
HAL Id: hal-01163846
https://hal.science/hal-01163846

Submitted on 10 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Fast and secure chaos-based cryptosystem for images
Mousa Farajallah, Safwan El Assad, Olivier Deforges

To cite this version:
Mousa Farajallah, Safwan El Assad, Olivier Deforges. Fast and secure chaos-based cryptosystem for
images. International journal of bifurcation and chaos in applied sciences and engineering , 2016, 26
(2), pp.1650021.1-1650021.21. �10.1142/S0218127416500218�. �hal-01163846�

https://hal.science/hal-01163846
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Fast and Secure Chaos-Based Cryptosystem

for Images

Mousa Farajallah∗ and Safwan El Assad†

Ecole Polytech Nantes-Rue Christian Pauc
44306 Nantes Cedex 3, France

∗mousa.farajallah@etu.univ-nantes.fr
†Safwan.El-Assad@univ-nantes.fr

Olivier Deforges
INSA of Rennes, France

olivier.deforges@insa-rennes.fr

Nonlinear dynamic cryptosystems or chaos-based cryptosystems have been attracting a large
amount of research since 1990. The critical aspect of cryptography is to face the growth of
communication and to achieve the design of fast and secure cryptosystems. In this paper, we
introduce three versions of a chaos-based cryptosystem based on a similar structure of the Zhang
and Fridrich cryptosystems. Each version is composed of two layers: a confusion layer and a
diffusion layer. The confusion layer is achieved by using a modified 2-D cat map to overcome
the fixed-point problem and some other weaknesses, and also to increase the dynamic key space.
The 32-bit logistic map is used as a diffusion layer for the first version, which is more robust than
using it in 8-bit. In the other versions, the logistic map is replaced by a modified Finite Skew
Tent Map (FSTM) for three reasons: to increase the nonlinearity properties of the diffusion layer,
to overcome the fixed-point problem, and to increase the dynamic key space. Finally, all versions
of the proposed cryptosystem are more resistant against known attacks and faster than Zhang
cryptosystems. Moreover, the dynamic key space is much larger than the one used in Zhang
cryptosystems. Performance and security analysis prove that the proposed cryptosystems are
suitable for securing real-time applications.

Keywords : Dependent permutation; confusion; diffusion; chaos-based cryptosystem; image
encryption.

1. Introduction

Today, chaos-based encryption algorithms have been
widely used in image and video encryption sys-
tems [Hamidouche et al., 2015]. Research has shown
that chaos systems are extremely sensitive to the
changes of control parameters and initial conditions.
They have pseudo-random behavior for nonau-
thorized parties [Akhshani et al., 2012; El Assad
et al., 2014; Kassem et al., 2014; Chiaraluce et al.,
2002; Chen et al., 2004; Behnia et al., 2008; Wang
et al., 2013; Chang, 2009]. Experimental results

show that the chaos-based encryption algorithm
can overcome security issues in efficient and adap-
tive ways compared to the classical encryption ones
(such as DES and AES) [Abd El-Latif et al., 2012;
Furht & Socek, 2003; Li et al., 2006; Bhargava
et al., 2004; Mansour et al., 2012; Bhatnagar &
Jonathan Wu, 2012].

Thus, chaos has become a hot topic in the
research field over the past decades, and many chaos-
based encryption algorithms have been recently
introduced [Chen et al., 2004; Socek et al., 2005;
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Fridrich, 1997, 1998; Zhang et al., 2005; Masuda
et al., 2006; Masuda & Aihara, 2002].

Any cryptosystem must achieve diffusion and
confusion effects, in order to be robust and secure
against several types of attacks. This has been
explained in Shannon’s famous paper [Shannon,
1949] “In a strongly ideal cipher all statistics of the
cryptogram are independent of the particular key
used”. Confusion property aims to make the sta-
tistical relationship between the cipher image and
the secret key as complex and involved as possible,
whereas the diffusion property aims to make the
statistical relationship between the plain image and
the cipher image as complex and involved as possi-
ble. The diffusion effect principle can be described
as each plaintext byte/bit affects many ciphertext
bytes/bits. On the other hand, the confusion prin-
ciple can be described as: such that the key should
not relate to the ciphertext and each bit/byte of the
ciphertext should depend on a complex mathemat-
ical relation of the key. The former can be achieved
using chaotic maps to transfer the single byte/bit
effect to other bytes/bits, whereas the latter can be
achieved using chaotic maps of permutation and/or
substitution. Most chaos-based cryptosystems use
chaotic maps to achieve the required diffusion and
confusion effects.

Fridrich [1998] proposed a chaos-based encryp-
tion scheme based on an iterative pixel permutation
and nonlinear processes. The permutation process is
achieved using three 2-D chaotic maps: the Backer
map, the Cat map, and the Standard map. The non-
linear process is achieved by a nonlinear feedback
register.

In this way, Masuda et al. [2006] considered two
classes of chaotic finite-state maps: key-dependent
chaotic S-boxes and chaotic mixing transformation.
They proposed two chaotic block ciphers, i.e. uni-
form and Feistel. In fact, they estimated bounds
for differential and linear probability to make their
cryptosystems resistant to differential and linear
cryptanalysis.

Later, Yang et al. [2010], derived a fast image
encryption and authentication scheme. A key hash
function is introduced to generate a 128-bit hash
value from both the plain image and the secret
hash keys. The hash value plays the role of secret
key for the encryption and the decryption processes,
while the secret hash keys are used to authenticate
the decrypted image. Permutation and substitution
are performed in a single scan of the plain image

pixels. The permutation process is achieved by the
modified standard map and the substitution pro-
cess (based on a logistic map) is done in such a way
that the change of a particular pixel depends on the
accumulated effect of all previous pixel values.

Recently, fast and secure cryptosystems were
proposed: Chen et al. [2015] have proposed a
fast chaos-based image encryption scheme using a
dynamic state variables selection mechanism. In the
presented algorithm the encryption structure is sim-
ilar to the structure of Zhang [Zhang et al., 2013],
except the process of generating and selecting the
dynamic keystream. The security level is reached
for one encryption round. Murillo-Escobar et al.
[2015] have proposed a color image encryption algo-
rithm based on total plain image characteristics,
and 1-D logistic map with optimized distribution.
They claim that their structure can be implemented
in real-time applications. Zhang et al. [2013] have
proposed a dependent diffusion structure. To the
best of our knowledge Zhang cryptosystems seem
very secure against attacks (for two encryption
rounds in the first cryptosystem and one encryp-
tion round in the second cryptosystem) and faster
than the previous chaos-based cryptosystems.

The rest of the paper is organized as follows.
Direct related works are introduced in Sec. 2. Sec-
tion 3 presents the general design concept of the
proposed cryptosystem and its main differences
regarding the Zhang cryptosystems. Sections 4
and 5 describe the detailed mathematical model of
the proposed cryptosystems and comparative the-
oretical security analysis with Fridrich and Zhang
cryptosystems. In Sec. 6, security analysis and cryp-
tosystems performance are reported. Finally, the
conclusion is presented in Sec. 7.

2. Related Work

In 1997, a chaos-based encryption scheme was intro-
duced by Fridrich [1997, 1998]. It is becoming the
core structure of most chaos-based cryptosystems
and it has been widely referenced since 1997. The
general Fridrich architecture is shown in Fig. 1. The
Fridrich encryption scheme is composed of two lay-
ers: the first one is the confusion layer using the 2-D
Baker chaotic map. This map is used to calculate
the new byte position using Eq. (1).

B(x′, y′) =
(

2x,
y

2

)

when 0 ≤ x <
1

2
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Fig. 1. Fridrich image encryption architecture.

B(x′, y′) =

(

2x − 1,
y

2
+

1

2

)

when
1

2
≤ x ≤ 1.

(1)

The second layer is the diffusion one, and is imple-
mented using the following mathematical equations:

vk = vk + G(vk−1) Mod 256

v−1 = initial value.
(2)

The function G is some arbitrary function of the
gray level. It was chosen as a fixed random per-
mutation which can be implemented using a simple
lookup table.

