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UNIQUENESS RESULTS FOR DISCRETE SCHRÖDINGER

EVOLUTIONS

PHILIPPE JAMING, YURII LYUBARSKII, EUGENIA MALINNIKOVA,
AND KARL-MIKAEL PERFEKT

Abstract. We prove that if a solution of the discrete time-dependent Schrödinger
equation with bounded time-independent real potential decays fast at two dis-
tinct times then the solution is trivial. For the free Shrödinger operator or
operators with compactly supported potential a sharp analog of the Hardy un-
certainty principle is obtained. The argument is based on the theory of entire
functions. Logarithmic convexity of weighted norms is employed for the case of
general real-valued bounded potential, for this case the result is not optimal.

1. Introduction

The aim of this paper is to show that a non-trivial solution of semi-discrete
Shrödinger equations with bounded potential cannot have arbitrary fast decay at
two different times. For the free evolution (with no potential) the result we obtain
is precise and it can be interpreted a discrete version of the dynamical Hardy
Uncertainty Principle.

The usual way to formulate the Uncertainty Principle is to say that a function
and its Fourier transform can not be both arbitrarily well localized. For example,
in Hardy’s Uncertainty Principle, the localization is measured in terms of speed of
decay at infinity: if f ∈ L2(R) is such that f and its Fourier transform f̂ satisfy

|f(x)| ≤ C exp(−π|x|2), |f̂(ξ)| ≤ C exp(−π|ξ|2), x ∈ R,

for some constant C > 0, then there is a constant A such that f(x) = A exp(−π|x|2).
It is known that Uncertainty Principles may also be given dynamical interpre-

tations in terms of solution of the free Shrödinger Equation see e.g. [10,13,14] and
references therein. Hardy’s Uncertainty Principle is equivalent to the following
statement:
if u(t, x) is a solution of the free Schrödinger equation ∂tu = i∆u and |u(0, x)| +
|u(1, x)| ≤ C exp(−x2/4), then u(0, x) = A exp(−(1 + i)x2/4).
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The point is that the free Shrödinger Equation can be solved via a Fourier trans-
form thus a solution of this equation cannot decrease arbitrarily fast at two different
times.

In a remarkable series of papers, L. Escauriaza, C. E. Kenig, G. Ponce and
L. Vega [9–12] and in collaboration with Cowling in [7] have shown that the
Hardy Uncertainty Principle is equivalent to a uniqueness property of solutions
to Schrödinger Evolution and extended this uniqueness result to solutions of the
Shrödinger equation with a potential, as well as to solutions of a wide class of
PDE including some non-linear equations. Results on sharp decay for covariant
Schrodinger evolutions were obtained in [2, 4].

In the present work we obtain uniqueness results for solutions of the discrete
time-dependent Schödinger equation,

(1) ∂tu = i(∆du+ V u),

where u : R+ × Z → C and ∆d is the discrete Laplacian, that is, for a complex
valued function f : Z → C,

∆df(n) := f(n+ 1) + f(n− 1)− 2f(n).

We assume that the potential V = V (t, n) is a real-valued, bounded function.
For this case H = ∆d + V is a bounded self-adjoint operator in ℓ2 and, for any
u(0, ·) ∈ ℓ2, there exists a unique solution of (1) with u(0, ·) as the initial value:
u(t, ·) = eitHu(0, ·) ∈ C1([0,∞), ℓ2). We call such a u a strong solution of (1).

We first mention that a discrete dynamical interpretation of the Heisenberg
uncertainty principle was given in [13]. We obtain a uniqueness result for free evo-
lution that can be considered as a discrete version of the dynamical interpretation
of Hardy’s Uncertainty Principal and then extend it for equations with bounded
potentials. The corresponding uniqueness result for discrete Schrödinger evolution
has some similarities to the continuous case but it is also different in many respects.
First of all, the critical growth is different, though for both situations the optimal
growth is that of the heat kernel at time 1. For the continuous case the standard
heat kernel is k(1, 0, x) = (4π)−1/2 exp(−x2/4), while for the discrete case the heat
kernel is K(1, 0, n) = e−1|In(1)| ≍ e−1(n!2n)−1, where In are the modified Bessel
functions, In(z) = (−i)nJn(iz). Computations of the discrete heat kernel for the
lattice and asymptotic connecting the two cases can be found in [5, 6]. We note
also that discrete heat kernels appeared as weights for convexity results for discrete
harmonic functions in a recent work by G. Lippner and D. Mangoubi [16].

