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Identification of Robot Dynamic Parameters Using Jacobi Differentiator

Qi GUO1, Maxime GAUTIER2, Da-Yan LIU3 and Wilfrid PERRUQUETTI4

Abstract— This paper investigates the behavior of central
Jacobi differentiator in robot identification applications. Jacobi
differentiator is a Jacobi orthogonal based algebraic differen-
tiator. It is applied to compute acceleration from noisy position
measurements. Moreover, its frequency domain property is
analyzed via a finite impulse response (FIR) filter point of view,
indicating clearly the differentiators performance. In the end,
a two revolute joints planar robot identification application is
presented and comparisons between the Jacobi differentiator
and the Euler differentiation combined with Butterworth filter
are drawn.

I. INTRODUCTION

The topic on identification of robot dynamic parameters
has been widely studied in the past decades, but there still
exist several open questions. One of them is numerical dif-
ferentiation, which concerns with estimating the derivatives
of an unknown signal using its noisy measurement. This
is an ill-posed problem in the sense that a small error in
the measurement can produce a large error in the estimated
derivatives, specially in the case of high order derivatives.
Therefore, various numerical methods have been developed
to obtain stable algorithms which are robust against corrupt-
ing noises. They mainly fall into the following categories:

• finite difference methods [1],
• Savitzky Golay methods [2],
• wavelet differentiation methods [3],
• Fourier transform methods [4],
• mollification methods [5],
• Tikhonov regularization methods [6],
• algebraic methods [7], [8]
• differentiator observer [9], [10]
The recent algebraic differentiators are rooted in a recent

algebraic parametric method introduced by Fliess and Sira-
Ramı́rez [8], [11]. These algebraic differentiators are divided
into two classes: model-based differentiators and model-free
differentiators. The formers were obtained by applying the
algebraic method to a differential equation which defines
a class of linear systems [12], [13], [14]. Hence, they are
mainly used for linear systems. However, the model-free
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differentiators can be used for nonlinear systems. The first
model-free differentiator was introduced in [15] by applying
the algebraic method to the truncated Taylor series expansion
of the signal to be differentiated. Then, two model-free
differentiators were proposed in [16], where the causal Jacobi
differentiator is presented. Moreover, it was shown that the
causal Jacobi differentiator can also be obtained by taking
the truncated Jacobi orthogonal series expansion of the signal
to be differentiated. In [17], central Jacobi differentiator was
proposed, which is devoted to off-line applications.

The algebraic differentiators have the following advan-
tages. Firstly, they are given by exact integral formula. Thus,
estimations at different instants can be obtained using a
sliding integration window of finite length. Secondly, the
integral formula can be considered as low-pass filters, which
show robust properties with respect to corrupting noises [18].
The Jacobi differentiators contain some design parameters.
Some error analysis has been done to study the influence of
the design parameters [19], [20], [17], [21], where the study
was based on some proposed error bounds. In this paper, the
influence of the design parameters will be studied in a FIR
filter point of view. For this purpose, their frequency domain
properties are studied.

In order to identify robot dynamic parameters, a huge
variety of methods have been proposed mainly using least-
square techniques. The most widely applied approach is
based on the robot explicit dynamic model, requiring joint
acceleration data which are usually estimated from noisy
measurement [22]. The other approaches are based on the
robot energy model [23] or the robot power model [24],
which require only joint velocity data, but instead they
need a derivation operation on an implicit part of velocity.
Besides, some authors utilize a parallel scheme to identify
robot dynamic parameters by minimizing the output error
from a closed loop simulation [25]. In this paper, the robot
explicit dynamic model is considered under the condition that
velocity and acceleration are well estimated using position
data.

The paper is organized as follows: Section II introduces
the robot dynamic model and discusses the identification
process. Section III presents the central Jacobi differentiator
and analyzes its frequency domain properties. Section IV
obtains the identification results on a 2 joints planar direct
drive prototype robot, respectively by means of the central
Jacobi differentiator and the central Euler differentiation
combined with the Butterworth filter. Finally, conclusions
are given in Section V.



