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Abstract—In multi-terminal networks, feedback increases the
capacity region and helps communication devices to coordinate.
In this article, we deepen the relationship between coordination
and feedback by considering a point-to-point scenario with an
information source and a noisy channel. Empirical coordination
is achievable if the encoder and the decoder can implement
sequences of symbols that are jointly typical for a target
probability distribution. We investigate the impact of feedback
when the encoder has strictly causal or causal observation of
the source symbols. For both cases, we characterize the optimal
information constraints and we show that feedback improves
coordination possibilities. Surprisingly, feedback also reduces
the number of auxiliary random variables and simplifies the
information constraints. For empirical coordination with strictly
causal encoding and feedback, the information constraint does
not involve auxiliary random variable anymore.

Index Terms—Shannon Theory, Feedback, Empirical Coordi-
nation, Joint Source-Channel Coding, Empirical Distribution of
Symbols, Strictly Causal and Causal Encoding.

I. INTRODUCTION

Feedback does not increase the capacity of a memoryless

channel [1]. However, it has a significant impact when consid-

ering problems of empirical coordination. In this framework,

encoder and decoder are considered as autonomous agents

[2], that implement a coding scheme in order to coordinate

their sequences of actions, i.e. channel inputs and decoder

outputs, with a sequence of source symbols. The problem

of empirical coordination [3], [4], [5] consists in determining

the set of joint probability distributions, that are achievable

for empirical frequencies of symbols. Empirical coordination

provides a single-letter solution that simplifies the analysis

of optimization problems such as minimal source distortion,

minimal channel cost or maximal utility function of a decen-

tralized communication network [6]. For example, the optimal

distortion level is the minimum of the expected distortion

function, taken over the set of achievable joint probability

distributions.

In the framework of multi-terminal networks, feedback

increases the capacity region of the multiple-access channel

[7], [8] and of the broadcast channel [9], [10]. In the literature

of game theory, feedback is considered from a strategic point-

of-view. In [2], a player observes the past actions of another

player through a monitoring structure involving perfect or

imperfect feedback. In [11], the authors investigate a four-

player coordination game with imperfect feedback and provide

a subset of achievable joint probability distributions. Empirical

coordination is a first step toward a better understanding of

decentralized communication network. The set of achievable

joint distributions was characterized for strictly causal and

causal decoding in [6], with two-sided state information in [12]

and with feedback from the source in [13]. From a practical

perspective, coordination with polar codes was considered in

[14]. Lossless decoding with correlated information source and

channel states is solved in [15]. Empirical coordination for

multi-terminal source coding is treated in [16] and in [17].

U i−1 Xi Y n V n
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Fig. 1. Strictly causal encoding function with feedback fi : U i−1×Yi−1 →
X , for all i ∈ {1, . . . , n} and non-causal decoding function g : Yn → Vn .

In this article, we consider the point-to-point scenario of

[18] with channel feedback, as represented by Fig. 1 and 2.

The encoder has perfect feedback from the channel and strictly

causal or causal observation of the symbols of source. In both

cases, we characterize the set of achievable joint probability

distributions over the symbols of source and channel. We

show that the information constraints are larger than the ones

stated in [18]. Surprisingly, feedback also reduces the number

of auxiliary random variables and simplifies the information

constraints. For empirical coordination with strictly causal

encoding and feedback, the information constraint does not

involve auxiliary random variable anymore. There is an anal-

ogy with strictly causal decoding [6], [13], since no auxiliary

random variable is needed when the decoder has feedback

from the source. Feedback allows to remove auxiliary random

variables of information constraints, for empirical coordination

problems.

System model and definitions are stated in Sec. II and

characterizations of achievable joint distributions are stated in

Sec. III. Comparison with previous works and an example are

stated in Sec. IV and V. Conclusions and sketches of proofs

are stated in Sec. VI and in Appendix A, B, C.



II. SYSTEM MODEL

Figure 1 represents the problem under investigation. Ran-

dom variable U is denoted by capital letter, lowercase letter

u ∈ U designates the realization and Un corresponds to

the n-time cartesian product. Un, Xn, Y n, V n stands for

sequences of random variables of source symbols un =
(u1, . . . , un) ∈ Un, inputs of the channel xn ∈ Xn, outputs

of the channel yn ∈ Yn and decoder’s output vn ∈ Vn.

