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Abstract

In this paper, we address a preemptive scheduling problem involving multiple non-
reversible energy sources. To the classical scheduling issue, an additional decision level is
added regarding the selection of the energy source used to satisfy the total power demand
of tasks processed at each instant. Different non-reversible energy sources are available,
with different characteristics in terms of efficiency and power range. The objective is to
identify the best combination between scheduling and energy resource utilization that
minimizes the total energy cost of the project. Non-linear efficiency functions used to
compute energy costs are bounded from above and below by two piecewise-linear curves,
yielding two instances of a scheduling problem with a piecewise-linear objective that can
be solved separately. For the piecewise-linear scheduling problem, we show that the prob-
lem involving multiple sources is equivalent to a single-source problem, the particular case
of a linear function is polynomially solvable, and the case with a piecewise-linear function
with two pieces is NP-hard. A pseudo-polynomial size time-indexed mixed-integer linear
formulation of the problem and its Dantzig-Wolfe decomposition yielding an extended for-
mulation are presented. A branch-and-price procedure is proposed to solve the extended
formulation. The formulations are compared on a set of scheduling instances, considering
partly realistic efficiency functions.

Keywords: energy-aware scheduling, efficiency functions, combinatorial optimization,
mathematical programming, column generation
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1 Introduction

Energy considerations are becoming paramount for real-world applications. Moreover op-
timization issues are at the core of many industrial systems. A rising combinatorial opti-
mization challenge is then the integration of energy constraints in deterministic scheduling
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and resource allocation models. We consider in this paper a scheduling problem where the
objective is to minimize the total energy cost of a set of preemptive tasks subject to time
windows. Under a discrete time model, the set of tasks that are in process at a given time
period generates a demand for this period. We assume that there are several non-reversible
energy sources that can be used to cover this demand, such that the part of the demand
covered by a source is converted in cost via a non-linear function.

For a given source, the conversion function represents physical, technological, performance
and/or billing characteristics. Contrary to reversible energy sources such as batteries and
supercapacitors, non-reversible energy sources such as fuel cells, electric grid and combustion
engines can produce energy but are unable to recover it (at least during the considered
scheduling horizon).

We first give two practical examples of such non-linear demand/cost conversion function. The
first example is the inclining block rate for electricity tariff, which is popular in many countries
including the U.S. [24]. A customer having an energy consumption of Q kWh in a certain
time period, will pay a bill B = P1 min(Q,K) +P2 max(Q−K, 0) on that period where K is
a threshold up to which the rate is P1 while consumption above the threshold is billed with
another rate P2 > P1. In Fig. 1(a), the expression of B in function of Q for a threshold of 4.6
kW and prices P1 = 9.767ec and P2 = 16.0485ec. The function is piecewise linear. Note that
the consumption is always measured on a period basis (classically 15 min, see the case study in
the foundry industry in [14]). For other types of energy sources, obtaining the energy required
by a set of tasks during a certain period can require a physical conversion subject to energy
loss. For example, a Fuel Cell follows the scheme: source→ converter → usable energy and
the “energy cost” refers to the energy consumed from the source. In Fig. 1(b), the usable
energy (demand) is expressed as a non-linear function of the consumed energy (cost) for a
typical fuel cell used in hybrid electric vehicles [11, 12, 13].
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Figure 1: Non-linear energy costs.

This work is part of an ongoing effort aiming at solving explicitly and in an integrated fashion
energy resource allocation problems and energy-consuming activity scheduling problems with
such non-linear energy costs, yielding the following contributions.
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First, together with a recent contribution [21], this paper contributes to the definition of a
novel and efficient methodology for the integration of energy characteristics in combinato-
rial optimization problems via piecewise-linear lower and upper bounding of the non-linear
energy conversion functions. Second, we show that the preemptive scheduling problem with
piecewise-linear energy cost from multiple non-reversible sources, can be transformed into
an equivalent single-source problem. Third, we exhibit a polynomially-solvable case of the
problem and we show its NP-hardness in general. Fourth, we provide mixed-integer linear
programming (MILP) formulations, among which an extended formulation. A branch-and-
price procedure is proposed to solve the extended formulation. Computational experiments
on a set of scheduling instances, considering partly realistic efficiency functions show the
efficiency of our approach.

The remainder of the paper is organized as follows. Section 2 presents a relevant literature
review, then the definition, a first MILP formulation and the complexity analysis of the
problem are provided in Section 3. Section 4 proposes an extended formulation issued from
the Dantzig-Wolfe decomposition of the first formulation. A branch-and-price procedure is
described in Section 5. Finally, a computational evaluation of the propositions on schedul-
ing instances with realistic efficiency functions is provided in Section 6, before stating the
Conclusions.

2 Literature review and presentation of the piecewise-linear
lower and upper bounding framework

Over the years the stakes of resource allocation problems and production scheduling applica-
tions have evolved towards a more responsible management of resources. In particular new
models in production scheduling were considered, where the energy demand can be modu-
lated, mainly to avoid peaks of electrical consumption. A state-of-the-art review of energy
concerns in production scheduling and a method for minimizing total energy cost on a single
machine scheduling problem can be found in [22]. In this paper, as well as in many other
related studies, the energy costs fluctuate over time, depending on the market and on the
processing state of the machine but are seldom subject to non-linear variations depending on
demand. For more complex job-shop or resource-constrained project scheduling problems,
the inclining block rate for electricity tariff yielding the piecewise-linear function with two
pieces presented in Fig. 1(a) was considered in [14] for a scheduling problem in a foundry
where a hybrid constraint-programming/MILP approach was proposed. The problem was
further studied in [3] but although the non-linear electricity costs were considered, other
non-linearities coming from energy modulation were ignored, as explained below. A metal
is melted in induction furnaces and the electrical power of the furnaces can be adjusted at
any time to avoid exceeding a maximum prescribed power limit. The electrical power can be
seen as a continuous function of time to be determined, with the constraint that it must lie
within minimum and maximum power levels that must be satisfied for the melting operation.
More precisely, let Pi(t) be the power used by operation i at time t, then the considered

energy constraints state that the total energy consumed equal to
∫ fi
ti
Pi(t)dt, where ti and
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fi are the start and end times of the melting operation i, has to be equal to the operation
energy demand Wi, which amounts to ignore the efficiency functions of the furnace. For the
same type of adjustable power problems, constraint propagation algorithms on the basis of
a continuous setting were proposed in [2] but energy efficiency functions were also ignored.
A related work has also been carried out by Kis [16] for a discretized time problem with
variable-intensity tasks, who established polyhedral results and proposed a branch-and-cut
procedure. Besides time discretization, the problem does not involve efficiency functions.
Recently, the constraint propagation algorithms were extended to linear efficiency functions
in [19].

