
HAL Id: hal-01163824
https://hal.science/hal-01163824v1

Submitted on 15 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Crowd, a platform for the crowdsourcing of complex
tasks

Ahmad Chettih, David Gross-Amblard, David Guyon, Erwann Legeay, Zoltán
Miklós

To cite this version:
Ahmad Chettih, David Gross-Amblard, David Guyon, Erwann Legeay, Zoltán Miklós. Crowd, a plat-
form for the crowdsourcing of complex tasks. BDA 2014 : Gestion de données - principes, technologies
et applications, Oct 2014, Autrans, France. pp.51–55. �hal-01163824�

https://hal.science/hal-01163824v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Crowd, a platform for the crowdsourcing of complex
tasks

Ahmad Chettih
University of Rennes 1

David Gross-Amblard
University of Rennes 1 / IRISA

dga@irisa.fr

David Guyon
University of Rennes 1

Erwann Legeay
University of Rennes 1

Zoltán Miklós
University of Rennes 1 / IRISA

zoltan.miklos@irisa.fr

ABSTRACT
Crowdsourcing is an emerging technique that enables to in-
volve humans into information gathering or computational
tasks. With the help of crowdsourcing platforms a group
of participants (workers) can solve otherwise difficult prob-
lems. While the existing, generic crowdsourcing platforms
such as Amazon Mechanical Turk have been used to address
various challenges, they only support simple questions that
we consider as basic tasks. In this demo we present Crowd,
a platform where one can submit a workflow, which is a com-
position of such basic tasks. Crowd also supports a simple
skill-management mechanism: each basic task is annotated
with expertise tags. Upon the validation of completed tasks,
the worker’s expertise is updated according to these tags.
The worker’s expertise can later be used for better task se-
lection. Crowd is implemented in Python/Django, and can
be used both on the Web or on mobile devices.

1. INTRODUCTION
Crowdsourcing is a recent technique that allows so called

taskers to rely on an unknown crowd on the Internet to solve
a difficult task. Many ad hoc crowdsourcing platforms are
devoted to the resolution of specialized tasks: see for ex-
ample the FoldIt project1 for the discovery of new protein
foldings, or Transifex2 for the translation of technical doc-
uments. Besides, generic crowdsourcing platforms have em-
merged, such as Amazon Mechanical Turk (AMT3), Crowd-
Flower4 or CloudFactory5 , to name a few. These generic
systems support mainly simple data acquisition tasks pre-
sented as a sequence of questions (forms). They are how-
ever not suited for complex tasks that require repetitions,

1http://fold.it
2https://www.transifex.com/
3https://www.mturk.com/
4http://www.crowdflower.com/
5http://www.cloudfactory.com

(c) 2014, Copyright is with the authors. Published in the Proceedings of
the BDA 2014 Conference (October 14, 2014, Grenoble-Autrans, France).
Distribution of this paper is permitted under the terms of the Creative Com-
mons license CC-by-nc-nd 4.0.
(c) 2014, Droits restant aux auteurs. Publié dans les actes de la conférence
BDA 2014 (14 octobre 2014, Grenoble-Autrans, France). Redistribution
de cet article autorisée selon les termes de la licence Creative Commons
CC-by-nc-nd 4.0.
BDA 14 octobre 2014, Grenoble-Autrans, France.

alternatives or conditional execution. A typical example
of such complex tasks is cooperative relief–support during
disasters6 7, where Internet-connected people assist rescue
teams by providing outside information (based on e.g. satel-
lite pictures). We use the following complex task T as a
running example:

T : A storm has just hit Miami. Please help
the coordination rescue operations, by providing
information on available hospitals and passable
roads to reach them. If you are trained in emer-
gency management or you have experience with
road traffic control, your are very welcome to join
our online support team.

This task can be submitted to existing platforms, but as
a unique text block. One could imagine a more structured
and and more precise formulation of the same task:

T (rewritten): A storm has just hit Miami.
Please help the coordination of rescue operations,
by first (T1) locating nearby hospitals on this
map (link given). Then, (T2) obtain their phone
numbers, and then (T3) try to contact them to
obtain their availability. Meanwhile, (T4) list the
passable roads reaching these hospitals. If you
are trained in emergency management or you
have experience with road traffic control, your
are very welcome to join our online rescue teams.

This latter formulation shows opportunity for task par-
allelization and expertise tagging, however such queries are
not supported by the existing platforms. Even if the API
of the crowdsourcing platforms enables to realize the com-
bination of basic tasks, this would require expert program-
ming skills and considerable efforts for each task. Instead
we propose a platform where one can submit such complex
workflows directly.

Contribution. In this demo we present Crowd, a platform
where one can submit a whole workflow, that is a
composition of basic tasks. The workflow is expressed
as an execution plan with various composition operators.

