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GREYC CNRS UMR6072, Image Team, 6 Bd Maréchal Juin, 14000 Caen/France

(a) Inpainting without blending. (b) With isotropic blending. (c) With tensor-based blending.

Fig. 1. Effect of our anisotropic blending where the inpainted region is highlighted.

Abstract. Despite the tremendous advances made in recent years, in the field
of patch-based image inpainting algorithms, it is not uncommon to still get vis-
ible artefacts in the parts of the images that have been resynthetized using this
kind of methods. Mostly, these artifacts take the form of discontinuities between
synthetized patches which have been copied/pasted in nearby regions, but from
very different source locations. In this paper, we propose a generic patch blend-
ing formalism which aims at strongly reducing this kind of artifacts. To achieve
this, we define a tensor-directed anisotropic blending algorithm for neighboring
patches, inspired somehow from what is done by anisotropic smoothing PDE’s
for the classical image regularization problem. Our method has the advantage of
blending/removing incoherent patch data while preserving the significant struc-
tures and textures as much as possible. It is really fast to compute, and adaptable
to most patch-based inpainting algorithms in order to visually enhance the quality
of the synthetized results.
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1 Introduction and Context

Image inpainting is an image processing task aiming at completing missing, corrupted,
and/or undesired data inside an image. It is commonly used in a professional way to
remove scratches or microphones in a video, or in a more amateur way, to remove
undesired peoples or objects from photographs for example. As wisely described in
[15], plenty of inpainting methods exist in the literature. They can be mainly categorized
in two kinds of methods:
•Geometry-based methods [19,4,3,21,6] try to extend the local geometry inside the area
to complete in order to reconstruct image structures as better as possible. These meth-
ods show impressive results in term of geometry synthesis, but mainly fail at building
complex textures.
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• Pattern-based methods have their origins in works on texture synthesis [14,2]. Based
on the self-similarity principle, they use known parts of the image as potential sources
to reconstruct the missing part. These methods can be clustered into three main groups:
1) The greedy methods [5,10,9,17] that copy/paste patch chunks in a greedy manner
until the hole is filled. Efficient for texture synthesis, these methods can fail at recon-
structing structures, and exhibit typical block-effect artifacts. 2) The hybrid methods
[16,8] that incorporate geometry-based methods to first continue the main structures
before inpainting the textures. These methods are quite slow in practice, and require a
segmentation of the image to separate structures from textures, which is an ill-posed
problem. 3) The energy-based methods try to minimize coherence energy function via
a multi-resolution [22] or variational framework [1]. While the solution in [22] tends to
produce blurry textures due to the mix of patches used for the reconstruction, [1] incor-
porates a Poisson variant derived from [20] to smooth the transitions between pasted
chunks.

In this paper we focus on the greedy pattern-based inpainting methods for their
ability at reconstructing large portions of textures. Especially, we are interested in en-
hancing the perceptual quality of the results they provide. Our main contribution is the
proposal of a novel tensor-guided spatial blending algorithm that strongly reduces the
typical block-effect artifacts, while preserving the sharpness of synthesized structures
and textures.

Notations: In the following, we define by I : p ∈ I 7→ I(p) ∈ R3 a multi-valued
image. The known domain of this image is denoted Ω while unknown one (often called
mask or hole) is denoted Ω̄, withΩ∪ Ω̄ = I. We define byNp a square neighbourhood
domain of size N ×N centered at p, and by, ψp : q ∈ Np ⊂ I 7→ ψp(q) ∈ R3 a patch
value function. In the sequel, uppercase bold letters will stand for matrices while those
in lowercase are for vectors.

Structure Tensors: Introduced in [23], structure tensors are a natural extension of gra-
dient notion for multi-valued images. They represent the local image color changes: the
value of the variations, and their directions. In this paper, we deal with two-dimensional
RGB images, so structure tensors reduce to 2× 2 matrices defined as follows:

S =
∑

c∈{R,G,B}

−−→
∇Ic.

