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WSN Power Management with Battery Capacity Estimation

Wireless sensor nodes are now cheap and reliable enough to be deployed in different environments. However, their limited energy capacity limits their lifespan. In this paper, a Management strategy at network-level of a set of nodes is implemented, taking into account an estimation of the remaining energy in each sensor node. The control formulation is based on Model Predictive Control with constraints and binary optimization variables, leading to a Mixed Integer Quadratic Programming problem. The estimation of the remaining energy in batteries must be simple enough to be implemented in lowcost, low-power, low-computational-capability sensor nodes.

I. INTRODUCTION

Wireless sensor networks (WSNs) consist of a large number of sensor nodes (SNs) with sensing, wireless communication and computation capabilities used to monitor and/or control the physical world [START_REF] Akyildiz | Wireless sensor networks: a survey[END_REF]. Usually, SNs are tiny devices with limited energy capacity stored in batteries. They can be placed in different functioning modes, each mode being associated with a given power consumption.

The main drawback of the SNs is their limited energy storage, leading to a limited lifespan for the WSN. The WSN lifespan increase has already been addressed in the literature, from sensor-level [START_REF] Mandru | Optimal power management in wireless sensor networks for enhanced life time[END_REF]- [START_REF] Sharma | Optimal energy management policies for energy harvesting sensor nodes[END_REF] to network-level. [START_REF] Anastasi | Energy conservation in wireless sensor networks: A survey[END_REF] provides an overview of these techniques. [START_REF] Mokrenko | Dynamic power management in a wireless sensor network using predictive control[END_REF] proposed a lifespan extension via a Power Management strategy at network-level using a Model Predictive Control (MPC) approach. This latter predicts the "system" trajectories over a receding horizon, while calculating an optimal control policy with respect to a set of constraints [START_REF] Mayne | Constrained model predictive control: Stability and optimality[END_REF]. The control problem is formulated as a Mixed Integer Quadratic Programming (MIQP) problem [START_REF] Lazimy | Mixed-integer quadratic programming[END_REF]. [START_REF] Mokrenko | Dynamic power management in a wireless sensor network using predictive control[END_REF] supposes that the remaining energy in the SN battery is known at each decision time. Basically, the battery capacity measures the charge stored in the battery; it is determined by the mass of active material contained in the battery. However, while sensors accurately measure the gasoline level in a tank, there is no simple sensor available to measure the remaining energy in a battery. Instead, the battery State-of-Charge (SoC) is estimated from other measurements. Different SoC estimation methods are reported, e.g. ampere-hour counting, OCV-based estimation, model-based estimation (Kalman filtering) and others [START_REF] Piller | Methods for state-of-charge determination and their applications[END_REF], [START_REF] Waag | Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles[END_REF]. Note that these approaches deal with relatively "large" battery packs for laptops and electrical vehicles. Their implementation in SNs with limited computational capability is not appropriate. calbea@laas.fr Therefore, the main motivation of this paper is to implement, beside the MPC, a remaining energy estimation technique with light computational weight in order to leverage the main hypothesis of [START_REF] Mokrenko | Dynamic power management in a wireless sensor network using predictive control[END_REF]. The rest of the paper is organised as follows. Section II deals with system modelling and control objectives. Section III presents the remaining energy estimation method while Section IV is dedicated to the MPC design. Section V reports results on a real testbench.

II. SYSTEM MODELING AND CONTROL OBJECTIVES

The consumption of the SNs in a WSN is described by:

x k+1 = x k + Bu k (1)
where x k ∈ R n + is the remaining energy capacity in the batteries of the SNs S i , i = 1, ..., n, n ∈ N * at time k. The initial battery capacity is denoted x 0 . Bu k represents the energy capacity consumed during the time interval [kT, (k + 1)T ], where T is the decision period.

u k = [u T 1 , • • • , u T i , • • • , u T n ] T ∈ {0, 1} nm is the control input. m ∈ N * is the number of SN functioning modes. Each sub-vector u i = [u i1 , • • • , u ij , • • • , u im ] T contains the functioning mode of S i , where u ij ∈ {0, 1}, j = 1, ..., m.
As S i has a unique functioning mode at time k, a set of constraints must be defined:

∀i = 1 : n, m j=1 u ij = 1 (2) 
Each component b ij of B i in the control matrix B = diag [-B 1 , . . . , -B n ] ∈ R n×nm represents the amount of energy consumed by S i working in mode M j during the decision period T . Note that switching from M a to M b has an extra cost that is supposed to be integrated in b ib . Moreover, the battery energy capacity of S i is constrained,

0 x i k X i max .
The remaining capacity in the battery is related to the SoC estimate, expressed as a percentage (0%-Empty, 100%-Full) of some reference.

Control objectives

In order to define the system control objectives, the concept of mission is introduced. A mission is described by the minimum number d ∈ N * of SNs in the active mode, sufficient to provide the requested services and performance level. d may possibly change from time to time. Thus, the mission imposes a new constraint:

n i=1 u ij = d (3) 
Therefore, the system to be controlled is not only constrained by ( 2), but also by the set of extra functional constraints (3) that are used to define the mission. The battery capacity represents the amount of energy that can be extracted from the battery under certain specified conditions. Battery manufacturers use the concept of Stateof-Charge (SoC) to specify the battery performance. The SoC ∈ [0, 100]% (expressed in percent) describes the ratio of the remaining energy x to the nominal capacity C nom ∈ R + of the battery [START_REF] Junping | An adaptive kalman filtering based state of charge combined estimator for electric vehicle battery pack[END_REF]:

x = SoC * C nom (4) 
Thus, a new battery should have a SoC of 100% which corresponds to the nominal battery capacity. The determination of the SoC for a battery may be a more or less complex problem, depending on the battery type, the chosen estimation method, the requested estimation precision and the application in which the battery is used [START_REF] Piller | Methods for state-of-charge determination and their applications[END_REF]. According to the analysis of existing SoC estimation methods, here the ampere-hour counting method has been chosen because:

• low-cost sensors for battery calibration are available in laboratories (e.g. current, voltage measurement); • the computing cost to estimate the SoC is very low;

• the estimation approach can be embedded in any computing element. The estimation of the remaining energy in the battery of a SN is proposed to be performed in two steps depicted in Fig. 1, namely, a battery calibration step (Fig. 1(a)) and an on-line estimation step (Fig. 1(b)). Both steps are now summarized.

The determination of the remaining energy implemented in the present work is described for Lithium-ion (Li-ion) batteries. However, it can be applied to batteries with an other chemistry comparisons.

A. Battery calibration step

The battery calibration is performed off-line during lab. experiments on a new battery for which the SoC is considered equal to 100% (i.e. nominal capacity, taken from data-sheet).

When the battery ages, the parameters used to describe the voltage relaxation process become increasingly less accurate. The result is a decrease in the accuracy of the remaining energy estimation. To compensate the ageing effect, the number of charge-discharge cycles and other environmental conditions (e.g. battery environmental temperature) can be taken into account [START_REF] Rao | Battery modeling for energy aware system design[END_REF]. As a consequence, the estimation accuracy for ageing batteries is almost as precise as for new batteries. After each battery charge-discharge cycle, the battery needs to rest for at least four hours to attain its equilibrium and get accurate measurements.

When the nominal battery capacity is known and the current i(t) extracted from the battery can be measured during the time t, that provides an accurate calculation of SoC changes. Here, i(t) is given by (see Fig. 1(a)):

i(t) = V 1 -V 2 R 1 ( 5 
)
where R 1 is a shunt resistor. This approach can be used for Li-ion batteries because there are no significant side reactions during normal operation [START_REF] Waag | Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles[END_REF]. However, for the SoC estimation, the initial SoC SoC(0) must be known:

SoC(t) = SoC(0) - t 0 η • i(t) C nom dt (6) 
i(t) is the instantaneous current (assumed positive for discharge, negative for charge) delivered by the battery, C nom is the nominal battery capacity. The Coulombic efficiency is η = 1 for discharge, and η 1 for charge. Using a rectangular approximation for the integration and a sampling period ∆t, a discrete-time approximate recurrence can be derived:

SoC k+1 = SoC k - η • ∆t C nom i k (7) 
The measures conducted during the battery calibration phase provide a database with the voltage versus SoC curves (see Fig. 1(a)) depending on the temperature and the battery ageing.

