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In this paper, we address a preemptive scheduling problem involving multiple nonreversible energy sources. To the classical scheduling issue, an additional decision level is added regarding the selection of the energy source used to satisfy the total power demand of tasks processed at each instant. Different non-reversible energy sources are available, with different characteristics in terms of efficiency and power range. The objective is to identify the best combination between scheduling and energy resource utilization that minimizes the total energy cost of the project. Non-linear efficiency functions used to compute energy costs are bounded from above and below by two piecewise-linear curves, yielding two instances of a scheduling problem with a piecewise-linear objective that can be solved separately. For the piecewise-linear scheduling problem, we show that the problem involving multiple sources is equivalent to a single-source problem, the particular case of a linear function is polynomially solvable, and the case with a piecewise-linear function with two pieces is NP-hard. A pseudo-polynomial size time-indexed mixed-integer linear formulation of the problem and its Dantzig-Wolfe decomposition yielding an extended formulation are presented. A branch-and-price procedure is proposed to solve the extended formulation. The formulations are compared on a set of scheduling instances, considering partly realistic efficiency functions.

Introduction

Energy considerations are becoming paramount for real-world applications. Moreover optimization issues are at the core of many industrial systems. A rising combinatorial optimization challenge is then the integration of energy constraints in deterministic scheduling 1 and resource allocation models. We consider in this paper a scheduling problem where the objective is to minimize the total energy cost of a set of preemptive tasks subject to time windows. Under a discrete time model, the set of tasks that are in process at a given time period generates a demand for this period. We assume that there are several non-reversible energy sources that can be used to cover this demand, such that the part of the demand covered by a source is converted in cost via a non-linear function.

For a given source, the conversion function represents physical, technological, performance and/or billing characteristics. Contrary to reversible energy sources such as batteries and supercapacitors, non-reversible energy sources such as fuel cells, electric grid and combustion engines can produce energy but are unable to recover it (at least during the considered scheduling horizon).

We first give two practical examples of such non-linear demand/cost conversion function. The first example is the inclining block rate for electricity tariff, which is popular in many countries including the U.S. [START_REF] Woo | A review of electricity product differentiation[END_REF]. A customer having an energy consumption of Q kWh in a certain time period, will pay a bill B = P 1 min(Q, K) + P 2 max(Q -K, 0) on that period where K is a threshold up to which the rate is P 1 while consumption above the threshold is billed with another rate P 2 > P 1 . In Fig. 1(a), the expression of B in function of Q for a threshold of 4.6 kW and prices P 1 = 9.767ec and P 2 = 16.0485ec. The function is piecewise linear. Note that the consumption is always measured on a period basis (classically 15 min, see the case study in the foundry industry in [START_REF] Haït | A hybrid CP/MILP method for scheduling with energy costs[END_REF]). For other types of energy sources, obtaining the energy required by a set of tasks during a certain period can require a physical conversion subject to energy loss. For example, a Fuel Cell follows the scheme: source → converter → usable energy and the "energy cost" refers to the energy consumed from the source. In Fig. 1(b), the usable energy (demand) is expressed as a non-linear function of the consumed energy (cost) for a typical fuel cell used in hybrid electric vehicles [START_REF] Gaoua | A combinatorial optimization approach for the electrical energy management in a multi-source system[END_REF][START_REF] Guemri | Using quasi-Newton method for energy management in electrical multi source systems[END_REF][START_REF] Guemri | Heuristics and lower bound for energy management in hybrid-electric vehicles[END_REF]. This work is part of an ongoing effort aiming at solving explicitly and in an integrated fashion energy resource allocation problems and energy-consuming activity scheduling problems with such non-linear energy costs, yielding the following contributions.

First, together with a recent contribution [START_REF] Ngueveu | Piece-wise bounding and integer linear programming for the optimal management of a water pumping and desalination process[END_REF], this paper contributes to the definition of a novel and efficient methodology for the integration of energy characteristics in combinatorial optimization problems via piecewise-linear lower and upper bounding of the non-linear energy conversion functions. Second, we show that the preemptive scheduling problem with piecewise-linear energy cost from multiple non-reversible sources, can be transformed into an equivalent single-source problem. Third, we exhibit a polynomially-solvable case of the problem and we show its NP-hardness in general. Fourth, we provide mixed-integer linear programming (MILP) formulations, among which an extended formulation. A branch-andprice procedure is proposed to solve the extended formulation. Computational experiments on a set of scheduling instances, considering partly realistic efficiency functions show the efficiency of our approach.

The remainder of the paper is organized as follows. Section 2 presents a relevant literature review, then the definition, a first MILP formulation and the complexity analysis of the problem are provided in Section 3. Section 4 proposes an extended formulation issued from the Dantzig-Wolfe decomposition of the first formulation. A branch-and-price procedure is described in Section 5. Finally, a computational evaluation of the propositions on scheduling instances with realistic efficiency functions is provided in Section 6, before stating the Conclusions.

2 Literature review and presentation of the piecewise-linear lower and upper bounding framework

Over the years the stakes of resource allocation problems and production scheduling applications have evolved towards a more responsible management of resources. In particular new models in production scheduling were considered, where the energy demand can be modulated, mainly to avoid peaks of electrical consumption. A state-of-the-art review of energy concerns in production scheduling and a method for minimizing total energy cost on a single machine scheduling problem can be found in [START_REF] Shrouf | Optimizing the production scheduling of a single machine to minimize total energy consumption costs[END_REF]. In this paper, as well as in many other related studies, the energy costs fluctuate over time, depending on the market and on the processing state of the machine but are seldom subject to non-linear variations depending on demand. For more complex job-shop or resource-constrained project scheduling problems, the inclining block rate for electricity tariff yielding the piecewise-linear function with two pieces presented in Fig. 1(a) was considered in [START_REF] Haït | A hybrid CP/MILP method for scheduling with energy costs[END_REF] for a scheduling problem in a foundry where a hybrid constraint-programming/MILP approach was proposed. The problem was further studied in [START_REF] Artigues | The energy scheduling problem: Industrial casestudy and constraint propagation techniques[END_REF] but although the non-linear electricity costs were considered, other non-linearities coming from energy modulation were ignored, as explained below. A metal is melted in induction furnaces and the electrical power of the furnaces can be adjusted at any time to avoid exceeding a maximum prescribed power limit. The electrical power can be seen as a continuous function of time to be determined, with the constraint that it must lie within minimum and maximum power levels that must be satisfied for the melting operation. More precisely, let P i (t) be the power used by operation i at time t, then the considered energy constraints state that the total energy consumed equal to

f i t i P i (t)dt
, where t i and f i are the start and end times of the melting operation i, has to be equal to the operation energy demand W i , which amounts to ignore the efficiency functions of the furnace. For the same type of adjustable power problems, constraint propagation algorithms on the basis of a continuous setting were proposed in [START_REF] Artigues | Energetic reasoning for energy-constrained scheduling with a continuous resource[END_REF] but energy efficiency functions were also ignored.