To understand better the features of the discrete Schrödinger evolution we start
with the free operator and we assume for simplicity that the spacial dimension is
one. We prove that if u(t, n) solves the free equation

∂tu = i∆du

and satisfies

(2) |u(0, n)| + |u(1, n)| ≤ C
1

√

|n|

(

e

2|n|

)|n|

, n ∈ Z \ {0},
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then u(t, n) = Ai−ne−2itJn(1−2t), where Jn is the Bessel function (the definition is
given below). This result is sharp: |Jn(−1)| and |Jn(1)| have precisely the growth
of the right hand side in (2) as |n| → ∞, see Proposition 2.1.

Then we investigate the discrete equation (1) with bounded potential in essen-
tially two different ways using techniques of complex and real analysis. First, ap-
plying theory of entire functions, we establish that if V (n) is a compactly supported
potential and u is a strong solution of (1) satisfying the one-sided estimates

|u(t, n)| ≤ C

(

e

(2 + ǫ)n

)n

, n > 0, t ∈ {0; 1},

for some ǫ > 0, then u ≡ 0. In the continuous setting, one-sided Hardy uncertainty
principles have previously appeared in works of Nazarov [17] and Demange [8].
The corresponding results for continuous Schrödinger evolutions can be found in
the recent survey [12].

In the second part of the paper, we use the real-variable approach following
[10]. The main idea is to construct a weight function ψ(t, n) which provides the
logarithmic convexity of the weighted ℓ2 norms ‖ψ(t, ·)u(t, ·)‖ℓ2(Z), where u(t, n) is
a strong solution of (1). This line of reasoning has its roots in celebrated results of
T. Carleman and S. Agmon, the teqnique of Carleman estimates goes back to [3]
and convexity principles for elliptic operators were described in [1]. The method
allows us to consider general bounded potentials V , however so far we have to
assume stronger decay of u(0, n) and u(1, n) along both directions n → ±∞. The
main result, Theorem 4.2, says that if

∥

∥

∥
(1 + |n|)γ(1+|n|)u(0, n)

∥

∥

∥

ℓ2(Z)
,
∥

∥

∥
(1 + |n|)γ(1+|n|)u(1, n)

∥

∥

∥

ℓ2(Z)
<∞

for some γ > (3 +
√
3)/2, then u ≡ 0. We don’t expect this result to be sharp.

However it provides a universal growth decay that implies uniqueness for solutions
of Schrödinger evolution with a general bounded potential.

The paper is organized as follows: in Section 2 we discuss preliminaries of entire
functions and use them to obtain our first results. Section 3 contains a precursory
energy estimate for solutions of (1), which we need in order to justify the validity of
many of our computations. Section 4 splits into several subsections discussing and
proving the logarithmic convexity results we require, and in the final subsection
the main result is proven.

Note that we will use the symbol C to denote various constants in what follows.
Unless otherwise indicated, its value might change from line to line.

Also all ‖‖2 will be ℓ2(Z)-norms in the n-variable.

2. A uniqueness result for the Schrödinger operator with

compactly supported potential

In this section, we use methods from complex analysis. For the reader’s conve-
nience, we begin by briefly outlining some definitions and facts on entire functions
of exponential type that we need. Details can be found in [15] (see in particular
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Lectures 8 and 9). Recall that an entire function f is said to be of exponential type
if for some k > 0

(3) |f(z)| ≤ exp(k|z|), for |z| > r,

for some r > 0. For this case the type of an entire function f is defined by

(4) σ = lim sup
r→∞

log max{|f(reiφ)|;φ ∈ [0, 2π]}
r

<∞.

In particular, an entire function f is of zero exponential type if for any k > 0 there
exists r = r(k) such that (3) holds.

Let f(z) be an entire function of exponential type, f(z) =
∑∞

n=0 cnz
n, then the

type of f can be expressed in terms of the Taylor coefficients in the following way

(5) lim sup
n→∞

n|cn|1/n = eσ.

The growth of function f of exponential type along various directions is described
by it indicator function

hf (ϕ) = lim sup
r→∞

log |f(reiϕ)|
r

.

This function is the support function of some convex compact set If ⊂ C which is
called the indicator diagram of f , in particular

(6) hf (ϕ) + hf (π − ϕ) ≥ 0.

For example the indicator function of eaz for a ∈ C is h(ϕ) = ℜ(aeiϕ) and its
indicator diagram consists of a single point, ā.

Clearly, hfg(ϕ) ≤ hf (ϕ) + hg(ϕ). This implies that

Ifg ⊂ If + Ig := {z = z1 + z2 : z1 ∈ If , z2 ∈ Ig}.
The optimal decay of a solution to the free discrete Schrödinger equation is given

by the Bessel functions; remind that the Bessel functions Jn satisfy

exp(x(z − z−1)/2) =

∞
∑

n=−∞

Jn(x)z
n, z 6= 0.

