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WSN Power Management with Battery Capacity Estimation

O. Mokrenko1, M.-I. Vergara-Gallego1, W. Lombardi1, S. Lesecq1, C. Albea2

Abstract— Wireless sensor nodes are now cheap and reliable
enough to be deployed in different environments. However, their
limited energy capacity limits their lifespan. In this paper,
a Management strategy at network-level of a set of nodes is
implemented, taking into account an estimation of the remain-
ing energy in each sensor node. The control formulation is
based on Model Predictive Control with constraints and binary
optimization variables, leading to a Mixed Integer Quadratic
Programming problem. The estimation of the remaining energy
in batteries must be simple enough to be implemented in low-
cost, low-power, low-computational-capability sensor nodes.

I. INTRODUCTION

Wireless sensor networks (WSNs) consist of a large num-

ber of sensor nodes (SNs) with sensing, wireless communi-

cation and computation capabilities used to monitor and/or

control the physical world [1]. Usually, SNs are tiny devices

with limited energy capacity stored in batteries. They can

be placed in different functioning modes, each mode being

associated with a given power consumption.

The main drawback of the SNs is their limited energy

storage, leading to a limited lifespan for the WSN. The WSN

lifespan increase has already been addressed in the literature,

from sensor-level [2]–[4] to network-level. [5] provides an

overview of these techniques. [6] proposed a lifespan exten-

sion via a Power Management strategy at network-level using

a Model Predictive Control (MPC) approach. This latter

predicts the “system” trajectories over a receding horizon,

while calculating an optimal control policy with respect to a

set of constraints [7]. The control problem is formulated as a

Mixed Integer Quadratic Programming (MIQP) problem [8].

[6] supposes that the remaining energy in the SN battery is

known at each decision time. Basically, the battery capacity

measures the charge stored in the battery; it is determined by

the mass of active material contained in the battery. However,

while sensors accurately measure the gasoline level in a tank,

there is no simple sensor available to measure the remaining

energy in a battery. Instead, the battery State-of-Charge

(SoC) is estimated from other measurements. Different SoC

estimation methods are reported, e.g. ampere-hour count-

ing, OCV-based estimation, model-based estimation (Kalman

filtering) and others [9], [10]. Note that these approaches

deal with relatively “large” battery packs for laptops and

electrical vehicles. Their implementation in SNs with limited

computational capability is not appropriate.
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Therefore, the main motivation of this paper is to imple-

ment, beside the MPC, a remaining energy estimation tech-

nique with light computational weight in order to leverage

the main hypothesis of [6]. The rest of the paper is organised

as follows. Section II deals with system modelling and

control objectives. Section III presents the remaining energy

estimation method while Section IV is dedicated to the MPC

design. Section V reports results on a real testbench.

II. SYSTEM MODELING AND CONTROL OBJECTIVES

The consumption of the SNs in a WSN is described by:

xk+1 = xk +Buk (1)

where xk ∈ R
n
+ is the remaining energy capacity in

the batteries of the SNs Si, i = 1, ..., n, n ∈ N
∗ at

time k. The initial battery capacity is denoted x0. Buk

represents the energy capacity consumed during the time

interval [kT, (k + 1)T ], where T is the decision period.

uk = [uT
1 , · · · , uT

i , · · · , uT
n ]

T ∈ {0, 1}nm is the control

input. m ∈ N
∗ is the number of SN functioning modes.

Each sub-vector ui = [ui1, · · · , uij , · · · , uim]T contains the

functioning mode of Si, where uij ∈ {0, 1}, j = 1, ...,m.

As Si has a unique functioning mode at time k, a set of

constraints must be defined:

∀i = 1 : n,
m
∑

j=1

uij = 1 (2)

Each component bij of Bi in the control matrix B =
diag [−B1, . . . ,−Bn] ∈ R

n×nm represents the amount of

energy consumed by Si working in mode Mj during the

decision period T . Note that switching from Ma to Mb has

an extra cost that is supposed to be integrated in bib.
Moreover, the battery energy capacity of Si is constrained,

0 6 xi
k 6 X i

max. The remaining capacity in the battery is

related to the SoC estimate, expressed as a percentage (0%-

Empty, 100%-Full) of some reference.

Control objectives

In order to define the system control objectives, the

concept of mission is introduced. A mission is described by

the minimum number d ∈ N
∗ of SNs in the active mode,

sufficient to provide the requested services and performance

level. d may possibly change from time to time. Thus, the

mission imposes a new constraint:

n
∑

i=1

uij = d (3)

Therefore, the system to be controlled is not only constrained

by (2), but also by the set of extra functional constraints (3)

that are used to define the mission.