A related work has also been carried out by Kis [START_REF] Kis | A branch-and-cut algorithm for scheduling of project with variable-intensity activities[END_REF] for a discretized time problem with variable-intensity tasks, who established polyhedral results and proposed a branch-and-cut procedure. Besides time discretization, the problem does not involve efficiency functions.

Recently, the constraint propagation algorithms were extended to linear efficiency functions in [START_REF] Nattaf | A hybrid exact method for a scheduling problem with a continuous resource and energy constraints[END_REF].

Other studies consider explicitly non-linear energy constraints and costs. In scheduling, several authors considered different variants of the problem where the resource (not necessarily an energetic resource) usage may vary continuously and such that the amount of resource required by a task may vary over time. Wȩglarz et al. [23] call this issue the processing rate vs. resource amount model, as the processing rate of the activity is a continuous increasing function of the allotted resource amount at a time, which corresponds to the efficiency function (see also [START_REF] Ecker | Scheduling computer and manufacturing processes[END_REF][START_REF] Ecker | Handbook on Scheduling: From Theory to Applications[END_REF]). Providing a general framework for solving mixed discrete/continuous problems with concave processing rate (efficiency) functions, Józefowska et al. [START_REF] Józefowska | Project scheduling under discrete and continuous resources[END_REF] show that once the sequence of sets of tasks to be scheduled in parallel is determined, the continuous resource allocation can be made by a convex non-linear optimization problem. In the literature on parallel processor scheduling, the malleable task model also considers the possibility of changing the number of processors assigned to a task over time, with non-linear processing rate functions but this yields a non-linear relation between the number of used processors and task duration without consideration of energy costs [START_REF] Machowiak | Scheduling malleable tasks on parallel processors to minimize the makespan[END_REF]. Another family of studies concern non-linear energy consumption models for power-aware scheduling in computing devices [START_REF] Albers | Energy-efficient algorithms[END_REF]. This consists in the possibility to scale the speed s(t) of the processor at time t so that the power consumed by the processor is generally approximated by s(t) α , with α a constant. The objective is to find a compromise between the total energy consumption of the processor given by ∞ 0 s(t) α dt and the duration f i -t i of a task scheduled in an interval which must be sufficient to bring the required amount of work, i.e. W i = f i t i s(t)dt. The major outcomes obtained in this area consist in complexity results for offline problems and competitiveness analysis of online algorithms. In contrast with these studies, we aim at rather proposing mathematical decomposition methods to solve (relatively) general problems.

Furthermore, these references are generally considering that resource/energy is assigned individually to each task with a modulation of the amount yielding variable task duration and energy consumption with possibly non-linear relations. Our study takes place in different setting where the schedule generates a global period-wise energy demand that has to be satisfied with different non-reversible energy sources with non-linear energy/cost conversion functions. This concerns for example the above-presented electricity tariff application in the foundry industry [START_REF] Haït | A hybrid CP/MILP method for scheduling with energy costs[END_REF]. Another example is the global energy demand that is generated from the schedule of task consuming activities in a smart home where different energy sources are available. In [START_REF] Carli | Energy scheduling of a smart home under nonlinear pricing[END_REF], a time-indexed MINLP formulation is proposed to deal with energy-consuming task scheduling, energy source selection from renewable resources (e.g. solar energy) based production forecasts, dispatchable energy generators (e.g. fuel cells) using a linear approximation of the production cost, storage devices with linear efficiency functions and the electric grid for which a quadratic cost is assumed. A daily scheduling problem is solved in different scenarios involving 8 energy-consuming non-preemptable tasks. In this work, we do not consider the storage devices but we aim at considering more general efficiency functions.

Previous works have focussed on the optimization of the allocation of multiple sources of energy to predefined demand curves in hybrid electric vehicles. In such real-world applications, non-linearities coming from energy efficiency functions, make the allocation problem difficult to solve. In this context, Guemri et al. [START_REF] Guemri | Heuristics and lower bound for energy management in hybrid-electric vehicles[END_REF] showed that flaws in existing modeling hypotheses led to significant gaps between state-of-the-art solutions and optimal ones. Global optimization-based heuristics have been designed to outperform the prior state-ofthe-art [START_REF] Guemri | Using quasi-Newton method for energy management in electrical multi source systems[END_REF][START_REF] Guemri | Heuristics and lower bound for energy management in hybrid-electric vehicles[END_REF]. As an alternative to non-linear modeling yielding suboptimal solutions and important computation time, a new and efficient combinatorial modeling was proposed [START_REF] Gaoua | A combinatorial optimization approach for the electrical energy management in a multi-source system[END_REF]. Although these studies considered the allocation of multiple energy sources and general nonlinear efficiency functions, the scheduling of energy consuming activities, that would allow more flexibility for energy management was not considered.

A few promising mathematical programming-based approaches on similar problems can be found [START_REF] Borghetti | An MILP approach for shortterm hydro scheduling and unit commitment with head-dependent reservoir[END_REF][START_REF] Camponogara | Compressor scheduling in oil fields: A piecewise-linear formulation[END_REF], either based on MINLP or transformations into approximate MILP. We now present an alternative approach based on piecewise-linear lower and upper bounding, rather than approximating, the non-linear efficiency functions (see also [START_REF] Mangasarian | Global minimization via piecewise-linear underestimation[END_REF]). Successfully applied by Ngueveu et al. [START_REF] Ngueveu | Piece-wise bounding and integer linear programming for the optimal management of a water pumping and desalination process[END_REF] as a proof of concept for the solution of a water production optimization problem, the solution framework is decomposed into two stages: (i) the bounding of the nonlinear energy efficiency function, then (ii) the reformulation of the problem, which originally is a mixed-integer non-linear problem (MINLP), into two mixed integer linear problems (MILP) using the pair of bounding functions already mentioned above. The piecewise-linear bounding of a function f of m variables within a tolerance value consists in identifying two piecewiselinear functions denoted f and f that verify equations (1) to [START_REF] Artigues | The energy scheduling problem: Industrial casestudy and constraint propagation techniques[END_REF]. The two MILPs, denoted MILP and MILP respectively, are obtained by substituting f with f and f , respectively.