In [Lian et al., 2005] the authors analyzed
the security of the Fridrich scheme. They found
some weaknesses, and proposed some improvements
to overcome these security failures. In 2010, the
Fridrich encryption algorithm was broken by [Solak
et al., 2010]. Solak proved that the Fridrich algo-
rithm could be broken using a chosen ciphertext
attack. Using this type of attack, some secret per-
mutation of the algorithm has been revealed.

In Zhang’s paper [Zhang et al., 2013], two
cryptosystems were designed based on the Fridrich
architecture. The first one consists of a dependent
diffusion layer based on the reverse 2-D cat map.
The second algorithm of the Zhang cryptosystem
presents new mapping from a pseudo-random posi-
tion to another pseudo-random one for the con-
fusion effect. Also, a diffusion layer based on the
logistic map is used to produce the cipher image.

In these versions, Zhang tried to achieve the
confusion and the diffusion effects sequentially. The
Fridrich cryptosystem and other cryptosystems are
designed so that all pixels are permuted before the
pixel values are diffused. However, the Zhang cryp-
tosystems calculate the new location of a pixel and
then diffuse that pixel immediately. Thus, the effect
of one ciphered pixel is transferred to the next one
and so on. From this idea, only two encryption
rounds (in the first cryptosystem) and one encryp-
tion round (in the second cryptosystem) of the
diffusion–confusion process are needed to achieve

high security level, instead of many encryption
rounds of separated confusion and diffusion pro-
cesses used in the traditional structures.

3. Proposed Cryptosystems

3.1. General concepts of the

proposed cryptosystems

The first step of designing a chaos-based encryption
algorithm is to define the chaotic maps which will
be used in such a structure. These maps are used
to achieve the confusion and the diffusion effects,
which are the most important properties of any
cryptosystem. The general block diagram of all pro-
posed cryptosystems is shown in Fig. 2. The main
objective of this structure is to achieve the depen-
dent confusion–diffusion effects byte by byte. All
proposed cryptosystems work on the CBC mode
and use the El Assad and Noura chaotic generator
that produces 32-bit samples [El Assad & Noura,
2011]. Figure 3 shows the general diagram of the

Fig. 2. General block diagram of the proposed cryptosys-
tems.

Fig. 3. Encryption structure of the CBC mode.
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encryption part of the CBC mode. In Fig. 3, P0 is
the first block from the plain image, IV is the ini-
tial vector generated by the chaotic generator, C0 is
the first encrypted block which will be transferred
to the receiver side. The dash boxes represent the
encryption/decryption parts of the proposed cryp-
tosystem (see Figs. 2, 4 and 7).

3.2. General differences of the

proposed cryptosystem with the

Zhang one

In this section, we introduce some general differ-
ences between our proposed cryptosystem of the
three versions and the Zhang one:

• In the Zhang cryptosystem, a simple implementa-
tion of the logistic map was used to generate and
manage the dynamic keys. In all versions of our
proposed cryptosystem, a strong and robustness
tested chaotic generator [El Assad & Noura, 2011]
is used to manage and generate the dynamic keys.
These dynamic keys are used for the dependent
confusion–diffusion layer.

• To overcome the fixed-point problem of the stan-
dard 2-D cat map, the Zhang cryptosystem
selects a random pixel arr(rj

x, r
j
y) and swaps it

with the first pixel in the plain image arr(0, 0).
In our proposed cryptosystem, this problem is
solved by using the modified 2-D cat map. This
modification of the standard 2-D cat map also
enhances the security of the proposed cryptosys-
tem. Indeed the number of dynamic keys in the
2-D cat map increases from two dynamic keys to
four. The first pixel (0, 0) can be mapped to any
new position (in, jn).

• The Zhang cryptosystem works on the whole
image. It is well known that the image encryption
algorithms that work on the whole image give bad
results for error propagation. The influence of one
error bit of the ciphered data (due to the channel)
on the decryption algorithm depends on the cryp-
tographic modes. All versions of our proposed
cryptosystem perform the encryption/decryption
operations based on the Cipher-Block Chaining
(CBC) mode [Ehrsam et al., 1978].

• One of the most important differences between
our proposed cryptosystems and the Zhang cryp-
tosystem is in the structure of the dynamic keys.
In the Zhang cryptosystem, the dynamic keys
consist of two keys (qi, pi) for the reverse 2-D
cat map. These key values are changed just twice

for the whole encryption process. For the logis-
tic map, t is the initial value. The value of t is
changed in each byte. When comparing with our
proposed cryptosystem, in the 2-D cat map, four
keys are used (v, u, ri, and rj). These keys’ values
are changed for every new encryption round and
also for every new block.

• All chaos-based cryptosystems that use more
than one encryption round (i.e. r > 1) to
reach the required security level, must save their
dynamic keys for all rounds in order to use them
later in the decryption process. From a security
point of view, it is normal that the security level
of any cryptosystem is strongly related to the
environment where these dynamic keys have been
temporarily saved. To the best of our knowledge,
the only possible method to manage the dynamic
keys in the decryption process in case of more
than one decryption round is to save them tem-
porarily, since the decryption process is achieved
by starting from the last decryption round and
finishing with the first decryption round. It is
important to note that the chaotic generator has
to be a noninvertible generator. To obtain the
current key, the chaotic generator should gener-
ate all previous keys and use them in the reverse
order.

All previously mentioned points are taken into con-
sideration in the design process of a fast and secure
cryptosystem, and it should use only one encryp-
tion round (r = 1), to obtain the required security
level.

4. First Proposed Cryptosystem

The first proposed cryptosystem has some simi-
larity to the Zhang cryptosystem [Zhang et al.,
2013]. In this cryptosystem, the two dependent
confusion–diffusion layers are the modified 2-D cat
map (used to achieve the confusion effect) followed
by the discrete logistic map (to achieve the diffusion
effect). Using this structure, the required confusion–
diffusion effects are obtained by one encryption
round, and hence the execution time is decreased.

4.1. Encryption scheme of the first

proposed cryptosystem

In the encryption scheme (see Fig. 4), for the first
block, each pixel from the plain block (p0(k)) is
XOR-ed with the initial byte (iv(k)) from the initial
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Fig. 4. Encryption structure of the first proposed cryptosystem.

vector (IV ), then the output is XOR-ed with the
discrete logistic map output to carry out the dif-
fusion process. Then, the eight least significant bits
resulting from the diffusion process LSB8(y0(k)) are
relocated using the modified 2-D cat map to obtain
the ciphered pixel at the new position (c0(kn))
[Farajallah et al., 2013a; Farajallah et al., 2013b].
It is important to note that the input of the dis-
crete logistic map is based on the previous ciphered
pixel (since c0(kn) = LSB8(y0(k)) and the input of
the discrete logistic map is 32 bits and the ciphered
pixel is eight bits. That is why the cryptosystem
takes (y0(k − 1)) before the LSB8 function and not
after. For the first encrypted byte, the input of the
discrete logistic map is Kdm, and this value is reini-
tialized every new encryption round. Because the
c0(kn) is only a part of the logistic map input,
it is impossible to recover y0(k − 1) from c0(kn)
only. The encryption of the next blocks is almost
the same. Each pixel from the plain block (pl(k))

is XOR-ed with ciphered byte from the previous
block at the same position (i.e. cl−1(k) to achieve
the CBC mode). Then the rest of the operations
are the same as in the first encryption block. The
2-D cat map was tested and analyzed by [Fridrich,
1998] and [Wong et al., 2008]. To overcome the
fixed-point problem of the Arnold cat map model,
the parameters ri and rj are added to the stan-
dard model. Also, in our scheme the elements of
the square matrix and the parameters ri and rj of
Eq. (3) become dynamic, they form the dynamic
keys of the permutation process.
[

in

jn

]

= Mod

([

1 u

v 1 + uv

][

i

j

]

+

[

ri + rj

rj

]

,

[

M

M

]

)

.