Moreover, for fixed x,

|Jn(x)| ∼
1

√

|n|

(

ex

2|n|

)|n|

as |n| → ∞.

Our first observation is the following discrete analog of the classical Hardy un-
certainty principle.

Proposition 2.1. Let u ∈ C1([0, 1], ℓ2) satisfy the discrete free Schrödinger equa-

tion ∂tu = i∆du, and also

(7) |u(0, n)|, |u(1, n)| ≤ C
1

√

|n|

(

e

2|n|

)|n|

, n ∈ Z \ {0}.



DISCRETE SCHRÖDINGER EVOLUTIONS 5

for some C > 0. Then u(t, n) = Ai−ne−2itJn(1 − 2t) for all n ∈ Z and 0 ≤ t ≤ 1,
for some constant A.

Proof. Consider the discrete Fourier transforms of u(t, ·),

Φ(t, θ) =

∞
∑

k=−∞

u(t, k)θk ∈ L2(T).

We have ∂tΦ(t, θ) = i(θ + θ−1 − 2)Φ(t, θ). Thus

Φ(t, θ) = ei(θ+θ−1−2)tΦ(0, θ),

in particular

(8) Φ(1, θ) = ei(θ+θ−1−2)Φ(0, θ).

It follows from (7) that the functions θ 7→ Φ(s, θ), for s = 0, and s = 1 admit
holomorphic extensions to C \ {0}:

(9) Φ(s, θ) =
∑

k<0

u(k, s)θk +
∑

k≥0

u(k, s)θk = Φ−(s, θ) + Φ+(s, θ), s ∈ {0; 1}.

and (7) implies Φ+(s, θ) and Φ−(s, 1/θ), s = 0 and s = 1 are entire functions of
exponential type whose indicator diagrams I+s and respectively I−s are contained
in the disk of radius 1/2 centered at zero.

Actually one can say more:

(10) |Φ+(s, θ)|, |Φ−(s, 1/θ)| ≤ Ce|θ|/2, s ∈ {0; 1}.
This follows from the fact that the right-hand side of (7) represent asymptotic of
the coefficients in the Taylor expansion of exp(z/2).

On the other hand it follows from (8) that I±1 ⊂ I±0 + i. Thus I±0 = {−i/2} and
I±1 = {i/2}.

Now let

(11) g(z) = g+(z) + g−(z) = ei(z+z−1)/2Φ(0, z) = e−i(z+z−1)/2Φ(1, z),

where, as before, g± are the parts of the Laurent series of g with respectively non-
negative and negative powers. It follows that the indicator diagrams I± of the
entire functions g+(z) and g−(1/z) coincide with {0}, so g+(z) and g−(1/z) are
entire functions of type zero.

Relations (10), (11) now yield that g+(iy) and g−(1/iy) are bounded for y ∈
R \ {0} and by the Phragmen-Lindelöf principle (see [15], Lecture 6) g+, g−, and
hence g, are constants. Finally Φ0(z) = A exp(−i(z + z−1)/2) which yields the
required expression for u(t, n). �

Corollary 2.2. Let u be as in Proposition 2.1 if in addition

|u(0, n)|
(

2|n|
e

)|n|
√

|n| = o(1)

as n→ +∞ or n→ −∞ then u ≡ 0.
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Assuming a bit stronger decay, one can apply similar techniques in order to
obtain uniqueness result for solution of the discrete Schrödinger equations with
compactly supported potentials. In this case it suffices to demand that the solution
decays just in one direction.

Theorem 2.3. Let u(t, n), t > 0, n ∈ Z be a solution of (1), where the potential

V does not depend on time and also V (n) 6= 0 just for a finite number of n’s. If,

for some ε > 0,

(12) |u(t, n)| ≤ C

(

e

(2 + ε)n

)n

, n > 0, t ∈ {0; 1},

then u = 0.

Proof. We may assume that Vn = 0 for n > N and for n < 0. Consider the bounded
operator H = ∆d + V : ℓ2 → ℓ2. The solution u(t, n) is then defined by

u(·, t) = eiHtu(·, 0)
and hence belongs ℓ2 for all t > 0.

The absolutely continuous spectrum of H : ℓ2 → ℓ2 is the segment [0, 4], each
point with multiplicity 2. The continuous spectrum is parametrized naturally by
the the unit circle T:

λ ∈ [0, 4] ⇒ λ = 2− θ − θ−1, for some θ ∈ T.

For each θ ∈ T set λ(θ) = 2 − θ − θ−1 and denote by e±(θ) = e±(θ, n) the
corresponding Jost solutions of the spectral problem

(13) Hx = λ(θ)x,

i.e. the solutions of (13) satisfying

e+(θ, n) = θn, for n > N, and e−(θ, n) = θn for n < 0.