Other studies consider explicitly non-linear energy constraints and costs. In scheduling, sev-
eral authors considered different variants of the problem where the resource (not necessarily
an energetic resource) usage may vary continuously and such that the amount of resource
required by a task may vary over time. Wȩglarz et al. [23] call this issue the processing rate
vs. resource amount model, as the processing rate of the activity is a continuous increasing
function of the allotted resource amount at a time, which corresponds to the efficiency func-
tion (see also [4, 5]). Providing a general framework for solving mixed discrete/continuous
problems with concave processing rate (efficiency) functions, Józefowska et al. [15] show that
once the sequence of sets of tasks to be scheduled in parallel is determined, the continuous
resource allocation can be made by a convex non-linear optimization problem. In the litera-
ture on parallel processor scheduling, the malleable task model also considers the possibility
of changing the number of processors assigned to a task over time, with non-linear processing
rate functions but this yields a non-linear relation between the number of used processors and
task duration without consideration of energy costs [6]. Another family of studies concern
non-linear energy consumption models for power-aware scheduling in computing devices [1].
This consists in the possibility to scale the speed s(t) of the processor at time t so that the
power consumed by the processor is generally approximated by s(t)α, with α a constant.
The objective is to find a compromise between the total energy consumption of the processor
given by

∫∞
0 s(t)αdt and the duration fi − ti of a task scheduled in an interval which must

be sufficient to bring the required amount of work, i.e. Wi =
∫ fi
ti
s(t)dt. The major outcomes

obtained in this area consist in complexity results for offline problems and competitiveness
analysis of online algorithms. In contrast with these studies, we aim at rather proposing
mathematical decomposition methods to solve (relatively) general problems.

Furthermore, these references are generally considering that resource/energy is assigned in-
dividually to each task with a modulation of the amount yielding variable task duration and
energy consumption with possibly non-linear relations. Our study takes place in different set-
ting where the schedule generates a global period-wise energy demand that has to be satisfied
with different non-reversible energy sources with non-linear energy/cost conversion functions.
This concerns for example the above-presented electricity tariff application in the foundry
industry [14]. Another example is the global energy demand that is generated from the sched-
ule of task consuming activities in a smart home where different energy sources are available.
In [9], a time-indexed MINLP formulation is proposed to deal with energy-consuming task
scheduling, energy source selection from renewable resources (e.g. solar energy) based pro-
duction forecasts, dispatchable energy generators (e.g. fuel cells) using a linear approximation
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of the production cost, storage devices with linear efficiency functions and the electric grid for
which a quadratic cost is assumed. A daily scheduling problem is solved in different scenarios
involving 8 energy-consuming non-preemptable tasks. In this work, we do not consider the
storage devices but we aim at considering more general efficiency functions.

Previous works have focussed on the optimization of the allocation of multiple sources of
energy to predefined demand curves in hybrid electric vehicles. In such real-world applica-
tions, non-linearities coming from energy efficiency functions, make the allocation problem
difficult to solve. In this context, Guemri et al. [13] showed that flaws in existing model-
ing hypotheses led to significant gaps between state-of-the-art solutions and optimal ones.
Global optimization-based heuristics have been designed to outperform the prior state-of-
the-art [12, 13]. As an alternative to non-linear modeling yielding suboptimal solutions and
important computation time, a new and efficient combinatorial modeling was proposed [11].
Although these studies considered the allocation of multiple energy sources and general non-
linear efficiency functions, the scheduling of energy consuming activities, that would allow
more flexibility for energy management was not considered.

A few promising mathematical programming-based approaches on similar problems can be
found [7, 8], either based on MINLP or transformations into approximate MILP. We now
present an alternative approach based on piecewise-linear lower and upper bounding, rather
than approximating, the non-linear efficiency functions (see also [17]). Successfully applied by
Ngueveu et al. [21] as a proof of concept for the solution of a water production optimization
problem, the solution framework is decomposed into two stages: (i) the bounding of the non-
linear energy efficiency function, then (ii) the reformulation of the problem, which originally is
a mixed-integer non-linear problem (MINLP), into two mixed integer linear problems (MILP)
using the pair of bounding functions already mentioned above. The piecewise-linear bounding
of a function f of m variables within a tolerance value ε consists in identifying two piecewise-
linear functions denoted f

ε
and f ε that verify equations (1) to (3). The two MILPs, denoted

MILP and MILP respectively, are obtained by substituting f with f
ε

and f ε, respectively.

f ε(x) ≤ f(x) ≤ f ε(x), ∀x ∈ Rm (1)

f(x)− f ε(x) ≤ εf(x), ∀x ∈ Rm (2)

f
ε
(x)− f(x) ≤ εf(x), ∀x ∈ Rm (3)

Solving a MILP generates solutions that are feasible for the original MINLP, and that have
a total cost less than ε% higher than the optimal solution cost. Solving a MILP generates
solutions that may not be feasible for the original MINLP, but whose total cost is less than
ε% lower than the optimal solution cost and can help proving the optimality of a solution.
However, if the non-linear function appears only in the objective function, as it will be in
our case, then any solution of MILP is also feasible for the original problem. Obtaining a
lower bound and an upper bound with a controlled gap is an advantage of this approach
against a single piecewise-linear approximation. Note that both problems share the exact
same structure and only differ in terms of the numerical data of their respective piecewise-
linear functions. Therefore, a single dedicated resolution method needs to be applied to solve
both problems. Furthermore, recall that we approximate a non-linear energy demand/cost
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conversion function, which either gives the energy cost in function of the energy demand such
as in the billing application (Fig. 1(a)) or the energy demand in function of the energy cost
such as for the fuel cell efficiency function (Fig. 1(b)). It follows that to obtain an integrated
model of these two cases, inversion of some source functions can be necessary, which may be
not an easy task for some non-linear functions. This in an argument in favor of the piecewise-
linear bounding scheme, rather than a direct usage of the non-linear function. As we will see
when studying the structure of our scheduling problem, there is another advantage of this
framework.

In Ngueveu et al. [21], the resulting MILP and MILP were solved with a MILP solver. The
cases where the resulting problems cannot be efficiently solved with a black box solver remain
to be studied.

3 Problem statement and complexity analysis

The problem definition requires a discrete time horizon T = {1, . . . , |T |}, a set of preemptive
activities A = {1, . . . , n}, each activity i having a duration pi, an energy demand per time
unit of bi and a time window that starts at ri and ends at di. A constant term ait with i ∈ A
and t ∈ T is equal to 1 if t ∈ [ri, di[ and 0 otherwise. The set of non-reversible energy sources
available is S = {1, . . . ,m}. Remind that a non-reversible source is only able to produce
energy, but not to recover it. Let ρs denote the (non-linear) efficiency function for source
s, i.e. a cost or energy consumption of x produces an amount of usable energy of ρs(x).
In other words, (ρs)−1(x) is required from s to satisfy a demand of x. Since all s ∈ S are
non-reversible, then ρs(x) = 0, ∀x < 0, ∀s ∈ S. The objective is to schedule the tasks so as to
minimize the total energy consumption from all energy sources. Let (P) denote the resulting
problem. It can be expressed using binary decision variables xit, equal to 1 iff activity i is
being executed at time period t; and continuous positive decision variables wst, equal to the
amount of energy demand covered by energy source s at instant t. A MILP formulation of
(P) is:

(P) min
∑
s∈S

∑
t∈T

(ρs)−1(wst) (4)

s.t. ∑
t∈T

aitxit ≥ pi, ∀i ∈ A (5)