B. On-line estimation step

The on-line estimation step consists of two sub-steps. The first one selects from the database, built during the calibration step, one SoC curve adapted to the environmental temperature and the number of charge-discharge cycles (related to battery ageing). The second one estimates the remaining energy x i k in the battery of SN S i , using the appropriate SoC curve and the voltage measurement at the battery terminals at time k. This estimation phase runs together with the control algorithm that is described below.

IV. MODEL PREDICTIVE CONTROL DESIGN

The minimization of the power consumption of (1) can be seen as a Constrained Optimal Control problem. It can be tackled via a Quadratic Programming (QP) problem. Constrained MPC implies the minimization of a cost function based on the predicted system evolution, under a set of constraints. Recently, the interest in using MPC for controlling systems that involve a mix of real-valued dynamics and logical rules has arisen [START_REF] Bemporad | Predictive control of constrained hybrid systems[END_REF] [START_REF] Bemporad | Control of systems integrating logic, dynamics, and constraints[END_REF]. However, when the problem formulation leads to an optimization one, the resulting description is no longer a QP problem but a Mixed Integer Quadratic Programming (MIQP) problem with two different types of optimization variables, namely, real-valued and binary ones. This makes this latter problem harder to solve when compared to an ordinary QP problem.

It is assumed throughout the rest of the paper that the pair (I, B) in ( 1) is stabilizable (recall that the state matrix A is equal to the identity matrix I). At each decision time kT , the current state (assumed to be available thanks to the method proposed in section III) x k = x k|k is used to define the optimal control sequence u * = u T k|k , . . . , u T k+Np-1|k T which is solution to the minimization problem:

u * = arg min u Np-1 i=0 x T k+i|k Qx k+i|k + Nu-1 i=0 u T k+i|k Ru k+i|k where:          x k+i+1|k = x k+i|k + Bu k+i|k , i = 1, . . . , N p -1 u k+i|k = 0, i = N u , N u + 1, . . . , N p -1 u k+i|k ∈ {0, 1} nm X min x k+i|k X max , i = 1, . . . , N p -1 (8) 
Q = Q T 0 and R = R T > 0 are the weighting matrices. X min and X max are the lower and upper energy capacity bounds, and the pair (Q 1/2 , I) is detectable. This minimization problem can be written in an extended form, see [START_REF] Mokrenko | Dynamic power management in a wireless sensor network using predictive control[END_REF] for more details.

It is worth mentioning that the degrees of freedom of the control design are related to the choice of the weighting matrices Q and R, and the prediction N p and control N u N p horizons.

V. APPLICATION

To show the effectiveness of the proposed strategy, a benchmark with n = 6 SNs S i , i = 1, . . . , 6, and one sink is considered. At instant k, S i is in a unique mode among 3 possible ones M j , j = 1, . . . , 3:

• M 1 is the Active mode: the SN works in "duty cycling". This means that it is "off" by default and it enters a wake-up mode periodically with a sampling period T s = 1min to sense, process and exchange data with the sink; Fig. 3: Functioning modes of sensor nodes vs. time

• M 2 corresponds to the Standby mode. In this mode, only the external Real Time Clock (RTC) Quartz system is "on". The RTC allows to wake up the SN each T w = 1h to receive the commands from the sink and monitor the battery remaining energy capacity. • M 3 is the Faulty mode. During the network lifespan, some nodes may become unavailable (due to e.g. physical damage, lack of power resources x i k /X i max ≤ δ i ). The SN can exit from this mode when for instance, the battery is recharged via a harvesting system (x i k /X i max > δ i ) or some physical damages are repaired. δ i is defined for each battery and depends on its characteristics.