(a) Battery calibration

(b) On-line estimation

Fig. 1: Estimation of the remaining energy in a Li-ion battery

- 2-steps approach

III. CAPACITY ESTIMATION CONCEPT

The battery capacity represents the amount of energy that

can be extracted from the battery under certain specified

conditions. Battery manufacturers use the concept of State-

of-Charge (SoC) to specify the battery performance. The

SoC ∈ [0, 100]% (expressed in percent) describes the ratio of

the remaining energy x to the nominal capacity Cnom ∈ R+

of the battery [11]:

x = SoC ∗ Cnom (4)

Thus, a new battery should have a SoC of 100% which

corresponds to the nominal battery capacity.

The determination of the SoC for a battery may be a

more or less complex problem, depending on the battery

type, the chosen estimation method, the requested estimation

precision and the application in which the battery is used

[9]. According to the analysis of existing SoC estimation

methods, here the ampere-hour counting method has been

chosen because:

• low-cost sensors for battery calibration are available in

laboratories (e.g. current, voltage measurement);

• the computing cost to estimate the SoC is very low;

• the estimation approach can be embedded in any com-

puting element.

The estimation of the remaining energy in the battery of a

SN is proposed to be performed in two steps depicted in Fig.

1, namely, a battery calibration step (Fig. 1(a)) and an on-line

estimation step (Fig. 1(b)). Both steps are now summarized.

The determination of the remaining energy implemented

in the present work is described for Lithium-ion (Li-ion)

batteries. However, it can be applied to batteries with an

other chemistry comparisons.

A. Battery calibration step

The battery calibration is performed off-line during lab. ex-

periments on a new battery for which the SoC is considered

equal to 100% (i.e. nominal capacity, taken from data-sheet).

When the battery ages, the parameters used to describe the

voltage relaxation process become increasingly less accurate.

The result is a decrease in the accuracy of the remaining

energy estimation. To compensate the ageing effect, the

number of charge-discharge cycles and other environmental

conditions (e.g. battery environmental temperature) can be

taken into account [12]. As a consequence, the estimation

accuracy for ageing batteries is almost as precise as for

new batteries. After each battery charge-discharge cycle, the

battery needs to rest for at least four hours to attain its

equilibrium and get accurate measurements.

When the nominal battery capacity is known and the

current i(t) extracted from the battery can be measured

during the time t, that provides an accurate calculation of

SoC changes. Here, i(t) is given by (see Fig. 1(a)):

i(t) =
V1 − V2

R1

(5)

where R1 is a shunt resistor. This approach can be used

for Li-ion batteries because there are no significant side

reactions during normal operation [10]. However, for the SoC

estimation, the initial SoC SoC(0) must be known:

SoC(t) = SoC(0)−

∫ t

0

η · i(t)

Cnom
dt (6)

i(t) is the instantaneous current (assumed positive for dis-

charge, negative for charge) delivered by the battery, Cnom

is the nominal battery capacity. The Coulombic efficiency is

η = 1 for discharge, and η 6 1 for charge.

Using a rectangular approximation for the integration and

a sampling period ∆t, a discrete-time approximate recur-

rence can be derived:

SoCk+1 = SoCk −
η ·∆t

Cnom
ik (7)

The measures conducted during the battery calibration

phase provide a database with the voltage versus SoC curves

(see Fig. 1(a)) depending on the temperature and the battery

ageing.

B. On-line estimation step

The on-line estimation step consists of two sub-steps. The

first one selects from the database, built during the calibration

step, one SoC curve adapted to the environmental temper-

ature and the number of charge-discharge cycles (related

to battery ageing). The second one estimates the remaining

energy xi
k in the battery of SN Si, using the appropriate SoC

curve and the voltage measurement at the battery terminals at

time k. This estimation phase runs together with the control

algorithm that is described below.

IV. MODEL PREDICTIVE CONTROL DESIGN

The minimization of the power consumption of (1) can

be seen as a Constrained Optimal Control problem. It can

be tackled via a Quadratic Programming (QP) problem.

Constrained MPC implies the minimization of a cost function

based on the predicted system evolution, under a set of

constraints.
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Fig. 2: SoC profiles for two battery types

Recently, the interest in using MPC for controlling systems

that involve a mix of real-valued dynamics and logical rules

has arisen [13] [14]. However, when the problem formulation

leads to an optimization one, the resulting description is

no longer a QP problem but a Mixed Integer Quadratic

Programming (MIQP) problem with two different types

of optimization variables, namely, real-valued and binary

ones. This makes this latter problem harder to solve when

compared to an ordinary QP problem.