f (x) ≤ f (x) ≤ f (x), ∀x ∈ R m (1) f (x) -f (x) ≤ f (x), ∀x ∈ R m (2) f (x) -f (x) ≤ f (x), ∀x ∈ R m (3) 
Solving a MILP generates solutions that are feasible for the original MINLP, and that have a total cost less than % higher than the optimal solution cost. Solving a MILP generates solutions that may not be feasible for the original MINLP, but whose total cost is less than % lower than the optimal solution cost and can help proving the optimality of a solution. However, if the non-linear function appears only in the objective function, as it will be in our case, then any solution of MILP is also feasible for the original problem. Obtaining a lower bound and an upper bound with a controlled gap is an advantage of this approach against a single piecewise-linear approximation. Note that both problems share the exact same structure and only differ in terms of the numerical data of their respective piecewiselinear functions. Therefore, a single dedicated resolution method needs to be applied to solve both problems. Furthermore, recall that we approximate a non-linear energy demand/cost conversion function, which either gives the energy cost in function of the energy demand such as in the billing application (Fig. 1(a)) or the energy demand in function of the energy cost such as for the fuel cell efficiency function (Fig. 1(b)). It follows that to obtain an integrated model of these two cases, inversion of some source functions can be necessary, which may be not an easy task for some non-linear functions. This in an argument in favor of the piecewiselinear bounding scheme, rather than a direct usage of the non-linear function. As we will see when studying the structure of our scheduling problem, there is another advantage of this framework.

In Ngueveu et al. [START_REF] Ngueveu | Piece-wise bounding and integer linear programming for the optimal management of a water pumping and desalination process[END_REF], the resulting MILP and MILP were solved with a MILP solver. The cases where the resulting problems cannot be efficiently solved with a black box solver remain to be studied.

Problem statement and complexity analysis

The problem definition requires a discrete time horizon T = {1, . . . , |T |}, a set of preemptive activities A = {1, . . . , n}, each activity i having a duration p i , an energy demand per time unit of b i and a time window that starts at r i and ends at d i . A constant term a it with i ∈ A and t ∈ T is equal to 1 if t ∈ [r i , d i [ and 0 otherwise. The set of non-reversible energy sources available is S = {1, . . . , m}. Remind that a non-reversible source is only able to produce energy, but not to recover it. Let ρ s denote the (non-linear) efficiency function for source s, i.e. a cost or energy consumption of x produces an amount of usable energy of ρ s (x).

In other words, (ρ s ) -1 (x) is required from s to satisfy a demand of x. Since all s ∈ S are non-reversible, then ρ s (x) = 0, ∀x < 0, ∀s ∈ S. The objective is to schedule the tasks so as to minimize the total energy consumption from all energy sources. Let (P) denote the resulting problem. It can be expressed using binary decision variables x it , equal to 1 iff activity i is being executed at time period t; and continuous positive decision variables w st , equal to the amount of energy demand covered by energy source s at instant t. A MILP formulation of (P) is:

(P) min s∈S t∈T (ρ s ) -1 (w st ) (4) s.t. t∈T a it x it ≥ p i , ∀i ∈ A (5) s∈S w st = i∈A b i x it , ∀t ∈ T (6) x it ∈ {0, 1}, ∀i ∈ A, t ∈ T (7) 
w st ≥ 0, ∀s ∈ S, t ∈ T (8) 
The objective function (4) aims at minimizing the total energy cost. Constraints (5) set each task i in process during at least p i time periods. Constraints (6) ask to cover the energy demand of each task by the available sources. Constraints ( 7)-( 8) give the domains of the variables. Because of the piecewise-linear bounding-based solution methodology, all efficiency functions ρ s (and thus (ρ s ) -1 ) can be assumed to be piecewise linear. Such functions can be modeled either with dedicated piecewise-linear functions in black-box solvers or by adding additional binary variables aiming at identifying which sector of the piecewise-linear function has to be activated at each time period. These additional variables may weaken the linear relaxation of the resulting model. Still, the mathematical model has a pseudo-polynomial (depending on the size of the time windows) number of variables and constraints and therefore can be loaded into any MILP solver for a reasonable size of the time horizon.

A scheduling instance and efficiency function are given in Table 1 and Fig. 2, respectively. A feasible solution and the corresponding energy cost profile are shown in Fig. 3(a). At time 5 for example, the tasks being executed are T1 and T2. As a consequence the total instantaneous energy demand is b 1 +b 2 = 2+3 = 5, which would lead to an energy cost of 4 according to the efficiency function curve of the energy source. The optimal solution is provided in Fig. 3(b). It possesses a higher makespan than the previous solution. However, any solution with a higher makespan also has a higher energy cost, which shows that minimizing the energy cost does not necessarily translate into minimizing or maximizing the makespan.

The structural analysis of (P) led to findings expressed with Theorems 3.1, 3.2, 3.3, and 3.4.

The first result shows that, due to the discrete nature of the problem, replacing general nonlinear functions by piecewise-linear approximations can be made without loss of generality.

Theorem 3.1 For any problem (P ) with non-linear functions (ρ s ) -1 , there exist piecewiselinear approximations (ρ s ) -1 of functions (ρ s ) -1 such that problem ( P ) obtained by replacing (ρ s ) -1 by (ρ s ) -1 for all s has the same optimal solution as (P).

Proof As there is a finite number n of tasks, there are at most 2 n different values for the possible energy demand. In addition, if all b i are integer, there are at most max(2 n , i∈A b i ) different values of the demand. Let x q denote the q th different value of the demand in increasing order. For each source s a continuous piecewise linear function can be built by connecting consecutive points of the series (x q , y q ) where y q = (ρ s ) -1 (x q ). Note that this yields a purely combinatorial model where a binary variable is necessary for each possible demand value.

Theorems 3.2 states that there is in fact no need to explicitly consider multiple non-reversible sources. Proof The proof is based on the fact that (P) can be reformulated as:

(P ) min t∈T (ρ ) -1 ( i∈A b i x it ) (9) s.t. t∈T a it x it ≥ p i , ∀i ∈ A (10) 
x it ∈ {0, 1}, ∀i ∈ A, t ∈ T (11) 
where ∀x ∈ R, ρ (x) -1 can be defined as the solution cost of the problem:

(Cost x ) min( s∈S (ρ i ) -1 (w s )) (12) s.t. s∈S w s = x (13) 
w s ∈ R + , ∀s ∈ S (14) 
Therefore, the efficiency function of an equivalent single non-reversible energy source can be obtained from an optimal pre-aggregation of the |S| efficiency functions into a single one ρ (x). Proof Consider that ρ -1 (x) = ax + b if x > 0 and ρ -1 (0) = 0. Let δ t = 1 if there is an activity scheduled at t, assuming that all demands b i are stricly positive. Given a solution (x it ) of the problem we have a total cost of t∈T ,δt=1 (a

( i∈A b i x it ) + b) = a( i∈A b i )( t∈T x it ) + b t∈T δ t = a i∈A b i + b t∈T δ t .
This amounts to minimizing the number of idle time periods for a preemptive scheduling problem with release dates, deadlines, and jobs of arbitrary durations. This problem is known as the preemptive busy time model, for which an O(n 2 ) exact greedy algorithm has been proposed in [START_REF] Chang | LP rounding and combinatorial algorithms for minimizing active and busy time[END_REF].

