

WSN Power Management with Battery Capacity Estimation

Olesia Mokrenko, M.-I Vergara-Gallego, W Lombardi, Suzanne Lesecq, Carolina Albea-Sanchez

Caronna Andea Sanen

► To cite this version:

Olesia Mokrenko, M.-I Vergara-Gallego, W Lombardi, Suzanne Lesecq, Carolina Albea-Sanchez. WSN Power Management with Battery Capacity Estimation. 13th IEEE International NEW Circuits And Systems (NEWCAS) conference, Jun 2015, Grenoble, France. hal-01164003

HAL Id: hal-01164003 https://hal.science/hal-01164003

Submitted on 16 Jun 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

WSN Power Management with Battery Capacity Estimation

O. Mokrenko¹, M.-I. Vergara-Gallego¹, W. Lombardi¹, S. Lesecq¹, C. Albea²

Abstract— Wireless sensor nodes are now cheap and reliable enough to be deployed in different environments. However, their limited energy capacity limits their lifespan. In this paper, a Management strategy at network-level of a set of nodes is implemented, taking into account an estimation of the remaining energy in each sensor node. The control formulation is based on Model Predictive Control with constraints and binary optimization variables, leading to a Mixed Integer Quadratic Programming problem. The estimation of the remaining energy in batteries must be simple enough to be implemented in lowcost, low-power, low-computational-capability sensor nodes.

I. INTRODUCTION

Wireless sensor networks (WSNs) consist of a large number of sensor nodes (SNs) with sensing, wireless communication and computation capabilities used to monitor and/or control the physical world [1]. Usually, SNs are tiny devices with limited energy capacity stored in batteries. They can be placed in different functioning modes, each mode being associated with a given power consumption.

The main drawback of the SNs is their limited energy storage, leading to a limited lifespan for the WSN. The WSN lifespan increase has already been addressed in the literature, from sensor-level [2]-[4] to network-level. [5] provides an overview of these techniques. [6] proposed a lifespan extension via a Power Management strategy at network-level using a Model Predictive Control (MPC) approach. This latter predicts the "system" trajectories over a receding horizon, while calculating an optimal control policy with respect to a set of constraints [7]. The control problem is formulated as a Mixed Integer Quadratic Programming (MIQP) problem [8]. [6] supposes that the remaining energy in the SN battery is known at each decision time. Basically, the battery capacity measures the charge stored in the battery; it is determined by the mass of active material contained in the battery. However, while sensors accurately measure the gasoline level in a tank, there is no simple sensor available to measure the remaining energy in a battery. Instead, the battery State-of-Charge (SoC) is estimated from other measurements. Different SoC estimation methods are reported, e.g. ampere-hour counting, OCV-based estimation, model-based estimation (Kalman filtering) and others [9], [10]. Note that these approaches deal with relatively "large" battery packs for laptops and electrical vehicles. Their implementation in SNs with limited computational capability is not appropriate.

 $^1 CEA,$ LETI, MINATEC Campus, F-38054 Grenoble, France {FirstName.LastName}@cea.fr $^2 CNRS,$ LAAS, 7 avenue du Colonel Roche, F-31400 Toulouse,

²CNRS, LAAS, 7 avenue du Colonel Roche, F-31400 Toulouse, France and Univ. of Toulouse, UPS, LAAS, F-31400, Toulouse, France calbea@laas.fr Therefore, the main motivation of this paper is to implement, beside the MPC, a remaining energy estimation technique with light computational weight in order to leverage the main hypothesis of [6]. The rest of the paper is organised as follows. Section II deals with system modelling and control objectives. Section III presents the remaining energy estimation method while Section IV is dedicated to the MPC design. Section V reports results on a real testbench.