(3)

Equation (3) is a one-to-one function, which means
that each point of the square matrix can be trans-
ferred to exactly one unique point. So, instead of
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exchanging the values at the new position (in, jn)
with the old one (i, j), we use a transfer operation
because of its speed compared to the swap operation
that is usually used. The block size bs is M2 (M is
the square root of the block size in our proposed
cryptosystem). The system parameters u, v, ri and
rj are in the range of [0,M − 1]. The structure of
the dynamic keys which are produced by the chaotic
generator during the permutation process is:

Kp = [Kp0‖Kp1‖Kp2‖ · · · ‖Kpr−1]

Kpm = [um‖vm‖rim‖rjm].
(4)

The modulo operation of Eq. (3) makes it a non-
invertible equation. But it is still a reversible one.
Thus, in the decryption part of the proposed cryp-
tosystem, the reverse layer is also achieved by
Eq. (3).

The implementation of this modified 2-D cat
map is carried out by an optimized process,
indeed:

— the value of Z1 = ri + rj is calculated once per
round.

— the value of Z2 = u × v + 1 is calculated once
per round.

— the value of Z3 = v×i+rj is calculated M times
per round.

Then the modified 2-D cat map is implemented as:
[

in

jn

]

= Mod

([

i + u × j + Z1

Z3 + Z2 × j

]

,

[

M

M

]

)

. (5)

The Logistic map is a nonlinear chaotic discrete
function that produces random sequences. In the
proposed cryptosystem, the logistic map is used as
a diffusion function to achieve the diffusion effect,
by transferring the effect from one byte in the block
to other bytes in the same block. This structure
makes the proposed cryptosystem highly sensitive
to the plaintext. The mathematical model of the
discrete logistic map is:

Xk+1 =



























⌊

Xk × (2N − Xk)

2N−2

⌋

if Xk �= [3 × 2N−2, 2N ]

2N − 1 if Xk = [3 × 2N−2, 2N ]

(6)

where Xk+1 is the new value calculated from the
previous one Xk. N is the number of bits repre-
senting the integer output of the discrete logistic

map, which is equal to 32 bits in all versions of our
proposed cryptosystem. Figure 4 shows the block
diagram of the encryption part of the first version
of the proposed cryptosystem. From the figure, we
write the encryption mathematical model as:

cl(kn) = LSB8[yl(k)] (7)

yl(k) = pl(k) ⊕ sl−1(k) ⊕ f(yl(k − 1)) (8)

where yl(k) is a 32-bit variable, pl(k), sl−1(k) are 8-
bit variables and f is the logistic map. The following
remarks should be considered:

(1) During the encryption, Eq. (8) should be eval-
uated before Eq. (7), for each byte of a block
and for all blocks.

(2) The input of the logistic map for k = 0 is kdm

when l = 0 and it is yl−1(bs − 1) for l > 0.
(3) For k > 0 and for all l, the input of the logistic

map is the result of Eq. (8) and not the previous
output [see Eq. (6)].

Note that:

k = i × M + j, kn = in × M + jn

in and jn are calculated using Eq. (3). The sequence
sl−1(k) is given by the following equation:

sl−1(k) =

{

iv(k) if l = 0

cl−1(k) if l > 0
(9)

where

l = 0, 1, 2, . . . , bn − 1, k = 0, 1, 2, . . . , bs − 1

IV = {iv(0), iv(1), iv(2), . . . , iv(bs − 1)}

bs is block size in bytes

bn =
image size

block size

=
L × C × P

bs

, is the number of blocks

where, L,C, and P are the number of lines, the
number of columns, and the number of planes of
the image respectively.

In Algorithm 1, we describe in detail the exact
steps to achieve the ciphering process for all blocks.

4.2. Proposed chaotic generator

The generator used in this cryptosystem is a sim-
plified implementation of the one published by El
Assad and Noura in a patent [El Assad & Noura,
2011]. It consists of two chaotic maps (i.e. Skew
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Algorithm 1 Encryption steps

1: Generate the IV values using the chaotic generator to encrypt the first block of the image.
2: for m = 0: r − 1: step = 1 do
3: Generate the values of Kdm and Kpm using the chaotic generator to encrypt the first block.
4: k = 0
5: for i = 0: M − 1: step = 1 do
6: for j = 0: M − 1: step = 1 do
7: Initialize the value of s−1(k) = iv(k)
8: Calculate (in, jn) using equation (3)
9: Calculate kn = in × M + jn

10: Calculate y0(k) value using equation (6) and equation (8)
11: Calculate c0(kn) value using equation (7)
12: k = k + 1
13: End j

14: End i

15: End m

16: for l = 1: bn − 1: step = 1 do
17: for m = 0: r − 1: step = 1 do
18: Generate the values of Kpm using the chaotic generator to encrypt the current block of the plain

image.
19: k = 0
20: for i = 0: M − 1: step = 1 do
21: for j = 0: M − 1: step = 1 do
22: Initialize the value of sl−1(k) = cl−1(k)
23: Calculate (in, jn) using equation (3)
24: Calculate kn = in × M + jn

25: Calculate yl(k) value using equation (6) and equation (8)
26: Calculate cl(kn) value using equation (7)
27: k = k + 1
28: End j

29: End i

30: End m

31: End l

Tent and Piecewise Linear Chaotic Map), con-
nected in parallel as shown in Fig. 5. Each map
is perturbed using a linear feedback shift register
(LFSR). This ensures a very large periodicity for all

Fig. 5. Proposed chaotic sequence generator.

generated sequences. The generator produces 32-bit
(four bytes) samples. For our first version of the pro-
posed cryptosystem, the following generated sam-
ples are needed to encrypt an image:

Kd is a 32-bit size, supplied for the first block,
and changed for every encryption round, so the total
number of required samples for Kd is:

Kdsamples = r. (10)

IV is a vector of bs bytes, it is supplied one time
for the first block, so the total number of required
samples for IV is:

IVsamples =
bs

4
. (11)

Kp consists of four variables (u, v, ri and rj), each
variable is q bits with q = log2

√
bs, so the total
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number of required samples for Kp is:

Kpsamples =

⌈

bn × r × 4 × log2

√
bs

32

⌉

. (12)

From Eqs. (10)–(12), the total samples required to encrypt an image is:

Totalsamples = Kdsamples + IVsamples + Kpsamples. (13)

The discrete Skew Tent Map and the discrete PWLCM are defined in the following equations.
First, the discrete Skew Tent Map is defined as [Masuda et al., 2006]:

X[n] = F [X[n − 1]] =







































⌊

2N × X[n − 1]

P

⌋

if 0 < X[n − 1] < P

2N − 1 if X[n − 1] = P

⌊

2N × (2N − X[n − 1])

2N − P

⌋

if P < X[n − 1] < 2N

(14)

where P is the control parameter, ranging from 1 to 2N − 1, and N = 32 bits, is the finite precision.
Second, the PWLCM map is defined as [Lian et al., 2007]:

X[n] = F [X[n − 1]] =



















































































⌊

2N × X[n − 1]

P

⌋

if 0 < X[n − 1] < P

⌊

2N × (X[n − 1] − P )

2N−1 − P

⌋

if P < X[n − 1] < 2N−1

⌊

2N × (2N − X[n − 1] − P )

2N−1 − P

⌋

if 2N−1 ≤ X[n − 1] < 2N − P

⌊

2N × (2N − X[n − 1])

P

⌋

if 2N − P ≤ X[n − 1] < 2N − 1

2N − 1 otherwise.