−−→
∇Ic

T

= λ1.u.u
T + λ2.v.v

T with λ1 > λ2

with λ{1,2} the eigen values of S and u,v the eigen vectors associated to λ1 and λ2
respectively. The eigen vector associated to the biggest eigen value is oriented along the
major image color change direction while the one associated to the smaller eigen value
is oriented along the smallest image variation direction. In the following, tensors are
represented with ellipses whose diameters and orientation are given by the eigen values
and eigen vectors respectively.

Since they define a robust and accurate local geometry model, structure tensors have
been used for years in image processing, as for image regularization [21], geometry-
based [21,7] or pattern-based [11,18] image inpainting.



Spatial Patch Blending: In our previous works [13,12], we proposed a patch blend-
ing method that tries to reduce block effect artifact in pattern-based image inpainting
results. The core of the method is to mix the data of several patches in a way that the
reconstruction seems more continuous than with blocky patch chunks. This algorithm
is mainly composed of two main consecutive steps:

1. Artifact detection tries to locate and estimate the strength of the possible artifacts
present in the image. To locate artifacts, two hypotheses are made a) there are sharp
variations of image intensity, and b) the source patches used for the reconstruction
come from very different locations. The output of this artifact detection pipeline is
a blending amplitude map that indicates, for each pixel, the bandwidth of blending
to be applied locally.

2. Patch blending step uses the previously computed blending amplitude map as a
model. Figure 2 illustrates the principle: for each p ∈ Ω, the spatial blending per-
forms a linear combination of all the pixels {p1, . . . , pn} overlapping p from the
set of reconstructed patches {ψp1 , . . . , ψpn}.

Fig. 2. Illustration of the spatial patch blending principle.

Despite great improvements to the final visual quality of the inpainted image, this
method suffers from a significant flaw: the spatial blending is performed through isotropic
Gaussian weights, that do not respect enough the image structures. Figure 3 shows an
inpainting result of a textured image (left) and its blended result (right) with this algo-
rithm. Since the blending is applied in all directions (isotropic), some joints between
bricks are too blurry. Such a flaw in fact damages both structures and textures, and that
is the point we try to solve in this paper.



In the following of this paper, we propose a spatial patch blending method that
is much more careful about the local image structures and textures. We first define a
geometric model for patch blending, and then explain how we use it to apply a patch
blending aware of local image geometry.

(a) Pure patch-based inpainting result without patch spatial
blending.

(b) Result (a) with the application of isotropic patch blending
[12].

Fig. 3. Example of damaged textures with isotropic blending.

2 Tensor-directed Spatial Patch Blending

In this section, we describe the pluralist contribution of this paper: a spatial patch blend-
ing method respecting the local image geometry. First, we define a geometric model for
the spatial patch blending. Then we explain how to use this model to perform spatial
patch blending, either with the elemental formulation, or with a faster one.

2.1 Tensor Model for Spatial Patch Blending

The geometric model we propose reflects the strength and the orientation of the patch
blending to be applied locally. As all these information can be represented by eigen
values/vectors of tensors, this kind model is one of the most adapted to create our geo-
metric blending model. The local amount of the color intensity variations and directions
are encoded inside a structure tensor S by their eigen values λS{1,2} and vectors eS{1,2}
respectively. In the same way, local blending properties, i.e. strength and direction, can
be put inside tensors. The eigen values λB{1,2} and eigen vectors eB{1,2} of blending
tensors λB represent respectively the bandwidth and the direction of the spatial patch
blending to be applied locally. As structure tensors already provide a good local ge-
ometry analysis, we propose to use them as a basis for building our blending tensor
model. Transformation on eigen values and vectors of structure tensors is performed in
a way that the final tensor fit our model. For flat area, patch blending must be omni-
directional, strong enough to remove small reconstruction artifacts, and highly smooth
sharp variations. In this case, blending tensors keep the isotropic shape of structure ten-
sors, but are much bigger. The textures are very important inside an image and should



be preserved. In this case, blending tensors have the same properties of structure ten-
sor, namely a small and isotropic shape. Finally, for sharp image structures, blending is
able to preserve them while smoothing small breaks. Hence, they are oriented along the
smallest variation direction, orthogonally to structure tensors. From this description of
our tensorial blending model, we propose the following steps to build it. As computed
using image gradient, structure tensors have eigen values that are fully dependent of the
image value range, which is not be the case of blending tensors. Hence, the first step of
the blending tensor construction is to normalize structure tensor eigen values:

λ̂S(p)i =
λS(p)

max
p∈I

λS(p)i

The local blending bandwidth, and so the eigen values of blending tensors, highly de-
pends on the local image geometry which is given by the ratio between the smallest and
the biggest eigen values of structure tensors. The less the ratio, the more anisotropic the
tensor. At the contrary, the more the ratio, the more isotropic the tensor. Therefore, the
next step is to modify eigen values λ̂S(p)i depending on this ratio in order to have new
eigen values λBi. The proposed function is inspired by partial differential equations for
diffusion [21] and is defined as the following:

λBi =
1

(1 + λ̂S1 + λ̂S2)
γi (1)

where γi (i ∈ {1, 2}) are parameters controlling overall tensor isotropy. Examples of
the effect of different configurations of γi are provided in Fig. 4. The final step is to

(a) Sample image. (b) γ2
γ1
≈ 1 (c) γ2

γ1
> 1 (d) γ2

γ1
→∞

Fig. 4. Illustration of the effect of the values of parameters γi.

build the blending tensor itself. As a symmetric and positive definite matrix, it can be
expressed using the following composition:

B = λσB1e
⊥
S1.

Te⊥S1 + λσB2e
⊥
S2.

Te⊥S2 (2)

where λσBi = σBλBi, are the eigen values of the blending tensors.



Type of image area Blending strength Direction
flat area strong all
textured area small all
structured area weak structure

Table 1. Correspondence between types of image areas and how patch blending should apply on
these areas.

The above description gives a blending tensor configurations depending on the lo-
cal geometry (see Table 1). The tensor model proposed in this section provides all local
information needed to apply a spatial patch blending aware of image structure and tex-
ture. In the next section, we describe how to use this model to perform spatial patch
blending on patch-based inpainting results.

2.2 Elemental Tensor-directed patch blending

The first proposed scheme is the elemental formulation of our geometry-guided patch
blending process. This scheme aims at applying patch blending in a pixel-wise fashion
using the proposed tensor model B(p). Our approach is to compute a linear combi-
nation of pixels coming from several patches overlapping one another, using the local
geometry. For each p ∈ Ω in each image channel k, the following formula is applied:

Jk(p) =

∑
ψq∈Ψp

wB(p, q) ψkq (p− q)

ε+
∑

ψq∈Ψp
wB(p, q)

(3)

where Ψp = {ψ0, . . . , ψn} is the set of source patches overlapping p, and wB is an
anisotropic Gaussian weight function defined as follows:

wB(p, q) = e
XTB(p)−1X

2σ2
B with X = q − p (4)

The effect is to blend very strongly flat areas such that no seams appear, while blending
slightly along image contours. This allows to keep the strong image structures recon-
structed during inpainting and also the complex textures.

2.3 Faster Tensor-directed patch blending

The elemental formulation of the spatial patch blending, as pointed out in [12], is slow
to compute and does not allow to use it easily. In this section, we propose an adaptation
of the work of [12] to the geometric model proposed in this paper.

The proposed algorithm remains quite the same that those in [12]. The first dif-
ference lies in the Gaussian weights used to apply patch blending at each scale of
the blending amplitude map. While these weights are isotropic in [12], in this version
we use anisotropic Gaussian weights based on the geometric model described in 2.1



Fig. 5. Illustration of the difference between summed patch blending weights using isotropic
weights (middle), and anisotropic geometry-aware weights (right) on a sample image (left).

(see Fig. 5). As previously described, proposed geometric model describes the way to
blend patches locally. Therefore, there is no need to compute patch blending at mul-
tiple scale since it is done per se with proposed tensor model. In this faster blending
method, geometry of reconstructed patches are approximate using regularized blend-
ing tensor on their center. The computation time of this method is really smaller than
those of elemental method. While in the elemental formulation there are as many weight
functions as patches overlapping the position a specified pixel to compute, in the faster
formulation only one weight function is computed per patch. Table 2 summarizes the
computation times for some of the images of this paper. One can notice that compared
to the elemental formulation, the faster one is more stable with respect to inpainting
patch size. It is also fast with high resolution images.