The sets U , X , Y , V are discrete. The set of probability

distributions P(X) over X is denoted by ∆(X ). Notation

||Q − P||tv = 1/2 ·
∑

x∈X |Q(x) − P(x)| stands for the

total variation distance between probability distributions Q
and P . Notation Y −
− X −
− U stands for the Markov

chain property corresponding to P(y|x, u) = P(y|x) for all

(u, x, y). Information source is i.i.d. distributed with Pu and

the channel is memoryless with transition probability Ty|x.
Encoder C and decoder D know the statistics Pu and Ty|x of

the source and channel. The coding process is deterministic.

Definition II.1 A code c ∈ C(n) with strictly-causal encoder

and feedback is a tuple of functions c = ({fi}
n
i=1, g) defined

by equations (1) and (2):

fi : U i−1 × Yi−1 −→ X , i = 1, . . . , n, (1)

g : Yn −→ Vn. (2)

The number of occurrence of symbol u ∈ U in sequence un is

denoted by N(u|un). The empirical distribution Qn ∈ ∆(U ×
X × Y × V) of sequences (un, xn, yn, vn) is defined by:

Qn(u, x, y, v) =
N(u, x, y, v|un, xn, yn, vn)

n
,

∀(u, x, y, v) ∈ U × X × Y × V . (3)

Fix a target probability distribution Q ∈ ∆(U ×X ×Y ×V),
the error probability of the code c ∈ C(n) is defined by:

Pe(c) = Pc

(
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where Qn ∈ ∆(U ×X ×Y×V) is the random variable of the

empirical distribution induced by the probability distributions

Pu, Ty|x and the code c ∈ C(n).

Definition II.2 The probability distribution Q ∈ ∆(U ×X ×
Y ×V) is achievable if for all ε > 0, there exists a n̄ ∈ N s.t.

for all n ≥ n̄, there exists a code c ∈ C(n) that satisfies:

Pe(c) = Pc

(
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≥ ε

)

≤ ε. (5)

The error probability Pe(c) is small if the total vari-

ation distance between the empirical frequency of sym-

bols Qn(u, x, y, v) and the target probability distribution

Q(u, x, y, v) is small, with large probability. In that case,

the sequences of symbols (Un, Xn, Y n, V n) ∈ A⋆n
ε (Q) are

jointly typical, i.e. coordinated, for the target probability

distribution Q with large probability.

As mentioned in [6] and [15], the performance of the

coordination can be evaluated using an objective function

Φ : U × X × Y × V 7→ R. We denote by A⋆, the set of joint

probability distributions Q ∈ A⋆ that are achievable. Based

on the expectation EQ∈A⋆

[

Φ(U,X, Y, V )
]

, it is possible to

derive the minimal channel cost Φ(u, x, y, v) = c(x), the

minimal distortion level Φ(u, x, y, v) = d(u, v) or the maximal

utility of a decentralized network [2], using a single-letter

characterization.

III. CHARACTERIZATION OF ACHIEVABLE DISTRIBUTIONS

This section presents the two main results of this article.

Theorem III.1 characterizes of the set of achievable joint prob-

ability distributions for strictly causal encoding with feedback,

represented in Fig. 1.

Theorem III.1 (Strictly causal encoding with feedback)

1) If the joint probability distribution Q(u, x, y, v) is

achievable, then it decomposes as follows:
{

Q(u) = Pu(u), Q(y|x) = T (y|x),

U independent of X, Y −
−X −
− U.
(6)

2) Joint probability distribution Pu(u) ⊗ Q(x) ⊗ T (y|x) ⊗
Q(v|u, x, y) is achievable if:

I(X ;Y )− I(U ;V |X,Y ) > 0, (7)

3) Joint probability distribution Pu(u) ⊗ Q(x) ⊗ T (y|x) ⊗
Q(v|u, x, y) is not achievable if:

I(X ;Y )− I(U ;V |X,Y ) < 0, (8)

Sketch of proof of Theorem III.1 is stated in Appendix A.

