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Abstract. Despite the tremendous advances made in recent years, in the field of patch-based image inpainting algorithms, it is not uncommon to still get visible artefacts in the parts of the images that have been resynthetized using this kind of methods. Mostly, these artifacts take the form of discontinuities between synthetized patches which have been copied/pasted in nearby regions, but from very different source locations. In this paper, we propose a generic patch blending formalism which aims at strongly reducing this kind of artifacts. To achieve this, we define a tensor-directed anisotropic blending algorithm for neighboring patches, inspired somehow from what is done by anisotropic smoothing PDE's for the classical image regularization problem. Our method has the advantage of blending/removing incoherent patch data while preserving the significant structures and textures as much as possible. It is really fast to compute, and adaptable to most patch-based inpainting algorithms in order to visually enhance the quality of the synthetized results.

Introduction and Context

Image inpainting is an image processing task aiming at completing missing, corrupted, and/or undesired data inside an image. It is commonly used in a professional way to remove scratches or microphones in a video, or in a more amateur way, to remove undesired peoples or objects from photographs for example. As wisely described in [15], plenty of inpainting methods exist in the literature. They can be mainly categorized in two kinds of methods:

• Geometry-based methods [START_REF] Masnou | Level lines based disocclusion[END_REF]4,3,[START_REF] Tschumperlé | Vector-valued image regularization with pdes: A common framework for different applications[END_REF]6] try to extend the local geometry inside the area to complete in order to reconstruct image structures as better as possible. These methods show impressive results in term of geometry synthesis, but mainly fail at building complex textures.

• Pattern-based methods have their origins in works on texture synthesis [14,[START_REF] Ashikhmin | Synthesizing natural textures[END_REF]. Based on the self-similarity principle, they use known parts of the image as potential sources to reconstruct the missing part. These methods can be clustered into three main groups: 1) The greedy methods [5, [START_REF] Criminisi | Object removal by exemplar-based inpainting[END_REF]9,17] that copy/paste patch chunks in a greedy manner until the hole is filled. Efficient for texture synthesis, these methods can fail at reconstructing structures, and exhibit typical block-effect artifacts. 2) The hybrid methods [START_REF] Jia | Inference of segmented color and texture description by tensor voting[END_REF]8] that incorporate geometry-based methods to first continue the main structures before inpainting the textures. These methods are quite slow in practice, and require a segmentation of the image to separate structures from textures, which is an ill-posed problem.

3) The energy-based methods try to minimize coherence energy function via a multi-resolution [START_REF] Wexler | Space-time completion of video[END_REF] or variational framework [START_REF] Arias | A variational framework for exemplarbased image inpainting[END_REF]. While the solution in [START_REF] Wexler | Space-time completion of video[END_REF] tends to produce blurry textures due to the mix of patches used for the reconstruction, [START_REF] Arias | A variational framework for exemplarbased image inpainting[END_REF] incorporates a Poisson variant derived from [START_REF] Pérez | Poisson image editing[END_REF] to smooth the transitions between pasted chunks.

In this paper we focus on the greedy pattern-based inpainting methods for their ability at reconstructing large portions of textures. Especially, we are interested in enhancing the perceptual quality of the results they provide. Our main contribution is the proposal of a novel tensor-guided spatial blending algorithm that strongly reduces the typical block-effect artifacts, while preserving the sharpness of synthesized structures and textures.

Notations: In the following, we define by I : p ∈ I → I(p) ∈ R 3 a multi-valued image. The known domain of this image is denoted Ω while unknown one (often called mask or hole) is denoted Ω, with Ω ∪ Ω = I. We define by N p a square neighbourhood domain of size N × N centered at p, and by, ψ p : q ∈ N p ⊂ I → ψ p (q) ∈ R 3 a patch value function. In the sequel, uppercase bold letters will stand for matrices while those in lowercase are for vectors.

Structure Tensors: Introduced in [23], structure tensors are a natural extension of gradient notion for multi-valued images. They represent the local image color changes: the value of the variations, and their directions. In this paper, we deal with two-dimensional RGB images, so structure tensors reduce to 2 × 2 matrices defined as follows:

S = c∈{R,G,B} --→ ∇I c . --→ ∇I c T = λ 1 .u.u T + λ 2 .v.v T with λ 1 > λ 2
with λ {1,2} the eigen values of S and u, v the eigen vectors associated to λ 1 and λ 2 respectively. The eigen vector associated to the biggest eigen value is oriented along the major image color change direction while the one associated to the smaller eigen value is oriented along the smallest image variation direction. In the following, tensors are represented with ellipses whose diameters and orientation are given by the eigen values and eigen vectors respectively.