II. IDENTIFICATION

A. Explicit Dynamic Model

The explicit dynamic model of a rigid robot composed of
n moving links calculates the motor torque vector Γm as a
function of the state variables and their derivatives. It can be
deduced from the following Lagrangian formulation:

Γm =
d

dt
(
∂L

∂q̇
)− ∂L

∂q
+ Γf , (1)

where q, q̇ are the n×1 vectors of generalized joint position
and velocity, L is the Lagrangian of the system defined
as the difference between the kinetic energy E(q, q̇) and
the potential energy U(q), with E = 1

2 q̇
TM(q)q̇, where

M(q) is the (n× n) robot inertia matrix. Γf is the friction
torque which is usually modelled at non zero velocity as:
Γfj = Fsjsign(q̇j) + Fvjq̇j + Γoffj, where q̇j is the velocity
of joint j, sign(x) denotes the sign function. Fvj, Fsj are the
viscous and Coulomb friction coefficients of joint j, Γoffj

is an offset parameter which is the dis-symmetry of the
Coulomb friction with respect to the sign of the velocity
and is due to the current amplifier offset which supplies
the motor [26] . Notice that the Coulomb friction contains
the non-linear term sign(q̇j) which causes discontinuities on
Γf during the crossing of 0 velocity q̇j . To avoid this, it is
replaced by a continuous 2

π arctan(αj q̇j) function, where αj

is a ratio of maximum joint velocity q̇jmax

Develop Eq. (1) by replacing L with E−U, then it becomes
the explicit inverse dynamic model which depends on the
joint acceleration:

Γm = M(q)q̈+C(q, q̇)q̇+Q(q) + Γf , (2)

where q̈ is the n × 1 vector of joint acceleration, M(q)
is the n × n symmetric and positive definite inertia matrix,
C(q, q̇)q̇ is the n × 1 vector of Coriolis and centrifugal
torques, Q(q) is the n × 1 vector of gravity torques. The
dynamic model is linear with respect to a set of standard
dynamic parameters Xdyn. From (2) it can be rewritten as:

Γm = Ds(q, q̇, q̈)Xdyn. (3)

The vector Xdyn is of dimension 14n×1, and for each link
there are 6 components of the inertia tensor, 3 components
of the first moment, 1 mass parameter, 1 total inertia moment
for rotor actuator and gears, 2 viscous and Coulomb friction
parameters. According to [27], the set of standard dynamic
parameters can be simplified into a set of base inertial
parameters containing the minimum parameters that can
describe the robot dynamics. They are obtained from the
standard inertial dynamic parameters by eliminating those
that have no effect on the dynamic model and by regrouping
those in linear relations. In [28], symbolic and numerical
solutions are presented for any open or closed chain robot
manipulator to get a minimal dynamic model:

Γm = D(q, q̇, q̈)X, (4)

where X is the vector of base parameters.

B. Identification Process

Least squares (LS) technique is commonly used in robot
dynamic parameters identification process by solving an
overdetermined linear system from ns sampling points of
the dynamic models (4) along a trajectory:

Y = W(q, q̇, q̈)X+ ρ, (5)

where ρ is a noise, Y and W are the vector of torques and
the observation matrix, respectively, which are defined as
follows:

Y =

 Γm(1)
...

Γm(ns)

 ,W =

 D(1)
...

D(ns)

 . (6)

The traditional method to estimate joint velocity q̇ and
acceleration q̈ is to apply central Euler difference of joint
position q. However, this method can amplify the noise effect
in the estimations of q̇, q̈. To avoid the noise distribution,
(q, q̇, q̈) must be filtered by a low-pass filter Fq(s), with
derivative operator s. The filter Fq(s) should have a flat
amplitude without phase shift in the range [0 ωcq ], with
the rule of thumb ωcq > (10 × ωdyn), and ωdyn is the
bandwidth of the joint position closed loop [24]. Meanwhile,
the torque Γm is perturbed by high frequency torque ripple
from joint drive chain in the closed loop control. Hence, it
has to be filtered. Then, Γm and D(qfq , q̇fq , q̈fq) are both
filtered and downsampled through a decimate filter composed
of a low-pass filter Fp(s), where its cutoff frequency ωfp is
approximated by 5 × ωdyn, in order to get a new filtered
linear system:

