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The Proper Orthogonal Decomposition method and the Arnoldi-based Krylov projection method are investigated in order to reduce
a finite element model of a quasistatic problem. Both methods are compared on an academic example in terms of computation time
and precision.
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I. INTRODUCTION

TO analyse electromagnetic devices, the Finite Element
Method (FEM) associated with a time-stepping scheme

is often used to solve Maxwell’s equations. The discretisation
of the space and time domains can yield a large-scale equation
system which computation can be dramatically prohibitive
when a fine mesh and a high number of time steps are
used. To tackle this issue, model order reduction approaches
can be investigated. These approaches enable to reduce the
size of the problem to solve. In the literature, the Proper
Orthogonal Decomposition (POD) [1] and the Arnoldi-based
Krylov projection (AKP) [2] approaches have been used to
solve many problems in engineering. Both methods consist in
performing a projection of the solution onto a reduced basis.
For the POD approach, the projector is calculated from a set
of solutions of the problem (the snapshots) [3]. For the AKP
approach, the projector is deduced from a Krylov subspace
built from the equation system to solve in the frequency
domain. In computational electromagnetics, the POD method
has been already applied to study magnetoquasistatic and
electroquasistatic problems [4], [5]. The AKP approach has
been used to solve magnetoharmonic problem using the partial
element equivalent circuit (PEEC) method [6]. To the author’s
knowledge, any linear electromagnetic problem hasn’t been
solved in the time domain using the projector constructed from
AKP method in the frequency domain.

In this paper, we propose to apply and compare the POD
and AKP methods in the case of quasistatic problems solved
by the vector potential formulation in the time domain and the
frequency domain. First, the numerical model deduced from
the vector formulation is presented. Second, the POD and the
AKP methods are described. Finally, an eddy current problem
in time and frequency domains is studied by the proposed re-
duction approaches. The results obtained with reduced models
are compared with those deduced from the full model. The two
model order reduction methods are also compared in terms of

accuracy, computation time and complexity.

II. LINEAR MAGNETOQUASISTATIC PROBLEM

Let us consider a domain Ω of boundary Γ = ΓH ∪ ΓB ,
ΓH ∩ ΓB = ∅, with a stranded inductor Ωs and a conducting
subdomain Ωc of boundary Γc = ΓE ∪ ΓJed, with ΓE ⊂ ΓB

(Fig. 1). The problem is solved for x ∈ Ω and for t in the
time interval [0, T ].
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Fig. 1. Spatial domain of the problem.

A magnetoquasistatic problem can be solved by using the
vector potential formulation. The potential A? is defined such

that B(x, t) = curlA?(x, t), E(x, t) = −∂A?(x, t)

∂t
and

A?(x, t) × n = 0 on ΓB and ΓE where B is the magnetic
flux density and E the electric field. These expressions are
combined with Ampère’s equation in order to obtain the strong
formulation

curl
1

µ
curlA?(x, t) + σ

∂A?

∂t
= N(x)i(t), (1)

with µ the magnetic permeability, σ the electric conductivity,
N the unit current density vector in Ωs and i the current
flowing through the stranded inductor.

To solve this problem, the potential A? is discretized using
edge elements and N using facet elements. Applying the
Galerkin method to (1), a system of ordinary differential
equations is obtained:

M
dX(t)

dt
+ KX(t) = F i(t). (2)



The vector of unknowns X(t) is composed of the cir-
culations of A? along all edges of the mesh, X(t) =
[A1(t), . . . , ANun(t)]

T . In the case of a sinusoidal supply of
frequency f , the problem can be solved in the frequency
domain to determine the steady state. Then, the problem is
solved for x ∈ Ω and for f ∈ [fmin, fmax]. In this case, (2)
becomes

(M jω + K)X(ω) = F i(ω) (3)

with j the imaginary unit and ω = 2πf .

III. MODEL ORDER REDUCTION

The principle of the model order reduction is to obtain from
(2) or (3) an equation system of reduced size. An orthonormal
reduced basis Ψ is determined to approximate the solution
X of the full problem under the form ΨXr, with Xr the
solution of the reduced problem:

M r
dXr(t)

dt
+ KrXr(t) = F ri(t) (4)

or
(M rjω + Kr)Xr(ω) = F ri(ω) (5)

with M r = ΨTMΨ, Kr = ΨTKΨ, F r = ΨTF .
The Krylov subspace projection and the POD approach are

two different ways to determine the reduced basis Ψ.

