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Introduction

The aim of this paper is to show that a non-trivial solution of semi-discrete Shrödinger equations with bounded potential cannot have arbitrary fast decay at two different times. For the free evolution (with no potential) the result we obtain is precise and it can be interpreted a discrete version of the dynamical Hardy Uncertainty Principle.

The usual way to formulate the Uncertainty Principle is to say that a function and its Fourier transform can not be both arbitrarily well localized. For example, in Hardy's Uncertainty Principle, the localization is measured in terms of speed of decay at infinity: if f ∈ L 2 (R) is such that f and its Fourier transform f satisfy

|f (x)| ≤ C exp(-π|x| 2 ), | f (ξ)| ≤ C exp(-π|ξ| 2 ), x ∈ R,
for some constant C > 0, then there is a constant A such that f (x) = A exp(-π|x| 2 ).

It is known that Uncertainty Principles may also be given dynamical interpretations in terms of solution of the free Shrödinger Equation see e.g. [START_REF] Escauriaza | Hardy's uncertainty principle, convexity and Schrödinger evolutions[END_REF][START_REF] Fernández-Bertolin | Discrete uncertainty principles and virial identities[END_REF][START_REF] Ph | Uncertainty principles for orthonormal bases[END_REF] and references therein. Hardy's Uncertainty Principle is equivalent to the following statement: if u(t, x) is a solution of the free Schrödinger equation ∂ t u = i∆u and |u(0, x)| + |u(1, x)| ≤ C exp(-x 2 /4), then u(0, x) = A exp(-(1 + i)x 2 /4).

The point is that the free Shrödinger Equation can be solved via a Fourier transform thus a solution of this equation cannot decrease arbitrarily fast at two different times.

In a remarkable series of papers, L. Escauriaza, C. E. Kenig, G. Ponce and L. Vega [START_REF] Escauriaza | On uniqueness properties of solutions of Schrödinger equations[END_REF][START_REF] Escauriaza | Hardy's uncertainty principle, convexity and Schrödinger evolutions[END_REF][START_REF] Escauriaza | The sharp Hardy uncertainty principle for Schrödinger evolutions[END_REF][START_REF] Escauriaza | Uniqueness properties of solutions to Schrödinger equations[END_REF] and in collaboration with Cowling in [START_REF] Cowling | The Hardy uncertainty principle revisited[END_REF] have shown that the Hardy Uncertainty Principle is equivalent to a uniqueness property of solutions to Schrödinger Evolution and extended this uniqueness result to solutions of the Shrödinger equation with a potential, as well as to solutions of a wide class of PDE including some non-linear equations. Results on sharp decay for covariant Schrodinger evolutions were obtained in [START_REF] Barceló | Hardy uncertainty principle and unique continuation properties of covariant Schrödinger flows[END_REF][START_REF] Cassano | Sharp Hardy uncertainty principle and Gaussian profiles of covariant Schrödinger evolutions[END_REF].

In the present work we obtain uniqueness results for solutions of the discrete time-dependent Schödinger equation, (1)

∂ t u = i(∆ d u + V u),
where u : R + × Z → C and ∆ d is the discrete Laplacian, that is, for a complex valued function f : Z → C,

∆ d f (n) := f (n + 1) + f (n -1) -2f (n).
We assume that the potential V = V (t, n) is a real-valued, bounded function.

For this case H = ∆ d + V is a bounded self-adjoint operator in ℓ 2 and, for any u(0, •) ∈ ℓ 2 , there exists a unique solution of (1) with u(0, •) as the initial value:

u(t, •) = e itH u(0, •) ∈ C 1 ([0, ∞), ℓ 2 )
. We call such a u a strong solution of (1). We first mention that a discrete dynamical interpretation of the Heisenberg uncertainty principle was given in [START_REF] Fernández-Bertolin | Discrete uncertainty principles and virial identities[END_REF]. We obtain a uniqueness result for free evolution that can be considered as a discrete version of the dynamical interpretation of Hardy's Uncertainty Principal and then extend it for equations with bounded potentials. The corresponding uniqueness result for discrete Schrödinger evolution has some similarities to the continuous case but it is also different in many respects. First of all, the critical growth is different, though for both situations the optimal growth is that of the heat kernel at time 1. For the continuous case the standard heat kernel is k(1, 0, x) = (4π) -1/2 exp(-x 2 /4), while for the discrete case the heat kernel is

K(1, 0, n) = e -1 |I n (1)| ≍ e -1 (n!2 n ) -1
, where I n are the modified Bessel functions, I n (z) = (-i) n J n (iz). Computations of the discrete heat kernel for the lattice and asymptotic connecting the two cases can be found in [START_REF] Chang | A combinatorial trace formula[END_REF][START_REF] Chang | Discrete Green's Functions[END_REF]. We note also that discrete heat kernels appeared as weights for convexity results for discrete harmonic functions in a recent work by G. Lippner and D. Mangoubi [START_REF] Lippner | Harmonic functions on the lattice: Absolute monotonicity and propagation of smallness[END_REF].