We refer the reader to [18] for precise definition and detailed discussion of Jost
solutions.

Except for θ = ±1, each of the pairs {e+(θ), e+(θ−1)}, {e−(θ), e−(θ−1)} is a
fundamental system of solutions of (13). Hence we have the representations

e+(θ) = a−(θ)e−(θ) + b−(θ)e−(θ−1)

e−(θ) = a+(θ)e+(θ) + b+(θ)e+(θ−1)

It is known, see e.g. [18], that a± and b± are rational functions of θ, with no poles
on T, and also for 0 ≤ n ≤ N the functions e±(θ, n) are linear combinations of θj,
j ∈ {−N,−N + 1, . . . , 2N}. In particular,

(14) lim
|θ|→+∞

log |a+(θ)|
|θ| = lim

|θ|→+∞

log |b+(θ)|
|θ| = 0

and

(15) lim
|θ|→+∞

log |e±(θ, n)|
|θ| = 0 for n = 0, . . . , N.
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Consider the function

Φ(θ, t) =

∞
∑

−∞

u(t, n)e−(θ, n) =

−1
∑

−∞

u(t, n)e−(θ, n)

+ a+(θ)

∞
∑

0

u(t, n)e+(θ, n) + b+(θ)

∞
∑

0

u(t, n)e+(θ−1, n).

For all t ≥ 0 these functions are in L2(T). In addition the first and the third
series in the right-hand side converge for |θ| > 1 while the second one converges
for |θ| < 1. For t = 0 and t = 1 the second term also converges for |θ| > 1, by the
hypothesis (12), thus the functions Φ(θ, 0) and Φ(θ, 1) are holomorphic in C \ {0}
except perhaps at the poles of the functions a+ and b+. (Actually by the basic
energy estimate in the next section one can extend this convergence property to
Φ(θ, t) for all t ∈ [0, 1], see Corollary 3.2. We do not need this fact here.)

We have

− i
∂Φ(θ, t)

∂t
=

∞
∑

n=−∞

(Hu)(t, n)e−(n, θ) =
∞
∑

n=−∞

u(t, n)(He−)(n, θ)

= (2− θ − θ−1)Φ(θ, t).

Hence Φ(θ, t) = eit(2−θ−θ−1)Φ(θ, 0), and in particular

(16) Φ(θ, 1) = ei(2−θ−θ−1)Φ(θ, 0).

This relation can be extended to the whole complex plane.
To derive a contradiction to Φ 6= 0, we write Φ(θ, t) as

Φ(θ, t) =

(

∑

n<0

u(t, n)θn +

N
∑

n=0

u(t, n)e−(n, θ) + b+(θ)
∑

n>N

u(t, n)θ−n

)

+ a+(θ)

(

∑

n>N

u(t, n)θn

)

=: A(θ, t) + a+(θ)B(θ, t).

Since u(t, · ) ∈ ℓ2, we clearly have

lim
θ→∞

log |A(θ, t)|
|θ| = lim

θ→∞

log |a+(θ, t)|
|θ| = 0,

while (12) yields that B(θ, t), t = 0 and t = 1, are entire functions of exponential
type at most (2 + ε)−1. Hence, for each α ∈ [0, 2π] we have

lim sup
r→∞

log |B(reiα, t)|
r

≤ 1

2 + ε
, t ∈ {0; 1},

and therefore

(17) lim sup
r→∞

log |Φ(reiα, t)|
r

≤ 1

2 + ε
, t ∈ {0; 1}.
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By (6), we also have

lim sup
r→∞

log |Φ(reiα, t)|
r

≥ − 1

2 + ε
, t ∈ {0; 1}.

This leads to a contradiction unless Φ ≡ 0, since according (16) we have

lim sup
y→+∞

log |Φ(iy, 1)|
y

= 1 + lim sup
y→+∞

log |Φ(iy, 0)|
y

> 1− 1

2 + ε
>

1

2 + ε
.

�

It would be interesting to extend this result to the case of a fast decaying po-
tential for which the Jost solutions exist.

3. First energy estimate

In the remaining of the paper we will follow ideas of [10], to prove that a solution
of the discrete Schrödinger equation which decays sufficiently fast along both half-
axes at two different moments of time is trivial.

We begin with an energy estimate for solution of non-homogeneous initial prob-
lem and show that if the initial data is well-concentrated, the energy cannot spread
out too fast.

Given α > 0 and t ≥ 0 denote

ψα(t) = {ψα(t, n)}n∈Z = {(1 + |n|)α|n|/(1+t)}n∈Z
Proposition 3.1. Let V = V1 + iV2, with V1, V2 : [0, T ] × Z → R and V2 bounded

and F : [0, T ] × Z → C bounded. Let u : [0, T ] × Z → C, u ∈ C1
(

[0, T ], ℓ2(Z)
)

,

satisfy

(18) ∂tu(t, n) = i(∆u(t, n) + V (t, n)u+ F (t, n)).