A. Krylov Projection method
For the AKP approach, the solution of the full model is

projected onto a Krylov subspace. To determine this subspace,
an expansion of the transfer function of the problem is
performed. The Laplace’s transform is applied to (2):

(Ms+ K)X(s) = F i(s). (6)

The transfer function has the following expression (see (6))

h(s) = (Ms+ K)
−1

F . (7)

h is approximated by a Padé’s expansion at the expansion
point sexp

h(s) =
∞∑
j=0

hj(s− sexp)j . (8)

The vectors hj can be expressed as

hj =
(
−(Msexp + K)−1M

)j
(Msexp + K)−1F (9)

= Gjg,

with G = −(Msexp + K)−1M and g = (Msexp + K)−1F .
The set of vectors (hj)j=0,Ns−1 generates the Krylov sub-
space KNs

(G, g) = span{g,G1g,G2g, . . . ,GNs−1g}. The
Arnoldi’s algorithm is used to obtain an orthonormal basis Ψ
of the Krylov subspace KNs(G, g) [7]. Thus, Ψ allows to
project the solution X onto KNs

(G, g).
Several expansion points sk can be used to express (7):

h(s) =

∞∑
jk=0

hjk(s− sk)jk , (10)

with hjk =
(
−(Msk + K)−1M

)jk
(Msk + K)−1F . The

hjk vectors associated with each expansion point sk are so-
called point moments. The expansion point sk will be equal
to 2πfk or j2πfk according to the problem [8], [9].

B. Proper Orthogonal Decomposition

With the snapshot POD approach [3], the projector Ψ is de-
fined from a set of solutions of the full model (i.e. snapshots).
The problem (2) is solved for the Ns first time-steps to obtain
X(ti), i = 1, . . . , Ns, then these solutions are concatenated
in the snapshot matrix S = [X(t1), . . . ,X(tNs

)]. In the fre-
quency domain, (3) is solved for Ns different frequencies and
the snapshot matrix is defined by S = [X(ω1), . . . ,X(ωNs)].
Applying the singular value decomposition to the matrix S
gives

S = V ΣW T (11)

with V Nun×Nun and WNs×Ns orthonormal matrices and
ΣNun×Ns

a rectangular diagonal matrix of the singular values.
The Ψ basis corresponds to the normalised matrix V Σ or
SW . In practice, it is more efficient to compute W by solving
the eigenvalues problem on the correlation matrix C of S
because C has a smaller size:

C =
1

Ns
STS = WΣTV TV ΣW T = W∆W T . (12)

Then the columns of SW = V Σ are normalised to obtain an
orthonormal basis Ψ.

IV. APPLICATIONS

The application example is composed of two conducting
plates submitted to a magnetic field created by a stranded in-
ductor. Due to its symmetries, only one eighth of the geometry
is modeled (Fig. 2). The two model order reduction methods
are applied in time-domain and in frequency-domain. In the
time-domain, the stranded inductor is supplied by a current
i(t) = sin(2π5000t). In the frequency-domain, a current with
a magnitude equal to one is imposed for all frequencies. The
results obtained with the reduced models are compared with
those deduced from the full model.

Stranded
inductor

Conducting
plate

Fig. 2. Geometry and mesh of the device for the stranded inductor and the
conducting plate.

A. Quasi static problem

For the quasi static problem in the time domain, the full
model (2) is solved by using an implicit Euler scheme. The
modeling is performed on 4 periods with 20 points per period.
For the POD method, the snapshots are the solutions of the Ns

first time steps of the full model. For the AKP approach, only



one expansion point is chosen for the Padé’s expansion. The
value of the expansion point is equal to the angular velocity
of the current: sexp = 2π5000.

In order to evaluate the influence of the size of the reduced
basis on a global quantity, the evolutions of the Joule losses
versus time, obtained from the POD and AKP models, are
compared with the one of the full model in Fig. 3 and Fig.
4. We can observe that the Joule losses converge towards the
reference with both approaches when the size of the reduced
basis increases. Figures 5(a) and 5(b) present in logscale
the error on the Joule losses and on the magnetic energy,

