 2015, SPIE, Jun 2015, LE CREUSOT, France.
�hal-01164153�

https://hal.science/hal-01164153
https://hal.archives-ouvertes.fr


A coarse to fine 3D acquisition system

V. Daval and F. Truchetet and O. Aubreton

LE2I, 12 rue de la fonderie, Le Creusot, France

ABSTRACT

The 3D chain (acquisition-processing-compression) is, most of the time, sequenced into several steps. Such
approaches result into an one-dense acquisition of 3D points. In large scope of applications, the first processing
step consists in simplifying the data. In this paper, we propose a coarse to fine acquisition system which permits
to obtain simplified data directly from the acquisition. By calculating some complementary information from 2D
images, such as 3D normals, multiple homogeneous regions will be segmented and affected to a given primitive
class. Contrary to other studies, the whole process is not based on a mesh. The obtained model is simplified
directly from the 2D data acquired by a 3D scanner.
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1. INTRODUCTION

Currently, 3D data resulting from the acquisition of a 3D scanner will generally be analysed and processed
before be exploited. This framework refer usually to the 3D chain as presented in figure 1. This chain can be
decomposed into several independent steps: acquisition, computation of additional information, data simplifi-
cation. Therefore, companies focus on providing commercial scanners with high acquisition resolution in order
to provide accurate point cloud. In some industrial cases, this amount of information is required as in reverse
engineering. However, in many other applications, computing as many points is rarely necessary. Instead, the
resulting amount of data will be very large and more difficult to store and analyse. Therefore, the data will be
simplified before being processed, while retaining useful information.

Figure 1. Classic 3D acquisition-compression-processing chain: from acquisition to compression.

Figure 1 presents the diagram of the 3D chain encountered in most of the cases. The first step, the acquisition,
consists in acquiring a very dense point cloud using a scanner. Then, additional information will be calculated
from the point cloud in a second step. Finally, the last step of the 3D chain consists in simplifying the point
cloud based on the information calculated in the previous step. This process permits to obtain an mount of data
more manageable and easier to analyse. However, this approach leads to the following questions. Knowing the
end use of the data, is it necessary to acquire an over-dense amount of data which will have to be simplified
afterwards ? Is it not possible to simplify directly the data during the acquisition step ?

In this paper, we propose a methodology to respond positively to this last question. We propose a system
to minimize the number of 3D points acquired during the acquisition. This approach provides a simplified point
cloud directly to the output of the first step: the acquisition. In this article, we will present the global process
of the proposed system (section 2) and the methodology used to identify primitives (section 3). Next, we will
present the results obtained with this system on manufactured parts (section 4), then we will conclude in (section
5).
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Figure 2. Global flowchart of our system

2. SYSTEM PROPOSED

The method proposed in this paper is based on a coarse to fine approach allowing to simplify data upon ac-
quisition. The principle is to acquire sparse data and then progressively refine the acquisition based on the
information extracted from the scanning. The general principle of this approach is synthesized in figure 2.

The objective of this system is to calculate sparse data and then, use this information to identify primitives
present in the scene. 3D primitives are simple geometric shapes that can be modelled by a mathematical
representation with few parameters. In most industrial applications, manufactured parts are generally composed
of planes, cylinders, cones and spheres. Therefore, in our application we have searched to identify these four
types of primitive. Because of their simplicity, these forms do not need to be represented by a large number of
points. The process proposed is as follow: first, a set of primitives will be identified from a coarse scanning. In
a second step, a refinement will be performed on the previously unlabelled regions. Amongst them the works of
Yu et al. and Bénière et al. can be quoted as being the most significative in the context of our approach1–3 .

In order to identify these primitives, the system will compute a sparse point cloud with a density d = d0
from a pair of images obtained by a 3D scanner, more precisely a structured light system. Once the sparse
data are obtained, the 3D normals will be calculated from 2D images. The principle of the used method is
described by authors4 and the application to a structured light system is detailed by authors.5 By exploiting
these 3D normals, then it is possible to segment the scene in homogeneous regions. The segmentation is based
on a exploitation of 3D normals and explained in to details in6 .

Once the sparse data are segmented, each region will be treated separately in order to identify primitives
(region labeling). Then, the regions identified as primitives are stored and labelled. All non-labelled regions will
be refined in at each iteration by calculating denser data. The system will continue until a stopping criteria is
achieved. This iterative system allows to revisiting the classic 3D chain. In fact, it is possible to obtain simplify
data during the acquisition step using a coarse to fine approach based on identifying primitives. In this article,
the focus will be on the main part of the system, mainly the identification of primitives (Region labelling). A
more complete description of the complete process of this system is described in.6



Figure 3. Gaussian representation of primitives. a) to d) perfect primitives: plan, cylinder, cone, sphere. e) to h) partial
and noisy primitives.

3. PRIMITIVE IDENTIFICATION

In most of the cases, primitives are extracted directly from the 3D data7,8 . In9,10 , the authors present a method
for extracting cylinders and cones from a point cloud using a Gaussian image11 . Yu et al.1 propose a similar
approach, also based on Gaussian image to identify concave and convex shapes. The Gaussian image is useful for
representing the shape of surface. The principle consists in placing the 3D normals of the surface (normalized),
to the center of a unit sphere (figure 3). In this section, we propose to generalize this approach for the four types
of primitive studied in our application (planes, cylinders, cones, spheres). The Gaussian representation is useful
when we consider primitives. Indeed, some primitives have a particular representation that can be exploited to
identify and model them. Figure 3 shows that the Gaussian representation is very different between the different
types of primitive, even in the case of noisy and incomplete data (figure 3-e to 3-h).