Size Missing Patch size Elemental Fast
500× 375 7% 9 0.85 0.6

- - 21 5.5 0.6
- - 43 33.5 0.65

1024× 768 12% 9 5.2 2.6
- - 21 29 2.2
- - 43 33.5 2.74

Table 2. Comparison of computation times (in sec) between elemental and fast anisotropic patch
blending method.

2.4 High Level Process

The proposed process for tensor-directed patch blending is similar to anisotropic image
smoothing, as described in Fig. 6. In the latter case, in image denoising for example, the
structure tensor field is first extracted from the input image. This field is then smoothed
using an isotropic Gaussian kernel. The effect is to regularize the tensor field and to get
a more continuous version of it. Finally, the regularized structure tensor field is used to
apply anisotropic smoothing on the input image.



(a) Anisotropic image smoothing process.

(b) Geometry-guided patch blending process.

Fig. 6. Analogy between anisotropic image smoothing and proposed geometry-guided spatial
patch blending.

In the case of the proposed tensor-directed spatial patch blending algorithm, the
process is very similar with the isotropic one. This algorithm contains four main con-
secutive steps (see Fig. 6):

1. The blending tensor field is computed on the masked version of the image. This
step is quite thorny since the image domain is not defined on Ω. However, image
gradient at the boundary of Ω can be estimated using finite differences schemes
depending on the known neighborhood of a pixel.

2. In order to obtain a complete tensor field, the structure tensor field is reconstructed
simultaneously with the input image during inpainting. Also, it can be reconstructed
from the warping map, after the inpainting.

3. Once the tensor field is reconstructed, it is blended in an isotropic fashion using
the method of [12]. The effect is to smooth the tensors that are induced by the
reconstruction seams between patches. In this way, they do not interfere in the
anisotropic patch blending step.

4. Finally, patch blending is performed on the inpainted image with the previously
described scheme (see. Eq. (3,4)).



3 Results, Comparisons and Discussions

Fig. 7 compares our approach with the one of [1]. On the tiles image (first row), the
result of [1] is a little blurry while the edges with our apporach are slightly more pre-
served. On the yellow texture image (second row), one can see that our method brings
more geometric coherence. Finally on the dots image (third row), one can notice that
the effect of our anisotropic blending is near of the effect of [1]. In Fig. 8 we show
comparisons of our method results (right column) with those of [12] (middle column).
In a common way, one can see that the results of [12] present some structure superposi-
tion effect due to the blending of structures and flat areas, like between the rocks (rows
2-4). Also, one can clearly notice that the structures of the rocks (third row) are more
preserved with our method, than with the method of [12] that presents more evanes-
cent structures. Through these results, one can see that the geometric model we propose
for patch blending algorithm really reduces the smoothing effect present in [12], and
provides similar or better results than state-of-the-art methods. In addition, proposed
method frees users from choosing a scheme depending on the type of image. Concern-
ing the computation time, proposed method is longer than isotropic one. This is because
for isotropic method, Gaussian weights can be computed once at each scale, and reused
for every patches. In the case of anisotropic blending, the Gaussian weight function de-
pends on the local patch geometry. Hence, as many Gaussian weight function as number
of patches have to be computed.

Fig. 7. Comparison between results of state-of-the-art method [1] (middle column) and proposed
method (right column).



(a) Inpainting without blending. (b) Using blending method of [12]. (c) Proposed blending method.

Fig. 8. Comparison of results of the blending our method with the method of [12].

4 Conclusions and Future Work

This paper presents a structure and texture preservative method to reduce artifacts in im-
age inpainting methods using patch-based synthesis. Using structure tensors, we com-
pute “blending” tensors that aim at directing the patch blending along the structures,
flattening the nearly placid area, and damage texture as less as possible. Experiments
and comparisons were made on several challenging cases. They show that the proposed
method really improves the quality of the spatial patch blending. In future works we
plan to adapt this method to video inpainting by fully integrating the temporal dimen-
sion to our spatial patch blending geometric model.
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