Theorem 3.4 The single non-reversible energy source problem is NP-hard even for a concave linear efficiency function with two pieces that is part of the input.

Proof The proof is based on the fact that any decision instance of the discrete bin-packing problem can be transformed into a particular decision instance of (P'). The discrete binpacking problem can be stated as follows. Given a list of n items of size b i , ∀i ∈ 1..n, is it possible to assign each item to a bin such that the sum of the item sizes in a bin does not exceed C and the number of bins used does not exceed B? This is equivalent to stating the following ( P') problem: Given a list of n unit-time activities, each activity i having an energy demand b i , a time window [0, B] and given an energy source of inverse efficiency function [START_REF] Józefowska | Project scheduling under discrete and continuous resources[END_REF], does it exists a solution of ( P') that has a cost not exceeding B?

( ρ ) -1 (x) = x/C if 0 ≤ x ≤ C (B -1)x + 1 -(B -1)C if x ≥ C (15) 
Indeed, since the total cost can be expressed as B t=0 ( ρ ) -1 ( n i=1 b i * x it ) where x it is a binary variable equal to 1 if and only if activity i is scheduled at time t, the equivalence between the decision variant of the discrete bin-packing problem and ( P') can be easily shown. If the demand stays in time window [0, B] below threshold C then the cost is below B as x/C ≤ 1, ∀x ≤ C. Otherwise, as soon as the demand is larger than or equal to C + 1 the cost is larger than B. Therefore the decision variant of (P') generalizes the decision variant of the discrete bin-packing. As a consequence, the decision variant of (P') is NP-complete, and therefore (P') is NP-hard. We have proved NP-hardness for a function ( ρ ) -1 , which is strictly increasing, convex and inversible. Hence ( ρ ) is concave.

Extended formulation and Dantzig-Wolfe Decomposition

Because of Theorem 3.2, the remainder of the paper focusses on solving efficiently problem (P'), which considers a single non-reversible energy source having a piecewise-linear efficiency function. Consequently, variables w st can be disregarded from Model ( 4)-( 8) and the efficiency function of the unique energy source will be simply denoted ρ and its reverse ρ -1 .

Extended formulation

The presence of piecewise-linear function and the resulting additional variables in the mathematical model can result into a weaker linear relaxation. To counter that, we propose a set partitioning-based reformulation with a purely linear objective-function. This formulation is based on the identification of sets of feasible subsets. A feasible subset [START_REF] Mingozzi | An exact algorithm for the resource-constrained project scheduling problem based on a new mathematical formulation[END_REF] is a set of activities that can be in progress simultaneously without exceeding any resource availability, and that are not pairwise linked by a precedence constraint. Let l ∈ L be a set of activities that can be processed simultaneously according to the constraints. The set of activities belonging to l is denoted A l (⊆ A). Each l ∈ L is assigned an energy demand b l = i∈A l b i , an energy cost c l = ρ -1 (b l ), a release date r l = max i∈A l r i , and a due date d l = min i∈A l d i . Finally, the set of activity sets executable at instant t is denoted L t , and is composed of sets l that verify r l ≤ t < d l . Binary variables y lt are defined, equal to 1 if activity set l is chosen at time t and 0 otherwise.

The resulting formulation (EF) of problem (P) is expressed by equations ( 16)-( 21) and requires the introduction of constant terms a il equal to 1 if i ∈ A l and 0 otherwise. Its validity is stated by Theorem 4.1.

(EF) min

t∈T l∈Lt c l y lt [START_REF] Kis | A branch-and-cut algorithm for scheduling of project with variable-intensity activities[END_REF] s.t.

x it - l∈Lt a il y lt = 0, ∀i ∈ A, t ∈ T ( 17 
) l∈L D l -1 t=R l a il y lt ≥ p i , ∀i ∈ A ( 18 
) l∈Lt∪∅ y lt = 1, ∀t ∈ T ( 19 
)
x it ∈ {0, 1}, ∀i ∈ A, t ∈ T ( 20 
)
y lt ≥ 0, ∀t ∈ T , l ∈ L t ∪ ∅ (21) 
The objective function ( 16) to be minimized is the sum over time of the energy cost of each activity set being used at each instant. Constraints [START_REF] Mangasarian | Global minimization via piecewise-linear underestimation[END_REF] ensure the coherence between variables x and y. Constraints [START_REF] Mingozzi | An exact algorithm for the resource-constrained project scheduling problem based on a new mathematical formulation[END_REF] ensure that the duration of each activity is satisfied. Constraints [START_REF] Nattaf | A hybrid exact method for a scheduling problem with a continuous resource and energy constraints[END_REF] state that one activity set is active at each instant, empty set included. Constraints ( 20) and ( 21) specify the domain of each variable.

Theorem 4.1 An optimal solution (x, y) of MILP (EF) provides an optimal solution for problem (P).

Proof Proving that an optimal solution (x, y) of MILP (EF) verifying y ∈ [0, 1] |L||T | is also an optimal solution for problem (P) is straightforward. It remains to be shown, however, that relaxing constraints y ∈ [0, 1] |L||T | into constraints [START_REF] Ngueveu | Piece-wise bounding and integer linear programming for the optimal management of a water pumping and desalination process[END_REF] still yields an optimal solution for the original problem. The proof of validity of Theorem 4.1 consists in proving that although decision variables y lt are continuous, the model ensures that their values are always binary in feasible solutions, equal to 1 if activity set l is being executed at time t, and 0 otherwise.

Let S be a feasible solution of MILP (EF):

x it ∈ [0, 1] |A||T | and y lt ∈ R |L||T | .
Given an instant t * ∈ T , let us denote:

• L >0 the subset of activity sets used at instant t * . In other words L >0 = {l : y lt * > 0, ∀l ∈ L t * }.

• A L >0 the subset of activities that appear in at least one set l of L >0 . In other words A L >0 = {i : ∃l ∈ L >0 that verifies a il = 1}.

• L >0 (i) the subset of activity sets from L >0 that contain activity i.

Since y lt * > 0, ∀l ∈ L >0 (by definition) and l∈L >0 y lt * = 1 (from constraints ( 19)), we deduce proposition 4.2 which is necessary to continue the proof.