Assume that {ψα(0, n)u(0, n)} ∈ ℓ2(Z) for some α ∈ (0, 1]. Then, for T > 0,

(19) ‖ψα(T, n)u(T, n)‖22 ≤

eCT

(

‖ψα(0, n)u(0, n)‖22 +
∫ T

0
‖ψα(s, n)F (s, n)‖22 ds

)

Proof. Consider f(t, n) = ψα(t, n)u(t, n) and let H(t) = ‖f(t, n)‖22. We fix α till
the end of the proof and write ψ = ψα.

We will perform several formal computations, assuming that H(t) is finite for
all t ∈ [0, T ], and then justify these computations at the end of the proof.

Define

κ(n, t) = logψ(t, n) =
α

1 + t
|n| log(1 + |n|).

Then

∂tf = i∆(ψ−1f) + iV f + ∂tκf + iψF,
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which we rewrite as ∂tf = Sf +Af + iV f + iψF , where S and A are symmetric
and anti-symmetric operators, respectively. Explicitely

Sf =
i

2

(

ψ∆(ψ−1f)− ψ−1∆(ψf)
)

+ ∂tκf,

Af =
i

2

(

ψ∆(ψ−1f) + ψ−1∆(ψf)
)

.

Denote

(20) an =
ψn+1

ψn
− ψn

ψn+1
, bn =

ψn+1

ψn
+

ψn

ψn+1
.

We then rewrite

(Sf)n =− i

2
(anfn+1 − an−1fn−1) + (∂tκ)nfn,(21)

(Af)n =
i

2
(bnfn+1 + bn−1fn−1)− 2ifn,(22)

In what follows we will interchangeably use the notation an = a(t, n), similarly for
ψn etc.

We want to control the growth of H(t). Clearly, ∂tH(t) = 2ℜ〈∂tf, f〉 and thus

∂tH(t) =2〈Sf, f〉 − 2ℑ〈V f, f〉 − 2ℑ〈ψF, f〉
=2ℑ

∑

n

anfn+1fn + 2〈∂tκf, f〉 − 2〈V2f, f〉 − 2ℑ〈ψF, f〉.

This implies

∂tH(t) ≤ 2‖ψF‖2‖f‖2 + ‖V2‖∞‖f‖2 +
∑

n

(2∂tκn + |an|+ |an−1|)|fn|2.

Our aim is to prove that for all n ∈ Z

(23) 2∂tκn + |an|+ |an−1| ≤ 2C,

where C is a constant. We have

∂tκn = − α

(1 + t)2
|n| log(|n|+ 1).

Further, |an| ≤ eα(|n|+ 1)α. Hence, if α ≤ 1 we obtain (23), for t ∈ [0, 1].
Therefore ∂t‖f‖2 ≤ C‖f‖2 + ‖ψF‖2 and (19) follows.
In order to justify these computations we truncate the weight function ψ to an

interval [−N,N ]:

ψN (n, t) =

{

(|n|+ 1)(1+t)−1α|n|, |n| ≤ N

(|N |+ 1)(1+t)−1α|N |, |n| > N.

Since the solution u is in ℓ2, the relevant norms weighted by ψN are guaranteed
to be finite and by running the above argument we obtain (23) and (19) for the
weight ψN , this time rigorously. The desired inequality follows by passing to the
limit as N → ∞. �
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Corollary 3.2. Let u : [0, 1] × Z → C be a strong solution of the Schrödinger

equation

∂tu(t, n) = i(∆u(t, n) + V (t, n)u),

where V = V1 + iV2 is as above. Further suppose that
∑

n>0

n2αn|u(0, n)|2 <∞

for some α ≤ 1. Then for each t ∈ [0, 1] we have
∑

n>0

nαn|u(t, n)|2 <∞.

Proof. Define ũ(t, n) = 0 for n < 0 and ũ(t, n) = u(t, n) for n ≥ 0. Then ũ satisfies
(18) with F (t, n) bounded and vanishing for n 6∈ {−1, 0}. If we apply Proposition
3.1 to ũ we obtain the required estimate �

4. Logarithmic convexity of weighted ℓ2-norms

4.1. Preliminary discussion. From now on we fix γ0 > 0 and suppose that
V : [0, T ]× Z → R is bounded. Further, we assume that u is a strong solution of

∂tu = i(∆du+ V u)

such that ‖(1 + |n|)γ0(1+|n|)u(0, n)‖2 and ‖(1 + |n|)γ0(1+|n|)u(1, n)‖2 are finite.
Following the ideas of [10], we are looking for a weight

(24) ψ(t, n) = exp(κ(t, n))

to give us a logarithmically convex function e−Ct(1−t)H(t), where

H(t) = ‖ψ(t, n)u(t, n)‖22
and C depends on V and ψ.