II. SYSTEM MODELING AND CONTROL OBJECTIVES

The consumption of the SNs in a WSN is described by:

$$\mathbf{x}_{k+1} = \mathbf{x}_k + B\mathbf{u}_k \tag{1}$$

where $\mathbf{x}_k \in \mathbb{R}_+^n$ is the remaining energy capacity in the batteries of the SNs S_i , $i = 1, ..., n, n \in \mathbb{N}^*$ at time k. The initial battery capacity is denoted \mathbf{x}_0 . $B\mathbf{u}_k$ represents the energy capacity consumed during the time interval [kT, (k + 1)T], where T is the decision period. $\mathbf{u}_k = [\mathbf{u}_1^T, \cdots, \mathbf{u}_i^T, \cdots, \mathbf{u}_n^T]^T \in \{0, 1\}^{nm}$ is the control input. $m \in \mathbb{N}^*$ is the number of SN functioning modes. Each sub-vector $\mathbf{u}_i = [u_{i1}, \cdots, u_{ij}, \cdots, u_{im}]^T$ contains the functioning mode of S_i , where $u_{ij} \in \{0, 1\}, j = 1, ..., m$. As S_i has a unique functioning mode at time k, a set of constraints must be defined:

$$\forall i = 1: n, \sum_{j=1}^{m} u_{ij} = 1$$
 (2)

Each component b_{ij} of B_i in the control matrix $B = \text{diag}[-B_1, \ldots, -B_n] \in \mathbb{R}^{n \times nm}$ represents the amount of energy consumed by S_i working in mode M_j during the decision period T. Note that switching from M_a to M_b has an extra cost that is supposed to be integrated in b_{ib} .

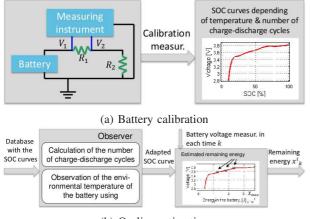
Moreover, the battery energy capacity of S_i is constrained, $0 \leq x_k^i \leq X_{max}^i$. The remaining capacity in the battery is related to the SoC estimate, expressed as a percentage (0%-*Empty*, 100%-*Full*) of some reference.

Control objectives

In order to define the system control objectives, the concept of *mission* is introduced. A *mission* is described by the minimum number $d \in \mathbb{N}^*$ of SNs in the active mode, sufficient to provide the requested services and performance level. d may possibly change from time to time. Thus, the *mission* imposes a new constraint:

$$\sum_{i=1}^{n} u_{ij} = d \tag{3}$$

Therefore, the system to be controlled is not only constrained by (2), but also by the set of extra functional constraints (3) that are used to define the *mission*.



(b) On-line estimation

Fig. 1: Estimation of the remaining energy in a Li-ion battery - 2-steps approach

III. CAPACITY ESTIMATION CONCEPT

The battery capacity represents the amount of energy that can be extracted from the battery under certain specified conditions. Battery manufacturers use the concept of Stateof-Charge (SoC) to specify the battery performance. The $SoC \in [0, 100]\%$ (expressed in percent) describes the ratio of the remaining energy x to the nominal capacity $C_{nom} \in \mathbb{R}_+$ of the battery [11]:

$$x = SoC * C_{nom} \tag{4}$$

Thus, a new battery should have a SoC of 100% which corresponds to the nominal battery capacity.

The determination of the SoC for a battery may be a more or less complex problem, depending on the battery type, the chosen estimation method, the requested estimation precision and the application in which the battery is used [9]. According to the analysis of existing SoC estimation methods, here the ampere-hour counting method has been chosen because:

- low-cost sensors for battery calibration are available in laboratories (e.g. current, voltage measurement);
- the computing cost to estimate the SoC is very low;
- the estimation approach can be embedded in any computing element.

The estimation of the remaining energy in the battery of a SN is proposed to be performed in two steps depicted in Fig. 1, namely, a battery calibration step (Fig. 1(a)) and an on-line estimation step (Fig. 1(b)). Both steps are now summarized.

The determination of the remaining energy implemented in the present work is described for Lithium-ion (Li-ion) batteries. However, it can be applied to batteries with an other chemistry comparisons.

A. Battery calibration step

The battery calibration is performed off-line during lab. experiments on a new battery for which the SoC is considered equal to 100% (i.e. nominal capacity, taken from data-sheet).

When the battery ages, the parameters used to describe the voltage relaxation process become increasingly less accurate. The result is a decrease in the accuracy of the remaining energy estimation. To compensate the ageing effect, the number of charge-discharge cycles and other environmental conditions (e.g. battery environmental temperature) can be taken into account [12]. As a consequence, the estimation accuracy for ageing batteries is almost as precise as for new batteries. After each battery charge-discharge cycle, the battery needs to rest for at least four hours to attain its equilibrium and get accurate measurements.