Since they define a robust and accurate local geometry model, structure tensors have been used for years in image processing, as for image regularization [START_REF] Tschumperlé | Vector-valued image regularization with pdes: A common framework for different applications[END_REF], geometrybased [START_REF] Tschumperlé | Vector-valued image regularization with pdes: A common framework for different applications[END_REF]7] or pattern-based [START_REF] Daisy | A smarter exemplar-based inpainting algorithm using local and global heuristics for more geometry coherence[END_REF][START_REF] Le Meur | Examplar-based inpainting based on local geometry[END_REF] image inpainting.

Spatial Patch Blending: In our previous works [START_REF] Daisy | Spatial patch blending for artefact reduction in pattern-based inpainting methods[END_REF][START_REF] Daisy | A fast spatial patch blending algorithm for artefact reduction in pattern-based image inpainting[END_REF], we proposed a patch blending method that tries to reduce block effect artifact in pattern-based image inpainting results. The core of the method is to mix the data of several patches in a way that the reconstruction seems more continuous than with blocky patch chunks. This algorithm is mainly composed of two main consecutive steps: Despite great improvements to the final visual quality of the inpainted image, this method suffers from a significant flaw: the spatial blending is performed through isotropic Gaussian weights, that do not respect enough the image structures. Figure 3 shows an inpainting result of a textured image (left) and its blended result (right) with this algorithm. Since the blending is applied in all directions (isotropic), some joints between bricks are too blurry. Such a flaw in fact damages both structures and textures, and that is the point we try to solve in this paper.

In the following of this paper, we propose a spatial patch blending method that is much more careful about the local image structures and textures. We first define a geometric model for patch blending, and then explain how we use it to apply a patch blending aware of local image geometry. 

Tensor-directed Spatial Patch Blending

In this section, we describe the pluralist contribution of this paper: a spatial patch blending method respecting the local image geometry. First, we define a geometric model for the spatial patch blending. Then we explain how to use this model to perform spatial patch blending, either with the elemental formulation, or with a faster one.

Tensor Model for Spatial Patch Blending

The geometric model we propose reflects the strength and the orientation of the patch blending to be applied locally. As all these information can be represented by eigen values/vectors of tensors, this kind model is one of the most adapted to create our geometric blending model. The local amount of the color intensity variations and directions are encoded inside a structure tensor S by their eigen values λ S{1,2} and vectors e S{1,2} respectively. In the same way, local blending properties, i.e. strength and direction, can be put inside tensors. The eigen values λ B{1,2} and eigen vectors e B{1,2} of blending tensors λ B represent respectively the bandwidth and the direction of the spatial patch blending to be applied locally. As structure tensors already provide a good local geometry analysis, we propose to use them as a basis for building our blending tensor model. Transformation on eigen values and vectors of structure tensors is performed in a way that the final tensor fit our model. For flat area, patch blending must be omnidirectional, strong enough to remove small reconstruction artifacts, and highly smooth sharp variations. In this case, blending tensors keep the isotropic shape of structure tensors, but are much bigger. The textures are very important inside an image and should be preserved. In this case, blending tensors have the same properties of structure tensor, namely a small and isotropic shape. Finally, for sharp image structures, blending is able to preserve them while smoothing small breaks. Hence, they are oriented along the smallest variation direction, orthogonally to structure tensors. From this description of our tensorial blending model, we propose the following steps to build it. As computed using image gradient, structure tensors have eigen values that are fully dependent of the image value range, which is not be the case of blending tensors. Hence, the first step of the blending tensor construction is to normalize structure tensor eigen values:

λS(p)i = λ S(p) max p∈I λ S(p)i
The local blending bandwidth, and so the eigen values of blending tensors, highly depends on the local image geometry which is given by the ratio between the smallest and the biggest eigen values of structure tensors. The less the ratio, the more anisotropic the tensor. At the contrary, the more the ratio, the more isotropic the tensor. Therefore, the next step is to modify eigen values λS(p)i depending on this ratio in order to have new eigen values λ Bi . The proposed function is inspired by partial differential equations for diffusion [START_REF] Tschumperlé | Vector-valued image regularization with pdes: A common framework for different applications[END_REF] and is defined as the following:

λ Bi = 1 (1 + λS1 + λS2 ) γi (1) 
where γ i (i ∈ {1, 2}) are parameters controlling overall tensor isotropy. Examples of the effect of different configurations of γ i are provided in Fig. 4. The final step is to build the blending tensor itself. As a symmetric and positive definite matrix, it can be expressed using the following composition:

(a) Sample image. (b) γ 2 γ 1 ≈ 1 (c) γ 2 γ 1 > 1 (d)
B = λ σB1 e ⊥ S1 . T e ⊥ S1 + λ σB2 e ⊥ S2 . T e ⊥ S2 (2) 
where λ σBi = σ B λ Bi , are the eigen values of the blending tensors. The above description gives a blending tensor configurations depending on the local geometry (see Table 1). The tensor model proposed in this section provides all local information needed to apply a spatial patch blending aware of image structure and texture. In the next section, we describe how to use this model to perform spatial patch blending on patch-based inpainting results.