We will first use such a convexity argument to show that for any 0 < γ < γ0 and
any t ∈ [0, 1],

(25) ‖(1 + |n|)γ(1+|n|)u(t, n)‖2 <∞.

This also implies that

(26) ‖(C0 + |n|+R0t(1− t))γ
(

C0+|n|+R0t(1−t)
)

u(t, n)‖2 < +∞
for any C0, R0 > 0 and t ∈ [0, 1], and we then set out to prove the logarithmic
convexity in t of this latter norm.

In both steps we consider weights of the form (24), with

κ(t, n) = γ(|n|+R(t)) lnb
(

|n|+R(t)
)

where either 1/2 < b < 1 and R(t) = 1, or b = 1 and R(t) = C0 + R0t(1 − t). As
before we set f(t, n) = ψ(t, n)u(t, n).

We will first assume that b < 1, prove estimates independent of b, and let b→ 1
to establish (25). This will allow us to justify the computations involved in the
second step, when b = 1 and we prove the convexity of (26).
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4.2. Formal computations. We collect here a number of formal identities which
we need in the sequel. First identities are the same as in the continuous case, they
can be found in [12], others are specific to the discrete case. The notation has been
explained in the proof of Proposition 3.1.

We already know that ∂tH(t) = 2〈Sf, f〉, since V is real-valued, and thus

∂2tH(t) = 2〈Stf, f〉+ 4ℜ〈Sf, ft〉
= 2〈Stf, f〉+ 4‖Sf‖2 + 2〈[S,A]f, f〉+ 4ℜ〈Sf, iV f〉
= 2〈Stf, f〉+ 2〈[S,A]f, f〉+ 4ℜ〈Sf + iV f,Sf〉
= 2〈Stf, f〉+ 2〈[S,A]f, f〉+ ‖2Sf + iV f‖2 − ‖V f‖2.

Therefore we obtain that

‖f‖2∂2t (logH(t)) =
‖2Sf + iV f‖2‖f‖2 − 4|〈Sf, f〉|2

‖f‖2
+ 2(〈Stf, f〉+ 〈[S,A]f, f〉)− ‖V f‖2

=
‖2Sf + iV f‖2‖f‖2 − |ℜ〈2Sf + iV f, f〉|2

‖f‖2
+ 2(〈Stf, f〉+ 〈[S,A]f, f〉)− ‖V f‖2

≥ 2(〈Stf, f〉+ 〈[S,A]f, f〉)− ‖V f‖2.
We reiterate that our aim is to show that

(27) ∂2t logH(t) ≥ −2C

for some C ≥ 0, which implies the log-convexity of e−Ct(1−t)H(t). The last term in
the right-hand side above is clearly bounded below by −C‖f‖2 since V is bounded.
It suffices to establish an estimate of the first two terms of the form

(28) 〈Stf, f〉+ 〈[S,A]f, f〉 > −C‖f‖2.
We refer now to (22), (21). It follows that

(Stf)n = −i/2(a′nfn+1 − a′n−1fn−1) + κ′′nfn,

and finally

(2Stf + 2[S,A]f)n = νn+1fn+2 + λnfn+1 + µnfn + λn−1fn−1 + νn−1fn−2,

where

νn+1 =
1

2
(anbn+1 − an+1bn),

λn = −ibn(κ′n+1 − κ′n)− ia′n,

µn = anbn − an−1bn−1 + 2κ′′n,

and, as before, the coefficients an,bn are defined in (20).
Clearly ψ′

n = κ′nψn, implying that a′n = (κ′n+1 − κ′n)bn and

λn = −2ibn(κ
′
n+1 − κ′n).
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4.3. Estimates with an auxiliary weight.

Proposition 4.1. Let γ > 0. Assume that u is a strong solution of

∂tu = i(∆du+ V u)

where the potential V is a bounded real-valued function. Let also

(29)
∥

∥

∥
(1 + |n|)γ(1+|n|)u(t, n)

∥

∥

∥

2
< +∞, t ∈ {0; 1}.

Then, for all t ∈ [0, 1],
∥

∥(1 + |n|)γ(1+|n|)u(t, n)
∥

∥

2
< +∞.