(15)

The control parameter P of the PWLCM ranges

from 1 to 2(N−1) − 1. The proposed chaotic gen-

erator has the following cryptographic properties:

pseudo-random mapping, delta-like auto-correla-

tion, nearly zero cross-correlation, uniform distribu-

tion, passing empirical statistical test NIST 800-22

(National Institute of Standards and Technology)

tests [Rukhin et al., 2001], and having a large size

of the secret key. The size of the secret key is deter-

mined by four initial conditions: two values for the

Skew Tent and PWLCM maps of size N and the

others for the two LFSRs, and two control param-

eters, i.e. P1 (for the Skew Tent) and P2 (for the

PWLCM).

|K| = 2 × N + |P1| + |P2| + |K1| + |K2|

= 169 bits. (16)

Moreover, the implemented generator is very
secure against known attacks: ciphertext attack
and chosen-plaintext attack (this latter attack is
the easiest one among all known attacks). The
objective of these attacks is to determine the secret
key that was used. The ciphertext attack, means
here, guessing the secret key from the generated
sequences. This attack is ineffective, because the
generated sequences are obtained by a combination
of sequences supplied by two different nonlinear
maps. And it is impossible to analyze sequences of
each map separately. The chosen-plaintext attack
is equivalent here to the key sensitivity attack,
because the only input of the system is the secret
key. From the main property of any chaotic system
(the extreme sensitivity to even one bit change of
the secret key), the implemented generator passes
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this test (see also, the test done in Sec. 6.3 about
the key sensitivity attack).

4.3. Decryption scheme of the first

proposed cryptosystem

The decryption scheme of the first proposed cryp-
tosystem is almost identical to the encryption one.
Figure 6 shows the decryption structure of the CBC
mode in all proposed cryptosystems, while Fig. 7
shows the decryption structure of the first proposed
cryptosystem.

The decryption equation resulting from the
encryption equations is: (7) and (8):

pl(k)= cl(kn)⊕ sl−1(k)⊕LSB8[f(yl(k− 1))]

(17)

Fig. 6. Decryption structure of the CBC mode.

where

yl(k) = pl(k) ⊕ sl−1(k) ⊕ f(yl(k − 1)). (18)

As we can see, Eq. (17) is firstly evaluated followed
by Eq. (18) for each byte of a block and for all
blocks.

Algorithm 2 Decryption steps

1: Generate Kdm, Kpm for all m values (i.e. m = 0, 1, . . . , r − 1) and IV using the chaotic generator to
decrypt the first ciphered block.

2: for m = r − 1: 0: step = −1 do
3: k = 0
4: for i = 0: M − 1: step = 1 do
5: for j = 0: M − 1: step = 1 do
6: Initialize the value of s−1(k) = iv(k)
7: Calculate (in, jn) using equation (3)
8: Calculate kn = in × M + jn

9: Calculate p0(k) value using equation (17)
10: Calculate y0(k) value using equation (6) and equation (8)
11: k = k + 1
12: End j

13: End i

14: End m

15: for l = 1: bn − 1: step = 1 do
16: Generate the Kpm for all m values (i.e. m = 0, 1, . . . , r − 1)
17: using the chaotic generator to decrypt the current block from the ciphered image.
18: for m = r − 1: 0: step = −1 do
19: k = 0
20: for i = 0: M − 1: step = 1 do
21: for j = 0: M − 1: step = 1 do
22: Initialize the value of sl−1 = cl−1k

23: Calculate (in, jn) using equation (3)
24: Calculate kn = in × M + jn

25: Calculate pl(k) value using equation (17)
26: Calculate yl(k) value using equation (6) and equation (8)
27: k = k + 1
28: End j

29: End i

30: End m

31: End l
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Fig. 7. Decryption structure of the first proposed cryptosystem.

In reality, as we can see in Fig. 7, Eq. (18) is
implemented as follows:

yl(k) = cl(kn) ⊕ sl−1(k) ⊕ LSB8[f(yl(k − 1))]

⊕ sl−1(k) ⊕ f(yl(k − 1))

yl(k) = cl(kn) ⊕ LSB8[f(yl(k − 1))] ⊕ f(yl(k − 1)).

(19)

4.4. Analysis of the first proposed

cryptosystem

Lian et al., in their paper [2005], analyzed the
Fridrich model, and they pointed out some possible
attacks on that model. We apply and analyze these
attacks on our proposed cryptosystem to ensure its
robustness against them.

4.4.1. Dynamic key space analysis of

Fridrich, Zhang and our

cryptosystems

Lian in his paper assumes that the dynamic key
space of the whole Fridrich cryptosystem is Sr =

(S1 × S2)
r, where S1 is the dynamic key space of

the confusion layer, S2 is the dynamic key space of
the diffusion layer, and r is the number of iterations.

The total dynamic key space of the Fridrich
model can be calculated as:

S1 = (N2)r, S2 = Lr

KSFridrich = (N2)r × Lr = (N2 × L)r

where M is the square root of the tested image size
and L = 256, is the number of gray levels.

In the Zhang cryptosystem, the first algorithm
has q1, q2, p1 and p2 in the range [0, 511], and also
t0 which is eight bits, so:

KSZhang1 = (N4 × 28)r.

The second algorithm has q1, q2, p1 and p2 in the
range [0, 511], and also temp1 and temp2 of eight
bits each, so:

KSZhang2 = (N4 × 216)r.

In our proposed cryptosystem, the total dynamic
key space is defined as:

Sr = (S1 × S2)
r
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where S1 is the dynamic key space of the confusion
layer (the modified 2-D cat map), S2 is the dynamic
key space of the diffusion layer (the logistic map).

The total dynamic key space of our proposed
cryptosystem can be calculated as:

(1) The whole image is divided into a number of
blocks and the dynamic keys are changed for
every new encryption round and every new
block.

(2) Dynamic keys for the confusion layer are (u, v,
ri and rj: in the range of [0,M −1]). Then, the
confusion key space is M4.

(3) The diffusion key space (S1) is 32 bit instead
of eight bit as in the Fridrich or the Zhang
cryptosystems.

(4) The total number of blocks is bn where bn =
L×C×P

bs

= L×C×P
M2 .

KS = (S1 × S2)
r × bn

S1 = M4, S2 = 232.

For r = 1:

KSProposed = (M4 × 232) × L × C × P

M2
.

As an example and to make the comparison between
cryptosystems, of Zhang, Fridrich and ours, the
gray-scale Lena image of 512 × 512 is taken, and
then for one encryption round (remark, for our pro-
posed cryptosystem M = 32):

KSFridrich = 5122 × 256 = 226

KSZhang1 = 5124 × 28 = 244

KSZhang2 = 5124 × 216 = 252

KSProposed = (324 × 232) × (512×512
322 ) = 260.

It is clear from the previous calculations that the
dynamic key space of our proposed cryptosystem is
216 times more than the first Zhang cryptosystem,
and 28 times more than the second Zhang cryp-
tosystem.

4.4.2. Chosen-plaintext attack

Fridrich proved that his proposed model is secure
against a chosen-plaintext attack based on the
fact that the difference between the ciphertexts
encrypted by the same key for two plaintexts differ-
ing on one bit is large enough to keep a high secu-
rity level against the chosen-plaintext attack. How-
ever, Lian et al. [2005] pointed out another kind of

attack that can be used to cryptanalyze the Fridrich
model. Since the fixed-point problem was not solved
in the 2-D cat map, Baker or standard maps were
used in the Fridrich model, and so the cipher of the
first plain pixel of any image will remain in the first
position (that means c0 is the encryption of the p0,
and so, no permutation is done on the first pixel).
Then it is easy to find the initial value of the diffu-
sion key (Q−1) in the Fridrich model (more details
of this attack can be found in [Lian et al., 2005]).

In Zhang cryptosystems, a simple solution to
overcome this problem is introduced, the solution
is carried out by swapping the first pixel with a
random pixel from the image before starting the
encryption process.

In our proposed cryptosystem, the first kind of
chosen-plaintext attack is solved, and it satisfies a
high security level. This is well stated by our pro-
posed cryptosystem in Sec. 6.2.

The fixed-point problem does not exist in our
proposed cryptosystem, since it is solved by adding
the ri and the rj dynamic keys to the original 2-D
cat map, and the chaotic generator insures that ri

and rj will never be zero at the same time.
Our solution has two advantages, first, it

increases the dynamic key space of the 2-D cat map,
second, any pixel can be mapped to any position
with the same probability.

4.4.3. Some specific differences in the

diffusion process

Zhang cryptosystems implement the logistic map
based on eight bits. This means, that the input and
the output of the logistic map for all operations are
in eight bits, whereas in our proposed cryptosystem,
the logistic map is implemented to receive 32 bits as
input and to produce 32 bits as output. As a result,
the dynamic key of the logistic map is increased
from eight bits to 32 bits, and the security level of
the overall cryptosystem is increased. Finally, it is
well known that the implementation of the logistic
map based on eight bits has some security weak-
nesses and failures.