Equation (7) comes from Theorem 3 in [18] by replacing

the auxiliary random variable by decoder’s output V and the

observation of the encoder by the pair of information source

and channel feedback (U, Y ).
A causal encoding function is defined by fi : U

i×Yi−1 →
X , ∀i ∈ {1, . . . , n}. Theorem III.2 characterizes of the set of

achievable joint probability distributions for causal encoding

with feedback, represented in Fig. 2.

U i Xi Y n V n

Y i−1
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Fig. 2. Causal encoding function with feedback fi : U i × Yi−1 → X , for
all i ∈ {1, . . . , n} and non-causal decoding function g : Yn → Vn .

Theorem III.2 (Causal Encoding with Feedback)

1) If the joint probability distribution Q(u, x, y, v) is

achievable, then it decomposes as follows:

Q(u) = Pu(u), Q(y|x) = T (y|x), Y −
−X −
− U, (9)

2) Joint probability distribution Pu(u)⊗Q(x|u)⊗ T (y|x)⊗
Q(v|u, x, y) is achievable if:

max
Q∈Q

(

I(W ;Y )− I(U ;V |W,Y )

)

> 0, (10)



3) Joint probability distribution Pu(u)⊗Q(x|u)⊗ T (y|x) ⊗
Q(v|u, x, y) is not achievable if:

max
Q∈Q

(

I(W ;Y )− I(U ;V |W,Y )

)

< 0, (11)

where Q is the set of probability distributions Q ∈ ∆(U×W×
X ×Y×V) with auxiliary random variable W that satisfies:
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∑

w∈W Q(u,w, x, y, v)

= Pu(u)⊗Q(x|u)⊗ T (y|x)⊗Q(v|u, x, y),

U independent of W,

Y −
−X −
− (U,W ),

V −
− (U, Y,W )−
−X.

The probability distribution Q ∈ Q decomposes as follows:

Pu(u)⊗Q(w) ⊗Q(x|u,w)⊗ T (y|x)⊗Q(v|u, y, w).

The support of W is bounded by |W| ≤ |U ×X ×Y ×V|+2.

Sketch of proofs of Theorem III.2 are stated in Appendix B

and C. The random variable V is directly correlated with the

pair (U, Y ) of source and channel output. Feedback implies

that V is extracted from the Markov chain Y −
−X−
− (U,W )
of the memoryless channel.

IV. FEEDBACK IMPROVES EMPIRICAL COORDINATION

In this section, we investigate the impact of the feedback on

the set of achievable joint distributions stated in Theorems III.1

and III.2. Considering strictly causal encoding, we evaluate the

difference between information constraint stated in equation

(7) and the one stated in Theorem 3 in [18] without feedback.

I(X ;Y )− I(U ;V |X,Y ) (12)

− max
Q∈Qse

(

I(X ;Y )− I(U ;W2|X)

)

(13)

= min
Q∈Qse

I(U ;W2|X)− I(U ;V |X,Y ) (14)

= H(U |V,X, Y )− max
Q∈Qse

H(U |X,W2) ≥ 0. (15)

Qse is the set of probability distributions Q ∈ ∆(U × W2 ×
X ×Y ×V) with auxiliary random variable W2 that satisfies:

Pu(u)⊗Q(x) ⊗Q(w2|u, x)⊗ T (y|x) ⊗Q(v|y, x, w2).

• Equation (15) is equal to zero if (U, V ) is independent of

(X,Y ), this corresponds to the lossy transmission without

coordination in which the feedback does not increase the

channel capacity [1].

• Equation (15) is equal to zero when the decoder output

V is empirically coordinated with (U,X) and not with the

channel output Y , because in that case W2 = V . Since the

auxiliary random variable W2 should satisfy Q(v|y, x, u) =
∑

w2∈W2
Q(w2|u, x) · Q(v|y, x, w2), equation (12) provides

an upper bound to equation (13) that is easier to evaluate

There is a strong analogy between strictly causal encod-

ing with channel feedback and strictly causal decoding with

source feedback. Equation (16) corresponds to strictly causal

decoding without feedback from the source, stated in [6].

max
Q∈Qsd

(

I(W1;Y |V )− I(U ;V,W1)

)

> 0. (16)

Un Xn Y i

U i−1

Vi
Pu C T D

Fig. 3. Non-causal encoding f : Un → Xn and causal decoding gi :
Yi × U i−1 → V for all i ∈ {1, . . . , n} with feedback from the source.