A. Mission definition

For this application, n = 6 SNs are deployed in an open-space office. In order to control the air conditioning unit, temperature and humidity are sensed through the WSN. During the working hours, enough information is collected with 3 SNs to reach the air control objectives. Otherwise, only 1 SN is used to feed the control of the air conditioning unit. Precisely, the mission is split in two phases corresponding respectively to working hours and night periods of time. Therefore, the constraints that define the mission are dynamically changed, depending on the time schedule, leading to a dynamic mission: The MPC control law assigns the Active mode to certain nodes in order to meet the dynamic mission while minimizing the power consumption of the sensor network. 

B. Battery calibration

In this benchmark, two types of Li-ion batteries are used, with nominal capacities C nom = 3885mW h for type 1, and C nom = 3515mW h for type 2. The numerical values are obtained from the technical data sheet [15]. These batteries embed an electronic protection circuit. This latter limits the minimum SoC value (related to the nominal capacity) to 10% for type 1 battery and to 16% for type 2 battery.

The objective of the calibration phase is to build an accurate experimental model of the battery V oltage -SoC curves. Fig. 2 depicts an example of the SoC profiles for both types of new batteries (at 23 • C, ambient temperature in the office). This calibration phase together with the protection circuit allow to safely (without damaging the battery) and efficiently exploit the battery capabilities.

C. Choice of the MPC tuning parameters

For the system (1), the components of matrix B are calculated from the values given in Table I, extracted from the data sheet and lab. measurements for OpenPicus [16] platforms.

The weighting matrices Q and R are chosen equal to:

Q = 0 6×6 ; R = B T × (Ru T × Ru)/2 × B (9) 
where Ru = diag [ru 1 , • • • , ru 6 ] and ru i min{X i max /x i k|k }, x i k|k = 0. The choice Q = 0 6×6 lies in the fact that the state dynamics should evolve as slowly as possible [START_REF] Williams | Linear state-space control systems[END_REF]. The choice of R implies a trade-off between larger power consumption and smaller capacity battery level for node penalization. This choice tries to balance the battery remaining energy capacity in all SNs.

The prediction and control horizons are chosen equal to N p = 5, N u = 1 respectively. As the considered system presents slow dynamics, these horizons seem appropriate. The decision period (i.e. the time period when the power control is run) is T = T w = 1h. Thus, the MIQP problem is solved on-line at each decision time kT .

D. Experimental Results

The strategy proposed in this paper is evaluated in real life with an experiment of a duration of 52 hours (starting at 11am). Beside the MPC strategy, the capacity estimation method proposed in section III is implemented. The experimental results are provided in Figure 3 that shows the functioning modes imposed by the control strategy for each SN. The mission during the working hours (resp. the night) can be fulfilled until at least 3 (resp. 1) nodes do not have their batteries drained or have not failed. The estimated remaining battery capacities are given in Figure 4. Due to the different radio channel perturbations, the battery discharging behaviour is different for each node.

VI. CONCLUSIONS

The implementation of a power management strategy for a WSN together with the estimation of the remaining energy in the battery of sensor nodes is realized. This capacity estimation approach has a low computational cost. It consists of two steps. The battery calibration step is carried out offline during lab. experiments. The on-line estimation step runs besides the control algorithm. Implementation results in a real test-bench show the efficiency of the proposed capacity estimation concept and of the MPC approach implemented.
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 1 Fig. 1: Estimation of the remaining energy in a Li-ion battery -2-steps approach
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 2 Fig. 2: SoC profiles for two battery types
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 4 Fig. 4: Estimated remaining battery energy in SN S i

TABLE I :

 I Power consumption b ij of node S i in mode M j

	Sensor	Mode M 1		Mode M 2	Mode M 3	Nom. bat. cap.
	node	[mW h]		[mW h]	[mW h]	X i max [mW h]
	S 1	36.593		5.846	0	3885
	S 2	36.482		6.031	0	3885
	S 3	34.854		6.105	0	3885
	S 4	36.482		6.301	0	3515
	S 5	36.556		6.105	0	3515
	S 6	33.041		5.735	0	3515
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