It is assumed throughout the rest of the paper that the

pair (I, B) in (1) is stabilizable (recall that the state matrix

A is equal to the identity matrix I). At each decision time

kT , the current state (assumed to be available thanks to the

method proposed in section III) xk = xk|k is used to define

the optimal control sequence u∗ =
[

uT
k|k, . . . , uT

k+Np−1|k

]T

which is solution to the minimization problem:

u∗ = arg min
u

Np−1
∑

i=0

xTk+i|kQxk+i|k +

Nu−1
∑

i=0

uT
k+i|kRuk+i|k

where:


















xk+i+1|k = xk+i|k +Buk+i|k, i = 1, . . . , Np − 1

uk+i|k = 0, i = Nu, Nu + 1, . . . , Np − 1

uk+i|k ∈ {0, 1}nm

Xmin 6 xk+i|k 6 Xmax, i = 1, . . . , Np − 1

(8)

Q = QT > 0 and R = RT > 0 are the weighting

matrices. Xmin and Xmax are the lower and upper energy

capacity bounds, and the pair (Q1/2, I) is detectable. This

minimization problem can be written in an extended form,

see [6] for more details.

It is worth mentioning that the degrees of freedom of the

control design are related to the choice of the weighting

matrices Q and R, and the prediction Np and control Nu 6
Np horizons.

V. APPLICATION

To show the effectiveness of the proposed strategy, a

benchmark with n = 6 SNs Si, i = 1, . . . , 6, and one sink

is considered. At instant k, Si is in a unique mode among 3
possible ones Mj , j = 1, . . . , 3:

• M1 is the Active mode: the SN works in “duty cycling”.

This means that it is “off” by default and it enters a

wake-up mode periodically with a sampling period Ts =
1min to sense, process and exchange data with the sink;

TABLE I: Power consumption bij of node Si in mode Mj

Sensor

node

Mode M1

[mWh]
Mode M2

[mWh]
Mode M3

[mWh]
Nom. bat. cap.

Xi
max

[mWh]

S1 36.593 5.846 0 3885

S2 36.482 6.031 0 3885

S3 34.854 6.105 0 3885

S4 36.482 6.301 0 3515

S5 36.556 6.105 0 3515

S6 33.041 5.735 0 3515
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Fig. 3: Functioning modes of sensor nodes vs. time

• M2 corresponds to the Standby mode. In this mode, only

the external Real Time Clock (RTC) Quartz system is

“on”. The RTC allows to wake up the SN each Tw = 1h
to receive the commands from the sink and monitor the

battery remaining energy capacity.

• M3 is the Faulty mode. During the network lifespan,

some nodes may become unavailable (due to e.g. phys-

ical damage, lack of power resources xi
k/X

i
max ≤

δi). The SN can exit from this mode when for in-

stance, the battery is recharged via a harvesting sys-

tem (xi
k/X

i
max > δi) or some physical damages are

repaired. δi is defined for each battery and depends on

its characteristics.

A. Mission definition

For this application, n = 6 SNs are deployed in an

open-space office. In order to control the air conditioning

unit, temperature and humidity are sensed through the WSN.

During the working hours, enough information is collected

with 3 SNs to reach the air control objectives. Otherwise,

only 1 SN is used to feed the control of the air conditioning

unit. Precisely, the mission is split in two phases corre-

sponding respectively to working hours and night periods

of time. Therefore, the constraints that define the mission

are dynamically changed, depending on the time schedule,

leading to a dynamic mission:

Time period d1 Objectives

working hours 8am−5pm 3 3 nodes in M1

Night 5pm−8am 1 1 nodes in M1

The MPC control law assigns the Active mode to certain

nodes in order to meet the dynamic mission while minimizing

the power consumption of the sensor network.
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Fig. 4: Estimated remaining battery energy in SN Si

B. Battery calibration

In this benchmark, two types of Li-ion batteries are used,

with nominal capacities Cnom = 3885mWh for type 1, and

Cnom = 3515mWh for type 2. The numerical values are

obtained from the technical data sheet [15]. These batteries

embed an electronic protection circuit. This latter limits the

minimum SoC value (related to the nominal capacity) to 10%
for type 1 battery and to 16% for type 2 battery.

The objective of the calibration phase is to build an

accurate experimental model of the battery V oltage− SoC
curves. Fig. 2 depicts an example of the SoC profiles for both

types of new batteries (at 23◦C, ambient temperature in the

office). This calibration phase together with the protection

circuit allow to safely (without damaging the battery) and

efficiently exploit the battery capabilities.

C. Choice of the MPC tuning parameters

For the system (1), the components of matrix B are

calculated from the values given in Table I, extracted from

the data sheet and lab. measurements for OpenPicus [16]

platforms.