To account for the noisy nature of the data, we propose to use a statistical analysis method, the principal
components analysis (PCA), to identify primitives from the Gaussian representation. In the case of the Gaussian
image, data are the 3D normals to the surface of the object ni = (n1i, n2i, n3i)

T , that can gather in a matrix N .
Generally, in the computation of the PCA, data are centred relative to the mean of each component:

n1 =

∑

K

i=1 n1i

K
, (1)

which gives:

N ′ =





n11 − n1 . . . n1i − n1 . . . n1K − n1

n21 − n2 . . . n2i − n2 . . . n2K − n2

n31 − n3 . . . n3i − n3 . . . n3K − n3



 . (2)

Calculates the PCA returns to compute the covariance matrix

C = N ′N ′T , (3)

which calculates three eigenvectors X and three eigenvalues λ. Due to the great difference between the
primitives, we propose to use these eigenvectors and eigenvalues in order to identify and model the four types of
primitives treated in our case.



(a) (b)

Figure 4. Three-dimensional representation of eigenvalues. a) eigenvalues for each type of primitives (red: cylinders,
black: cones, blue: spheres, green: planes. b) classes corresponding to a type of primitives.

To classify the different primitives by exploiting the eigenvalues of the covariance matrix C, we have modelled
different geometric primitives (planes, spheres, cylinders and cones) with different parameters (radius, orientation,
position). For each primitive modelled, we have computed the 3D normals and add a noise. This noise have
similar properties than the noise of 3D scanner used. Thus, we obtain a Gaussian representation for each
primitive modelled and therefore it is possible to calculate the covariance matrix C for each primitive. Figure
4-a represents the eigenvalues obtained for each primitive in a three-dimensional space. The three axis of this
space are λ1, λ2 and λ3 (the three eigenvalues obtained for each primitive). Red points represent the eigenvalues
of the cylinders, green points represent the plans, blue points represent the spheres and black points represent
the cones. From this representation, we can define three classes (figure 4-b) by exploiting the eigenvalues of the
C matrix. The red class corresponds to the cylinders/cones, blue class contains the spheres and the green class
corresponding to the plans. We exploit this 3D representation to identify if a segmented region correspond to a
certain primitive. Thus, we compute the covariance matrix C from the Gaussian representation of 3D normals
for each segmented region. After, we compute the eigenvalues from C, and by exploiting the 3D representation
of these eigenvalues (figure 4), we can identify if the regions correspond to a primitive or not. If a region is
identified as belonging to a primitive type, it will be stored and will not be refined by the system. Otherwise,
this region will be refined in the next iteration with a scanning with a higher density d.

4. RESULTS

This section presents the results obtained with our system on an industrial object (figure 5-a). Figure 5 presents
the results obtained during the different steps of the presented system in this paper. The first step of the system is
the acquisition. This step consists in computing sparse data and to segment the object in to many homogeneous
regions. Figure 5-b represents the sparse data obtained with a density d = d0 and figure 5-c the different regions
segmented using the approach described in section (2) of this article.

The next step of the system corresponds to the identification of the primitives. To identify the primitives,
we have propose a method based on the exploitation of eigenvalues of the Gaussian representation (section 3).



(a) Object: manufactured part (b) Sparse point cloud (first iteration)

(c) Object segmented (d) Gaussian representation (orange region)

(e) regions identified as a primitive (green regions) and non-labelled region (blue).

Figure 5. Results obtain by our system step by step.

Figure 5-d shows the Gaussian representation of one segmented region. For this example, the eigenvalues of the
covariance matrix C correspond to a cylinder. Therefore, this region will be labelled. Figure 5-e present the
result obtained for this object after the first iteration. Green parts correspond to objects identify as primitives,
and the blue parts represent the non-labelled regions. During the second iteration of the system, only the blue
regions will be refined. Finally, figure 6 depicts the final result obtained with the following stopping criteria:

- The system reaches the maximum density scanner d = dmax

- All regions are labelled.

Compared to the conventional scanning which provides 38328 points with this manufactured object, our
approach provides a point cloud composed of 19141 points (compression rate of 49.94%). To validate our



(a) Full point cloud: 38328 points (b) Result obtain by our system: 19141 points

Figure 6. Final result of the coarse to fine acquisition system.

method, we also compared the results obtained with traditional methods, through all stages of the 3D chain
(dense acquisition, information retrieval, simplification). Two methods have been chosen to be compared with
our work: ACVD12 and Qslim13 (figure 7), which are well-known and have exploitable toolbox. In this comparison
we get similar results with both methods but the simplified point cloud is obtained directly from the acquisition,
directly from the output of the scanner.

Figure 7. Comparison of our method with ACVD12 and Qslim.13



5. CONCLUSION

In this paper, we present a coarse to fine acquisition system permitting to revisits the classic 3D chain. This
system computes sparse data and refines the acquisition progressively by respecting the surface geometry. The
goal of our system is identify if the primitives present in a point cloud can be used for point cloud compression.
In fact, a large sets of points can be replaced by a small number of parameters.

However, this system is totally dependent of the numbers of primitives of the object itself. For these reasons,
this system is only useful for mechanical parts. An improvement of this system, could be the extension to other
forms using more sophisticated primitives (nurbs, superquadrics, ...).
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