To understand better the features of the discrete Schrödinger evolution we start with the free operator and we assume for simplicity that the spacial dimension is one. We prove that if u(t, n) solves the free equation Then we investigate the discrete equation ( 1) with bounded potential in essentially two different ways using techniques of complex and real analysis. First, applying theory of entire functions, we establish that if V (n) is a compactly supported potential and u is a strong solution of (1) satisfying the one-sided estimates

∂ t u = i∆ d u and satisfies (2) |u(0, n)| + |u(1, n)| ≤ C 1 |n| e 2|n| |n| , n ∈ Z \ {0}, then u(t, n) = Ai -n e -2it J n (1-2t),
|u(t, n)| ≤ C e (2 + ǫ)n n , n > 0, t ∈ {0; 1},
for some ǫ > 0, then u ≡ 0. In the continuous setting, one-sided Hardy uncertainty principles have previously appeared in works of Nazarov [START_REF] Nazarov | Local estimates for exponential polynomials and their applications to inequalities of the uncertainty principle type[END_REF] and Demange [START_REF] Demange | Uncertainty principles associated to non-degenerate quadratic forms[END_REF]. The corresponding results for continuous Schrödinger evolutions can be found in the recent survey [START_REF] Escauriaza | Uniqueness properties of solutions to Schrödinger equations[END_REF].

In the second part of the paper, we use the real-variable approach following [START_REF] Escauriaza | Hardy's uncertainty principle, convexity and Schrödinger evolutions[END_REF]. The main idea is to construct a weight function ψ(t, n) which provides the logarithmic convexity of the weighted ℓ 2 norms ψ(t, •)u(t, •) ℓ 2 (Z) , where u(t, n) is a strong solution of (1). This line of reasoning has its roots in celebrated results of T. Carleman and S. Agmon, the teqnique of Carleman estimates goes back to [START_REF] Carleman | Sur un probleème d'unicité pour les systèmes d'équations aux dérivées partielles à deux variables[END_REF] and convexity principles for elliptic operators were described in [START_REF] Agmon | Unicité et convexité dans les problémes différentiels[END_REF]. The method allows us to consider general bounded potentials V , however so far we have to assume stronger decay of u(0, n) and u(1, n) along both directions n → ±∞. The main result, Theorem 4.2, says that if

(1 + |n|) γ(1+|n|) u(0, n) ℓ 2 (Z) , (1 + |n|) γ(1+|n|) u(1, n) ℓ 2 (Z) < ∞
for some γ > (3 + √ 3)/2, then u ≡ 0. We don't expect this result to be sharp. However it provides a universal growth decay that implies uniqueness for solutions of Schrödinger evolution with a general bounded potential.

The paper is organized as follows: in Section 2 we discuss preliminaries of entire functions and use them to obtain our first results. Section 3 contains a precursory energy estimate for solutions of (1), which we need in order to justify the validity of many of our computations. Section 4 splits into several subsections discussing and proving the logarithmic convexity results we require, and in the final subsection the main result is proven.

Note that we will use the symbol C to denote various constants in what follows. Unless otherwise indicated, its value might change from line to line. Also all 2 will be ℓ 2 (Z)-norms in the n-variable.

A uniqueness result for the Schrödinger operator with compactly supported potential

In this section, we use methods from complex analysis. For the reader's convenience, we begin by briefly outlining some definitions and facts on entire functions of exponential type that we need. Details can be found in [START_REF] Ya | Lectures on entire functions[END_REF] (see in particular Lectures 8 and 9). Recall that an entire function f is said to be of exponential type if for some k > 0

(3) |f (z)| ≤ exp(k|z|), for |z| > r,
for some r > 0. For this case the type of an entire function f is defined by

(4) σ = lim sup r→∞ log max{|f (re iφ )|; φ ∈ [0, 2π]} r < ∞.
In particular, an entire function f is of zero exponential type if for any k > 0 there exists r = r(k) such that (3) holds.