Finally, as the proposed cryptosystem uses
new dynamic keys for each new block, then, the
cryptosystem is secure against the chosen-plaintext
attacks, according to the fact that a chosen-
plaintext attack will be useless if different keys are
used to encrypt different plaintexts in the same
message.
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5. Second Proposed Cryptosystem

The construction and design process of the follow-
ing cryptosystems begins by keeping in mind the
structure of the first proposed cryptosystem. As
we know, there is always a trade off between the
security level and the encryption time. Increasing
the security level in general leads to making the
system more complex, and then adding some addi-
tional delays on the encryption operations. For this
reason, two subversions of the second version are
described in this section. These subversions have
the same structure as the first proposed cryptosys-
tem, but using a different diffusion layer, namely
the Finite Skew Tent Map (FSTM) as a generator
instead of the logistic map.

5.1. Finite Skew Tent Map

as diffusion layer

The diffusion layer is implemented using a modi-
fied version as a generator of the original FSTM
in [Masuda et al., 2006; Masuda & Aihara, 2002],
based on a lookup table of eight bits for the first
subversion and on a mathematical calculation of 32
bits for the second subversion [see Eq. (20)]. The
FSTM has a better nonlinear transformation than
the logistic map and so its diffusion is stronger
than that of the logistic map. This implies that
the cryptosystem is more resistant against differ-
ential cryptanalysis attacks. So, using the FSTM as
a dependent diffusion layer increases cryptosystem
sensitivity to plain sensitivity attacks. The mathe-
matical model of the modified FSTM generator is
[Farajallah et al., 2013b]:

F (X) =















































⌊

Q

Am

× X

⌋

+ A0m Mod Q

0 ≤ X ≤ Am

⌊

Q × (Q − X)

Q − Am

⌋

+ 1 + A0m Mod Q

Am < X < Q

(20)

where

A0m,X, F (X) ∈ {0, 1, 2, . . . , Q − 1} and

Am ∈ {1, 2, . . . , Q − 1}.
In Eq. (20), Q is equal to (28) for the first subver-
sion (lookup table), and equal to (232) for the sec-
ond subversion (the mathematical implementation

of the FSTM). Relative to the first proposed cryp-
tosystem, the input value X of Eq. (20) is Eq. (8),
while F (X) in Eq. (20) is f(yl(k−1)) and the initial
value X0 is Kdm (see Figs. 4 and 7).

The structure of the dynamic keys during the
diffusion process is:

Ks = ⌊Ks0‖Ks1‖Ks2‖ · · · ‖Ksr−1⌋

Ksm = Am‖A0m

(21)

where r is the number of rounds for each block.
In the standard FSTM, the fixed-point problem is
not solved (i.e. when the input of the FSTM is
ZERO the output is ZERO). To overcome this prob-
lem we introduce A0m in the FSTM equation. As
a result, any input value is mapped to any output
value with the same probability without any restric-
tions. Moreover, introducing the dynamic key A0m

increases the dynamic key space.
The first subversion uses eight bits to imple-

ment the FSTM generator as a lookup table, and
so it is faster than the first cryptosystem, while
still having a high security level. The lookup table
is created since the input and the output of the
FSTM are limited to eight bits. Figure 4 can be
used to describe the encryption process of this sub-
version. The first step is to generate the dynamic
keys (Kpm, X0, Am and A0m). The permutation
process is applied on the plain pixels by taking each
byte, and calculating their new position according
to Eq. (3). Then, Eq. (8) is applied to obtain the yk

value which defines the ciphered pixel as shown in
Eq. (7). Note that the value of yk is eight bits and
so there is no need for the LSB function of Eq. (7).
It is important to note that Eq. (20) is implemented
in lookup table of 64 KB size without the A0m, the
returned value from the lookup table is added to
the A0m.

The second subversion uses 32 bits to imple-
ment the FSTM as a generator. It is slower than
the first cryptosystem, but it has a dynamic key
space greater than the first cryptosystem and thus
it is very robust against cryptanalysis. The encryp-
tion process in this version is exactly identical to
the first one, except in this version Eq. (20) is used
instead of Eq. (6).

Using the lookup table based on eight bits for
the first subversion, the first eight bits from each
sample of the chaotic generator are taken to be used
as the dynamic key (Am or A0m), and the remain-
ing 24 bits are skipped. If the first eight bits are
zeros, then the next eight bits are taken and so on.
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The dynamic keys of the first subversion need two
samples for each round of each block. It is impor-
tant to note that the used chaotic generator never
produces a sample of 32 bits where all of the bits
are zeros. The dynamic keys Am and A0m in the
second subversion are 32 bits each, so, two samples
are also needed for each round of each block.

Kssamples = 2 × r. (22)

So the total number of required samples in this
version is:

Totalsamples = 2 × r +
bs

4

+

⌈

bn × r × 4 × log2

√
bs

32

⌉

. (23)

5.2. Analysis of the second

proposed cryptosystem

In this section, we analyze the dynamic key space
and the chosen-plaintext attacks.

5.2.1. Dynamic key space analysis

In our proposed cryptosystem, the total dynamic
key space is:

KS = (S1 × S2)
r × bn.

For one encryption round (r = 1):

First subversion key space:

S1 = M4

S2 = 224, because X0, Am and A0m

are eight bits each.

KSSubversion1 = M4 × 224 × L × C × P

M2
.

Second subversion key space:

S1 = M4

S2 = 296, because X0, Am and A0m

are 32 bits each.

KSSubversion2 = M4 × 296 × L × C × P

M2
.

Again, to make the same comparison between
our proposed cryptosystem, the Zhang and the
Fridrich cryptosystems, the Lena image of 512 ×
512 bytes is taken, then for one encryption round
(remark, for our proposed cryptosystem M = 32):

KSFridrich = 226

KSZhang1 = 244

KSZhang2 = 252

KSSubversion1 = (324 × 224) × 512×512
322 = 252

KSSubversion2 = (324 × 296) × 512×512
322 = 2124.

It is clear from the previous calculations that the
dynamic key space of the first subversion is 28 times
more than the first Zhang cryptosystem, and the
same as the second Zhang cryptosystem, whereas
the dynamic key space of the second subversion
is 280 times more than the first Zhang cryptosys-
tem, and 272 times more than the second Zhang
cryptosystem.

5.2.2. Chosen-plaintext attack

In this cryptosystem version, the modified 2-D cat
map is the same as before, and so the analysis of the
chosen-plaintext attack is the same. The FSTM is
enhanced by adding the parameter A0. This means
that the fixed-point problem is solved also for the
diffusion layer, and so, this type of attack will be
useless.

6. Performance and Security

Analysis

The performances of the proposed cryptosystems
have been evaluated by: measuring the encryp-
tion/decryption speed, the throughput, and the
number of cycles for each algorithm. The obtained
results are compared with results of other known
cryptosystems. Experimental and statistical analy-
sis is used to evaluate the security of the proposed
cryptosystem for all kinds of known attacks in the
literature.

6.1. Time and complexity analysis

The speed evaluation of our proposed cryptosys-
tem is carried out using a C compiler, on a PC
with 3.1 GHz processor Intel Core i3-2100 CPU,
4 GB RAM, and Windows 7, 32-bit Operation Sys-
tem. It encrypts different images of different sizes.
(256× 256× 3, 512× 512× 3 and 1024× 1024× 3).
We compare the speed of our proposed cryptosys-
tems with the fastest chaos-based cryptosystems.
In particular, the security and the performance
analysis of the proposed cryptosystems are com-
pared with Zhang [Zhang et al., 2013] cryptosys-
tem, since, to the best of our knowledge, it is the
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Table 1. Average encryption/decryption time of the proposed algorithm (in milli-seconds).