∑
s∈S

wst =
∑
i∈A

bixit, ∀t ∈ T (6)

xit ∈ {0, 1}, ∀i ∈ A, t ∈ T (7)

wst ≥ 0, ∀s ∈ S, t ∈ T (8)

The objective function (4) aims at minimizing the total energy cost. Constraints (5) set each
task i in process during at least pi time periods. Constraints (6) ask to cover the energy
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T1 T2 T3

release date 0 2 1
due date 7 10 6
duration 6 4 3

energy demand 2 3 2

Table 1: Scheduling instance.

demand of each task by the available sources. Constraints (7)–(8) give the domains of the
variables. Because of the piecewise-linear bounding-based solution methodology, all efficiency
functions ρs (and thus (ρs)−1) can be assumed to be piecewise linear. Such functions can be
modeled either with dedicated piecewise-linear functions in black-box solvers or by adding
additional binary variables aiming at identifying which sector of the piecewise-linear function
has to be activated at each time period. These additional variables may weaken the linear
relaxation of the resulting model. Still, the mathematical model has a pseudo-polynomial
(depending on the size of the time windows) number of variables and constraints and therefore
can be loaded into any MILP solver for a reasonable size of the time horizon.

A scheduling instance and efficiency function are given in Table 1 and Fig. 2, respectively. A
feasible solution and the corresponding energy cost profile are shown in Fig. 3(a). At time 5 for
example, the tasks being executed are T1 and T2. As a consequence the total instantaneous
energy demand is b1+b2 = 2+3 = 5, which would lead to an energy cost of 4 according to the
efficiency function curve of the energy source. The optimal solution is provided in Fig. 3(b).
It possesses a higher makespan than the previous solution. However, any solution with a
higher makespan also has a higher energy cost, which shows that minimizing the energy cost
does not necessarily translate into minimizing or maximizing the makespan.

The structural analysis of (P) led to findings expressed with Theorems 3.1, 3.2, 3.3, and 3.4.
The first result shows that, due to the discrete nature of the problem, replacing general non-
linear functions by piecewise-linear approximations can be made without loss of generality.

Theorem 3.1 For any problem (P ) with non-linear functions (ρs)−1, there exist piecewise-
linear approximations (ρ̄s)−1 of functions (ρs)−1 such that problem (P̄ ) obtained by replacing
(ρs)−1 by (ρ̄s)−1 for all s has the same optimal solution as (P).

Proof As there is a finite number n of tasks, there are at most 2n different values for the
possible energy demand. In addition, if all bi are integer, there are at most max(2n,

∑
i∈A bi)

different values of the demand. Let xq denote the qth different value of the demand in
increasing order. For each source s a continuous piecewise linear function can be built by
connecting consecutive points of the series (xq, yq) where yq = (ρs)−1(xq). Note that this
yields a purely combinatorial model where a binary variable is necessary for each possible
demand value.

Theorems 3.2 states that there is in fact no need to explicitly consider multiple non-reversible
sources.
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Figure 2: Efficiency function.

Theorem 3.2 For any problem (P) with multiple non-reversible energy sources, there is an
equivalent single non-reversible energy source problem.

Proof The proof is based on the fact that (P) can be reformulated as:

(P′) min
∑
t∈T

(ρ′)−1(
∑
i∈A

bixit) (9)

s.t. ∑
t∈T

aitxit ≥ pi, ∀i ∈ A (10)

xit ∈ {0, 1}, ∀i ∈ A, t ∈ T (11)

where ∀x ∈ R, ρ′(x)−1 can be defined as the solution cost of the problem:

(Costx) min(
∑
s∈S

(ρi)−1(ws)) (12)

s.t. ∑
s∈S

ws = x (13)

ws ∈ R+, ∀s ∈ S (14)

Therefore, the efficiency function of an equivalent single non-reversible energy source can be
obtained from an optimal pre-aggregation of the |S| efficiency functions into a single one
ρ′(x).

8



(a) A feasible solution: cost 30 (b) An optimal solution: cost 26

Figure 3: Illustrative example.

Now, considering the single source problem, the complexity of a special case and of the general
problem can be established.

Theorem 3.3 The single non-reversible energy source problem with an efficiency function
that is linear except in 0 can be solved exactly by a greedy algorithm in O(n2) time.

Proof Consider that ρ−1(x) = ax + b if x > 0 and ρ−1(0) = 0. Let δt = 1 if there
is an activity scheduled at t, assuming that all demands bi are stricly positive. Given
a solution (xit) of the problem we have a total cost of

∑
t∈T ,δt=1(a(

∑
i∈A bixit) + b) =

a(
∑

i∈A bi)(
∑

t∈T xit) + b
∑

t∈T δt = a
∑

i∈A bi + b
∑

t∈T δt. This amounts to minimizing
the number of idle time periods for a preemptive scheduling problem with release dates,
deadlines, and jobs of arbitrary durations. This problem is known as the preemptive busy
time model, for which an O(n2) exact greedy algorithm has been proposed in [10].

Theorem 3.4 The single non-reversible energy source problem is NP-hard even for a concave
linear efficiency function with two pieces that is part of the input.

Proof The proof is based on the fact that any decision instance of the discrete bin-packing
problem can be transformed into a particular decision instance of (P’). The discrete bin-
packing problem can be stated as follows. Given a list of n items of size bi, ∀i ∈ 1..n, is it
possible to assign each item to a bin such that the sum of the item sizes in a bin does not
exceed C and the number of bins used does not exceed B? This is equivalent to stating the
following (P̃’) problem: Given a list of n unit-time activities, each activity i having an energy
demand bi, a time window [0, B] and given an energy source of inverse efficiency function
(15), does it exists a solution of (P̃’) that has a cost not exceeding B?

(ρ̃′)−1(x) =

{
x/C if 0 ≤ x ≤ C
(B − 1)x+ 1− (B − 1)C if x ≥ C (15)
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Indeed, since the total cost can be expressed as
∑B

t=0(ρ̃
′)−1(

∑n
i=1 bi∗xit) where xit is a binary

variable equal to 1 if and only if activity i is scheduled at time t, the equivalence between
the decision variant of the discrete bin-packing problem and (P̃’) can be easily shown. If the
demand stays in time window [0, B] below threshold C then the cost is below B as x/C ≤ 1,
∀x ≤ C. Otherwise, as soon as the demand is larger than or equal to C + 1 the cost is larger
than B. Therefore the decision variant of (P’) generalizes the decision variant of the discrete
bin-packing. As a consequence, the decision variant of (P’) is NP-complete, and therefore (P’)
is NP-hard. We have proved NP-hardness for a function (ρ̃′)−1, which is strictly increasing,
convex and inversible. Hence (ρ̃′) is concave.

4 Extended formulation and Dantzig-Wolfe Decomposition

Because of Theorem 3.2, the remainder of the paper focusses on solving efficiently problem
(P’), which considers a single non-reversible energy source having a piecewise-linear efficiency
function. Consequently, variables wst can be disregarded from Model (4)–(8) and the effi-
ciency function of the unique energy source will be simply denoted ρ and its reverse ρ−1.