When the nominal battery capacity is known and the current i(t) extracted from the battery can be measured during the time t, that provides an accurate calculation of SoC changes. Here, i(t) is given by (see Fig. 1(a)):

$$i(t) = \frac{V_1 - V_2}{R_1}$$
(5)

where R_1 is a shunt resistor. This approach can be used for Li-ion batteries because there are no significant side reactions during normal operation [10]. However, for the SoC estimation, the initial SoC SoC(0) must be known:

$$SoC(t) = SoC(0) - \int_0^t \frac{\eta \cdot i(t)}{C_{nom}} dt$$
(6)

i(t) is the instantaneous current (assumed positive for discharge, negative for charge) delivered by the battery, C_{nom} is the nominal battery capacity. The Coulombic efficiency is $\eta = 1$ for discharge, and $\eta \leq 1$ for charge.

Using a rectangular approximation for the integration and a sampling period Δt , a discrete-time approximate recurrence can be derived:

$$SoC_{k+1} = SoC_k - \frac{\eta \cdot \Delta t}{C_{nom}} i_k \tag{7}$$

The measures conducted during the battery calibration phase provide a database with the voltage versus SoC curves (see Fig. 1(a)) depending on the temperature and the battery ageing.

B. On-line estimation step

The on-line estimation step consists of two sub-steps. The first one selects from the database, built during the calibration step, one SoC curve adapted to the environmental temperature and the number of charge-discharge cycles (related to battery ageing). The second one estimates the remaining energy x_k^i in the battery of SN S_i , using the appropriate SoC curve and the voltage measurement at the battery terminals at time k. This estimation phase runs together with the control algorithm that is described below.

IV. MODEL PREDICTIVE CONTROL DESIGN

The minimization of the power consumption of (1) can be seen as a Constrained Optimal Control problem. It can be tackled via a Quadratic Programming (QP) problem. Constrained MPC implies the minimization of a cost function based on the predicted system evolution, under a set of constraints.

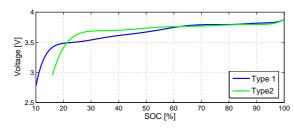


Fig. 2: SoC profiles for two battery types

Recently, the interest in using MPC for controlling systems that involve a mix of real-valued dynamics and logical rules has arisen [13] [14]. However, when the problem formulation leads to an optimization one, the resulting description is no longer a QP problem but a Mixed Integer Quadratic Programming (MIQP) problem with two different types of optimization variables, namely, real-valued and binary ones. This makes this latter problem harder to solve when compared to an ordinary QP problem.

It is assumed throughout the rest of the paper that the pair (I, B) in (1) is stabilizable (recall that the state matrix A is equal to the identity matrix I). At each decision time kT, the current state (assumed to be available thanks to the method proposed in section III) $\mathbf{x}_k = \mathbf{x}_{k|k}$ is used to define the optimal control sequence $\mathbf{u}^* = \left[\mathbf{u}_{k|k}^T, \dots, \mathbf{u}_{k+N_p-1|k}^T\right]^T$ which is solution to the minimization problem:

$$\mathbf{u}^* = \arg\min_{u} \sum_{i=0}^{N_p-1} \mathbf{x}_{k+i|k}^T Q \mathbf{x}_{k+i|k} + \sum_{i=0}^{N_u-1} \mathbf{u}_{k+i|k}^T R \mathbf{u}_{k+i|k}$$

where:

$$\begin{cases} \mathbf{x}_{k+i+1|k} = \mathbf{x}_{k+i|k} + B\mathbf{u}_{k+i|k}, & i = 1, \dots, N_p - 1 \\ \mathbf{u}_{k+i|k} = \mathbf{0}, & i = N_u, N_u + 1, \dots, N_p - 1 \\ \mathbf{u}_{k+i|k} \in \{0, 1\}^{nm} \\ \mathbf{X}_{min} \leqslant \mathbf{x}_{k+i|k} \leqslant \mathbf{X}_{max}, & i = 1, \dots, N_p - 1 \end{cases}$$
(8)

 $Q = Q^T \ge 0$ and $R = R^T > 0$ are the weighting matrices. \mathbf{X}_{min} and \mathbf{X}_{max} are the lower and upper energy capacity bounds, and the pair $(Q^{1/2}, I)$ is detectable. This minimization problem can be written in an extended form, see [6] for more details.