Our Cryptosystem Version bs 256 × 256× 3 512× 512× 3 1024 × 1024× 3

Proposed V1 256 2.21/2.82 8.75/11.16 34.87/44.34
Proposed V1 1024 2.04/2.68 8.08/10.57 31.85/41.83
Proposed V2-8 bit 256 1.73/1.78 6.82/7.10 27.01/28.04
Proposed V2-8 bit 1024 1.38/1.45 5.42/5.74 21.17/22.39
Proposed V2-32 bit 256 4.57/5.24 18.29/20.89 73.05/83.43
Proposed V2-32 bit 1024 4.15/4.79 16.56/19.08 66.12/76.17

fastest chaos-based cryptosystem. Table 1 presents
the encryption and the decryption times for our
proposed algorithms, based on two different block
sizes (bs = 256 and bs = 1024 bytes) and the image
under test was Lena. The time calculation process
of encryption and decryption is evaluated as fol-
lows: the test image (Lena with block size 1024)
is encrypted for 1000 different secret keys, then
the average of these executions is calculated. From
Table 2, it is clear that our proposed cryptosystems
are faster than both of the Zhang algorithms and
other known cryptosystems. Table 3 presents a com-
parison of performance of our proposed cryptosys-
tem with some known recent cryptosystems in the
literature. The performance is evaluated in terms
of encryption throughput (running speed) in Mega

Byte Per Second (MBps) and number of needed
cycles to encrypt/decrypt one byte. The encryp-
tion throughput is calculated by Eq. (24) in bytes,
whereas Eq. (25) is used to compute the number of
cycles that are needed to encrypt one byte.

ET =
ImageSize(Byte)

EncryptionTime(second)
(24)

Number of cycles per Byte =
CPU Speed(Hertz)

ET(Byte)
.

(25)

It is clear from Tables 1–3 that our proposed cryp-
tosystem in all proposed versions is faster than
the other chaos-based cryptosystems. The security

Table 2. Encryption/decryption time of different algorithms (in milli-seconds).

Proposed Cryptosystem 256 × 256× 3 512× 512 × 3 1024× 1024 × 3

Proposed V1 2.04/2.68 8.08/10.57 31.85/41.83
Proposed V2-8 bit 1.38/1.45 5.42/5.74 21.17/22.39
Proposed V2-32 bit 4.15/4.79 16.56/19.08 66.12/76.17
Zhang 1 [Zhang et al., 2013] 7.5/7.5 30/30 120/120
Zhang 2 [Zhang et al., 2013] 7.5/8.25 30/33 120/132
Wang [Wang et al., 2011] 7.79/8.39 31.16/33.54 124.64/134.16
Akhshani [Akhshani et al., 2012] 14.4 57.6 230.4
Wong [Wong et al., 2008] 15.59/16.77 62.37/67.11 249.48/268.44
Pareek [Pareek et al., 2013] 160 920 5650

Table 3. Encryption throughput and number of cycles for one encrypted byte.

Proposed Cryptosystem ET in MBps Number of Cycles Per Byte

Proposed V1 93.817/71.486 31.51/41.35
Proposed V2-8 bits 140.776/133.114 21/22.21
Proposed V2-32 bits 45.347/39.359 65.19/75.11
Zhang 1 [Zhang et al., 2013] 25/25 122.07/122.07
Zhang 2 [Zhang et al., 2013] 25/22.72 122.07/134.27
Wang [Wang et al., 2011] 24.06/22.35 122.85/132.24
Akhshani [Akhshani et al., 2012] 13.02 194.83
Wong [Wong et al., 2008] 12.03/11.18 245.7/264.38
Pareek [Pareek et al., 2013] 0.585 1630
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analysis of the proposed cryptosystem is proved in
the previous section in terms of a mathematical
cryptanalysis, and it will be proved in the next sec-
tions in terms of statistical attacks.

6.2. Plaintext sensitivity attacks

A cryptosystem should be sensitive to one bit
change in the plaintext. This requirement is most
important to resist the known plaintext and the
chosen-plaintext attacks [Lian et al., 2005; Mao
et al., 2004]. In a chosen-plaintext attack, more than
one plaintext (with one-bit changes between them)
is selected to analyze the difference between their
corresponding ciphertexts. The measurement tool
to test the sensitivity of any cryptosystem to these
attacks is carried out as: Select P1 as the first plain
image, change one bit in P1 and name it as P2 (i.e.
P1 and P2 are exactly the same except for one bit,
this bit is chosen to be located in the beginning,
middle or the end of the first block, the plaintext
results are calculated as an average of these three
cases). Then both images (P1 and P2) are encrypted
using the same secret key. This encryption produces
two cipher images C1 and C2. Most researchers use
two security parameters to measure the resistance
of any chaos-based cryptosystem for plaintext sen-
sitivity attacks. These parameters are: The Num-
ber of Pixel Change Rate (NPCR) and the Unified
Average Changing Intensity (UACI), they are given
by the following equations respectively:

NPCR =
1

L × C × P

×
P

∑

p=1

L
∑

i=1

C
∑

j=1

D(i, j, p) × 100% (26)

where

D(i, j, p) =

{

0, if C1(i, j, p) = C2(i, j, p)

1, if C1(i, j, p) �= C2(i, j, p)
(27)

UACI =
1

L × C × P × 255

×
P

∑

p=1

L
∑

i=1

C
∑

j=1

|C1 − C2| × 100%. (28)

The optimal NPCR value is 99.61%, and the opti-
mal UACI value is 33.46% [Wu et al., 2011; Maleki
et al., 2008]. The above tests are also used to
measure the resistance of a cryptosystem against

the differential attacks introduced by Eli Biham and
Adi Shamir [Biham & Shamir, 1991].

In our opinion, the previous tests are not suf-
ficient to ensure that the proposed cryptosystem
is resistant against plaintext sensitivity attacks. A
new measurement test called the Avalanche effect is
used. When the input is changed slightly (for exam-
ple, flipping a single bit) and the output is changed
significantly (e.g. half of the output bits are flipped),
in this case the Avalanche effect is achieved. The
block cipher quality is achieved when there is a
small change in either the key or the plaintext,
and there will be a drastic change in the ciphertext
[Mar & Latt, 2008]. Therefore, this evaluation test
is used to measure the resistance of any cryptosys-
tem to plaintext and key sensitivity attacks. The
scenario of this test is exactly identical to the pre-
vious one, but here the Hamming Distance is used
to test if the cryptosystem has the Avalanche effect
or not:

HD(C1, C2) =
1

|Ib|

|Ib|
∑

K=1

(C1(K) ⊕ C2(K)) (29)

with |Ib| = 8 × L × C × P .
The Hamming Distance (HD) in bits between

the corresponding ciphered images C1 and C2

should be close to 50% (probability of bit changes,
one bit difference in plain image will make every
bit of the corresponding cipher image change with
a probability of a half [Wang et al., 2013]). There-
fore, the plaintext sensitivity attack would become
a useless attacking method. All versions of our pro-
posed cryptosystem are tested using 3000 random
secret keys. For each execution, we calculated the
HD, NPCR, and UACI values between the two
ciphered images C1 and C2. Finally, the average
of the previous tested values are calculated. As a
result, all versions of our proposed cryptosystem
achieve the Avalanche effect from the first round
(r = 1) and then, they overcome the plaintext
sensitivity attacks. The plain images under test
were Lena, Barb, and Boat images of the same size
512 × 512 gray scale images (the selected images
are chosen like those in the literature). Moreover,
Lena and Peppers color images of the same size were
used on the same test. Table 4 presents all of these
results, and it is clear that the HD value is very close
to the optimal value of 50% for the three proposed
cryptosystems. Also the UACI and NPCR values
are close to optimal. These values indicate that the
proposed cryptosystems are very sensitive to one bit
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Table 4. HD, UACI and NPCR plain-text sensitivity tests.