4.1 Extended formulation

The presence of piecewise-linear function and the resulting additional variables in the math-
ematical model can result into a weaker linear relaxation. To counter that, we propose a set
partitioning-based reformulation with a purely linear objective-function. This formulation is
based on the identification of sets of feasible subsets. A feasible subset [18] is a set of activities
that can be in progress simultaneously without exceeding any resource availability, and that
are not pairwise linked by a precedence constraint. Let l ∈ L be a set of activities that can
be processed simultaneously according to the constraints. The set of activities belonging to l
is denoted Al(⊆ A). Each l ∈ L is assigned an energy demand bl =

∑
i∈Al

bi, an energy cost

cl = ρ−1(bl), a release date rl = maxi∈Al
ri, and a due date dl = mini∈Al

di. Finally, the set
of activity sets executable at instant t is denoted Lt, and is composed of sets l that verify
rl ≤ t < dl. Binary variables ylt are defined, equal to 1 if activity set l is chosen at time t
and 0 otherwise.

The resulting formulation (EF) of problem (P) is expressed by equations (16)–(21) and re-
quires the introduction of constant terms ail equal to 1 if i ∈ Al and 0 otherwise. Its validity
is stated by Theorem 4.1.

(EF) min
∑
t∈T

∑
l∈Lt

clylt (16)
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s.t.

xit −
∑
l∈Lt

ailylt = 0, ∀i ∈ A, t ∈ T (17)

∑
l∈L

Dl−1∑
t=Rl

ailylt ≥ pi, ∀i ∈ A (18)

∑
l∈Lt∪∅

ylt = 1, ∀t ∈ T (19)

xit ∈ {0, 1}, ∀i ∈ A, t ∈ T (20)

ylt ≥ 0, ∀t ∈ T , l ∈ Lt ∪ ∅ (21)

The objective function (16) to be minimized is the sum over time of the energy cost of
each activity set being used at each instant. Constraints (17) ensure the coherence between
variables x and y. Constraints (18) ensure that the duration of each activity is satisfied.
Constraints (19) state that one activity set is active at each instant, empty set included.
Constraints (20) and (21) specify the domain of each variable.

Theorem 4.1 An optimal solution (x, y) of MILP (EF) provides an optimal solution for
problem (P).

Proof Proving that an optimal solution (x, y) of MILP (EF) verifying y ∈ [0, 1]|L||T | is also
an optimal solution for problem (P) is straightforward. It remains to be shown, however, that
relaxing constraints y ∈ [0, 1]|L||T | into constraints (21) still yields an optimal solution for
the original problem. The proof of validity of Theorem 4.1 consists in proving that although
decision variables ylt are continuous, the model ensures that their values are always binary
in feasible solutions, equal to 1 if activity set l is being executed at time t, and 0 otherwise.

Let S̃ be a feasible solution of MILP (EF): x̃it ∈ [0, 1]|A||T | and ỹlt ∈ R|L||T |. Given an instant
t∗ ∈ T , let us denote:

• L>0 the subset of activity sets used at instant t∗. In other words L>0 = {l : ỹlt∗ >
0,∀l ∈ Lt∗}.

• AL>0
the subset of activities that appear in at least one set l of L>0. In other words

AL
>0

= {i : ∃l ∈ L>0 that verifies ail = 1}.

• L>0(i) the subset of activity sets from L>0 that contain activity i.

Since ỹlt∗ > 0, ∀l ∈ L>0 (by definition) and
∑

l∈L>0 ỹlt∗ = 1 (from constraints (19)), we
deduce proposition 4.2 which is necessary to continue the proof.

Proposition 4.2 ∀L̃ ⊆ L>0, if
∑

l∈L̃ ỹlt∗ = 1 then L̃ = L>0.
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Since by definition ∀i ∈ AL>0
, x̃it∗ = 1, we can deduce from constraints (17) that:∑

l∈L>0(i)

ỹlt∗ = 1 (22)

where L>0(i) ⊆ L>0.

Finally, combining Proposition 4.2 and constraint (22) we can deduce:

L>0(i) = L>0, ∀i ∈ AL>0
. (23)

Constraints (23) imply that:

• either |L>0| = 1 and therefore all ỹlt∗ are integer

• or |L>0| > 1 but all activity sets from L>0 are identical.

The latter assertion is impossible because the model does not authorize multiple identical
columns. Therefore ỹlt∗ are integer. Combined with constraints (19), this proves that ỹ ∈
[0, 1]|L||T |. Thus, solving (EF) produces optimal solutions for the original problem (P).

Formulation (EF) has a polynomial number of constraints, a polynomial number of variables
xit, but an exponential number of variables ylt and therefore its linear relaxation can be solved
with column generation. The linear relaxation of (EF), which serves as the master problem
(MP) of the Dantzig-Wolfe decomposition is given by equations (24)–(29). Note that the
empty set does not belong to L, therefore if no task is being executed then the left-hand-side
of equations (27) is equal to 0.

(MP) min
∑
t∈T

∑
l∈Lt

clylt (24)

s.t.

xit −
∑
l∈Lt

ailylt = 0, ∀i ∈ A, t ∈ T (25)

∑
l∈L

Dl−1∑
t=Rl

ailylt ≥ pi, ∀i ∈ A (26)

∑
l∈Lt

ylt ≤ 1, ∀t ∈ T (27)

0 ≤ xit ≤ 1 ∀i ∈ A, t ∈ T (28)

ylt ≥ 0 ∀t ∈ T, l ∈ Lt (29)

At each iteration α of a column generation we solve a restricted master problem (RMPα)
obtained by restricting L to a subset of activity sets Lα ⊆ L, then try to generate one or
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several activity sets of negative reduced cost using the dual variables values of the solution
found. If no such activity set can be generated, then the current solution is optimal for the
current linear relaxation (MP). Otherwise, the best sets with negative reduced cost are added
to Lα to obtain Lα+1 and the new master problem (RMPα+1) is solved.

Let wit, ui, vt and zit be the dual variables associated with constraints (25), (26), (27) and
(28), respectively. The resulting dual of (MP) is:

(DMP) max
∑
i∈A

piui −
∑
t∈T

vt −
∑
i∈A

∑
t∈T

zit (30)

s.t. ∑
i∈A

ail(ui − wit)− vt ≤ cl, ∀t ∈ T, l ∈ L̃t (31)

wit − zit ≤ 0, ∀i ∈ A, t ∈ T (32)

wit ∈ R, ∀i ∈ A, t ∈ T (33)

ui ≥ 0, ∀i ∈ A (34)

vt ≥ 0, ∀t ∈ T (35)

zit ≥ 0, ∀i ∈ A, t ∈ T (36)

Any column ylt missing from (RMPα) corresponds to a constraint (31) missing from its
dual. Therefore, identifying columns of negative reduced cost is equivalent to identifying
missing violated inequalities (31). As a consequence, the subproblem resolution (also called
pricing procedure) consists in building an activity set l̃ and identifying an instant-time t̃ that
maximizes the difference between the left-hand-side and the right-hand-side of inequality
(31). If the difference is strictly positive, then the corresponding column y

l̃,t̃
is introduced

into the model. Otherwise it can be disregarded and the current optimal solution of (RMPα)
is the optimal solution of the current (RMP).