Yfp = Wfp(qfq, q̇fq, q̈fq)X+ ρfp. (7)

Finally, we solve the LS problem via:

X̂ = W+
fp(qfq, q̇fq, q̈fq)Yfp, (8)

where W+
fp is the pseudo-inverse matrix of Wfp and X̂ is

the unique LS solution using the QR factorization or SVD
decomposition. X̂ minimizes the Euclidean norm ∥ρ∥2 of the
vector of errors ρ. The unicity of X̂ depends on the rank of
the observation matrix Wfp. The numerical rank deficiency
can come from Wfp structural rank deficiency or dissatisfac-
tion of excitation condition due to a bad choice of samples. In
order to decrease the sensitivity of LS solution with respect
to errors, the condition number of the observation matrix
must be close to 1. Some approaches used to calculate the
exciting trajectory for identification are proposed in [29].

While in some cases the contribution of certain base
parameters is too small that they cannot be experimentally
identified even with optimized trajectories. Then, the base
parameters should be replaced by a set of essential param-
eters by eliminating certain insignificant parameters. There
are two approaches: the QR factorization of Wfpdiag(X̂)
with column pivoting [30] or assuming that parameters with
relative standard deviation σX̂j

larger than 10% will be
eliminated from the model (see section V). This new set of



essential parameters allows to improve the noise immunity of
the robot identification process and reduce the computation
burden for the model based control application.

III. CENTRAL JACOBI DIFFERENTIATOR

Consider a noisy measurement xϖ : I → R, xϖ(t) =
x(t) + ϖ(t), where I is a finite time open interval of R+,
x ∈ Cn(I) with n ∈ N, and ϖ is an additive corrupting
noise. The objective is to estimate the nth order derivative
of x using xϖ. First, for any t0 ∈ I , the set Dt0 ={
t ∈ R∗

+; [t0 − t, t0 + t] ∈ I
}

is introduced.

A. Algebraic differentiator involving Jacobi polynomials

For any t0 ∈ I , x can be locally expressed on [t0−h, t0+
h] with h ∈ Dt0 by the following Jacobi orthogonal series
expansion:

∀ ξ ∈ [−1, 1], x(t0 + hξ) =

∑
i≥0

⟨
P

(µ,κ)
i (·), x(t0 + h·)

⟩
µ,κ

∥P (µ,κ)
i ∥2µ,κ

P
(µ,κ)
i (ξ),

(9)

where
⟨
P

(µ,κ)
i (·), x(t0 + h·)

⟩
µ,κ

=∫ 1

−1
wµ,κ(τ)P

(µ,κ)
i (τ)x(t0 + hτ)dτ , P (µ,κ)

i is the ith order
Jacobi orthogonal polynomial defined on [−1, 1] as follows
(see [31]):

P
(µ,κ)
i (τ) =

i∑
j=0

(
i+ µ

j

)(
i+ κ

i− j

)(
τ − 1

2

)i−j (
τ + 1

2

)j

,

with µ, κ ∈] − 1,+∞[, ⟨·, ·⟩µ,κ is a L2([−1, 1]) scalar
product with the associated weight function wµ,κ(τ) =

(1 − τ)µ(1 + τ)κ, and the associated norm ∥P (µ,κ)
i ∥2µ,κ =

2µ+κ+1

2i+µ+κ+1
Γ(µ+i+1)Γ(κ+i+1)
Γ(µ+κ+i+1)Γ(i+1) , where Γ(·) is the classical

Gamma function (see [31] p. 255).
In order to approximate x, the N + 1 first terms in the

Jacobi series expansion given in (9) are taken, i.e. we locally
approximate x by a N th order polynomial on [t0−h, t0+h].
Thus, by denoting the obtained N th order polynomial by
D

(0)
κ,µ,h,Nx(t0 + hξ), we have:

∀ ξ ∈ [−1, 1], D
(0)
κ,µ,h,Nx(t0 + hξ) :=

N∑
i=0

⟨
P

(µ,κ)
i (·), x(t0 + h·)

⟩
µ,κ

∥P (µ,κ)
i ∥2µ,κ

P
(µ,κ)
i (ξ).