Proposed Cryptosystem Image Name Image Size HD UACI NPCR

Proposed V1 Barb 512× 512× 1 0.499630 33.438 99.532
Proposed V2-8 bit Barb 512× 512× 1 0.499975 33.462 99.611
Proposed V2-32 bit Barb 512× 512× 1 0.499978 33.460 99.609
Zhang 1 [Zhang et al., 2013] Barb 512× 512× 1 / 33.475 99.663
Zhang 2 [Zhang et al., 2013] Barb 512× 512× 1 / 33.420 99.582

Proposed V1 Lena 512× 512× 1 0.499587 33.437 99.521
Proposed V2-8 bit Lena 512× 512× 1 0.499986 33.463 99.611
Proposed V2-32 bit Lena 512× 512× 1 0.499975 33.459 99.609
Pareek [Pareek et al., 2013] Lena 512× 512× 1 / 31.79 99.6
Wong [Wong et al., 2008] Lena 512× 512× 1 / 32.82 99.44
Wang [Wang et al., 2011] Lena 512× 512× 1 / 33.435 99.607

Proposed V1 Boat 256× 256× 1 0.499576 33.434 99.524
Proposed V2-8 bit Boat 256× 256× 1 0.499993 33.461 99.611
Proposed V2-32 bit Boat 256× 256× 1 0.499955 33.466 99.609
Song [Song et al., 2013] Boat 256× 256× 1 33.453 99.625 /
Akhshani [Akhshani et al., 2012] Boat 256× 256× 1 0.499900 33.200 /

Proposed V1 Lena 512× 512× 3 0.499823 33.454 99.579
Proposed V2-8 bit Lena 512× 512× 3 0.500001 33.466 99.611
Proposed V2-32 bit Lena 512× 512× 3 0.499981 33.466 99.610

Proposed V1 Peppers 512 × 512× 3 0.499853 33.451 99.576
Proposed V2-8 bit Peppers 512× 512× 3 0.500035 33.466 99.610
Proposed V2-32 bit Peppers 512 × 512× 3 0.500001 33.463 99.609

change in the plaintext. Hence, a high security level
is reached.

6.3. Key sensitivity attack

Key sensitivity is extremely crucial for any cryp-
tosystem. A cryptosystem has a high security level
relative to key sensitivity attacks if a slight change
in the secret key will produce a completely differ-
ent ciphered image [Pareek et al., 2013]. The test-
ing scenario of key sensitivity is almost identical
to the plaintext sensitivity attack test: we have a
plaintext P and two secret keys are different in one
bit. First, P is encrypted using K1 to obtain C1.
Then the same plaintext P is encrypted using K2

to obtain C2. Then the previous equations of the
NPCR, UACI and HD, (26), (28) and (29) are used
to evaluate the key sensitivity attacks of the pro-
posed cryptosystem.

Table 5 presents the results obtained from the
key sensitivity attack test for the three versions of
the proposed cryptosystem using the same parame-
ters as were used in Table 4. From Table 5, it is clear
that the proposed cryptosystem has a high security
level relative to the key sensitivity attacks.

6.4. Histogram analysis

One of the most common cryptosystem attacks is
the one based on statistical analysis. A cryptosys-
tem is considered to be strong against these attacks
if the histogram of the encrypted image is uniformly
distributed. In Fig. 8, we show some visual results
obtained with the third version of the proposed
cryptosystem (similar results are obtained for the
other versions): (a) the plain Lena image of size
512 × 512 × 3, (b) the corresponding cipher image,
(c) the histogram of the plain image, and (d) its
corresponding cipher image. The histogram of the
encrypted image is very close to the uniform dis-
tribution and completely different from the plain
image histogram. This means that there is no visual
information than can be observed from the ciphered
image of the proposed cryptosystem. The visual test
is necessary but is not sufficient. To ensure unifor-
mity, the chi-square test is applied [using Eq. (30)]
to statistically confirm the uniformity of the his-
togram:

χ2
exp =

Nv−1
∑

i=0

(oi − ei)
2

ei

. (30)
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Table 5. HD, UACI and NPCR key sensitivity tests.

Proposed Cryptosystem Image Name Image Size HD UACI NPCR

Proposed V1 Barb 512× 512× 1 0.500029 33.464 99.610
Proposed V2-8 bit Barb 512× 512× 1 0.499980 33.463 99.609
Proposed V2-32 bit Barb 512× 512× 1 0.499989 33.461 99.609

Proposed V1 Lena 512× 512× 1 0.500014 33.463 99.610
Proposed V2-8 bit Lena 512× 512× 1 0.499995 33.464 99.608
Proposed V2-32 bit Lena 512× 512× 1 0.499952 33.465 99.608

Proposed V1 Boat 256× 256× 1 0.500015 33.462 99.609
Proposed V2-8 bit Boat 256× 256× 1 0.499988 33.462 99.608
Proposed V2-32 bit Boat 256× 256× 1 0.499995 33.460 99.609

Proposed V1 Lena 512× 512× 3 0.500007 33.464 99.610
Proposed V2-8 bit Lena 512× 512× 3 0.499992 33.463 99.609
Proposed V2-32 bit Lena 512× 512× 3 0.499994 33.465 99.609

Proposed V1 Peppers 512 × 512× 3 0.500001 33.465 99.609
Proposed V2-8 bit Peppers 512× 512× 3 0.499987 33.461 99.610
Proposed V2-32 bit Peppers 512× 512× 3 0.499998 33.465 99.609

(a) (b)

(c) (d)

Fig. 8. Lena image and its ciphered version and their corresponding histograms. (a) Plain Lena image, (b) ciphered Lena
image, (c) histogram of the plain Lena image and (d) histogram of the ciphered Lena image.
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Table 6. Chi-square results.

Crypto Version Ciphered Image Chi-Square

Proposed V1 Lena 256.27
Boat 262.46
Baboon 259.91

Proposed V2-8 bit Lena 259.63
Boat 254.69
Baboon 258.78

Proposed V2-32 bit Lena 253.12
Boat 252.44
Baboon 253.14

Where Nv is the number of levels (here 256), oi

is the observed occurrence frequency of each color
level (0–255) on the histogram of the ciphered
image, and ei is the expected occurrence frequency
of the uniform distribution, given here by ei =
L×C×P

256 . We present in Table 6 the results obtained
from the chi-square test of histograms for three
ciphered images of different nature (i.e. Lena, Boat,
and Baboon). All of them have the same size of
128 × 128 × 3, with a significant level of 0.05.
From the obtained values, we can observe that
χ2

exp < χ2
th (255, 0.05) = 293, and then the tested

histograms are uniform and do not reveal any infor-
mation for statistical analysis.

6.5. Correlation analysis

Correlation analysis is also one of the types of sta-
tistical attacks. Correlation analysis should not give
any information on the secret key used or any par-
tial information of the original plain image. This
means that the encrypted image should be greatly
different from its original one. Correlation analysis
is one of the usual ways to measure this property.

Table 7. Correlation analysis results.

Cryptosystem Name Horizontal Vertical Diagonal

Proposed 0.0085 0.0097 0.0092
Algorithm V1

Proposed 0.0087 0.0098 0.0096
Algorithm V2-8 bit

Proposed 0.0087 0.0098 0.0096
Algorithm V2-32 bit

Indeed, it is well known that adjacent pixels in
the plain images are highly redundant and corre-
lated. So, in the encrypted images, adjacent pix-
els should have a redundancy and a correlation as
low as possible. To test the correlation between
adjacent pixels, the following procedure was car-
ried out. Firstly, 8000 pairs of two adjacent pix-
els are selected randomly in vertical, horizontal,
and diagonal directions from the original and the
encrypted images. Then, the correlation coefficient
is computed according to the following formulas:

ρxy =
cov(x, y)

√

D(x)
√

D(y)
(31)

where

cov(x, y) =
1

N

N
∑

i=1

([xi − E(x)][yi − E(y)]) (32)

D(x) =
1

N

N
∑

i=1

(xi − E(x))2 (33)

E(x) =
1

N

N
∑

i=1

(xi) (34)

N = 8000 is the sample size, while x and y are the
gray-level values of the two adjacent pixels in the

(a) (b) (c)

Fig. 9. Correlation analysis of Lena and its ciphered image in three directions. (a) Horizontal correlation of the plain image,
(b) vertical correlation of the plain image, (c) diagonal correlation of the plain image, (d) horizontal correlation of the ciphered
image, (e) vertical correlation of the ciphered image and (f) diagonal correlation of the ciphered image.
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(d) (e) (f)

Fig. 9. (Continued)

image. One example of this extensive study is the
Barb gray scale image of 512×512×1. The obtained
results are shown in Table 7 and Fig. 9. These
results demonstrate that the correlation coefficient,
in all directions, of the plain images is close to one
(see Fig. 9), and the correlation coefficient of the
encrypted images is close to zero. This means that
there is no detectable correlation between the origi-
nal and its corresponding ciphered image, and also,
there is no relation between pixels of the ciphered
image.