Qsd is the set of probability distributions Q ∈ ∆(U ×W1×
X × Y × V) with auxiliary random variable W1, that satisfy:

Pu(u)⊗Q(x, v|u)⊗Q(w1|u, x, v)⊗ T (y|x).

Equation (17) corresponds to strictly causal decoding with

feedback from the source, characterized in [13].

I(X ;Y |U, V )− I(U ;V ) > 0. (17)

Equation (17) can be deduced from equation (16), by replacing

the auxiliary random variable W1 by X and the observation

of the decoder Y by the pair (U, Y ).
This analysis extends to causal decoding with feedback from

the source, represented by Fig. 3 and characterized by (18).

max
Q∈Qdf

(

I(X ;Y |U,W3)− I(U ;W3)

)

> 0. (18)

Qdf is the set of probability distributions Q ∈ ∆(U ×W3 ×
X × Y × V) with auxiliary random variable W3, that satisfy:

Pu(u)⊗Q(x,w3|u)⊗ T (y|x) ⊗Q(v|y, w3).

The proof is in [19]. Theorems III.1 and III.2 also extend to

two-sided state information by replacing (U, S) by (U, S, Y )
in the results of [12], for strictly causal and causal encoding.

p
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Fig. 4. Binary information source and binary symmetric channel with
parameters p = 1/2 and ε ∈ [0, 0.5]

V. EXAMPLE: BINARY SOURCE AND CHANNEL

We consider a binary information source and a binary sym-

metric channel represented by Fig. 4. The set of symbols are

b
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b

U,X, Y

(0, 0, 0)

(1, 0, 0)
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1− α

α/7
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α/7
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Fig. 5. Conditional probability distribution Qv|uxy depending on parameter

α ∈ [0, 7/8] where Q
(

V = 1
∣

∣(U,X, Y ) = (0, 0, 0)
)

= 1−α and Q
(

V =
2
∣

∣(U,X, Y ) = (0, 0, 0)
)

= α/7. For α = 7/8, the probability distribution is
uniform over the set V = {1, . . . , 8} and independent of the triple (U,X, Y ).
For α = 0, the output V corresponds exactly to the triple (U,X, Y ).

given by U = X = Y = {0, 1} and V = {1, 2, 3, 4, 5, 6, 7, 8}.

We assume the parameter p ∈ [0, 1] of the information source



is equal to 1/2. The probability distribution of channel input

is uniform Q(X = 0) = Q(X = 1) = 1/2. The transition

probability of the channel depends on a noise parameter

ε ∈ [0, 0.5]. Since the input distribution is uniform and the

channel is symmetric, the output probability distribution is

also uniform Q(Y = 0) = Q(Y = 1) = 1/2. We investigate a

class of achievable conditional probability distributions Qv|uxy

described by Fig. 5.
We consider strictly causal encoding with feedback. The

information constraint (7) of Theorem III.1 writes:

I(X;Y )− I(U ;V |X,Y )

= H(Y )−H(Y |X)−H(V |X, Y ) +H(V |U,X, Y )

= 1−Hb(ε)−Hb

(

6α

7

)

− 1−
6α

7
· log

2
3 +Hb(α) + α · log

2
7

= Hb(α) −Hb(ε)−Hb

(

6α

7

)

+ α ·

(

log
2
7−

6

7
· log

2
3

)

.
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Fig. 6. Comparison between the information constraint for empirical coordi-
nation with feedback I(X; Y )−I(U ; V |X,Y ) and the information constraint
I(X; Y ) − I(U ;V ) for lossy transmission.

In Fig. 6, we compare the information constraint for empir-

ical coordination with feedback (7) and information constraint

for lossy transmission without coordination (19), where α is

the distortion parameter of conditional distribution Qv|u:

I(X ;Y )− I(U ;V ) = 1−Hb(ε)− 1 +Hb(α) (19)

= Hb(α)−Hb(ε). (20)

The minimal coordination parameter α⋆ ≃ 0.281 > 0.1 is

much larger for empirical coordination than for lossy com-

pression. This restriction comes from the additional correlation

requirement between the decoder output V and the random

variables (X,Y ) of the channel. Fig. 7 provides the minimal

value of parameter α⋆ ∈ [0, 0.875] for empirical coordination,

depending on the level of noise of the channel ε ∈ [0, 0.5].