Proposition 4.2 ∀ L ⊆ L >0 , if l∈ L y lt * = 1 then L = L >0 .
Since by definition ∀i ∈ A L >0 , x it * = 1, we can deduce from constraints (17) that:

l∈L >0 (i) y lt * = 1 ( 22 
)
where

L >0 (i) ⊆ L >0 .
Finally, combining Proposition 4.2 and constraint [START_REF] Shrouf | Optimizing the production scheduling of a single machine to minimize total energy consumption costs[END_REF] we can deduce:

L >0 (i) = L >0 , ∀i ∈ A L >0 . (23) 
Constraints [START_REF] Wȩglarz | Project scheduling with finite or infinite number of activity processing modes -A survey[END_REF] imply that:

• either |L >0 | = 1 and therefore all y lt * are integer

• or |L >0 | > 1 but all activity sets from L >0 are identical.

The latter assertion is impossible because the model does not authorize multiple identical columns. Therefore y lt * are integer. Combined with constraints [START_REF] Nattaf | A hybrid exact method for a scheduling problem with a continuous resource and energy constraints[END_REF], this proves that y ∈ [0, 1] |L||T | . Thus, solving (EF) produces optimal solutions for the original problem (P).

Formulation (EF) has a polynomial number of constraints, a polynomial number of variables x it , but an exponential number of variables y lt and therefore its linear relaxation can be solved with column generation. The linear relaxation of (EF), which serves as the master problem (MP) of the Dantzig-Wolfe decomposition is given by equations ( 24)-(29). Note that the empty set does not belong to L, therefore if no task is being executed then the left-hand-side of equations ( 27) is equal to 0.

(MP) min

t∈T l∈Lt c l y lt (24) 
s.t.

x it - l∈Lt a il y lt = 0, ∀i ∈ A, t ∈ T (25) l∈L D l -1 t=R l a il y lt ≥ p i , ∀i ∈ A (26) l∈Lt y lt ≤ 1, ∀t ∈ T (27) 0 ≤ x it ≤ 1 ∀i ∈ A, t ∈ T ( 28 
)
y lt ≥ 0 ∀t ∈ T, l ∈ L t (29) 
At each iteration α of a column generation we solve a restricted master problem (RMP α ) obtained by restricting L to a subset of activity sets L α ⊆ L, then try to generate one or several activity sets of negative reduced cost using the dual variables values of the solution found. If no such activity set can be generated, then the current solution is optimal for the current linear relaxation (MP). Otherwise, the best sets with negative reduced cost are added to L α to obtain L α+1 and the new master problem (RMP α+1 ) is solved.

Let w it , u i , v t and z it be the dual variables associated with constraints (25), ( 26), ( 27) and (28), respectively. The resulting dual of (MP) is:

(DMP) max i∈A p i u i - t∈T v t - i∈A t∈T z it (30) s.t. i∈A a il (u i -w it ) -v t ≤ c l , ∀t ∈ T, l ∈ L t (31) w it -z it ≤ 0, ∀i ∈ A, t ∈ T (32) w it ∈ R, ∀i ∈ A, t ∈ T ( 33 
)
u i ≥ 0, ∀i ∈ A (34) v t ≥ 0, ∀t ∈ T (35) 
z it ≥ 0, ∀i ∈ A, t ∈ T (36) 
Any column y lt missing from (RMP α ) corresponds to a constraint (31) missing from its dual. Therefore, identifying columns of negative reduced cost is equivalent to identifying missing violated inequalities (31). As a consequence, the subproblem resolution (also called pricing procedure) consists in building an activity set l and identifying an instant-time t that maximizes the difference between the left-hand-side and the right-hand-side of inequality (31). If the difference is strictly positive, then the corresponding column y l, t is introduced into the model. Otherwise it can be disregarded and the current optimal solution of (RMP α ) is the optimal solution of the current (RMP).

Subproblem SP1: With variable t

Generating the columns of negative reduced cost consists in building the pair ( l, t) that maximize the violation of constraints (31). The corresponding subproblem can be modeled with binary decision variables α i equal to 1 iff activity i is selected to compose the set l, β t equal to 1 iff time t is selected (t = t), and finally variables γ it equal to 1 iff both activity i and time t have been selected. The resulting subproblem denoted (SP1) takes as input data the current dual variables values u i , v t and w it .

(SP1) max

i∈A u i α i - i∈A t∈T w it γ it - t∈T v t β t -ρ -1 ( i∈A b i α i ) (37) s.t. α i + β t ≤ 1, ∀i ∈ A, t ≤ r i -1 or t ≥ d i ( 38 
) t∈T β t = 1 (39) γ it -0.5α i -0.5β t ≤ 0, ∀i ∈ A, t ∈ T (40) γ it -α i -β t ≥ -1, ∀i ∈ A, t ∈ T (41) α i ∈ [0, 1], ∀i ∈ A ( 42 
)
β t ∈ [0, 1], ∀t ∈ T (43) γ it ∈ [0, 1], ∀i ∈ A, ∀t ∈ T (44) 
The objective function (37) is piecewise-linear and maximizes the violation of constraints (31). Constraints (38) forbid the choice of an instant t outside of the time window of the activities selected. Constraint (39) enforces the choice of a single instant. Constraints (40) and ( 41) ensure the coherence between the values of γ it , α i and t . Finally, constraints (42)-( 44) specify the domain of the decision variables.

The subproblem (SP1) has a piecewise-linear objective function, a polynomial number of constraints and variables. Thus it can be solved with any MILP black box solver. A column generation algorithm can therefore be obtained where the pricing procedure consists in solving (SP1) with a MILP black box solver and then adding to the master problem the column y l, t corresponding to the optimal pair ( l, t) if the optimal cost of (SP1) was strictly positive.

Preliminary results showed that the resulting algorithm required high computing times spent mostly in the resolution of (SP1). To counter that, two additional policies for the generation and insertion of columns into the master problem were designed and implemented as explained in Section 5. We also proposed three other subproblem formulations (SP2 t ), (SP3 s ) and (SP4 t, s ) aiming at reducing the time necessary to generate new columns.

Subproblem SP2 t : With fixed t

Based on the idea that predefining t leads to a subproblem easier to solve, SP2 inputs the current dual variables values, but also a predefined time t, and then outputs the best activity set l obtained by solving model ( 45)-( 47).

(SP 2 t ) max

i∈A α i (u i -w i t ) -v t -ρ -1 ( i∈A α i b i ) (45) s.t. α i ≤ a i t , ∀i ∈ A (46) α i ∈ [0, 1], ∀i ∈ A (47)
The objective function ( 45) is piecewise-linear and maximizes the violation of constraint (31). Note that v t is a constant term. Constraints (46) ensure that an activity can only be selected if it is executable during the time t. Finally, constraints (47) enforce the binarity of variables α i . This formulation contains a polynomial number of variables and constraints and is therefore suitable for MILP solvers.