It is worth mentioning that the degrees of freedom of the control design are related to the choice of the weighting matrices Q and R, and the prediction N_p and control $N_u \leq N_p$ horizons.

V. APPLICATION

To show the effectiveness of the proposed strategy, a benchmark with n = 6 SNs S_i , i = 1, ..., 6, and one sink is considered. At instant k, S_i is in a unique mode among 3 possible ones M_j , j = 1, ..., 3:

• M_1 is the *Active* mode: the SN works in "duty cycling". This means that it is "off" by default and it enters a wake-up mode periodically with a sampling period $T_s = 1min$ to sense, process and exchange data with the sink;

TABLE I: Power consumption b_{ij} of node S_i in mode M_j

Sensor node	Mode M_1 [mWh]	Mode M_2 [mWh]	Mode M_3 [mWh]	Nom. bat. cap. X_{max}^i [mWh]
S_1	36.593	5.846	0	3885
S_2	36.482	6.031	0	3885
S_3	34.854	6.105	0	3885
S_4	36.482	6.301	0	3515
S_5	36.556	6.105	0	3515
S_6	33.041	5.735	0	3515

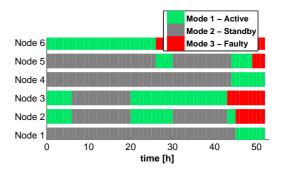


Fig. 3: Functioning modes of sensor nodes vs. time

- M_2 corresponds to the *Standby* mode. In this mode, only the external Real Time Clock (RTC) Quartz system is "on". The RTC allows to wake up the SN each $T_w = 1h$ to receive the commands from the sink and monitor the battery remaining energy capacity.
- M_3 is the *Faulty* mode. During the network lifespan, some nodes may become unavailable (due to e.g. physical damage, lack of power resources $x_k^i/X_{max}^i \leq \delta_i$). The SN can exit from this mode when for instance, the battery is recharged via a harvesting system $(x_k^i/X_{max}^i > \delta_i)$ or some physical damages are repaired. δ_i is defined for each battery and depends on its characteristics.

A. Mission definition

For this application, n = 6 SNs are deployed in an open-space office. In order to control the air conditioning unit, temperature and humidity are sensed through the WSN. During the working hours, enough information is collected with 3 SNs to reach the air control objectives. Otherwise, only 1 SN is used to feed the control of the air conditioning unit. Precisely, the *mission* is split in two phases corresponding respectively to working hours and night periods of time. Therefore, the constraints that define the *mission* are dynamically changed, depending on the time schedule, leading to a *dynamic mission*:

Time pe	eriod	d_1	Objectives
working hours	8am—5pm	3	3 nodes in M_1
Night	5pm—8am	1	1 nodes in M_1

The MPC control law assigns the *Active* mode to certain nodes in order to meet the dynamic *mission* while minimizing the power consumption of the sensor network.

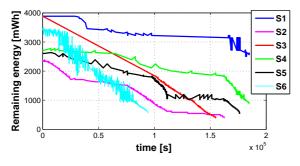


Fig. 4: Estimated remaining battery energy in SN S_i

B. Battery calibration

In this benchmark, two types of Li-ion batteries are used, with nominal capacities $C_{nom} = 3885mWh$ for type 1, and $C_{nom} = 3515mWh$ for type 2. The numerical values are obtained from the technical data sheet [15]. These batteries embed an electronic protection circuit. This latter limits the minimum SoC value (related to the nominal capacity) to 10% for type 1 battery and to 16% for type 2 battery.

The objective of the calibration phase is to build an accurate experimental model of the battery Voltage - SoC curves. Fig. 2 depicts an example of the SoC profiles for both types of new batteries (at 23°C, ambient temperature in the office). This calibration phase together with the protection circuit allow to safely (without damaging the battery) and efficiently exploit the battery capabilities.

C. Choice of the MPC tuning parameters

For the system (1), the components of matrix B are calculated from the values given in Table I, extracted from the data sheet and lab. measurements for OpenPicus [16] platforms.

The weighting matrices Q and R are chosen equal to:

$$Q = \mathbf{0}_{6 \times 6}; \quad R = B^T \times (Ru^T \times Ru)/2 \times B \tag{9}$$

where $Ru = \text{diag}[ru_1, \cdots, ru_6]$ and $ru_i \triangleq \min\{X_{max}^i/x_{k|k}^i\}, x_{k|k}^i \neq 0$. The choice $Q = \mathbf{0}_{6\times 6}$ lies in the fact that the state dynamics should evolve as slowly as possible [17]. The choice of R implies a trade-off between larger power consumption and smaller capacity battery level for node penalization. This choice tries to balance the battery remaining energy capacity in all SNs.