6http://www.usnews.com/opinion/articles/2012/11/
23/how-to-make-crowdsourcing-disaster-relief-work-better
7http://www.nature.com/news/
crowdsourcing-goes-mainstream-in-typhoon-response-1.
14186

51

The workflow associated with our previous example is
shown below. Its interpretation is, informally, “perform T1,
then perform (in parallel) T4 and the sequence T2 and T3”.

then

/ \

T1 and

/ \

then T4

/ \

T2 T3

In this example, basic tasks (T1 to T4) can be submitted to
existing platforms, and parallelism between tasks can be ex-
pressed. In our model the available operators are sequences
(then), alternatives (or), conjunction (and), tests (if) and
loops (while).

Crowd also supports a simple skill-management mech-
anism. Each basic task can be annotated by a list of ex-
pertise tags (e.g. ”emergency, hospital” for T1 to T3 and
”road, traffic” for T4). Upon the validation or rejection of
completed tasks, the workers expertise score is updated ac-
cording to the relevant tags. The worker’s expertise can
later be used for better task assignment and the evaluation
of the available expertise on a completed execution plan.

Crowd is implemented in Python/Django, and can be
used both on the Web or on mobile devices. Participation is
free (but extensible with fee facilities for participants if re-
quired) and symmetric (any user can participate in or create
a task, contrary to existing platforms).

The rest of this demo is organized as follows: after giving
the related work in Section 2, we expose the model under-
lying Crowd in Section 3. Then we detail our system in
Section 4 and conclude with our demo scenario in Section 5.

2. RELATED WORK
The idea of composing smaller tasks and offering a com-

posite task execution service is on the agenda of several
startup companies. For example, Ville Miettinen, the CEO
of Microtask8, mentioned in a recent interview: “In the
long term, all human processes that can be standardized
will be available as a cloud service...” 9 Microtask al-
ready offers some composite services, but these services are
predefined.

While basic tasks can be easily deployed on Amazon me-
chanical turk or similar platforms, sequences of tasks have to
be modeled in a form. Alternatives can be hacked in Crowd-
flower using a specific only− if construct in their CML lan-
guage. Up to our knowledge, AMT nor CrowdFlower can
model for example parallel tasks within a sequence.

Recent academic works propose some form of program-
ming languages that enable a more flexible task composi-
tion, including [1, 2]. These procedural approaches offer a
fine control of human-based computation, but the required
skill for the task developer is high. Several declarative ap-
proaches that ease data acquisition campaigns have also
been constructed recently [5, 8, 7, 6], but they do not reason
on task composition. A generic, data oriented crowd system
is presented in [3]. This active rules-based system is able
to implement workflows that are similar to ours, but this

8http://www.microtask.com/
9http://venturebeat.com/2011/03/22/
crowdsourcing-startup-microtask-gets-gamers-to-do-
some-real-work/

requires complex skills for defining appropriate triggers. So-
phisticated expertise mining models have also been proposed
in the context of crowdsourcing (e.g. [4]), but independently
from the workflow where these tasks belong to.

3. MODEL
We present in this section the model underlying Crowd.

This model encompasses the workflow execution, workflows
intermediate results, result provenance, user and task exper-
tise and task validation.

Participants and Expertise. Each participant in a Crowd pro-
cess is uniquely identified, with identifiers denoted as uid in
the sequel.

We suppose given a vocabulary of expertise tags, such as
”hospital” or ”traffic” (the vocabulary of these tags is free. A
systematic building of these tags, for example as a taxonomy,
is out of the scope of this demo). The expertise Euid of
participant uid is a function mapping a expertise tag e to an
expertise integer score Euid(e) (where 0 means no expertise
at all). The initial expertise of a new participant maps all
expertise tag to 0.

Basic and Complex Tasks. A user can submit tasks to
the system (we then call it a tasker, but any participant can
become a tasker). The concrete syntax of a basic task such
as T1 is for example

ask(2,"Give the location of nearby hospitals",

[hospital, emergency])

It denotes the triggering of 2 questions on hospital lo-
cations on the Crowd platform for available users. The
task will be tagged by the hospital and emergency expertise.
Once 2 distinct participants have answered this question, the
task is finished. The result of this task is a list of (key,value)
pairs, where the key is formed by the running task identifier
denoted by tid, the participant’s uid and the answer num-
ber. It is noteworthy that tasks results in Crowd are not
typed, but are nested lists of (key,value) pairs (for the sake
of simplicity we do not elaborate here on constraints on par-
ticipant answers, like requiring the answer to be an integer
of to respect a regular expression. This is a classical topic
for all crowdsourcing platform). Hence, a possible result for
T1, denoted res(T1) could be

{(tid1-uid1-1,"Miami Children hospital"),

(tid1-uid5-2,"University of Miami hospital")}

In turn, a complex task is either a basic task or a composi-
tion of complex tasks. When several tasks are involved, the
result of one task can be the input of another task (in prac-
tice, the participant of the second task can see this input).
Given two complex tasks t and t′, we use a prefix syntax
to connect them: then(t, t′) (sequence),and(t, t′) (conjunc-
tion), or(t, t′) (alternative), while(t, t′) (loop). The condi-
tional structure if(t, t′, t′′) requires a third task t′′.