4.2 Subproblem SP1: With variable t

Generating the columns of negative reduced cost consists in building the pair (l̃, t̃) that
maximize the violation of constraints (31). The corresponding subproblem can be modeled
with binary decision variables αi equal to 1 iff activity i is selected to compose the set l̃, βt
equal to 1 iff time t is selected (t = t̃), and finally variables γit equal to 1 iff both activity i
and time t have been selected. The resulting subproblem denoted (SP1) takes as input data
the current dual variables values ui, vt and wit.

(SP1) max
∑
i∈A

uiαi −
∑
i∈A

∑
t∈T

witγit −
∑
t∈T

vtβt − ρ−1(
∑
i∈A

biαi) (37)
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s.t.

αi + βt ≤ 1, ∀i ∈ A, t ≤ ri − 1 or t ≥ di (38)∑
t∈T

βt = 1 (39)

γit − 0.5αi − 0.5βt ≤ 0, ∀i ∈ A, t ∈ T (40)

γit − αi − βt ≥ −1, ∀i ∈ A, t ∈ T (41)

αi ∈ [0, 1], ∀i ∈ A (42)

βt ∈ [0, 1], ∀t ∈ T (43)

γit ∈ [0, 1], ∀i ∈ A,∀t ∈ T (44)

The objective function (37) is piecewise-linear and maximizes the violation of constraints
(31). Constraints (38) forbid the choice of an instant t outside of the time window of the
activities selected. Constraint (39) enforces the choice of a single instant. Constraints (40)
and (41) ensure the coherence between the values of γit, αi and βt. Finally, constraints
(42)–(44) specify the domain of the decision variables.

The subproblem (SP1) has a piecewise-linear objective function, a polynomial number of
constraints and variables. Thus it can be solved with any MILP black box solver. A column
generation algorithm can therefore be obtained where the pricing procedure consists in solving
(SP1) with a MILP black box solver and then adding to the master problem the column y

l̃,t̃

corresponding to the optimal pair (l̃, t̃) if the optimal cost of (SP1) was strictly positive.

Preliminary results showed that the resulting algorithm required high computing times spent
mostly in the resolution of (SP1). To counter that, two additional policies for the generation
and insertion of columns into the master problem were designed and implemented as explained
in Section 5. We also proposed three other subproblem formulations (SP2t̃), (SP3s̃) and
(SP4t̃,s̃) aiming at reducing the time necessary to generate new columns.

4.3 Subproblem SP2t̃: With fixed t

Based on the idea that predefining t leads to a subproblem easier to solve, SP2 inputs the
current dual variables values, but also a predefined time t̃, and then outputs the best activity
set l̃ obtained by solving model (45)–(47).

(SP2t̃) max
∑
i∈A

αi(ui − wit̃)− vt̃ − ρ
−1(
∑
i∈A

αibi) (45)

s.t.

αi ≤ ait̃, ∀i ∈ A (46)

αi ∈ [0, 1], ∀i ∈ A (47)

The objective function (45) is piecewise-linear and maximizes the violation of constraint
(31). Note that vt̃ is a constant term. Constraints (46) ensure that an activity can only be
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selected if it is executable during the time t̃. Finally, constraints (47) enforce the binarity
of variables αi. This formulation contains a polynomial number of variables and constraints
and is therefore suitable for MILP solvers.

Using SP2 in the column generation means that instead of solving SP1 once during the pric-
ing procedure to obtain both t̃ and l̃, multiple subproblems (SP2t̃) are solved with different
predefined values of t̃ and for each subproblem (SP2t̃) the activity set that maximizes the
violation is generated. However each (SP2t̃) contains much less binary variables and con-
straints than (SP1) and therefore requires a smaller computing time. The different variants
and parameter settings implemented are presented in Section 5.

4.4 Subproblem SP3s̃: Efficiency-function-based

This subproblem results from the observation that each sector of the efficiency function is
linear, therefore, subproblems easier to solve might be obtained by imposing the specific
sector in use. In addition to the current dual variables values, (SP3s̃) inputs a predefined
sector s̃ ∈ S. The lower limit is xmin

s̃ and the higher limit is xmax
s̃ . Within these limits the

cost function can be expressed with the expression ãs̃x+ b̃s̃ where ãs̃ is the slope of sector s̃
and b̃s̃ is the y-intercept of sector s̃.

The best activity set l̃ and associated time t̃ are obtained by solving model (SP3s̃).

(SP3s̃) max
∑
i∈A

αi(ui − ãsbi)−
∑
i∈A

∑
t∈T

γitwit −
∑
t∈T

βtvt − b̃s (48)

s.t.

xmin
s ≤ (

∑
i∈S

biαi) ≤ xmax
s (49)

αi + βt ≤ 1, ∀i ∈ A, t ≤ ri − 1 or t ≥ di (50)∑
t∈T

βt = 1 (51)

γit − 0.5αi − 0.5βt ≤ 0, ∀i ∈ A, t ∈ T (52)

γit − αi − βt ≥ −1, ∀i ∈ A, t ∈ T (53)

αi ∈ {0, 1}, ∀i ∈ A (54)

βt ∈ {0, 1}, ∀t ∈ T (55)

γit ∈ {0, 1}, ∀i ∈ A, t ∈ T (56)

The objective function (48) maximizes the violation of constraint (31). Constraint (49) en-
sures that the total energy demand of the activity set is within the limits of the corresponding
sector s̃. Constraints (50) forbid the choice of an instant t outside of the time window of
the activity selected. Constraint (51) enforces the choice of a single instant. Constraints
(52) and (53) ensure the coherence between the values of γit, αi and βt. Finally, constraints
(54)–(56) specify the domain of the decision variables. This formulation has a fully linear
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objective function, a polynomial number of variables and constraints. It is therefore suitable
for a black box MILP solver.

4.5 Subproblem SP4t̃,s̃: With fixed t and s

This subproblem results from the combination of (SP2t̃) with (SP3s̃). In addition to the
current dual variables values, (SP4t̃,s̃) inputs a predefined sector s̃ ∈ S and a predefined time

t̃. The slope is ãs̃ and the y-intercept is b̃s̃. Within the limits [xmin
s̃ , xmax

s̃ ] the cost function

can be expressed with the expression ãs̃x+ b̃s̃.

The best activity set l̃ is obtained by solving model (57)–(60).

(SP4t̃,s̃) max(
∑
i∈A

αi(ui − wit̃ − ãs̃bi))− vt̃ − b̃s̃ (57)

s.t.

xmin
s̃ ≤ (

∑
i∈S

biαi) ≤ xmax
s̃ (58)

αi ≤ ait̃, ∀i ∈ A (59)

αi ∈ {0, 1}, ∀i ∈ A (60)

The objective function (57) maximizes the violation of constraint (31). Constraint (58) en-
sures that the total energy demand of the activity set is within the limits of the corresponding
sector s̃. Constraints (59) forbid the selection of activities with a time window outside of
time t̃. Finally constraints (60) impose the domain of decision variables αi. This formulation
has a fully linear objective function, a polynomial number of variables and constraints. It is
therefore suitable for a black box MILP solver.