Proof. Consider the weight function

ψ(n) = eκb(n), κb(n) = γ(1 + |n|) lnb
(

1 + |n|
)

,

where 1/2 < b < 1. Note that the hypotheses (29) combined with Proposition 3.1
show that Hb(t) = ‖ exp(κb(n))u(t, n)‖22 is finite for all t, allowing us to justify the
computations of the preceding section for this choice of weight. We will show that
H(t) = Hb(t) satisfies (27) with some C independent of b, whence

‖ exp(κb(n))u(t, n)‖22 ≤ e
C

2
t(1−t)Hb(0)

1−tHb(1)
t

≤ e
C

2
t(1−t)

∥

∥

∥
(1 + |n|)γ(1+|n|)u(0, n)

∥

∥

∥

2(1−t)

2

∥

∥

∥
(1 + |n|)γ(1+|n|)u(1, n)

∥

∥

∥

2t

2
.

Letting b→ 1 and applying the monotone convergence theorem then concludes the
proof.

We refer to computations in the previous section. In the current setting St = 0
and λn = 0 so relation (28) reduces to

(30) 〈2[S,A]f, f〉 ≥ −C‖f‖2.

We have

〈2[S,A]f, f〉 =
∑

n

µn|fn|2 + 2ℜ
∑

n

νn+1fn+2fn,

where

µn = anbn − an−1bn−1 =
ψ2
n+1

ψ2
n

− ψ2
n

ψ2
n−1

− ψ2
n

ψ2
n+1

+
ψ2
n−1

ψ2
n

,

and

νn+1 =
1

2
(anbn+1 − an+1bn) = −ψnψn+2

ψ2
n+1

+
ψ2
n+1

ψn+2ψn
,

where the coefficients an and bn are defined in (20). By appealing to the second

derivative of x 7→ (1+x) lnb(1+x) it is easy to verify that κb(n+2)+κb(n)−2κb(n+1)
is always non-negative and uniformly bounded from above. Thus νn+1 is uniformly
bounded and µn ≥ 0. This implies (30). �
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4.4. Convexity estimate. In this subsection we consider the weight function
given by

ψ(t, n) = eκ(t,n), where κ(t, n) = γ(|n|+R(t)) ln(|n|+R(t)),

and R(t) = C0 + R0t(1 − t), R0 > 0, C0 being large enough. As before we define
H(t) = ‖u(t, n)ψ(t, n)‖22.

Lemma 1. For every γ > (3 +
√
3)/2 there exists C(γ) such that for C0 > C(γ)

and R(t) = C0 +R0t(1− t) we have

∂2t (logH(t)) ≥ − 4γ

2γ − 3
R0 logR0 − C1R0 − C2,

where C1 and C2 depend on γ and ‖V ‖∞ only.

Proof. For n ≥ 0 we have

ψ(t, n + 1)

ψ(t, n)
= (n+ 1 +R(t))γ

(

1 +
1

n+R(t)

)γ(n+R(t))

,

and ψn = ψ−n for n < 0. Hence an = −a−n−1 and bn = b−n+1 for n < 0, which
in turn implies that µn = µ−n and λn = −λ−n−1 when n < 0. We have also
µ0 = 2a0b0 + 2κ′′0 .

As before, we get

|νn+1| =
∣

∣

∣

∣

ψ2
n+1

ψnψn+2
− ψnψn+2

ψ2
n+1

∣

∣

∣

∣

≤ C3,

where C3 depends on γ only.
Let φ(M) = γM lnM and M = M(t, n) = |n|+ R(t). In this notation we have

for n 6= 0

µn ≥ exp(2φ(M + 1)− 2φ(M)) − exp(2φ(M) − 2φ(M − 1))− C4 + 2κ′′n,

where C4 is a constant that depends only on γ. The derivatives of κn are

κ′n(t) = R′(t)φ′(|n|+R(t)),

κ′′n(t) = −2R0φ
′(|n|+R(t)) + (R′(t))2φ′′(|n|+R(t)).

Then, by the Taylor expansions, we obtain that, for each ǫ > 0 and C0 = C0(ǫ)
large enough,

µn ≥ 2γe2γM2γ−1 + γe2γ
(

(γ − 1)2

3
− ǫ

)

M2γ−3

+ 2A2γM−1 − 4R0γ(1 + lnM)− C4,

where A = |R′(t)| and n 6= 0. Futher,

µ0 ≥ (2− ǫ)M2γe2γ + 2A2γM−1 − 4R0γ(1 + lnM)− C4.

We introduce the notation

σn = 2γe2γM2γ−1 + γe2γ
(

(γ − 1)2

3
− 2ǫ

)

M2γ−3 + 2A2γM−1,
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and

ρn = ǫγe2γM2γ−3 − 4R0γ(1 + lnM)

so that µn ≥ σn + ρn −C4 for all n. Note that by the inequality of arithmetic and
geometric means we have

σ2n ≥ 8A2γ2e2γ
(

2M2γ−2 +

(

(γ − 1)2

3
− 2ǫ

)

M2γ−4

)

.