Let f (z) be an entire function of exponential type, f (z) = ∞ n=0 c n z n , then the type of f can be expressed in terms of the Taylor coefficients in the following way [START_REF] Chang | A combinatorial trace formula[END_REF] lim sup

n→∞ n|c n | 1/n = eσ.
The growth of function f of exponential type along various directions is described by it indicator function

h f (ϕ) = lim sup r→∞ log |f (re iϕ )| r .
This function is the support function of some convex compact set

I f ⊂ C which is called the indicator diagram of f , in particular (6) h f (ϕ) + h f (π -ϕ) ≥ 0.
For example the indicator function of e az for a ∈ C is h(ϕ) = ℜ(ae iϕ ) and its indicator diagram consists of a single point, ā.

Clearly, h f g (ϕ) ≤ h f (ϕ) + h g (ϕ). This implies that

I f g ⊂ I f + I g := {z = z 1 + z 2 : z 1 ∈ I f , z 2 ∈ I g }.
The optimal decay of a solution to the free discrete Schrödinger equation is given by the Bessel functions; remind that the Bessel functions

J n satisfy exp(x(z -z -1 )/2) = ∞ n=-∞ J n (x)z n , z = 0. Moreover, for fixed x, |J n (x)| ∼ 1 |n| ex 2|n| |n| as |n| → ∞.
Our first observation is the following discrete analog of the classical Hardy uncertainty principle.

Proposition 2.1. Let u ∈ C 1 ([0, 1], ℓ 2
) satisfy the discrete free Schrödinger equation ∂ t u = i∆ d u, and also

(7) |u(0, n)|, |u(1, n)| ≤ C 1 |n| e 2|n| |n| , n ∈ Z \ {0}.
for some C > 0. Then u(t, n) = Ai -n e -2it J n (1 -2t) for all n ∈ Z and 0 ≤ t ≤ 1, for some constant A.

Proof. Consider the discrete Fourier transforms of u(t, •),

Φ(t, θ) = ∞ k=-∞ u(t, k)θ k ∈ L 2 (T). We have ∂ t Φ(t, θ) = i(θ + θ -1 -2)Φ(t, θ). Thus Φ(t, θ) = e i(θ+θ -1 -2)t Φ(0, θ), in particular (8) Φ(1, θ) = e i(θ+θ -1 -2) Φ(0, θ).
It follows from ( 7) that the functions θ → Φ(s, θ), for s = 0, and s = 1 admit holomorphic extensions to C \ {0}:

(9) Φ(s, θ) = k<0 u(k, s)θ k + k≥0 u(k, s)θ k = Φ -(s, θ) + Φ + (s, θ), s ∈ {0; 1}.
and ( 7) implies Φ + (s, θ) and Φ -(s, 1/θ), s = 0 and s = 1 are entire functions of exponential type whose indicator diagrams I + s and respectively I - s are contained in the disk of radius 1/2 centered at zero.

Actually one can say more:

(10) |Φ + (s, θ)|, |Φ -(s, 1/θ)| ≤ Ce |θ|/2 , s ∈ {0; 1}.
This follows from the fact that the right-hand side of (7) represent asymptotic of the coefficients in the Taylor expansion of exp(z/2).

On the other hand it follows from (8) that

I ± 1 ⊂ I ± 0 + i. Thus I ± 0 = {-i/2} and I ± 1 = {i/2}. Now let (11) g(z) = g + (z) + g -(z) = e i(z+z -1 )/2 Φ(0, z) = e -i(z+z -1 )/2 Φ(1, z),
where, as before, g ± are the parts of the Laurent series of g with respectively nonnegative and negative powers. It follows that the indicator diagrams I ± of the entire functions g + (z) and g -(1/z) coincide with {0}, so g + (z) and g -(1/z) are entire functions of type zero. Relations [START_REF] Escauriaza | Hardy's uncertainty principle, convexity and Schrödinger evolutions[END_REF], [START_REF] Escauriaza | The sharp Hardy uncertainty principle for Schrödinger evolutions[END_REF] now yield that g + (iy) and g -(1/iy) are bounded for y ∈ R \ {0} and by the Phragmen-Lindelöf principle (see [START_REF] Ya | Lectures on entire functions[END_REF], Lecture 6) g + , g -, and hence g, are constants. Finally Φ 0 (z) = A exp(-i(z + z -1 )/2) which yields the required expression for u(t, n). 

as n → +∞ or n → -∞ then u ≡ 0.
Assuming a bit stronger decay, one can apply similar techniques in order to obtain uniqueness result for solution of the discrete Schrödinger equations with compactly supported potentials. In this case it suffices to demand that the solution decays just in one direction.