Note that the terms vt̃ and b̃s are constant for each subproblem. Therefore the resulting
problem is equivalent to a classical binary knapsack problem with an additional constraint
imposing a minimum total weight xmin

s̃ . Each object has a profit ui−wit̃− ãs̃bi and a weight
bi. The capacity of the knapsack is xmax

s̃ .

5 Branch & Price

Solving (MP) requires a column generation, therefore solving (EF) requires a branch & price
to ensure the integrity of binary variables xit. Note that it is possible to eliminate variables
xit and just impose variables ylt to be binary, but doing so would force the resulting Branch
& Price to branch on the same variables ylt that are being generated, which means that
the resulting pricing procedures (or subproblems) would vary in function of the node of
the Branch & Price. Instead, introducing binary variables xit, despite some redundancy,
allows variables ylt to be continuous and therefore ensures that the optimal solution can be
obtained (see Theorem 4.1) without ever branching on variables ylt. As a consequence, the
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same subproblem must be solved at each node of the Branch & Price, which means that only
one pricing procedure needs to be designed and implemented, to be chosen between (SP1),
(SP2t̃), (SP3s̃), and (SP4t̃,s̃).

Different variants of column generation or Branch & Price algorithms can be obtained de-
pending on the values of parameters a, b, c and d set up as follows:

a) type of subproblems solved in the pricing procedure

1 (SP1)

2 (SP2t̃)

3 (SP3s̃)

4 (SP4t̃,s̃)

b) column adding policy

1 add the activity set l̃ at instant t̃ only

2 add the activity set l̃ at all feasible instants t ∈ [r
l̃
, d
l̃
− 1]

3 add the activity set l̃ only at feasible instants where it has negative reduced cost

c) multiple sets? (only available for a=1 or a=4)

0 stop the pricing procedure as soon as one column is added in the master problem

1 try to generate columns for each instant t ∈ T before exiting the pricing procedure

d) time increment at the start of the pricing procedure (only available for a=1 or a=4)

0 always restart the pricing procedure from t̃ = 0

1 only restart from the instant where the last pricing procedure could not find
columns of negative reduced cost

Each variant of the Branch & Price implemented for solving (P) is therefore denoted a-b-c-d.
For instance, 1-1-0-0 is the basic version with subproblem (SP1), where each pricing procedure
consists in solving (SP1) and adding the activity set found at the instant found. Likewise,
2-1-0-0 is the basic version with (SP2t̃). In total 30 variants were obtained (3 with (SP1) and
(SP3s̃), which are only concerned by parameter b, and 12 with (SP2t̃) and (SP4t̃,s̃)).

The restricted master problem is initialized with columns obtained by starting all activities
at their release date, as in Fig. 3(b). An initial upper bound is obtained by computing the
cost of the resulting solution.
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6 Computational evaluation

6.1 Instances, Implementation and Parameter settings for best variant
identification

Instances∗ were obtained by combining adapted scheduling instances with the test efficiency
function ρ0 illustrated in Fig. 3(a) for the purpose of identifying the best variant of the
branch-and-price and to compare with the pseudo-polynomial time-indexed formulation. The
scheduling instances used were initially proposed for the energy-constrained scheduling prob-
lem [2, 3, 19, 20] but were adapted to our setting. The set contains 288 instances: 144 with
30 activities and 144 with 60 activities. Each instance is characterized by one value of each
of the following parameters:

• scale ∈ {1, 10}: scaling of the time horizon (1: small, 10: large);

• k ∈ {1.25, 2.5, 5}: magnitude of required energy (pi × bi);

• df ∈ {0.1, 0.15, 0.2, 0.25}: release date dispersion (ri);

• mf ∈ {0.1, 0.2, 0.4, 0.8, 1.6, 3.2}: time window size (di − ri).

Algorithms were coded mainly in C++ and with the framework SCIP 3.1.1 on an Intel
Core i7-4770 CPU and 8 GB of RAM. Each master problem was solved with SOPLEX 2.0.1
whereas each subproblem was solved with IBM CPLEX 12.6 which offers the possibility to
use the function IloPiecewiseLinear to model the piecewise linear functions.

The computational evaluation was done in two phases: first, the best variant of the branch-
and-price method was identified by applying different variants on the 288 instances with a
time limit of 600 s, then the best branch-and-price was applied to solve all 288 instances with
a time limit of 7200 s and compared to IBM CPLEX applied on the pseudo-polynomial size
piecewise-linear formulation (4)–(8) with the same time limit.

Table 2 summarizes, for an illustrative subset of settings, the number of instances for which
upper and lower bounds were available at the end of the time limit of 600 s. Table 3 focusses
on the two best variants identified. Finally Table 4 illustrates the results of the Branch-and-
Price compared to the ones from a black-box MILP solver (CPLEX 12.6).

6.2 Identification of the best variant

Preliminary tests were performed on the 288 instances with a time limit of 600 s to identify
the best parameter settings for the Branch & Price. Table 2 records, for each setting, the
number of instances for which a lower bound was obtained (column NbObs). In a column
generation or a Branch & Price, no lower bound is available until at least the root node has
been solved. Upper bounds were provided at the beginning of each algorithm, equal to the

∗Instances available at http://homepages.laas.fr/sungueve/EnergySchedulingInstances.html
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total energy cost when all activities are started at their release date. Table 2 shows that for
half of the displayed variants, the column generation at the root node was not completed yet
for a significant number of instances (from 15% to 50%). Variant 2-1-0-0 for example, was
not able to produce lower bounds within the 600 s time limit for half of the instances.

Setting a-b-c-d NbObs

2-1-1-0 278
2-1-1-1 278

2-3-1-1 267
2-3-1-0 266
2-3-0-1 265
2-2-0-1 265
2-2-1-1 262
2-2-1-0 261

2-1-0-1 249

4-1-1-1 214

2-2-0-0 197
1-3-0-0 193
1-2-0-0 192
2-3-0-0 192

1-1-0-0 168
2-1-0-0 146

Table 2: Preliminary results: Number of instances with a non-infinite lower bound after 600 s.

All alternatives produced improvements over their respective basic settings (i.e. all 1-X-X-X
are better than 1-1-0-0 and all 2-X-X-X are better than 2-1-0-0). Although basic setting
2-1-0-0 of (SP2t̃) performs poorly in comparison to basic setting 1-1-0-0 of (SP1), the two
settings that perform best are based on (SP2t̃). Note that the results of variants involving
(SP3s̃) and (SP4t̃,s̃) were disappointing, meaning that, at least for the test efficiency function,
incorporating the piecewise-linear function in the subproblem solving is better than solving
a series of linear subproblems. We only display here variant 4-1-1-1. Table 3 focusses on the
two best parameter settings.

Although setting 2-1-1-0 has a better average number of nodes, 2-1-1-1 generates less columns
and less pricing attempts. We consequently selected setting 2-1-1-1 for further experiments.