Using SP2 in the column generation means that instead of solving SP1 once during the pricing procedure to obtain both t and l, multiple subproblems (SP2 t ) are solved with different predefined values of t and for each subproblem (SP2 t ) the activity set that maximizes the violation is generated. However each (SP2 t ) contains much less binary variables and constraints than (SP1) and therefore requires a smaller computing time. The different variants and parameter settings implemented are presented in Section 5.

Subproblem SP3 s : Efficiency-function-based

This subproblem results from the observation that each sector of the efficiency function is linear, therefore, subproblems easier to solve might be obtained by imposing the specific sector in use. In addition to the current dual variables values, (SP3 s ) inputs a predefined sector s ∈ S. The lower limit is x min s and the higher limit is x max s . Within these limits the cost function can be expressed with the expression a s x + b s where a s is the slope of sector s and b s is the y-intercept of sector s.

The best activity set l and associated time t are obtained by solving model (SP3 s ).

(SP3 s ) max i∈A α i (u i -a s b i ) - i∈A t∈T γ it w it - t∈T β t v t -b s (48) s.t. x min s ≤ ( i∈S b i α i ) ≤ x max s ( 49 
)
α i + β t ≤ 1, ∀i ∈ A, t ≤ r i -1 or t ≥ d i ( 50 
) t∈T β t = 1 (51) γ it -0.5α i -0.5β t ≤ 0, ∀i ∈ A, t ∈ T (52) γ it -α i -β t ≥ -1, ∀i ∈ A, t ∈ T ( 53 
)
α i ∈ {0, 1}, ∀i ∈ A ( 54 
)
β t ∈ {0, 1}, ∀t ∈ T (55) γ it ∈ {0, 1}, ∀i ∈ A, t ∈ T (56)
The objective function (48) maximizes the violation of constraint (31). Constraint (49) ensures that the total energy demand of the activity set is within the limits of the corresponding sector s. Constraints (50) forbid the choice of an instant t outside of the time window of the activity selected. ] the cost function can be expressed with the expression a s x + b s .

The best activity set l is obtained by solving model ( 57)-( 60).

(SP4 t, s ) max( i∈A α i (u i -w i t -a s b i )) -v t -b s (57) s.t. x min s ≤ ( i∈S b i α i ) ≤ x max s ( 58 
)
α i ≤ a i t , ∀i ∈ A (59) α i ∈ {0, 1}, ∀i ∈ A (60) 
The objective function (57) maximizes the violation of constraint (31). Constraint (58) ensures that the total energy demand of the activity set is within the limits of the corresponding sector s. Constraints (59) forbid the selection of activities with a time window outside of time t. Finally constraints (60) impose the domain of decision variables α i . This formulation has a fully linear objective function, a polynomial number of variables and constraints. It is therefore suitable for a black box MILP solver.

Note that the terms v t and b s are constant for each subproblem. Therefore the resulting problem is equivalent to a classical binary knapsack problem with an additional constraint imposing a minimum total weight x min s . Each object has a profit u i -w i t -a s b i and a weight b i . The capacity of the knapsack is x max s .

Branch & Price

Solving (MP) requires a column generation, therefore solving (EF) requires a branch & price to ensure the integrity of binary variables x it . Note that it is possible to eliminate variables x it and just impose variables y lt to be binary, but doing so would force the resulting Branch & Price to branch on the same variables y lt that are being generated, which means that the resulting pricing procedures (or subproblems) would vary in function of the node of the Branch & Price. Instead, introducing binary variables x it , despite some redundancy, allows variables y lt to be continuous and therefore ensures that the optimal solution can be obtained (see Theorem 4.1) without ever branching on variables y lt . As a consequence, the same subproblem must be solved at each node of the Branch & Price, which means that only one pricing procedure needs to be designed and implemented, to be chosen between (SP1), (SP2 t ), (SP3 s ), and (SP4 t, s ).

Different variants of column generation or Branch & Price algorithms can be obtained depending on the values of parameters a, b, c and d set up as follows: a) type of subproblems solved in the pricing procedure

1 (SP1) 2 (SP2 t ) 3 (SP3 s ) 4 (SP4 t, s )
b) column adding policy 1 add the activity set l at instant t only 2 add the activity set l at all feasible instants t ∈ [r l , d l -1] 3 add the activity set l only at feasible instants where it has negative reduced cost c) multiple sets? (only available for a=1 or a=4) 0 stop the pricing procedure as soon as one column is added in the master problem 1 try to generate columns for each instant t ∈ T before exiting the pricing procedure d) time increment at the start of the pricing procedure (only available for a=1 or a=4) 0 always restart the pricing procedure from t = 0 1 only restart from the instant where the last pricing procedure could not find columns of negative reduced cost Each variant of the Branch & Price implemented for solving (P) is therefore denoted a-b-c-d. For instance, 1-1-0-0 is the basic version with subproblem (SP1), where each pricing procedure consists in solving (SP1) and adding the activity set found at the instant found. Likewise, 2-1-0-0 is the basic version with (SP2 t ). In total 30 variants were obtained (3 with (SP1) and (SP3 s ), which are only concerned by parameter b, and 12 with (SP2 t ) and (SP4 t, s )).

The restricted master problem is initialized with columns obtained by starting all activities at their release date, as in Fig. 3(b). An initial upper bound is obtained by computing the cost of the resulting solution.

6 Computational evaluation 6.1 Instances, Implementation and Parameter settings for best variant identification

Instances * were obtained by combining adapted scheduling instances with the test efficiency function ρ 0 illustrated in Fig. 3(a) for the purpose of identifying the best variant of the branch-and-price and to compare with the pseudo-polynomial time-indexed formulation. The scheduling instances used were initially proposed for the energy-constrained scheduling problem [START_REF] Artigues | Energetic reasoning for energy-constrained scheduling with a continuous resource[END_REF][START_REF] Artigues | The energy scheduling problem: Industrial casestudy and constraint propagation techniques[END_REF][START_REF] Nattaf | A hybrid exact method for a scheduling problem with a continuous resource and energy constraints[END_REF][START_REF] Nattaf | Energetic reasoning and mixedinteger linear programming for scheduling with a continuous resource and linear efficiency functions[END_REF] but were adapted to our setting. The set contains 288 instances: 144 with 30 activities and 144 with 60 activities. Each instance is characterized by one value of each of the following parameters:

• scale ∈ {1, 10}: scaling of the time horizon (1: small, 10: large);

• k ∈ {1.25, 2.5, 5}: magnitude of required energy (p i × b i );

• df ∈ {0.1, 0.15, 0.2, 0.25}: release date dispersion (r i );

• mf ∈ {0.1, 0.2, 0.4, 0.8, 1.6, 3.2}: time window size (d i -r i ).