Theorem 2.3. Let u(t, n), t > 0, n ∈ Z be a solution of [START_REF] Agmon | Unicité et convexité dans les problémes différentiels[END_REF], where the potential V does not depend on time and also V (n) = 0 just for a finite number of n's. If, for some ε > 0, ( 12)

|u(t, n)| ≤ C e (2 + ε)n n , n > 0, t ∈ {0; 1}, then u = 0.
Proof. We may assume that V n = 0 for n > N and for n < 0. Consider the bounded operator

H = ∆ d + V : ℓ 2 → ℓ 2 . The solution u(t, n) is then defined by u(•, t) = e iHt u(•, 0)
and hence belongs ℓ 2 for all t > 0.

The absolutely continuous spectrum of H : ℓ 2 → ℓ 2 is the segment [0, 4], each point with multiplicity 2. The continuous spectrum is parametrized naturally by the the unit circle T:

λ ∈ [0, 4] ⇒ λ = 2 -θ -θ -1 , for some θ ∈ T.
For each θ ∈ T set λ(θ) = 2 -θ -θ -1 and denote by e ± (θ) = e ± (θ, n) the corresponding Jost solutions of the spectral problem [START_REF] Fernández-Bertolin | Discrete uncertainty principles and virial identities[END_REF] Hx = λ(θ)x,

i.e. the solutions of ( 13) satisfying e + (θ, n) = θ n , for n > N, and e -(θ, n) = θ n for n < 0.

We refer the reader to [START_REF] Teschl | Jacobi Operators and Completely Integrable Nonlinear Lattices[END_REF] for precise definition and detailed discussion of Jost solutions.

Except for θ = ±1, each of the pairs {e + (θ), e + (θ -1 )}, {e -(θ), e -(θ -1 )} is a fundamental system of solutions of (13). Hence we have the representations

e + (θ) = a -(θ)e -(θ) + b -(θ)e -(θ -1 ) e -(θ) = a + (θ)e + (θ) + b + (θ)e + (θ -1 )
It is known, see e.g. [START_REF] Teschl | Jacobi Operators and Completely Integrable Nonlinear Lattices[END_REF], that a ± and b ± are rational functions of θ, with no poles on T, and also for 0 ≤ n ≤ N the functions e ± (θ, n) are linear combinations of θ j , j ∈ {-N, -N + 1, . . . , 2N }. In particular, [START_REF] Ph | Uncertainty principles for orthonormal bases[END_REF] lim Consider the function

Φ(θ, t) = ∞ -∞ u(t, n)e -(θ, n) = -1 -∞ u(t, n)e -(θ, n) + a + (θ) ∞ 0 u(t, n)e + (θ, n) + b + (θ) ∞ 0 u(t, n)e + (θ -1 , n).
For all t ≥ 0 these functions are in L 2 (T). In addition the first and the third series in the right-hand side converge for |θ| > 1 while the second one converges for |θ| < 1. For t = 0 and t = 1 the second term also converges for |θ| > 1, by the hypothesis [START_REF] Escauriaza | Uniqueness properties of solutions to Schrödinger equations[END_REF], thus the functions Φ(θ, 0) and Φ(θ, 1) are holomorphic in C \ {0} except perhaps at the poles of the functions a + and b + . (Actually by the basic energy estimate in the next section one can extend this convergence property to Φ(θ, t) for all t ∈ [0, 1], see Corollary 3.2. We do not need this fact here.)

We have

-i ∂Φ(θ, t) ∂t = ∞ n=-∞ (Hu)(t, n)e -(n, θ) = ∞ n=-∞ u(t, n)(He -)(n, θ) = (2 -θ -θ -1 )Φ(θ, t).
Hence Φ(θ, t) = e it(2-θ-θ -1 ) Φ(θ, 0), and in particular ( 16) Φ(θ, 1) = e i(2-θ-θ -1 ) Φ(θ, 0). This relation can be extended to the whole complex plane.

To derive a contradiction to Φ = 0, we write Φ(θ, t) as 

Φ(θ, t) = n<0 u(t, n)θ n + N n=0 u(t, n)e -(n, θ) + b + (θ) n>N u(t, n)θ -n + a + (θ) n>N u(t, n)θ n =: A(θ, t) + a + (θ)B(θ, t). Since u(t, • ) ∈ ℓ 2 ,
)| y > 1 - 1 2 + ε > 1 2 + ε .
It would be interesting to extend this result to the case of a fast decaying potential for which the Jost solutions exist.