The prediction and control horizons are chosen equal to $N_p = 5$, $N_u = 1$ respectively. As the considered system presents slow dynamics, these horizons seem appropriate. The decision period (i.e. the time period when the power control is run) is $T = T_w = 1h$. Thus, the MIQP problem is solved on-line at each decision time kT.

D. Experimental Results

The strategy proposed in this paper is evaluated in real life with an experiment of a duration of 52 hours (starting at 11am). Beside the MPC strategy, the capacity estimation method proposed in section III is implemented. The experimental results are provided in Figure 3 that shows

the functioning modes imposed by the control strategy for each SN. The *mission* during the working hours (resp. the night) can be fulfilled until at least 3 (resp. 1) nodes do not have their batteries drained or have not failed. The estimated remaining battery capacities are given in Figure 4. Due to the different radio channel perturbations, the battery discharging behaviour is different for each node.

VI. CONCLUSIONS

The implementation of a power management strategy for a WSN together with the estimation of the remaining energy in the battery of sensor nodes is realized. This capacity estimation approach has a low computational cost. It consists of two steps. The battery calibration step is carried out offline during lab. experiments. The on-line estimation step runs besides the control algorithm. Implementation results in a real test-bench show the efficiency of the proposed capacity estimation concept and of the MPC approach implemented.

ACKNOWLEDGMENT

This work has been partly funded by the Artemis AR-ROWHEAD project under grant agreement nb. 332987.

REFERENCES

- [1] I. F Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor networks: a survey. *Computer networks*, 2002.
- [2] N. P. Mandru. Optimal power management in wireless sensor networks for enhanced life time. *Journal of Global Research in Computer Science*, 3, 2012.
- [3] W. Hailong, S. Yan, and W. Tuming. Dynamic power management of wireless sensor networks based on grey model. In Advanced Computer Theory and Engineering (ICACTE), 2010 3rd International Conference on. IEEE, 2010.
- [4] V. Sharma, U. Mukherji, V. Joseph, and S. Gupta. Optimal energy management policies for energy harvesting sensor nodes. *Wireless Communications, IEEE Transactions on*, 2010.
- [5] G. Anastasi, M. Conti, M. Di Francesco, and A. Passarella. Energy conservation in wireless sensor networks: A survey. *Ad Hoc Networks*, 7, 2009.
- [6] O. Mokrenko, S. Lesecq, W. Lombardi, D. Puschini, C. Albea, and O. Debicki. Dynamic power management in a wireless sensor network using predictive control. In *Industrial Electronics Society, IECON* 2014-40th Annual Conference of the IEEE. IEEE, 2014.
- [7] D. Q Mayne, J. B Rawlings, C. V Rao, and P. OM Scokaert. Constrained model predictive control: Stability and optimality. *Automatica*, 2000.
- [8] R. Lazimy. Mixed-integer quadratic programming. *Mathematical Programming*, 22, 1982.
- [9] S. Piller, M. Perrin, and A. Jossen. Methods for state-of-charge determination and their applications. *Journal of power sources*, 96, 2001.
- [10] W. Waag, C. Fleischer, and D. U. Sauer. Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles. *Journal of Power Sources*, 258, 2014.
- [11] W. Junping, G. Jingang, and D. Lei. An adaptive kalman filtering based state of charge combined estimator for electric vehicle battery pack. *Energy Conversion and Management*, 2009.
- [12] R. Rao, S. Vrudhula, and D. N Rakhmatov. Battery modeling for energy aware system design. *Computer*, 36, 2003.
- [13] A. Bemporad and M. Morari. Predictive control of constrained hybrid systems. In *Nonlinear model predictive control*. Springer, 2000.
- [14] A. Bemporad and M. Morari. Control of systems integrating logic, dynamics, and constraints. *Automatica*, 1999.
- [15] www.farnell.com/datasheets/1666650.pdf and 1666648.pdf.
- [16] www.openpicus.com.
- [17] R. L Williams, D. A Lawrence, et al. *Linear state-space control systems*. John Wiley & Sons, 2007.