For n ≥ 0 we have also

|κ′n+1 − κ′n| = |R′(t)|(φ′(M + 1)− φ′(M)) = Aγ ln(1 +M−1).

Hence, for sufficiently large C0,

|λn| = 2|(κ′n+1 − κ′n)||bn| ≤ 2AγeγMγ−1 +Aγeγ(γ − 1)Mγ−2

+Aγeγ
(

3γ2 − 10γ + 8

12
+ ǫ

)

Mγ−3, n ≥ 0.

To estimate ∂2t (logH(t)) we note that

〈Stf + 2[S,A]f, f〉 =
∑

n

µn|fn|2 + 2ℜ
∑

n

νn+1fn+2fn + 2ℜ
∑

n

λnfn+1fn

≥
∑

n

σn|fn|2 + 2ℜ
∑

n

λnfn+1fn +
∑

n

ρn|fn|2 − (C3 + C4)
∑

n

|fn|2

First, we consider the first two terms. If we show that for any x, y ≥ 0

(31) σnx
2 + σn+1y

2 ≥ 4|λn|xy,
then the summation of these inequalities with x = fn, y = fn+1 yields

∑

n

σn|fn|2 + 2ℜ
∑

n

λnfn+1fn ≥ 0.

To show (31) we have to check that

(32) σnσn+1 ≥ 4|λn|2, n ≥ 0.

Actually we show (31) only for n ≥ 0. The relations for negative integers given in
the beginning of the proof then imply the inequality for all n.

Using the estimates above, we have

σ2nσ
2
n+1 ≥ 64A4γ4e4γ

(

4M4γ−4 + 8(γ − 1)M4γ−5
)

+ 64A4γ4e4γ
(

4(γ − 1)(2γ − 3) + 4

(

(γ − 1)2

3
− 2ǫ

))

M4γ−6.

While

16|λn|4 ≤ 64A4γ4e4γ
(

4M4γ−4 + 8(γ − 1)M4γ−5
)

+ 4A4γ4e4γ
(

6(γ − 1)2 + 8

(

3γ2 − 10γ + 8

12
+ ǫ

))

M4γ−6.
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Inequality (32) hence follows for sufficiently small ǫ when

2(γ − 1)(2γ − 3) +
2(γ − 1)2

3
> 3(γ − 1)2 +

3γ2 − 10γ + 8

3
.

The last inequality is equivalent to 2γ2−6γ+3 > 0, which holds for γ > (3+
√
3)/2.

Finally by minimizing in M one obtains that, for γ > 3/2,

ρn ≥ min
M>0

{ǫγe2γM2γ−3 − 4R0γ(1 + lnM)} ≥ − 4γ

2γ − 3
R0 lnR0 − C1R0,

where C1 depends on γ and ǫ. The conclusion of the lemma follows. �

4.5. Concluding arguments. Using the weight ψ(n, t,R0) from the last section
and Lemma 1, we obtain that

HR0
(t) exp(−d(R0, γ)t(1 − t))

is logarithmically convex, where

d(R0, γ) =
2γ

2γ − 3
R0 lnR0 +

C1

2
R0 +

C2

2
.

Hence, for t = 1/2 we obtain

HR0
(1/2) ≤ exp

(

γ

2(2γ − 3)
R0 lnR0 +

C1

8
R0 +

C2

8

)

HR0
(0)1/2HR0

(1)1/2.

But since R(0) = R(1) = C0 we see that H(0) and H(1) do not depend on the
choice of R0. We obtain that

|u(1/2, n)|2 exp(2γ(|n|+ C0 +R0/4) ln(|n|+ C0 +R0/4))

≤ D exp

(

γ

2(2γ − 3)
R0 lnR0 +

C1

8
R0

)

,

where D is a constant independent of n and R0. However, this last inequality is
clearly impossible for large R0 when γ > 2, unless u(1/2, · ) ≡ 0, which of course
implies that u ≡ 0.

Our work of this section can be summarized as follows.

Theorem 4.2. Assume that γ > (3 +
√
3)/2 and that V (t, n) is a real-valued

bounded function. If u is a strong solution of

∂tu = i(∆du+ V u)

such that
∥

∥

∥
(1 + |n|)γ(1+|n|)u(0, n)

∥

∥

∥

2
,
∥

∥

∥
(1 + |n|)γ(1+|n|)u(1, n)

∥

∥

∥

2
< +∞,

then u ≡ 0.

Remark. This result is not sharp. The authors expect that a milder decay
condition (with γ = 1 + ǫ) and also just one-sided decay should imply uniqueness
as in the case of free Schrödinger evolution.
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