7. Conclusion

In this paper, firstly we studied and analyzed one
of the fastest chaos-based cryptosystems, namely
Zhang cryptosystems. Then, based on a similar
structure of the Zhang and Fridrich cryptosystems,
we designed three versions of a chaos-based cryp-
tosystem. We have shown that all versions of our
proposed cryptosystem are faster and more secure
than Zhang and many other chaos-based cryptosys-
tems. The time performance is carried out using
encryption/decryption time, running speed, and the
number of cycles needed to encrypt or decrypt one
byte. The last measurement method is necessary to
compare different cryptosystems working on differ-
ent platforms. All versions of our proposed cryp-
tosystem are implemented using the CBC mode
and a robust chaotic generator to produce the
dynamic keys for each new encryption round and
new block. The high security level of all versions
of the proposed cryptosystem is verified by test-
ing them for different kinds of known mathematical
attacks, and using the well-known statistical anal-
ysis. Finally, all results prove the superiority of the
proposed cryptosystems for use in secure and real-
time applications.

Acknowledgment

This work is supported by the European Celtic-Plus
project 4KREPROSYS — 4K ultraHD TV wireless
REmote PROduction SYStems.

References

Abd El-Latif, A. A., Niu, X. & Amin, M. [2012] “A new
image cipher in time and frequency domains,” Opt.
Commun. 285, 4241–4251.

Akhshani, A., Akhavan, A., Lim, S.-C. & Hassan, Z.
[2012] “An image encryption scheme based on quan-
tum logistic map,” Commun. Nonlin. Sci. Numer.
Simul. 17, 4653–4661.

Behnia, S., Akhshani, A., Mahmodi, H. & Akhavan, A.
[2008] “A novel algorithm for image encryption based
on mixture of chaotic maps,” Chaos Solit. Fract. 35,
408–419.

Bhargava, B., Shi, C. & Wang, S.-Y. [2004] “MPEG
video encryption algorithms,” Multimed. Tools Appl.
24, 57–79.

Bhatnagar, G. & Jonathan Wu, Q. [2012] “Selective
image encryption based on pixels of interest and sin-
gular value decomposition,” Dig. Sign. Process. 22,
648–663.

Biham, E. & Shamir, A. [1991] “Differential cryptanaly-
sis of DES-like cryptosystems,” J. Cryptology 4, 3–72.

Chang, W.-D. [2009] “Digital secure communication via
chaotic systems,” Dig. Sign. Process. 19, 693–699.

Chen, G., Mao, Y. & Chui, C. K. [2004] “A symmet-
ric image encryption scheme based on 3D chaotic cat
maps,” Chaos Solit. Fract. 21, 749–761.

Chen, J.-X., Zhu, Z.-L., Fu, C., Yu, H. & Zhang, L.-B.
[2015] “A fast chaos-based image encryption scheme
with a dynamic state variables selection mechanism,”
Commun. Nonlin. Sci. Numer. Simul. 20, 846–860.

Chiaraluce, F., Ciccarelli, L., Gambi, E., Pierleoni, P. &
Reginelli, M. [2002] “A new chaotic algorithm for
video encryption,” IEEE Trans. Consum. Electron.
48, 838–844.

1919



Ehrsam, W. F., Meyer, C. H., Smith, J. L. & Tuch-
man, W. L. [1978] “Message verification and trans-
mission error detection by block chaining,” US Patent
4,074,066.

El Assad, S. & Noura, H. [2011] “Generator of chaotic
sequences and corresponding generating system,” US
Patent App. 13/638, 126.

El Assad, S., Farajallah, M. & Vladeanu, C. [2014]
“Chaos-based block ciphers: An overview,” 10th
IEEE Int. Conf. Communications (COMM ) (IEEE),
pp. 1–4.

Farajallah, M., El Assad, S. & Chetto, M. [2013a]
“Dynamic adjustment of the chaos-based security in
real-time energy harvesting sensors,” IEEE Int. Conf.
Green Computing and Communications (GreenCom),
Internet of Things (iThings/CPSCom), Cyber, Phys-
ical and Social Computing, pp. 282–289.

Farajallah, M., Fawaz, Z., El Assad, S. & Deforges, O.
[2013b] “Efficient image encryption and authentica-
tion scheme based on chaotic sequences,” 7th IEEE
Int. Conf. Emerging Security Information, Systems
and Technologies (SECURWARE ), pp. 150–155.

Fridrich, J. [1997] “Image encryption based on
chaotic maps,” IEEE Int. Conf. Systems, Man, and
Cybernetics, Computational Cybernetics and Simula-
tion, pp. 1105–1110.

Fridrich, J. [1998] “Symmetric ciphers based on two-
dimensional chaotic maps,” Int. J. Bifurcation and
Chaos 8, 1259–1284.

Furht, B. & Socek, D. [2003] “Multimedia security:
Encryption techniques,” IEC Comprehensive Report
on Information Security, pp. 335–349.

Hamidouche, W., Farajallah, M., Raulet, M., Deforges,
O. & El Assad, S. [2015] “Selective video encryption
using chaotic system in the SHVC extension,” 40th
IEEE Int. Conf. Acoustics, Speech and Signal Pro-
cessing (ICASSP), pp. 1762–1766.

Kassem, A., Al Haj Hassan, H., Harkouss, Y. & Assaf,
R. [2014] “Efficient neural chaotic generator for image
encryption,” Dig. Sign. Process. 25, 266–274.

Li, S., Chen, G. & Zheng, X. [2006] Chaos-Based Encryp-
tion for Digital Image and Video (CRC Press).

Lian, S., Sun, J. & Wang, Z. [2005] “Security analysis of
a chaos-based image encryption algorithm,” Physica
A 351, 645–661.

Lian, S., Sun, J., Wang, J. & Wang, Z. [2007] “A chaotic
stream cipher and the usage in video protection,”
Chaos Solit. Fract. 34, 851–859.

Maleki, F., Mohades, A., Hashemi, S. M. & Shiri,
M. E. [2008] “An image encryption system by
cellular automata with memory,” 3rd IEEE Int.
Conf. Availability, Reliability and Security (ARES ),
pp. 1266–1271.

Mansour, I., Chalhoub, G. & Bakhache, B. [2012] “Eval-
uation of a fast symmetric cryptographic algorithm

based on the chaos theory for wireless sensor
networks,” 11th IEEE Int. Conf. Trust, Security
and Privacy in Computing and Communications
(TrustCom), pp. 913–919.

Mao, Y., Chen, G. & Lian, S. [2004] “A novel fast image
encryption scheme based on 3D chaotic Baker maps,”
Int. J. Bifurcation and Chaos 14, 3613–3624.

Mar, P. P. & Latt, K. M. [2008] “New analysis methods
on strict Avalanche criterion of S-boxes,” World Acad.
Sci. Engin. Technol. 48, 150–154.

Masuda, N. & Aihara, K. [2002] “Cryptosystems with
discretized chaotic maps,” IEEE Trans. Circuits
Syst.-I : Fund. Th. Appl. 49, 28–40.

Masuda, N., Jakimoski, G., Aihara, K. & Kocarev, L.
[2006] “Chaotic block ciphers: From theory to prac-
tical algorithms,” IEEE Trans. Circuits Syst.-I : Reg.
Papers 53, 1341–1352.

Murillo-Escobar, M., Cruz-Hernández, C., Abundiz-
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