The evaluation of then(t, t′) launches t, and upon termi-
nation, launches t′. The result of t is passed as input to
t′. The final result is the tuple (then, res(t), res(t′)) (the
result of t is preserved in the trace of the overall execution).
The evaluation of and(t, t′) launches both tasks in parallel,
and both must terminate for the and task to finish. The
result is the tuple (and, res(t), res(t′)). The evaluation of

52

or(t, t′) launches both tasks in parallel, the first to finish, say
t, interrupts the other. The result is the tuple (or, res(t)).
The evaluation of if(t, t′, t′′) launches the evaluation of t.
Upon termination, if the first tuple of the result matches
(, true), task t′ is launched. Otherwise t′′ is launched. The
if result is the tuple (if, res(t)) or (if, res(t′)) according to
the condition output. Finally, the evaluation of while(t, t′)
launches t and t′ each time the result of t matches the tu-
ple (, true), and otherwise finishes. The result is the tuple
(while, res(t∗)) where t∗ is the last execution of t′ in the
loop.

Based on this syntax, the translation of our running ex-
ample would be the following, if we expect at least 2 answers
of each kind:

then(
ask(2,"Give the location of nearby hospitals",
[emergency,hospital]),
and(
then(

ask(2,"Obtain phone numbers of the previous hospitals",
[emergency,hospital]),

ask(2*"Using the previous hospital phone numbers,
obtain their availability",
[emergency,hospital])

)
ask(2,"List passable roads reaching the

previous hospitals",
[road, traffic]

)
)

)

While this syntax is sufficient, we also provide an infix no-
tation for quick task design for ask, and, or and then, using
shortcuts {∗}, &&, || and ; ; respectively. The corresponding
notation of the previous example is the following:

{ 2*"Give the location of nearby hospitals"
[emergency,hospital]

}
;;
((

{ 2*"Obtain phone numbers of the previous hospitals"
[emergency,hospital]

}
;;
{ 2*"Using the previous hospital phone numbers,

obtain their availability"
[emergency,hospital]

}
)
&&
{ 2*"List passable roads reaching the

previous hospitals"
[road, traffic]

}
)

Expertise Update. Once a complex task T is finished, the
tasker can see the result and all task intermediate results
and provenance. Then the tasker can validate the overall
task or reject it. In case of validation (resp. rejection), we
set a score value to 1 (resp. -1). We consider a participant
uid who contributed to T . We update this participant’s
expertise according to this score, for each expertise tag he
contributed. More precisely, let ET = {e1, . . . , en} be the
set of expertise tags associated with the basic tasks of T that

were answered by participant uid. We modify the expertise
of uid such that

Euid(ei) := Euid(ei) + score, for each i = 1 . . . , n.

4. SYSTEM OVERVIEW

Figure 1: The Crowd Architecture

Figure 1 shows the overall architecture of the Crowd sys-
tem. It is composed by several components: a web-based
graphical user interface, an internal API, a database and an
engine for task scheduling.

The GUI is based on the Django framework. Users can log
using a registered account or anonymously. A panel shows
all the available tasks ranked by expertise requirements. An-
other panel allows for task launching. Tasks can be entered
either using the concrete syntax described in Section 3, or
using a workflow design interface shown in Figure 2.

Tasks are modeled as python objects and mapped to a
Postgresql database using the Django ORM module with
concurrency control enabled. The classical execution cycle of
the system is as follows. Each complex task is decomposed as
a set of task nodes. Each root node begins in the start state.
Then the tree of tasks is visited top-down: the left child of
a sequence (then) node is started, and all child of a started
and or started or node, and the conditions of a started if or
while node are started. Any available basic task in the start
state is presented on the user interface. Each time a basic
task is answered by a participant, a counter is updated until
the total number of awaited answers is reached. Then, the
basic task turns to the finished state. The termination of
a child of a or node terminates the node. The termination
of all the child node of an and node terminates the node.
The termination of the left child of a then node launches
the right node (similarly for f and while nodes).

When a complex task is fully answered, its state changes
and becomes finished. At this point the tasker can get
his answers thanks to the related web page. Results can
be exported in a CSV document. The tasker can validate or
reject the task, and users experience is updated accordingly.