Elemental Tensor-directed patch blending

The first proposed scheme is the elemental formulation of our geometry-guided patch blending process. This scheme aims at applying patch blending in a pixel-wise fashion using the proposed tensor model B(p). Our approach is to compute a linear combination of pixels coming from several patches overlapping one another, using the local geometry. For each p ∈ Ω in each image channel k, the following formula is applied:

J k (p) = ψq∈Ψp w B (p, q) ψ k q (p -q) ε + ψq∈Ψp w B (p, q) (3) 
where Ψ p = {ψ 0 , . . . , ψ n } is the set of source patches overlapping p, and w B is an anisotropic Gaussian weight function defined as follows:

w B (p, q) = e X T B(p) -1 X 2σ 2 B with X = q -p (4)
The effect is to blend very strongly flat areas such that no seams appear, while blending slightly along image contours. This allows to keep the strong image structures reconstructed during inpainting and also the complex textures.

Faster Tensor-directed patch blending

The elemental formulation of the spatial patch blending, as pointed out in [START_REF] Daisy | A fast spatial patch blending algorithm for artefact reduction in pattern-based image inpainting[END_REF], is slow to compute and does not allow to use it easily. In this section, we propose an adaptation of the work of [START_REF] Daisy | A fast spatial patch blending algorithm for artefact reduction in pattern-based image inpainting[END_REF] to the geometric model proposed in this paper. The proposed algorithm remains quite the same that those in [START_REF] Daisy | A fast spatial patch blending algorithm for artefact reduction in pattern-based image inpainting[END_REF]. The first difference lies in the Gaussian weights used to apply patch blending at each scale of the blending amplitude map. While these weights are isotropic in [START_REF] Daisy | A fast spatial patch blending algorithm for artefact reduction in pattern-based image inpainting[END_REF], in this version we use anisotropic Gaussian weights based on the geometric model described in 2.1 (see Fig. 5). As previously described, proposed geometric model describes the way to blend patches locally. Therefore, there is no need to compute patch blending at multiple scale since it is done per se with proposed tensor model. In this faster blending method, geometry of reconstructed patches are approximate using regularized blending tensor on their center. The computation time of this method is really smaller than those of elemental method. While in the elemental formulation there are as many weight functions as patches overlapping the position a specified pixel to compute, in the faster formulation only one weight function is computed per patch. Table 2 summarizes the computation times for some of the images of this paper. One can notice that compared to the elemental formulation, the faster one is more stable with respect to inpainting patch size. It is also fast with high resolution images. 

High Level Process

The proposed process for tensor-directed patch blending is similar to anisotropic image smoothing, as described in Fig. 6. In the latter case, in image denoising for example, the structure tensor field is first extracted from the input image. This field is then smoothed using an isotropic Gaussian kernel. The effect is to regularize the tensor field and to get a more continuous version of it. Finally, the regularized structure tensor field is used to apply anisotropic smoothing on the input image. In the case of the proposed tensor-directed spatial patch blending algorithm, the process is very similar with the isotropic one. This algorithm contains four main consecutive steps (see Fig. 6):

1. The blending tensor field is computed on the masked version of the image. This step is quite thorny since the image domain is not defined on Ω. However, image gradient at the boundary of Ω can be estimated using finite differences schemes depending on the known neighborhood of a pixel.

2. In order to obtain a complete tensor field, the structure tensor field is reconstructed simultaneously with the input image during inpainting. Also, it can be reconstructed from the warping map, after the inpainting.

3. Once the tensor field is reconstructed, it is blended in an isotropic fashion using the method of [START_REF] Daisy | A fast spatial patch blending algorithm for artefact reduction in pattern-based image inpainting[END_REF]. The effect is to smooth the tensors that are induced by the reconstruction seams between patches. In this way, they do not interfere in the anisotropic patch blending step.