The weighting matrices Q and R are chosen equal to:

Q = 06×6; R = BT × (RuT ×Ru)/2×B (9)

where Ru = diag [ru1, · · · , ru6] and rui ,
min{X i

max/x
i
k|k}, xi

k|k 6= 0. The choice Q = 06×6

lies in the fact that the state dynamics should evolve as

slowly as possible [17]. The choice of R implies a trade-off

between larger power consumption and smaller capacity

battery level for node penalization. This choice tries to

balance the battery remaining energy capacity in all SNs.

The prediction and control horizons are chosen equal to

Np = 5, Nu = 1 respectively. As the considered system

presents slow dynamics, these horizons seem appropriate.

The decision period (i.e. the time period when the power

control is run) is T = Tw = 1h. Thus, the MIQP problem is

solved on-line at each decision time kT .

D. Experimental Results

The strategy proposed in this paper is evaluated in real

life with an experiment of a duration of 52 hours (starting

at 11am). Beside the MPC strategy, the capacity estima-

tion method proposed in section III is implemented. The

experimental results are provided in Figure 3 that shows

the functioning modes imposed by the control strategy for

each SN. The mission during the working hours (resp. the

night) can be fulfilled until at least 3 (resp. 1) nodes do not

have their batteries drained or have not failed. The estimated

remaining battery capacities are given in Figure 4. Due to the

different radio channel perturbations, the battery discharging

behaviour is different for each node.

VI. CONCLUSIONS

The implementation of a power management strategy for

a WSN together with the estimation of the remaining energy

in the battery of sensor nodes is realized. This capacity

estimation approach has a low computational cost. It consists

of two steps. The battery calibration step is carried out off-

line during lab. experiments. The on-line estimation step runs

besides the control algorithm. Implementation results in a

real test-bench show the efficiency of the proposed capacity

estimation concept and of the MPC approach implemented.

ACKNOWLEDGMENT

This work has been partly funded by the Artemis AR-

ROWHEAD project under grant agreement nb. 332987.

REFERENCES

[1] I. F Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless
sensor networks: a survey. Computer networks, 2002.

[2] N. P. Mandru. Optimal power management in wireless sensor networks
for enhanced life time. Journal of Global Research in Computer

Science, 3, 2012.
[3] W. Hailong, S. Yan, and W. Tuming. Dynamic power management of

wireless sensor networks based on grey model. In Advanced Computer

Theory and Engineering (ICACTE), 2010 3rd International Conference

on. IEEE, 2010.
[4] V. Sharma, U. Mukherji, V. Joseph, and S. Gupta. Optimal energy

management policies for energy harvesting sensor nodes. Wireless

Communications, IEEE Transactions on, 2010.
[5] G. Anastasi, M. Conti, M. Di Francesco, and A. Passarella. Energy

conservation in wireless sensor networks: A survey. Ad Hoc Networks,
7, 2009.

[6] O. Mokrenko, S. Lesecq, W. Lombardi, D. Puschini, C. Albea, and
O. Debicki. Dynamic power management in a wireless sensor network
using predictive control. In Industrial Electronics Society, IECON

2014-40th Annual Conference of the IEEE. IEEE, 2014.
[7] D. Q Mayne, J. B Rawlings, C. V Rao, and P. OM Scokaert. Con-

strained model predictive control: Stability and optimality. Automatica,
2000.

[8] R. Lazimy. Mixed-integer quadratic programming. Mathematical

Programming, 22, 1982.
[9] S. Piller, M. Perrin, and A. Jossen. Methods for state-of-charge

determination and their applications. Journal of power sources, 96,
2001.

[10] W. Waag, C. Fleischer, and D. U. Sauer. Critical review of the methods
for monitoring of lithium-ion batteries in electric and hybrid vehicles.
Journal of Power Sources, 258, 2014.

[11] W. Junping, G. Jingang, and D. Lei. An adaptive kalman filtering
based state of charge combined estimator for electric vehicle battery
pack. Energy Conversion and Management, 2009.

[12] R. Rao, S. Vrudhula, and D. N Rakhmatov. Battery modeling for
energy aware system design. Computer, 36, 2003.

[13] A. Bemporad and M. Morari. Predictive control of constrained hybrid
systems. In Nonlinear model predictive control. Springer, 2000.

[14] A. Bemporad and M. Morari. Control of systems integrating logic,
dynamics, and constraints. Automatica, 1999.

[15] www.farnell.com/datasheets/1666650.pdf and 1666648.pdf.
[16] www.openpicus.com.
[17] R. L Williams, D. A Lawrence, et al. Linear state-space control

systems. John Wiley & Sons, 2007.