6.3 Comparison with the pseudo-polynomial formulation and impact of
instance parameters

In the second phase of the computational analysis, all 288 instances were solved with a Branch
& Price with the best parameter setting 2-1-1-1. The results were compared to the ones of
a black box MILP solver (CPLEX 12.6) applied on the piecewise-linear formulation (4)–(8).
The time limit was set to 7200 s. To avoid out-of-memory errors that occurred on the black

19



Settings

2-1-1-0 2-1-1-1

min 95 95
Number of columns generated max 118954 31424

avg 4483.7 4126.6

min 2 2
Number of pricing attempts max 2058 1674

avg 65.5 62.0

min 1 1
Number of nodes max 1317 1558

avg 34.6 36.7

Table 3: Preliminary results: focus on the two best settings.

box solver, a memory usage limit (1 GB) was also imposed on both algorithms. The results
obtained are summarized in Table 4. It shows that the Branch & Price described in this paper
is efficient for solving the energy optimization problem with non-reversible energy sources: it
was able to solve more than 90% of the instances to optimality and reached an average ratio
of 99.98% between the best-known lower and upper bound, which suggests that all instances
may be solved to optimality with only a small increase of the time limit. The black box
MILP solver applied on the pseudo-polynomial-size formulation solves less than 2% of the
instances to optimality and has an average ratio of 88.01%. Note that all executions of the
MILP solver but 5 were stopped because the memory limit was reached as shown by the
maximum CPU time of 1674.3 s. We also recall the results of the branch-and-price for 600 s
of CPU time. This illustrates the trade-off between quality and CPU time that the column
generation approach brings as the average CPU time falls significantly under the average CPU
time needed by the MILP solver while finding in average way better solutions (although no
LB could be found for 10 instances). We also ran the branch-and-price method with a single
node and no time limit (so all LB were found) and the results are still good with an average
ratio of 98.1% between the best-obtained lower and upper bound and 119 optimal solutions
found (as no branching was allowed, this is the gap between the relaxation of the extended
formulation and the heuristic ran by SCIP at the root node). This illustrates the high quality
of the LP relaxation of the extended formulation. Finally computing the pure LP relaxation
of the extended formulation by column generation (without any preprocessing nor heuristic
search) takes 48.7 s in average with a maximum of 1544 s and yields an average lower bound
close at 99.97% in average from the best known feasible solution with a minimum of 98.12 %.
This illustrates the high quality of the extended formulation relaxation.

Finally we analyze the instance difficulty w.r.t. their generation parameters scale, k, df and
mf. In Table 5 we give the number of optimal solutions found for each parameter value.

The results show that, as it could be expected, the time horizon scale has a large influence
on the instance hardness for time-indexed formulations. To a lesser extent, the study of the
influence of parameter k suggests that large energy requirements yield instances that are
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Extended Model Pseudo-polynomial-size Model

B&P 1 node B&P / 600 s B&P / 7200s Black Box Solver

# lower bounds 288 278 288 288

# opt 119 220 268 5

min 88.0% 94.79% 9.1% 58.1%
Ratio LB/UB max 100% 100% 100% 100%

avg 99.12% 99.81% 99.98% 88.01%

min 1 s 1 s 1 s 7 s
Time max 2625.1 600 s 7200 s 1674.3 s

avg 80.8 s 189.99 s 879.9 s 544.2 s

min 1 1 1 20577
# nodes max 1 1558 7100 12478166

avg 1 46.75 165.7 926119

Table 4: Efficiency of the Branch & Price compared to a black-box solver.

scale 1 10
# opt 141 127

k 1.25 2.5 5
# opt 92 89 87

df 0.1 0.15 0.2 0.25
# opt 64 66 70 68

mf 0.1 0.2 0.4 0.8 1.6 3.2
# opt 48 48 46 46 45 35

Table 5: Impact of the instance parameters on the number of optimally solved instances.

harder to solve than instances where tasks have lower energy requirement. No conclusion
can be drawn on the influence of the release date dispersion parameter (df). However the
category of instances with the larger time window (large mf) seems harder.

6.4 Application using a realistic non-linear efficiency function

A realistic efficiency function derived from the conversion function of a real-world fuel cell was
considered (see Fig. 1(b)). The function provided by researchers in Electrical Engineering
expresses the energy demand (or energy usable) in function of the energy cost (or energy
consumed) and therefore corresponds to ρ−1 and could not be easily inverted. Following the
methodology of [21], the non-linear function was bounded from above and below with two
piecewise linear functions ρ−1

ε
and ρ−1

ε
that verify equations (1)–(3) for a given value of ε.

To that end, the algorithms proposed in [21] were applied on convex or concave sections of
ρ−1. The resulting piecewise linear functions could then be easily inverted without any loss of
precision before their introduction into the mathematical model of the preemptive scheduling
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problem.

We considered four levels of precision: ε = 5%, 1%, 0.5% and 0.1%. Table 6 summarizes
the number of sectors obtained for the different piecewise linear functions. Fig. 4 illustrates
the bounding results for a precision ε = 10%. It can be observed that the abscissas of the
extremities of the sectors of ρ−1

ε
differ from the ones of the sectors of ρ−1

ε
. This contributes

to the reduction of the number of sectors for each of the piecewise functions, contrary to the
cases where the same limits are used for both the over- and the under-estimation functions,
as is done by Interval Branch-and-Bound methods or in box-bounded global optimization.

ε=5% ε=1% ε=0.5% ε=0.1%

ρ−1
ε

ρ−1
ε

ρ−1
ε

ρ−1
ε

ρ−1
ε

ρ−1
ε

ρ−1
ε

ρ−1
ε

# sectors 9 9 18 24 42 28 60 58

Table 6: Number of sectors of the piecewise linear functions ρ−1
ε

and ρ−1
ε
.
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Figure 4: A piecewise linear bounding result for ε = 10%.

For each value of ε, two MILPs, denoted by MILP and MILP respectively, are obtained by

substituting ρ with (ρ−1
ε
)
−1

and (ρ−1
ε
)
−1

, respectively. As the non-linear function appears

only in the objective function of the problem studied in this paper, the resulting MILP and
MILP both generate solutions feasible for the non-linear problem. The optimal solution cost
of MILP is an upper bound for the non-linear problem, less than ε% higher than its optimal
solution cost. The optimal solution cost of MILP is a lower bound for the non-linear problem,
less than ε% lower than its optimal solution cost. Solving both MILP and MILP and then
comparing their solution costs aims at lowering the gap between the best known upper and
lower bounds for the scheduling problem with non-linear efficiency function, which in the
worst case would be equal to ε%.

Table 7 shows the performance of the branch-and-price with the best parameter setting 2-
1-1-1 previously identified, considering a time limit of 600 s on all 288 instances and given
different values of ε. The results confirm the efficiency of the algorithm: for 2105 of the 2304
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cases the optimal solution of the MILP was found. Only in 151 cases was the algorithm not
able to produce lower bounds before the time limit. Among the 2153 remaining cases, the
average ratio between the lower and upper bound exceeds 99.85% for the four ε values tested.