VI. CONCLUSION

We investigate the relationship between coordination and

feedback by considering a point-to-point scenario with strictly

causal and causal encoder. For both cases, we characterize the

optimal solutions and we show that feedback simplifies the

information constraints by reducing the number of auxiliary

random variables. For empirical coordination with strictly
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Fig. 7. Minimal value of parameter α⋆ ∈ [0, 0.875] for the information
constraint I(X; Y ) − I(U ;V |X,Y ) > 0 to be positive, depending on the
noise of the channel ε ∈ [0, 0.5]. It corresponds to the higher level of
coordination between the random variable V and the triple (U,X, Y ).

causal encoding and feedback, the information constraint does

not involve auxiliary random variable anymore.

APPENDIX

The full versions of the proofs are stated in [19].

A. Sketch of proof of Theorem III.1

Achievability proof can be obtained from the proof of

Theorem III.2 stated in Appendix B, by replacing the auxiliary

random variable W by X .
For the converse proof, we consider code c(n) ∈ C with

small error probability Pe(c).

0 = I(Un;Y n) − I(Un;Y n
, V

n) (21)

= I(U
n
;Y

n
) −

n
∑

i=1

I(Ui;Y
n
, V

n
, U

i−1
) (22)

≤

n
∑

i=1

(

I(Yi;U
n
, Xi|Y

i−1) − I(Ui;Y
n
, V

n
, U

i−1
, Xi)

)

(23)

≤
n
∑

i=1

(

H(Yi) − H(Yi|Xi) − I(Ui;Yi, Vi, Xi)

)

(24)

≤

n
∑

i=1

(

H(Yi) + H(Ui|Yi, Vi, Xi)

)

− n

(

H(Y |X) + H(U)

)

(25)

≤ n

(

I(X;Y ) − I(U ; V |X, Y )

)

. (26)

Equation (21) comes from the non-causal decoding that in-

duces the Markov chain: Un −
− Y n −
− V n.

Equation (22) comes from the i.i.d. properties of the informa-

tion source U that implies: I(Ui;U
i−1) = 0.

Equation (23) comes from the channel feedback and the

strictly causal encoding function: Xi = fi(U
i−1, Y i−1).

Equations (24) and (25) are due to the properties of i.i.d.

information source and of memoryless channel.

Equation (26) comes from the concavity of the entropy func-

tion and from the hypothesis of small error probability Pe(c).

B. Sketch of achievability proof of Theorem III.2

Consider Q ∈ Q that achieves the maximum in equation
(10). There exists a δ > 0 and a rate R > 0 such that:

R ≥ I(U,Y ;V |W ) + δ, (27)

R ≤ I(W ;Y ) + I(V ;Y |W )− δ = I(W,V ;Y )− δ. (28)



We define a block-Markov random code c ∈ C(n) over B ∈ N

blocks of length n ∈ N.

• Random codebook. We generate |M| = 2nR sequences

Wn(m) drawn from Q⊗n
w with index m ∈ M. For each

index m ∈ M, we generate the same number |M| = 2nR

of sequences V n(m, m̂) with index m̂ ∈ M, drawn from

Q⊗n
v|w depending on Wn(m).

• Encoding function. It recalls mb−1 and finds mb ∈ M s.t.

sequences (Un
b−1, Y

n
b−1,W

n(mb−1), V
n(mb−1,mb)) ∈

A⋆n
ε (Q) are jointly typical in block b − 1. It deduces

Wn(mb) for block b and sends Xn
b drawn from Q⊗n

x|uw

depending on (Un
b ,W

n(mb)).
• Decoding function. It recalls mb−1 and finds mb ∈

M s.t. sequences (Y n
b ,Wn(mb)) ∈ A⋆n

ε (Q) and

(Y n
b−1,W

n(mb−1), V
n(mb−1,mb)) ∈ A⋆n

ε (Q) are

jointly typical. It returns V n(mb−1,mb) over block b−1.