First energy estimate

In the remaining of the paper we will follow ideas of [START_REF] Escauriaza | Hardy's uncertainty principle, convexity and Schrödinger evolutions[END_REF], to prove that a solution of the discrete Schrödinger equation which decays sufficiently fast along both halfaxes at two different moments of time is trivial.

We begin with an energy estimate for solution of non-homogeneous initial problem and show that if the initial data is well-concentrated, the energy cannot spread out too fast.

Given α > 0 and t ≥ 0 denote

ψ α (t) = {ψ α (t, n)} n∈Z = {(1 + |n|) α|n|/(1+t) } n∈Z Proposition 3.1. Let V = V 1 + iV 2 , with V 1 , V 2 : [0, T ] × Z → R and V 2 bounded and F : [0, T ] × Z → C bounded. Let u : [0, T ] × Z → C, u ∈ C 1 [0, T ], ℓ 2 (Z) , satisfy (18) 
∂ t u(t, n) = i(∆u(t, n) + V (t, n)u + F (t, n)).
Assume that {ψ α (0, n)u(0, n)} ∈ ℓ 2 (Z) for some α ∈ (0, 1]. Then, for T > 0,

(19) ψ α (T, n)u(T, n) 2 2 ≤ e CT ψ α (0, n)u(0, n) 2 2 + T 0 ψ α (s, n)F (s, n) 2 2 ds Proof. Consider f (t, n) = ψ α (t, n)u(t, n) and let H(t) = f (t, n) 2 2 .
We fix α till the end of the proof and write ψ = ψ α .

We will perform several formal computations, assuming that H(t) is finite for all t ∈ [0, T ], and then justify these computations at the end of the proof. Define

κ(n, t) = log ψ(t, n) = α 1 + t |n| log(1 + |n|).
Then

∂ t f = i∆(ψ -1 f ) + iV f + ∂ t κf + iψF,
which we rewrite as ∂ t f = Sf + Af + iV f + iψF , where S and A are symmetric and anti-symmetric operators, respectively. Explicitely

Sf = i 2 ψ∆(ψ -1 f ) -ψ -1 ∆(ψf ) + ∂ t κf, Af = i 2 ψ∆(ψ -1 f ) + ψ -1 ∆(ψf ) . Denote (20) a n = ψ n+1 ψ n - ψ n ψ n+1 , b n = ψ n+1 ψ n + ψ n ψ n+1 .
We then rewrite

(Sf ) n = - i 2 (a n f n+1 -a n-1 f n-1 ) + (∂ t κ) n f n , (21) (Af ) n = i 2 (b n f n+1 + b n-1 f n-1 ) -2if n , (22) 
In what follows we will interchangeably use the notation a n = a(t, n), similarly for ψ n etc.

We want to control the growth of H(t). Clearly, ∂ t H(t) = 2ℜ ∂ t f, f and thus

∂ t H(t) =2 Sf, f -2ℑ V f, f -2ℑ ψF, f =2ℑ n a n f n+1 f n + 2 ∂ t κf, f -2 V 2 f, f -2ℑ ψF, f .
This implies

∂ t H(t) ≤ 2 ψF 2 f 2 + V 2 ∞ f 2 + n (2∂ t κ n + |a n | + |a n-1 |)|f n | 2 .
Our aim is to prove that for all n ∈ Z (23

) 2∂ t κ n + |a n | + |a n-1 | ≤ 2C,
where C is a constant. We have

∂ t κ n = - α (1 + t) 2 |n| log(|n| + 1). Further, |a n | ≤ e α (|n| + 1) α . Hence, if α ≤ 1 we obtain (23), for t ∈ [0, 1]. Therefore ∂ t f 2 ≤ C f 2 + ψF 2 and (19) follows.
In order to justify these computations we truncate the weight function ψ to an interval [-N, N ]:

ψ N (n, t) = (|n| + 1) (1+t) -1 α|n| , |n| ≤ N (|N | + 1) (1+t) -1 α|N | , |n| > N.
Since the solution u is in ℓ 2 , the relevant norms weighted by ψ N are guaranteed to be finite and by running the above argument we obtain (23) and ( 19) for the weight ψ N , this time rigorously. The desired inequality follows by passing to the limit as N → ∞.