εP =
‖Pref − Pred‖
‖Pref‖

and εE =
‖Eref − Ered‖
‖Eref‖

with Pref and

Pred (resp. Eref and Ered) the evolution of the Joule losses (resp.
magnetic energy) obtained from the full and reduced models.
For a given size of the reduced basis, the error obtained with
the AKP method is smaller than the error obtained with the
POD model. Nevertheless, both approaches give the same error
when the size of the reduced basis is higher than 12. Figure
6(a) presents the distribution of the eddy current density at
a given time step in a cross section of the conducting plate
obtained from the full model. Figures 6(b) and 6(c) present the
norm of the difference between the eddy current density from
the full model and those deduced from the POD and AKP
models. The error density is smaller with the AKP method,
but considering the scale, the error of the POD model remains
acceptable. Figure 7 presents the computation time of the
reduced models with respect to the reduced basis size. For
both approaches, the computation time is smaller than the one
required for the full model. The POD model is faster than
the AKP model. This difference comes from the worse matrix
conditioning obtained with the AKP method. In fact, with the
POD method, due to the Euler scheme, the matrix to inverse
is (M 1

dt + K), and with the AKP approach, the matrix to
inverse is (Msexp +K). The profile of the two matrices is the
same, but the values of 1

dt and sexp are not equal in both cases,
that changes consequently the matrix conditioning, and then
changes the convergence of the biconjugate gradient (BiCG)
used to solve the system. The convergence of BiCG is longer
in the case of AKP.

For non linear systems, the POD method can be applied in
the same way as in linear case. Recently, the POD method
has been associated with the Discrete Empirical Interpolation
Method to speed up the accounting of the non linearity with the
POD. For electromagnetic problem, this kind of approach has
been used to study a single phase transformer [10]. However,
the AKP method can not be used directly but the nonlinear
behaviour can be taken into account by linearization [11].

B. Magnetoharmonic problem

For the magnetoharmonic problem, we consider a frequency
interval from 100 Hz to 20 kHz with a frequency step equal
to 100 Hz. For this case, we choose snapshots and expansion
points uniformly distributed on the frequency interval. The
reduced basis size is fixed at 6. For the POD approach, six
snapshots are uniformly distributed on the frequency spectrum.
For the AKP method, 3 expansion points are chosen (at 100
Hz, 10 kHz and 20 kHz) and for each expansion point the
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Fig. 3. Evolution of the Joule losses obtained from the POD model with 1,2
and 3 snapshots.
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Fig. 4. Evolution of the Joule losses obtained from the AKP model with 1,2
and 3 vectors in KNs (G, g).
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(a) Error on the Joule Losses.
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(b) Error on the Magnetic energy.

Fig. 5. Error with respect to the reduced basis size.

two first moments are computed in order to obtain the same
size for the two reduced models. Table I presents the error
on the magnetic energy and on the Joule losses introduced
by the reduced models. For this example, the errors of both
reduced models are in a same range. Figure 8(a) presents the
real part of the distribution of the eddy current density in a
cross section of the conducting plate obtained from the full
model. Figures 8(b) and 8(c) present the difference between
the real part of the eddy current density from the full model
and those deduced from the POD and AKP models. As for the
first study in the time domain, the error density is smaller with
the AKP method. We can also observe that the eddy current
density obtained from both reduced models are close to the
one deduced from the full model. The computation time of
the reduced models are similar; 199s for the POD approach
and 208s for the AKP method. The full model requires 1907s



(a) Eddy current density (A.m−2) obtained with full model.

(b) Error density ‖J full
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Fig. 6. Eddy current density of the full model and error density for a reduced
basis of size 8, in the conducting plate viewed from the top.
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Fig. 7. Computation time with respect to the reduced basis size.

to compute the solution on the frequency interval. Then, the
speed up is greater than 9.

TABLE I
ERROR ON MAGNETIC ENERGY AND JOULE LOSSES FOR REDUCED

MODELS OF SIZE 6.

Reduced model POD Krylov-Arnoldi
‖Eref − Ered‖
‖Eref‖

1, 7656.10−6 1, 7322.10−6

‖Pref − Pred‖
‖Pref‖

2, 0241.10−5 2, 3489.10−5

V. CONCLUSION

The Proper Orthogonal Decomposition method and the
Arnoldi-based Krylov projection method combined with a
FEM vector potential formulation have been developed in
order to solve 3D magnetodynamic and magnetoharmonic
problems. For the studied example, it has been shown that
the two approaches enable to reduce the computation time
significantly. The errors on the global and local quantities

(a) Eddy current density (A.m−2) of the full model.

(b) Error density ‖J full
ed − JPOD

ed ‖. (c) Error density ‖J full
ed − JAKP

ed ‖.

Fig. 8. Real part of the eddy current density at 10 kHz and error density, in
the conducting plate viewed from the top.

introduced by both reduced models are small compared with
the results obtained from the full model. For a given size of
the reduced model, the errors associated with the AKP method
are smaller than those of the POD approach. Nevertheless, the
computation time of the reduced model from the POD method
is smaller than this of the AKP approach.
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