(10)

Hence, the value of x at t0 can be approximated by
D

(0)
κ,µ,h,Nx(t0) by taking ξ = 0. Inspired by this idea, the

central Jacobi differentiator is defined by taking the q + 1
(q = N − n ∈ N) first terms in the Jacobi series expansion
of x(n) with ξ = 0:

D
(n)
κ,µ,h,qx(t0) =

q∑
i=0

⟨
P

(µ+n,κ+n)
i (·), x(n)(t0 + h·)

⟩
µ+n,κ+n

∥P (µ+n,κ+n)
i ∥2µ+n,κ+n

P
(µ+n,κ+n)
i (0).

(11)

This differentiator can be given by the following integral
formula [17]:

D
(n)
κ,µ,h,qx(t0) =

1

hn

∫ 1

−1

Qκ,µ,n,q(τ)x(t0 + hτ)dτ, (12)

where ρn,κ,µ(τ) =
2−(n+κ+µ+1)n!Γ(2n+κ+µ+2)

Γ(n+κ+1)Γ(n+µ+1) ,

Qκ,µ,n,q(τ) =

q∑
i=0

Pµ+n,κ+n
i (0)

i∑
j=0

(−1)i+j

(
i

j

)
×

2i+ κ+ µ+ 2n+ 1

i+ κ+ µ+ 2n+ 1
ρn,κ+i−j,µ+j(τ).

Finally, x is substituted in (12) by xϖ in order to obtain
the Jacobi differentiator D(n)

κ,µ,h,qx
ϖ(t0) in noisy case.

It is clear that for each t0 ∈ I , the central Jacobi
differentiator D

(n)
κ,µ,T,qx

ϖ(t0) depends on a set of design
parameters, except for the order of the desired derivative n:
• κ, µ ∈]− 1,+∞[: the parameters of Jacobi polynomials,
• q ∈ N: the order of truncated Jacobi series expansion,
• T = 2h: the length of the sliding integration window.

B. Error Analysis in Time Domain

The estimation error of the central Jacobi differentiator
can be decomposed in continuous case as follows:

D
(n)
κ,µ,h,qx

ϖ(t0)− x(n)(t0) =
(
D

(n)
κ,µ,h,qx− x(n)(t0)

)
+
(
D

(n)
κ,µ,h,qx

ϖ(t0)−D
(n)
κ,µ,h,qx(t0)

)
= eϖ(t0;n, κ, µ, h, q) + eRn(t0;κ, µ, h, q).

(13)

where eϖ(t0;n, κ, µ, h, q) and eRn(t0;κ, µ, h, q) refer to the
noise error contribution and the truncated term error, respec-
tively. Corresponding error bounds have been provided in
[17]. Finally, by numerically1 calculating these error bounds,
their behaviors with respect to different design parameters
can be known. Then, the influence of these design parameters
on each source of errors can be deduced. The obtained results
are summarized in Table I (see [17], [32] for more details),
where the notations a ↑, b ↗ and c ↘ mean that if we
increase the value for the parameter a, then the error b can
be increased and the error c can be decreased. According to
Table I, the design parameters’ influence on different errors
is not the same. Consequently, a compromise among these
parameters should be taken.

Noise error contribution Truncated term error
κ ↑ ↗ ↘
µ ↑ ↗ ↘
q ↑ ↗ ↘
T ↑ ↘ ↗

TABLE I: Influence of design parameters on D
(n)
κ,µ,h,qx(t0)

in continuous case.

1It is very difficult to analytically study the behavior of each error bound
due to their complex expressions.



In discrete case, the integral formula should be approx-
imated by applying a numerical integration method, which
produces a numerical error.

C. Error Analysis in Frequency Domain

As shown in Eq. (12), the Jacobi differentiator is a com-
bination of integrals with measurements on [t0− T

2 , t0+
T
2 ].