Corollary 3.2. Let u : [0, 1] × Z → C be a strong solution of the Schrödinger equation ∂ t u(t, n) = i(∆u(t, n) + V (t, n)u),
where

V = V 1 + iV 2 is as above. Further suppose that n>0 n 2αn |u(0, n)| 2 < ∞ for some α ≤ 1. Then for each t ∈ [0, 1] we have n>0 n αn |u(t, n)| 2 < ∞.
Proof. Define ũ(t, n) = 0 for n < 0 and ũ(t, n) = u(t, n) for n ≥ 0. Then ũ satisfies [START_REF] Teschl | Jacobi Operators and Completely Integrable Nonlinear Lattices[END_REF] with F (t, n) bounded and vanishing for n ∈ {-1, 0}. If we apply Proposition 3.1 to ũ we obtain the required estimate 4. Logarithmic convexity of weighted ℓ 2 -norms 4.1. Preliminary discussion. From now on we fix γ 0 > 0 and suppose that V : [0, T ] × Z → R is bounded. Further, we assume that u is a strong solution of

∂ t u = i(∆ d u + V u) such that (1 + |n|) γ 0 (1+|n|) u(0, n) 2 and (1 + |n|) γ 0 (1+|n|) u(1, n) 2 are finite.
Following the ideas of [START_REF] Escauriaza | Hardy's uncertainty principle, convexity and Schrödinger evolutions[END_REF], we are looking for a weight

(24) ψ(t, n) = exp(κ(t, n))
to give us a logarithmically convex function e -Ct(1-t) H(t), where

H(t) = ψ(t, n)u(t, n) 2 2
and C depends on V and ψ.

We will first use such a convexity argument to show that for any 0 < γ < γ 0 and any t ∈ [0, 1],

(25) (1 + |n|) γ(1+|n|) u(t, n) 2 < ∞.
This also implies that

(26) (C 0 + |n| + R 0 t(1 -t)) γ C 0 +|n|+R 0 t(1-t) u(t, n) 2 < +∞
for any C 0 , R 0 > 0 and t ∈ [0, 1], and we then set out to prove the logarithmic convexity in t of this latter norm.

In both steps we consider weights of the form (24), with

κ(t, n) = γ(|n| + R(t)) ln b |n| + R(t)
where either 1/2 < b < 1 and

R(t) = 1, or b = 1 and R(t) = C 0 + R 0 t(1 -t). As before we set f (t, n) = ψ(t, n)u(t, n).
We will first assume that b < 1, prove estimates independent of b, and let b → 1 to establish (25). This will allow us to justify the computations involved in the second step, when b = 1 and we prove the convexity of (26). 4.2. Formal computations. We collect here a number of formal identities which we need in the sequel. First identities are the same as in the continuous case, they can be found in [START_REF] Escauriaza | Uniqueness properties of solutions to Schrödinger equations[END_REF], others are specific to the discrete case. The notation has been explained in the proof of Proposition 3.1.

We already know that ∂ t H(t) = 2 Sf, f , since V is real-valued, and thus

∂ 2 t H(t) = 2 S t f, f + 4ℜ Sf, f t = 2 S t f, f + 4 Sf 2 + 2 [S, A]f, f + 4ℜ Sf, iV f = 2 S t f, f + 2 [S, A]f, f + 4ℜ Sf + iV f, Sf = 2 S t f, f + 2 [S, A]f, f + 2Sf + iV f 2 -V f 2 .
Therefore we obtain that

f 2 ∂ 2 t (log H(t)) = 2Sf + iV f 2 f 2 -4| Sf, f | 2 f 2 + 2( S t f, f + [S, A]f, f ) -V f 2 = 2Sf + iV f 2 f 2 -|ℜ 2Sf + iV f, f | 2 f 2 + 2( S t f, f + [S, A]f, f ) -V f 2 ≥ 2( S t f, f + [S, A]f, f ) -V f 2 .
We reiterate that our aim is to show that (27) ∂ 2 t log H(t) ≥ -2C for some C ≥ 0, which implies the log-convexity of e -Ct(1-t) H(t). The last term in the right-hand side above is clearly bounded below by -C f 2 since V is bounded. It suffices to establish an estimate of the first two terms of the form (28)

S t f, f + [S, A]f, f > -C f 2 .
We refer now to (22), (21). It follows that

(S t f ) n = -i/2(a ′ n f n+1 -a ′ n-1 f n-1 ) + κ ′′ n f n , and finally (2S t f + 2[S, A]f ) n = ν n+1 f n+2 + λ n f n+1 + µ n f n + λ n-1 f n-1 + ν n-1 f n-2 ,
where

ν n+1 = 1 2 (a n b n+1 -a n+1 b n ), λ n = -ib n (κ ′ n+1 -κ ′ n ) -ia ′ n , µ n = a n b n -a n-1 b n-1 + 2κ ′′
n , and, as before, the coefficients a n ,b n are defined in (20).