5. DEMONSTRATION
In the demonstration, we will illustrate the following as-

pects of the Crowd platform: logging and task answering,
basic and complex task creation and advanced XHTML fea-
tures. A video of a preliminary version of our demo is avail-
able here:

https://www.youtube.com/watch?v=3Zd6QpHpYhQ&

feature=youtu.be

53

Logging and Task Answering. In the first part of this
demo, users are invited to log on the platform, either by
defining a user account, or by logging anonymously in one
click (anonymous logging is an incentive for the free partic-
ipation to interesting tasks, without leaving personal traces
on the system). Logging can be performed either on the
website or on the user’s personal mobile phone.

Users will be able to browse the available tasks, to select
one (for example, ”How many persons is now attending this
demo ?”), and to answer it on the website or on their phones.

Basic and Complex Task Creation. In this part, users
will be able to define a new task, either using the concrete
syntax in an editor, or by using a workflow editor that allows
to describe a tree in graphical mode (this last feature is not
available on phones). After defining basic tasks, we will
demonstrate the use of connectors to build a complex task.
Finally, we will show how to express the required expertise
for these tasks.

Advanced Features. In the last part of the demo, the Mi-
ami storm scenario is launched, allowing the audience to
participate (virtually) in the relief. Participants are invited
to locate hospitals on an interactive Google Map, launched
from the task board. It is noteworthy that any XHTML
code can be inserted in task descriptions, which allows for
rich interaction with external platforms (Figure 3).

Monitoring Tasks. All along its lifetime, users can watch
the progression of a complex task and of its related basic
tasks using the “My Tasks“ panel. By clicking on the an-
swer link, detailed answers of each basic tasks composing
the complex task are shown. An export as a csv file is avail-
able.

Expertise Ranking. We will demonstrate how the valida-
tion of a task impacts on the user’s expertise, and how this
expertise affects the ranking of the next proposed task.

Acknowledgements
We would like to thank the following persons for their help
with the development of Crowd during their undergradua-
tion project: Pierre-Luc Blay, Thomas Daniellou, Archibald
Jego, Guillaume Landurein, Sylvain Medard, Houssam Ouaz-
zani and Victor Petit.

6. REFERENCES
[1] Salman Ahmad, Alexis Battle, Zahan Malkani, and

Sepander Kamvar. The jabberwocky programming
environment for structured social computing. In
Proceedings of the 24th annual ACM symposium on
User interface software and technology, UIST ’11, pages
53–64, 2011.

[2] Daniel W. Barowy, Charlie Curtsinger, Emery D.
Berger, and Andrew McGregor. Automan: a platform
for integrating human-based and digital computation.
SIGPLAN Not., 47(10):639–654, October 2012.

[3] Alessandro Bozzon, Marco Brambilla, Stefano Ceri, and
Andrea Mauri. Reactive crowdsourcing. In Proceedings
of the 22Nd International Conference on World Wide
Web, WWW ’13, pages 153–164, Republic and Canton
of Geneva, Switzerland, 2013. International World
Wide Web Conferences Steering Committee.

[4] Alessandro Bozzon, Marco Brambilla, Stefano Ceri,
Matteo Silvestri, and Giuliano Vesci. Choosing the
right crowd: Expert finding in social networks. In
Proceedings of the 16th International Conference on
Extending Database Technology, EDBT ’13, pages
637–648, New York, NY, USA, 2013. ACM.

[5] Michael J. Franklin, Donald Kossmann, Tim Kraska,
Sukriti Ramesh, and Reynold Xin. Crowddb: answering
queries with crowdsourcing. In Proceedings of the 2011
ACM SIGMOD International Conference on
Management of data, SIGMOD ’11, pages 61–72, 2011.

[6] Adam Marcus, Eugene Wu, David Karger, Samuel
Madden, and Robert Miller. Human-powered sorts and
joins. Proc. VLDB Endow., 5(1):13–24, September
2011.

[7] Atsuyuki Morishima, Norihide Shinagawa, Tomomi
Mitsuishi, Hideto Aoki, and Shun Fukusumi.
Cylog/crowd4u: a declarative platform for complex
data-centric crowdsourcing. Proc. VLDB Endow.,
5(12):1918–1921, August 2012.

[8] Hyunjung Park, Richard Pang, Aditya Parameswaran,
Hector Garcia-Molina, Neoklis Polyzotis, and Jennifer
Widom. An overview of the deco system: data model
and query language; query processing and optimization.
SIGMOD Rec., 41(4):22–27, January 2013.

54

Figure 2: Screenshot of a complex task creation

Figure 3: Advanced XHTML features

55