In real computation, the numerical integration is actually a
discrete operation, with a sampling time Ts in the measure-
ments by calculating the sum of discrete values in the time
interval. The discrete version of the Jacobi differentiator is
actually a discrete convolution of measurements and a list of
weighted coefficients. In this sense, the Jacobi differentiator
can be regarded as a FIR filter applied on a discrete system
with sampling time Ts. After extracting the weighted coef-
ficients, we can draw the bode magnitude plot of the Jacobi
differentiator, as a digital filter with sampling time Ts, in
order to express the magnitude of the frequency response.
While in the bode phase plot, the phase frequency response
is always π or −π, which means that there is no delay.

Given a signal that is the sum of three sinusoidal waves
with amplitude 1 and frequency 4 Hz, 9 Hz, 15 Hz respec-
tively. To get the second order derivative, the central Jacobi
differentiator and the Euler central differentiation combined
with a central Butterworth filter are applied. The central
Butterworth filter is a zero phase forward-backward IIR filter
and is referred as a maximally flat magnitude filter. It is
widely used in various applications. Hence, this motivates
the comparisons values.

The study is done in noise case, where the measurement
of the signal is simulated by superimposing together on the
signal a normally distributed random noise of amplitude 0.2,
a 200 Hz high frequency sinusoidal wave of amplitude 0.2
and a Poisson distributed random noise with mean parameter
λ = 0.1 of amplitude 0.2. The sampling frequency is
1 millisecond. In order to estimate the derivatives of the
original signal , the central Jacobi differentiator is applied
by taking κ = µ = 12, q = 6 and the sliding integration
window T = 0.21 second. A well tuned forward Butterworth
filter configuration is of order 6 with cutoff frequency at 25
Hz. The forward-backward process is done by adding poles
in the denominator of transfer function with negative values.

The estimation errors in velocity and acceleration are
shown in Fig. 1. The result shows that central Jacobi
differentiator can be accurate and robust as Euler central
differentiation with a well tuned Butterworth filter. It can
be seen that the estimation errors for the central Jacobi
differentiator is larger at the beginning and the end. This
is because there is not enough data for the estimation.

In frequency domain, the magnitude bode plots of second
order derivative are shown in Fig. 2. The red line presents the
ideal case with transfer function H(s) = s2 in continuous
time. The Jacobi differentiator and Euler differentiation with
Butterworth filter are in discrete case. Under 15 Hz, the
magnitude frequency response follows quite well the ideal
curve for both Jacobi differentiator and Butterworth method.
Above 15 Hz, the magnitude frequency response cuts off
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Fig. 1: Derivative errors in velocity and acceleration
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Fig. 2: Bode magnitude plot of second order differentiators

rapidly especially for the Jacobi differentiator. This means
that the Jacobi differentiator has a better cutoff property
and the unexpected frequency is attenuated quickly to 0
magnitude response.

By varying the differentiator configuration, we can analyze
the parameters’ influence on the central Jacobi differentiator.
The obtained results are shown in Fig. 3, where the following
conclusions are given:

1) κ = µ, these parameters are chosen to be identical
because this configuration reduces the truncated term error
[17]. As their value increases, the descending point moves
to higher frequency. It means that the unwanted frequency is
not filtered and the noise error contribution grows. But the
descending period drops rapidly which offers better cutoff
property.

2) When q increases, we utilize more terms in the Jacobi
orthogonal series expansion. Hence, the truncated term error
can be reduced. Similarly, as q increases, the descending
point moves to higher frequency and the noise error contri-
bution grows.

3) T is the sliding integration window. When the sampling
time Ts is fixed, it represents the points taken for the Jacobi
differentiator. As T increases, the descending point moves
to lower frequency which cut off more noise components.
Thus, the noise error contribution decreases.
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From the previous analysis, the Jacobi differentiator is
regarded as a low-pass differentiator. The low-pass property
is inherent because it considers the signal as a certain order
polynomial in a small time window and uses the truncations
to estimate the derivatives. Compared to the Euler central
differentiation combined with Butterworth filter, it can be
more robust with respect to noise. However, it is used for
off-line application, because the window in central

IV. EXPERIMENTAL IDENTIFICATION WITH 2R ROBOT

The experimental work is done on a two revolute joints
planar prototype robot which is shown in Fig. 4. It moves in a
horizontal plane and has no gravity effect. According to [33],
the dynamic model depends on eight minimal base dynamic
parameters X = [ZZ1R ZZ2 MX2 MY2 FV1 FC1 FV2 FC2],
with the regrouped parameter ZZ1R = ZZ1 +M2L

2, where
L is the length of first link, ZZ1 and ZZ2 are drive side
moment of inertial of link 1 and 2 respectively, MX2, MY2

are the first moment of link 2, FVj, FCj, are the viscous and
Coulomb friction coefficients of joint j.