Algorithms were coded mainly in C++ and with the framework SCIP 3.1.1 on an Intel Core i7-4770 CPU and 8 GB of RAM. Each master problem was solved with SOPLEX 2.0.1 whereas each subproblem was solved with IBM CPLEX 12.6 which offers the possibility to use the function IloPiecewiseLinear to model the piecewise linear functions.

The computational evaluation was done in two phases: first, the best variant of the branchand-price method was identified by applying different variants on the 288 instances with a time limit of 600 s, then the best branch-and-price was applied to solve all 288 instances with a time limit of 7200 s and compared to IBM CPLEX applied on the pseudo-polynomial size piecewise-linear formulation ( 4)-(8) with the same time limit.

Table 2 summarizes, for an illustrative subset of settings, the number of instances for which upper and lower bounds were available at the end of the time limit of 600 s. Table 3 focusses on the two best variants identified. Finally Table 4 illustrates the results of the Branch-and-Price compared to the ones from a black-box MILP solver (CPLEX 12.6).

Identification of the best variant

Preliminary tests were performed on the 288 instances with a time limit of 600 s to identify the best parameter settings for the Branch & Price. Table 2 records, for each setting, the number of instances for which a lower bound was obtained (column NbObs). In a column generation or a Branch & Price, no lower bound is available until at least the root node has been solved. Upper bounds were provided at the beginning of each algorithm, equal to the total energy cost when all activities are started at their release date. Table 2 shows that for half of the displayed variants, the column generation at the root node was not completed yet for a significant number of instances (from 15% to 50%). Variant 2-1-0-0 for example, was not able to produce lower bounds within the 600 s time limit for half of the instances.

Setting a-b-c-d NbObs 2-1-1-0 278 2-1-1-1 278 2-3-1-1 267 2-3-1-0 266 2-3-0-1 265 2-2-0-1 265 2-2-1-1 262 2-2-1-0 261 2-1-0-1 249 4-1-1-1 214 2-2-0-0 197 1-3-0-0 193 1-2-0-0 192 2-3-0-0 192 1-1-0-0 168 2-1-0-0 146
Table 2: Preliminary results: Number of instances with a non-infinite lower bound after 600 s.

All alternatives produced improvements over their respective basic settings (i.e. all 1-X-X-X are better than 1-1-0-0 and all 2-X-X-X are better than 2-1-0-0). Although basic setting 2-1-0-0 of (SP2 t ) performs poorly in comparison to basic setting 1-1-0-0 of (SP1), the two settings that perform best are based on (SP2 t ). Note that the results of variants involving (SP3 s ) and (SP4 t, s ) were disappointing, meaning that, at least for the test efficiency function, incorporating the piecewise-linear function in the subproblem solving is better than solving a series of linear subproblems. We only display here variant 4-1-1-1. Table 3 focusses on the two best parameter settings.

Although setting 2-1-1-0 has a better average number of nodes, 2-1-1-1 generates less columns and less pricing attempts. We consequently selected setting 2-1-1-1 for further experiments.

Comparison with the pseudo-polynomial formulation and impact of instance parameters

In the second phase of the computational analysis, all 288 instances were solved with a Branch & Price with the best parameter setting 2-1-1-1. The results were compared to the ones of a black box MILP solver (CPLEX 12.6) applied on the piecewise-linear formulation ( 4)-(8). The time limit was set to 7200 s. box solver, a memory usage limit (1 GB) was also imposed on both algorithms. The results obtained are summarized in Table 4. It shows that the Branch & Price described in this paper is efficient for solving the energy optimization problem with non-reversible energy sources: it was able to solve more than 90% of the instances to optimality and reached an average ratio of 99.98% between the best-known lower and upper bound, which suggests that all instances may be solved to optimality with only a small increase of the time limit. The black box MILP solver applied on the pseudo-polynomial-size formulation solves less than 2% of the instances to optimality and has an average ratio of 88.01%. Note that all executions of the MILP solver but 5 were stopped because the memory limit was reached as shown by the maximum CPU time of 1674.3 s. We also recall the results of the branch-and-price for 600 s of CPU time. This illustrates the trade-off between quality and CPU time that the column generation approach brings as the average CPU time falls significantly under the average CPU time needed by the MILP solver while finding in average way better solutions (although no LB could be found for 10 instances). We also ran the branch-and-price method with a single node and no time limit (so all LB were found) and the results are still good with an average ratio of 98.1% between the best-obtained lower and upper bound and 119 optimal solutions found (as no branching was allowed, this is the gap between the relaxation of the extended formulation and the heuristic ran by SCIP at the root node). This illustrates the high quality of the LP relaxation of the extended formulation. Finally computing the pure LP relaxation of the extended formulation by column generation (without any preprocessing nor heuristic search) takes 48.7 s in average with a maximum of 1544 s and yields an average lower bound close at 99.97% in average from the best known feasible solution with a minimum of 98.12 %. This illustrates the high quality of the extended formulation relaxation.

Finally we analyze the instance difficulty w.r.t. their generation parameters scale, k, df and mf. In Table 5 we give the number of optimal solutions found for each parameter value.

The results show that, as it could be expected, the time horizon scale has a large influence on the instance hardness for time-indexed formulations. To a lesser extent, the study of the influence of parameter k suggests that large energy requirements yield instances that are harder to solve than instances where tasks have lower energy requirement. No conclusion can be drawn on the influence of the release date dispersion parameter (df). However the category of instances with the larger time window (large mf) seems harder.

Application using a realistic non-linear efficiency function

A realistic efficiency function derived from the conversion function of a real-world fuel cell was considered (see Fig. 1(b)). The function provided by researchers in Electrical Engineering expresses the energy demand (or energy usable) in function of the energy cost (or energy consumed) and therefore corresponds to ρ -1 and could not be easily inverted. Following the methodology of [START_REF] Ngueveu | Piece-wise bounding and integer linear programming for the optimal management of a water pumping and desalination process[END_REF], the non-linear function was bounded from above and below with two piecewise linear functions ρ -1 and ρ -1 that verify equations ( 1)-( 3) for a given value of .

To that end, the algorithms proposed in [START_REF] Ngueveu | Piece-wise bounding and integer linear programming for the optimal management of a water pumping and desalination process[END_REF] were applied on convex or concave sections of ρ -1 . The resulting piecewise linear functions could then be easily inverted without any loss of precision before their introduction into the mathematical model of the preemptive scheduling problem.