4. Finally, patch blending is performed on the inpainted image with the previously described scheme (see. Eq. (3,4)).

3 Results, Comparisons and Discussions Fig. 7 compares our approach with the one of [START_REF] Arias | A variational framework for exemplarbased image inpainting[END_REF]. On the tiles image (first row), the result of [START_REF] Arias | A variational framework for exemplarbased image inpainting[END_REF] is a little blurry while the edges with our apporach are slightly more preserved. On the yellow texture image (second row), one can see that our method brings more geometric coherence. Finally on the dots image (third row), one can notice that the effect of our anisotropic blending is near of the effect of [START_REF] Arias | A variational framework for exemplarbased image inpainting[END_REF]. In Fig. 8 we show comparisons of our method results (right column) with those of [START_REF] Daisy | A fast spatial patch blending algorithm for artefact reduction in pattern-based image inpainting[END_REF] (middle column). In a common way, one can see that the results of [START_REF] Daisy | A fast spatial patch blending algorithm for artefact reduction in pattern-based image inpainting[END_REF] present some structure superposition effect due to the blending of structures and flat areas, like between the rocks (rows 2-4). Also, one can clearly notice that the structures of the rocks (third row) are more preserved with our method, than with the method of [START_REF] Daisy | A fast spatial patch blending algorithm for artefact reduction in pattern-based image inpainting[END_REF] that presents more evanescent structures. Through these results, one can see that the geometric model we propose for patch blending algorithm really reduces the smoothing effect present in [START_REF] Daisy | A fast spatial patch blending algorithm for artefact reduction in pattern-based image inpainting[END_REF], and provides similar or better results than state-of-the-art methods. In addition, proposed method frees users from choosing a scheme depending on the type of image. Concerning the computation time, proposed method is longer than isotropic one. This is because for isotropic method, Gaussian weights can be computed once at each scale, and reused for every patches. In the case of anisotropic blending, the Gaussian weight function depends on the local patch geometry. Hence, as many Gaussian weight function as number of patches have to be computed. 

Conclusions and Future Work

This paper presents a structure and texture preservative method to reduce artifacts in image inpainting methods using patch-based synthesis. Using structure tensors, we compute "blending" tensors that aim at directing the patch blending along the structures, flattening the nearly placid area, and damage texture as less as possible. Experiments and comparisons were made on several challenging cases. They show that the proposed method really improves the quality of the spatial patch blending. In future works we plan to adapt this method to video inpainting by fully integrating the temporal dimension to our spatial patch blending geometric model.

Fig. 1 .

 1 Fig. 1. Effect of our anisotropic blending where the inpainted region is highlighted.

1 .

 1 Artifact detection tries to locate and estimate the strength of the possible artifacts present in the image. To locate artifacts, two hypotheses are made a) there are sharp variations of image intensity, and b) the source patches used for the reconstruction come from very different locations. The output of this artifact detection pipeline is a blending amplitude map that indicates, for each pixel, the bandwidth of blending to be applied locally. 2. Patch blending step uses the previously computed blending amplitude map as a model. Figure2illustrates the principle: for each p ∈ Ω, the spatial blending performs a linear combination of all the pixels {p 1 , . . . , p n } overlapping p from the set of reconstructed patches {ψ p1 , . . . , ψ pn }.

Fig. 2 .

 2 Fig. 2. Illustration of the spatial patch blending principle.

  (a) Pure patch-based inpainting result without patch spatial blending. (b) Result (a) with the application of isotropic patch blending [12].

Fig. 3 .

 3 Fig. 3. Example of damaged textures with isotropic blending.

Fig. 4 .

 4 Fig. 4. Illustration of the effect of the values of parameters γi.

Fig. 5 .

 5 Fig. 5. Illustration of the difference between summed patch blending weights using isotropic weights (middle), and anisotropic geometry-aware weights (right) on a sample image (left).

  (a) Anisotropic image smoothing process. (b) Geometry-guided patch blending process.

Fig. 6 .

 6 Fig. 6. Analogy between anisotropic image smoothing and proposed geometry-guided spatial patch blending.

Fig. 7 .

 7 Fig. 7. Comparison between results of state-of-the-art method [1] (middle column) and proposed method (right column).

Fig. 8 .

 8 Fig.8. Comparison of results of the blending our method with the method of[START_REF] Daisy | A fast spatial patch blending algorithm for artefact reduction in pattern-based image inpainting[END_REF].

Table 1 .

 1 Correspondence between types of image areas and how patch blending should apply on these areas.

	Type of image area Blending strength Direction
	flat area	strong	all
	textured area	small	all
	structured area	weak	structure

Table 2 .

 2 Comparison of computation times (in sec) between elemental and fast anisotropic patch blending method.

	Size	Missing Patch size Elemental Fast
	500 × 375 7% 9	0.85	0.6
	-	-	21	5.5	0.6
	-	-	43	33.5	0.65
	1024 × 768 12% 9	5.2	2.6
	-	-	21	29	2.2
	-	-	43	33.5	2.74
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