Clearly

ψ ′ n = κ ′ n ψ n , implying that a ′ n = (κ ′ n+1 -κ ′ n )b n and λ n = -2ib n (κ ′ n+1 -κ ′ n ).

4.3.

Estimates with an auxiliary weight.

Proposition 4.1. Let γ > 0. Assume that u is a strong solution of

∂ t u = i(∆ d u + V u)
where the potential V is a bounded real-valued function. Let also

(29) (1 + |n|) γ(1+|n|) u(t, n) 2 < +∞, t ∈ {0; 1}.
Then, for all t ∈ [0, 1], (1 + |n|) γ(1+|n|) u(t, n) 2 < +∞.

Proof. Consider the weight function

ψ(n) = e κ b (n) , κ b (n) = γ(1 + |n|) ln b 1 + |n| ,
where 1/2 < b < 1. Note that the hypotheses (29) combined with Proposition 3.

1 show that H b (t) = exp(κ b (n))u(t, n) 2 2
is finite for all t, allowing us to justify the computations of the preceding section for this choice of weight. We will show that

H(t) = H b (t) satisfies (27) with some C independent of b, whence exp(κ b (n))u(t, n) 2 2 ≤ e C 2 t(1-t) H b (0) 1-t H b (1) t ≤ e C 2 t(1-t) (1 + |n|) γ(1+|n|) u(0, n) 2(1-t) 2 (1 + |n|) γ(1+|n|) u(1, n) 2t 2 
.

Letting b → 1 and applying the monotone convergence theorem then concludes the proof.

We refer to computations in the previous section. In the current setting S t = 0 and λ n = 0 so relation (28) reduces to

(30) 2[S, A]f, f ≥ -C f 2 .
We have

2[S, A]f, f = n µ n |f n | 2 + 2ℜ n ν n+1 f n+2 f n ,
where

µ n = a n b n -a n-1 b n-1 = ψ 2 n+1 ψ 2 n - ψ 2 n ψ 2 n-1 - ψ 2 n ψ 2 n+1 + ψ 2 n-1 ψ 2 n , and 
ν n+1 = 1 2 (a n b n+1 -a n+1 b n ) = - ψ n ψ n+2 ψ 2 n+1 + ψ 2 n+1 ψ n+2 ψ n ,
where the coefficients a n and b n are defined in (20). By appealing to the second derivative of x → (1+x) ln b (1+x) it is easy to verify that κ b (n+2)+κ b (n)-2κ b (n+1) is always non-negative and uniformly bounded from above. Thus ν n+1 is uniformly bounded and µ n ≥ 0. This implies (30).

Convexity estimate.

In this subsection we consider the weight function given by

ψ(t, n) = e κ(t,n) , where κ(t, n) = γ(|n| + R(t)) ln(|n| + R(t)),
and R(t) = C 0 + R 0 t(1 -t), R 0 > 0, C 0 being large enough. As before we define

H(t) = u(t, n)ψ(t, n) 2 2 . Lemma 1. For every γ > (3 + √ 3)/2 there exists C(γ) such that for C 0 > C(γ) and R(t) = C 0 + R 0 t(1 -t) we have ∂ 2 t (log H(t)) ≥ - 4γ 2γ -3 R 0 log R 0 -C 1 R 0 -C 2 ,
where C 1 and C 2 depend on γ and V ∞ only.

Proof. For n ≥ 0 we have

ψ(t, n + 1) ψ(t, n) = (n + 1 + R(t)) γ 1 + 1 n + R(t) γ(n+R(t))
, and ψ n = ψ -n for n < 0. Hence a n = -a -n-1 and b n = b -n+1 for n < 0, which in turn implies that µ n = µ -n and λ n = -λ -n-1 when n < 0. We have also µ 0 = 2a 0 b 0 + 2κ ′′ 0 . As before, we get 

|ν n+1 | = ψ 2 n+1 ψ n ψ n+2 - ψ n ψ n+2 ψ 2 n+1 ≤ C 3 , where 
′ n (t) = R ′ (t)φ ′ (|n| + R(t)), κ ′′
n (t) = -2R 0 φ ′ (|n| + R(t)) + (R ′ (t)) 2 φ ′′ (|n| + R(t)). Then, by the Taylor expansions, we obtain that, for each ǫ > 0 and C 0 = C 0 (ǫ) large enough, µ n ≥ 2γe 2γ M 2γ-1 + γe 2γ (γ -1) 2 3 -ǫ M 2γ-3

+ 2A 2 γM -1 -4R 0 γ(1 + ln M ) -C 4 ,
where A = |R ′ (t)| and n = 0. Futher,

µ 0 ≥ (2 -ǫ)M 2γ e 2γ + 2A 2 γM -1 -4R 0 γ(1 + ln M ) -C 4 .
We introduce the notation

σ n = 2γe 2γ M 2γ-1 + γe 2γ (γ -1) 2 3 -2ǫ M 2γ-3 + 2A 2 γM -1 ,
Inequality (32) hence follows for sufficiently small ǫ when 2(γ -1)(2γ -3) + 2(γ -1) 2 3 > 3(γ -1) 2 + 3γ 2 -10γ + 8 3 .