We considered four levels of precision: = 5%, 1%, 0.5% and 0.1%. Table 6 summarizes the number of sectors obtained for the different piecewise linear functions. Fig. 4 illustrates the bounding results for a precision = 10%. It can be observed that the abscissas of the extremities of the sectors of ρ -1 differ from the ones of the sectors of ρ -1 . This contributes to the reduction of the number of sectors for each of the piecewise functions, contrary to the cases where the same limits are used for both the over-and the under-estimation functions, as is done by Interval Branch-and-Bound methods or in box-bounded global optimization. , respectively. As the non-linear function appears only in the objective function of the problem studied in this paper, the resulting MILP and MILP both generate solutions feasible for the non-linear problem. The optimal solution cost of MILP is an upper bound for the non-linear problem, less than % higher than its optimal solution cost. The optimal solution cost of MILP is a lower bound for the non-linear problem, less than % lower than its optimal solution cost. Solving both MILP and MILP and then comparing their solution costs aims at lowering the gap between the best known upper and lower bounds for the scheduling problem with non-linear efficiency function, which in the worst case would be equal to %.

=5% =1% =0.5% =0.1% ρ -1 ρ -1 ρ -1 ρ -1 ρ -1 ρ -1 ρ -1 ρ -1 #
Table 7 shows the performance of the branch-and-price with the best parameter setting 2-1-1-1 previously identified, considering a time limit of 600 s on all 288 instances and given different values of . The results confirm the efficiency of the algorithm: for 2105 of the 2304 cases the optimal solution of the MILP was found. Only in 151 cases was the algorithm not able to produce lower bounds before the time limit. Among the 2153 remaining cases, the average ratio between the lower and upper bound exceeds 99.85% for the four values tested. 

Table 8 shows that except for one instance, the best upper bounds were derived from MILP whereas the best lower bounds were derived from MILP. The final gaps between the best upper and lower bounds found, also available in Table 8, are on average smaller (and therefore better) than %, in the best cases even smaller than half of % and in the worst cases equal to %. This illustrates the benefits of the piecewise bounding approach: (i) the guarantee of feasibility for the solution obtained with respect to the non-linear problem and; (ii) the tighter gap between the best-known upper and lower bounds. scheduling problem where the objective is to minimize the total energy cost of a set of preemptive tasks subject to time windows, we show that the preemptive scheduling problem with piecewise-linear energy cost from multiple non-reversible sources, can be transformed into an equivalent single-source problem. Proof of the NP-hardness of the problem in the general case and some polynomial particular cases are provided. We present two mixedinteger linear programming (MILP) formulations, among which an extended formulation. A branch-and-price procedure is proposed to solve the extended formulation. Computational experiments on a set of scheduling instances with a realistic efficiency function from a fuel cell energy conversion function show the efficiency of the approach, with a final gap between best known upper and lower bounds between 0.04% and 0.08%.

Future work includes the introduction of reversible energy sources, able not only to produce energy but also to retrieve it. An additional level of complexity would be added since the non-reversible sources could produce more energy than the demand at certain times and store the excess in the reversible sources to satisfy the demand of a later time. This also invalidates the proofs of theorems of the problem without reversible energy sources and the extended formulation presented would no longer apply.

Figure 1 :

 1 Figure 1: Non-linear energy costs.
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 4 Figure 4: A piecewise linear bounding result for = 10%.

Table 1 :

 1 Scheduling instance.

	T1 T2 T3
	release date 0	2	1
	due date 7	10	6
	duration 6	4	3
	energy demand 2	3	2

  , a polynomial number of variables and constraints. It is therefore suitable for a black box MILP solver.4.5 Subproblem SP4 t, s : With fixed t and sThis subproblem results from the combination of (SP2 t ) with (SP3 s ). In addition to the current dual variables values, (SP4 t, s ) inputs a predefined sector s ∈ S and a predefined time t. The slope is a s and the y-intercept is b s . Within the limits [x min s , x max s

Constraint (51) 

enforces the choice of a single instant. Constraints (52) and (53) ensure the coherence between the values of γ it , α i and β t . Finally, constraints (54)-(

56

) specify the domain of the decision variables. This formulation has a fully linear objective function

Table 3 :

 3 To avoid out-of-memory errors that occurred on the black Preliminary results: focus on the two best settings.

			Settings
			2-1-1-0 2-1-1-1
		min	95	95
	Number of columns generated max 118954 31424
		avg	4483.7 4126.6
		min	2	2
	Number of pricing attempts	max	2058	1674
		avg	65.5	62.0
		min	1	1
	Number of nodes	max	1317	1558
		avg	34.6	36.7

Table 4 :

 4 Efficiency of the Branch & Price compared to a black-box solver.

					Extended Model	Pseudo-polynomial-size Model
		B&P 1 node B&P / 600 s B&P / 7200s	Black Box Solver
	# lower bounds		288		278	288	288
	# opt		119		220	268	5
		min	88.0%		94.79%	9.1%	58.1%
	Ratio LB/UB max	100%		100%	100%	100%
		avg	99.12%	99.81%	99.98%	88.01%
		min	1 s		1 s	1 s	7 s
	Time	max	2625.1		600 s	7200 s	1674.3 s
		avg	80.8 s		189.99 s	879.9 s	544.2 s
		min	1		1		1	20577
	# nodes	max	1		1558	7100	12478166
		avg	1		46.75	165.7	926119
		scale	1	10	
		# opt 141 127	
		k	1.25 2.5	5
		# opt	92	89	87
		df		0.1 0.15 0.2 0.25
		# opt	64	66	70	68
		mf	0.1	0.2 0.4 0.8 1.6 3.2
		# opt	48	48	46	46	45 35

Table 5 :

 5 Impact of the instance parameters on the number of optimally solved instances.

Table 6 :

 6 Number of sectors of the piecewise linear functions ρ -1 and ρ -1 .

	sectors	9	9	18	24	42	28	60	58

Table 7 :

 7 Branch-and-Price output.Finally, we focussed on the instances for which both MILP and MILP could be solved to optimality. This concerned respectively 233, 265, 264 and 270 instances for = 5%, 1%, 0.5% and 0.1%. The best upper and lower bounds were obtained with equations (61)-(62).

	Best UB = min{MILP, MILP * (1 + )%}	(61)

Best LB = max{MILP, MILP * (1 -)%}

Table 8 :

 8 Final results for the scheduling problem with a non-linear cost function.

	=5%	=1%	=0.5%	=0.1%

* Instances available at http://homepages.laas.fr/sungueve/EnergySchedulingInstances.html

This paper contributes to the definition of a novel and efficient methodology for the integration of realistic energy characteristics in combinatorial optimization problems via piecewise-linear lower and upper bounding of the non-linear energy conversion functions. Focussing on a
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