• First block at the encoder. An arbitrary index m1 ∈
M of Wn(m1) ∈ Wn is given to encoder and

decoder. Encoder sends Xn
b1

drawn from Q⊗n
x|uw de-

pending on (Un
b1
,Wn(m1)). At the beginning of the

second block b2, encoder finds index m2 such that

(Un
b1
, Y n

b1
,Wn(m1), V

n(m1,m2)) ∈ A⋆n
ε (Q). It sends

Xn
b2

drawn from Q⊗n
x|wu depending on (Un

b2
,Wn(m2)).

• First block at the decoder. At the end of

second block b2, the decoder finds the index

m2 such that (Y n
b2
,Wn(m2)) ∈ A⋆n

ε (Q) and

(Y n
b1
,Wn(m1), V

n(m1,m2)) ∈ A⋆n
ε (Q). Over the first

bloc, decoder D returns V n(m1,m2) ∈ Vn. Sequences

(Un
b1
,Wn(m1), X

n
b1
, Y n

b1
, V n(m1,m2)) ∈ A⋆n

ε (Q) are

jointly typical over the first block b1.

• Last bloc. Sequences are not jointly typical.
Equations (27), (28) imply for all n ≥ n̄, for a large number
of blocks B ∈ N, the sequences are jointly typical with large
probability.

Ec

[

P

(

U
n

/∈ A
⋆n
ε (Q)

)]

≤ ε,

Ec

[

P

(

∀m ∈ M, (U
n
b−1 , Y

n
b−1,W

n
(mb−1), V

n
(mb−1 ,m)) /∈ A

⋆n
ε (Q)

)]

≤ ε,

Ec

[

P

(

∃m
′
6= m, s.t.

{

(Y
n
b ,W

n
(m

′
)) ∈ A

⋆n
ε (Q)

}

∩

{

(Y
n
b−1, W

n
(mb−1), V

n
(mb−1,m

′
)) ∈ A

⋆n
ε (Q)

}

)]

≤ ε.

C. Sketch of Converse Proof of Theorem III.2

Consider code c(n) ∈ C with small error probability Pe(c).

0 ≤

n
∑

i=1

I(U
i−1

, Y
i−1

, Y
n
i+1; Yi) −

n
∑

i=1

I(Y
n
i+1;Ui, Yi|U

i−1
, Y

i−1
) (29)

=

n
∑

i=1

I(U
i−1

, Y
i−1

; Yi) −

n
∑

i=1

I(Y
n
i+1;Ui|U

i−1
, Y

i−1
, Yi) (30)

=

n
∑

i=1

I(U
i−1

, Y
i−1

; Yi) −

n
∑

i=1

I(Y
n
i+1, Vi;Ui|U

i−1
, Y

i−1
, Yi) (31)

≤

n
∑

i=1

I(U
i−1

, Y
i−1

; Yi) −

n
∑

i=1

I(Vi;Ui|U
i−1

, Y
i−1

, Yi) (32)

=

n
∑

i=1

I(Wi ;Yi) −

n
∑

i=1

I(Vi;Ui|Wi, Yi). (33)

≤ n · max
Q∈Q

(

I(W ; Y ) − I(V ;U|W,Y )

)

. (34)

Eq. (29), (30) are due to Csiszár Sum Identity, prop. of MI.

Eq. (31) is due to the non-causal decoding function V n =
g(Y n), that implies: I(Vi;Ui|U

i−1, Y i−1, Yi, Y
n
i+1) = 0.

Eq. (32) is due to the properties of the mutual information.

Eq. (33) is due to the introduction of auxiliary random

variables Wi = (U i−1, Y i−1) satisfying properties of set Q.

Eq. (34) comes from taking the maximum over the set Q.

Ui is independent of Wi, (35)

Yi −
−Xi −
− (Ui,Wi), (36)

Vi −
− (Ui, Yi,Wi)−
−Xi. (37)

• Eq. (35) is due to the i.i.d. property of the source that

implies Ui is independent of U i−1. The causal encoding with

feedback Xi = fi(U
i, Y i−1) and the memoryless property of

the channel implies that Y i−1 is independent of Ui.

• Eq. (36) comes from the memoryless property of the

channel and the fact that Yi is not included in Wi.

• Eq. (37) comes from the causal encoding with feedback

function that implies that Xi is a deterministic function of

(Ui, U
i−1, Y i−1) which is included in (Ui, Yi,Wi).
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