The last inequality is equivalent to 2γ 2 -6γ +3 > 0, which holds for γ > (3+ √ 3)/2. Finally by minimizing in M one obtains that, for γ > 3/2,

ρ n ≥ min M >0 {ǫγe 2γ M 2γ-3 -4R 0 γ(1 + ln M )} ≥ - 4γ 2γ -3 R 0 ln R 0 -C 1 R 0 ,
where C 1 depends on γ and ǫ. The conclusion of the lemma follows.

4.5. Concluding arguments. Using the weight ψ(n, t, R 0 ) from the last section and Lemma 1, we obtain that

H R 0 (t) exp(-d(R 0 , γ)t(1 -t))
is logarithmically convex, where

d(R 0 , γ) = 2γ 2γ -3 R 0 ln R 0 + C 1 2 R 0 + C 2 2 .
Hence, for t = 1/2 we obtain

H R 0 (1/2) ≤ exp γ 2(2γ -3) R 0 ln R 0 + C 1 8 R 0 + C 2 8 H R 0 (0) 1/2 H R 0 (1) 1/2 .
But since R(0) = R(1) = C 0 we see that H(0) and H(1) do not depend on the choice of R 0 . We obtain that |u(1/2, n)| 2 exp(2γ(|n| + C 0 + R 0 /4) ln(|n| + C 0 + R 0 /4))

≤ D exp γ 2(2γ -3) R 0 ln R 0 + C 1 8 R 0 ,
where D is a constant independent of n and R 0 . However, this last inequality is clearly impossible for large R 0 when γ > 2, unless u(1/2, • ) ≡ 0, which of course implies that u ≡ 0. Our work of this section can be summarized as follows.

Theorem 4.2. Assume that γ > (3 + √ 3)/2 and that V (t, n) is a real-valued bounded function. If u is a strong solution of

∂ t u = i(∆ d u + V u) such that (1 + |n|) γ(1+|n|) u(0, n) 2 , (1 + |n|) γ(1+|n|) u(1, n) 2 < +∞, then u ≡ 0.
Remark. This result is not sharp. The authors expect that a milder decay condition (with γ = 1 + ǫ) and also just one-sided decay should imply uniqueness as in the case of free Schrödinger evolution.

  where J n is the Bessel function (the definition is given below). This result is sharp: |J n (-1)| and |J n (1)| have precisely the growth of the right hand side in (2) as |n| → ∞, see Proposition 2.1.

Corollary 2 . 2 .

 22 Let u be as in Proposition 2.1 if in addition |u(0, n)| 2|n| e |n| |n| = o(1)

  C 3 depends on γ only. Let φ(M ) = γM ln M and M = M (t, n) = |n| + R(t). In this notation we have for n = 0 µ n ≥ exp(2φ(M + 1) -2φ(M )) -exp(2φ(M ) -2φ(M -1)) -C 4 + 2κ ′′ n , where C 4 is a constant that depends only on γ. The derivatives of κ n are κ
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and

ρ n = ǫγe 2γ M 2γ-3 -4R 0 γ(1 + ln M ) so that µ n ≥ σ n + ρ n -C 4 for all n. Note that by the inequality of arithmetic and geometric means we have

For n ≥ 0 we have also

). Hence, for sufficiently large C 0 ,

To estimate ∂ 2 t (log H(t)) we note that

First, we consider the first two terms. If we show that for any x, y ≥ 0 (31) σ n x 2 + σ n+1 y 2 ≥ 4|λ n |xy, then the summation of these inequalities with

To show (31) we have to check that (32)

Actually we show (31) only for n ≥ 0. The relations for negative integers given in the beginning of the proof then imply the inequality for all n. Using the estimates above, we have

While

16|λ n | 4 ≤ 64A 4 γ 4 e 4γ 4M 4γ-4 + 8(γ -1)M 4γ-5 + 4A 4 γ 4 e 4γ 6(γ -1) 2 + 8 3γ 2 -10γ + 8 12 + ǫ M 4γ-6 .