ε=5% ε=1% ε=0.5% ε=0.1%

MILP MILP MILP MILP MILP MILP MILP MILP

# lower bounds 274 260 271 270 267 267 271 273

# opt 254 239 268 268 266 266 271 273

min 77.51% 93.39% 99.93% 99.94% 99.84% 99.99% 100% 100%
Ratio LB/UB max 100% 100% 100% 100% 100% 100% 100% 100%

avg 99.85% 99.94% 99.99% 99.99% 99.99% 99.99% 100% 100%

min 1 s 2 s 1 s 1 s 1 s 1 s 1 s 1 s
Time max 600 s 600 s 600 s 600 s 600 s 600 s 600 s 600 s

avg 127.99 s 151.64 s 101.72 s 111.00 s 98.60 s 96.77 s 89.37 s 88.97 s

min 11 4 119 116 114 112 114 115 116
# columns max 56360 60835 56295 58424 43296 43526 50756 52719

avg 4666 4735 5139 5263 5142 5161 5427 5425

min 4 4 5 4 4 5 5 4
# pricing attempts max 633 2711 185 1086 1379 1066 492 442

avg 32.06 74.90 20.95 25.65 25.69 24.27 21.45 21.42

min 1 1 1 1 1 1 1 1
# nodes max 305 307 54 86 23 28 19 13

avg 10.60 9.58 2.16 2.81 1.47 1.57 1.14 1.10

Table 7: Branch-and-Price output.

Finally, we focussed on the instances for which both MILP and MILP could be solved to
optimality. This concerned respectively 233, 265, 264 and 270 instances for ε = 5%, 1%,
0.5% and 0.1%. The best upper and lower bounds were obtained with equations (61)–(62).

Best UB = min{MILP,MILP ∗ (1 + ε)%} (61)

Best LB = max{MILP,MILP ∗ (1− ε)%} (62)

Table 8 shows that except for one instance, the best upper bounds were derived from MILP
whereas the best lower bounds were derived from MILP. The final gaps between the best
upper and lower bounds found, also available in Table 8, are on average smaller (and therefore
better) than ε%, in the best cases even smaller than half of ε% and in the worst cases equal
to ε%. This illustrates the benefits of the piecewise bounding approach: (i) the guarantee
of feasibility for the solution obtained with respect to the non-linear problem and; (ii) the
tighter gap between the best-known upper and lower bounds.

7 Conclusions

This paper contributes to the definition of a novel and efficient methodology for the integration
of realistic energy characteristics in combinatorial optimization problems via piecewise-linear
lower and upper bounding of the non-linear energy conversion functions. Focussing on a
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ε=5% ε=1% ε=0.5% ε=0.1%

# instances 233 265 264 270

Best UB MILP 232 265 264 270
MILP ∗ (1 + ε)% 1 0 0 0

Best LB MILP 1 0 0 0

MILP ∗ (1− ε)% 233 265 264 270

Gap min 2.64% 0.53% 0.27% 0.04%(
= Best UB − Best LB

Best LB

)
max 5.00% 0.83% 0.40% 0.08%
avg 3.54% 0.63% 0.31% 0.06%

Table 8: Final results for the scheduling problem with a non-linear cost function.

scheduling problem where the objective is to minimize the total energy cost of a set of
preemptive tasks subject to time windows, we show that the preemptive scheduling problem
with piecewise-linear energy cost from multiple non-reversible sources, can be transformed
into an equivalent single-source problem. Proof of the NP-hardness of the problem in the
general case and some polynomial particular cases are provided. We present two mixed-
integer linear programming (MILP) formulations, among which an extended formulation. A
branch-and-price procedure is proposed to solve the extended formulation. Computational
experiments on a set of scheduling instances with a realistic efficiency function from a fuel
cell energy conversion function show the efficiency of the approach, with a final gap between
best known upper and lower bounds between 0.04% and 0.08%.

Future work includes the introduction of reversible energy sources, able not only to produce
energy but also to retrieve it. An additional level of complexity would be added since the
non-reversible sources could produce more energy than the demand at certain times and store
the excess in the reversible sources to satisfy the demand of a later time. This also invalidates
the proofs of theorems of the problem without reversible energy sources and the extended
formulation presented would no longer apply.
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[4] J. B lażewicz, K. H. Ecker, E. Pesch, G. Schmidt, and J. Wȩglarz. Scheduling computer
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[6] J. B lażewicz, M. Machowiak, J. Wȩglarz, M. Kovalyov, and D. Trystram. Scheduling
malleable tasks on parallel processors to minimize the makespan. Annals of Operations
Research, 129(1-4):65–80, 2004.

[7] A. Borghetti, C. D’Ambrosio, A. Lodi, and S. Martello. An MILP approach for short-
term hydro scheduling and unit commitment with head-dependent reservoir. IEEE
Transactions on Power Systems, 23(3):1115–1124, 2008.

[8] E. Camponogara, M. P. de Castro, and A. Plucenio. Compressor scheduling in oil
fields: A piecewise-linear formulation. In IEEE International Conference on Automation
Science and Engineering (CASE), pages 436–441, September 2007.

[9] R. Carli and M. Dotoli. Energy scheduling of a smart home under nonlinear pricing. In
IEEE 53rd Annual Conference on Decision and Control (CDC), pages 5648–5653, 2014.

[10] J. Chang, S. Khuller, and K. Mukherjee. LP rounding and combinatorial algorithms for
minimizing active and busy time. In G. E. Blelloch and P. Sanders, editors, 26th ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA, pages 118–127, 2014.

[11] Y. Gaoua, S. Caux, and P. Lopez. A combinatorial optimization approach for the
electrical energy management in a multi-source system. In International Conference on
Operations Research and Enterprise Systems (ICORES), pages 55–59, February 2013.

[12] M. Guemri, S. Caux, and S. U. Ngueveu. Using quasi-Newton method for energy man-
agement in electrical multi source systems. In IEEE International Conference on Envi-
ronment and Electrical Engineering (EEEIC), pages 194–199, May 2012.

[13] M. Guemri, S. Caux, S. U. Ngueveu, and F. Messine. Heuristics and lower bound
for energy management in hybrid-electric vehicles. In 9th International Conference on
Modeling, Optimization & SIMulation (MOSIM), Bordeaux, June 2012.
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cent Models, Algorithms, and Applications, pages 289–308. Kluwer Academic Publishers,
Boston, 1999.

25



[16] T. Kis. A branch-and-cut algorithm for scheduling of project with variable-intensity
activities. Mathematical Programming: Series A, 103:515–539, 2005.

[17] O. L. Mangasarian, J. B. Rosen, and M. E. Thompson. Global minimization via
piecewise-linear underestimation. Journal of Global Optimization, 32(1):1–9, 2005.

[18] A. Mingozzi, V. Maniezzo, S. Ricciardelli, and L. Bianco. An exact algorithm for the
resource-constrained project scheduling problem based on a new mathematical formula-
tion. Management Science, 44(5):714–729, 1998.

[19] M. Nattaf, C. Artigues, and P. Lopez. A hybrid exact method for a scheduling problem
with a continuous resource and energy constraints. Constraints, 20(3):303–324, 2015.

[20] M. Nattaf, C. Artigues, P. Lopez, and D. Rivreau. Energetic reasoning and mixed-
integer linear programming for scheduling with a continuous resource and linear efficiency
functions. Working paper.

[21] S. U. Ngueveu, B. Sareni, and X. Roboam. Piece-wise bounding and integer linear
programming for the optimal management of a water pumping and desalination process.
Technical report, LAAS-CNRS, April 2014.
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