The robot motion is driven by a PD controller with a
reference of a successive point to point trajectories which
is obtained using a classical 5th order polynomial trajectory
generator with a sampling rate fs = 100 Hz. For the central
Jacobi differentiator, set k = µ = 6, q = 2 and T = 0.6s
to estimate the joint velocity, T = 1.1s to estimate the
joint acceleration. For filtering method, the joint position and
torque are pre-filtered using a fourth order forward-backward
Butterworth filter with a cutoff frequency fc = 0.1× (fs/2).

Fig. 4: 2R scara prototype robot
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Fig. 5: Real trajectory and estimation of velocities, acceler-
ation of q1

The estimations of velocity and acceleration are shown in
Fig. 5.

The identification method is presented in section II. Then,
the estimation of base dynamic parameters X̂ is calculated
by LS method. Standard deviations σX̂i

are estimated using
classical and simple results from statistics, assuming the
matrix W to be a deterministic one, and ρ to be a zero mean
additive independent noise, with a standard deviation σρ such
that Cρρ = E(ρT ρ) = σ2

ρIr, where E is the expectation
operator. The variance-covariance matrix of the estimation
error and standard deviations can be calculated by:

CX̂X̂ = E[(X̂− X̂)(X̂− X̂)T ] = σ2
ρ(W

TW)−1,

where σ2
X̂i

= CX̂X̂ii is the diagonal coefficient of CX̂X̂.
An unbiased estimation of σρ is used to get the relative

standard deviation σX̂ri by the expression:

σ̂2
ρ =

||Y −W X̂||2

r − c
, %σX̂ri = 100×

σX̂i

X̂i
,

where r is the total number of equations and c is the number
of unknown parameters.

Identification results are given in table II which are quite
similar for both methods. Compared to Butterworth filter



Jacobi Butterworth
P X̂ 2σX̂ σX̂r X̂ 2σX̂ σX̂r

% %
ZZ1R 3.496 0.032 0.46 3.482 0.033 0.47
FV1 0.248 0.087 17.6 0.247 0.089 17.9
FC1 0.431 0.048 5.58 0.433 0.049 5.61
ZZ2 0.059 0.004 3.41 0.059 0.004 3.41
MX2 0.124 0.003 1.07 0.125 0.003 1.08
MY2 0.0019 0.002 65.99 0.0006 0.003 200
FV2 0.0144 0.015 52.3 0.014 0.015 54.4
FC2 0.1268 0.043 17.0 0.1272 0.043 17.1

number of equations= 522
cond(W ) = 38 for both cases

TABLE II: Comparison of experimental estimation

approach, the Jacobi differentiator method presents a better
precision in identification results on error norm and relative
error norm. When the trajectory is not of high frequency, the
central Jacobi differentiator is a robust differentiator to get
high order derivatives.

V. CONCLUSION

In this paper, the robot identification process has been
reviewed by introducing the central Jacobi differentiator. By
considering it as a FIR filter, its frequency domain properties
have been investigated using bode plot and an insight into
its differentiation performance has been given. Comparisons
have been drawn between the Jacobi central differentia-
tor and the Euler central differentiation combined with a
well tuned forward-backward Butterworth filter. From the
results, they all present good attenuation with respect to high
frequency components. Especially, the Jacobi differentiator
has a fast descending period, which make it resistant to
high frequency noises. For future work, the causal Jacobi
differentiator used for on-line applications will be studied.
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et Technologie de Lille-Lille I, 2011.

[33] M. Gautier and W. Khalil, “Direct calculation of minimum set of
inertial parameters of serial robots,” Robotics and Automation, IEEE
Transactions on, vol. 6, no. 3, pp. 368–373, 1990.


