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Abstract

Practical three-dimensional magnetic field problems usually involve regions con-
taining current sources as well as regions with magnetic materials. For computational
purposes the use of the reduced scalar potential (RSP) as unknown has the advantage
to transform a problem for a vector field throughout the space into a problem for a
scalar function, thus reducing the number of degrees of freedom in the discretization.
However in regions with high magnetic permeability the use of the RSP alone usu-
ally results in severe loss in accuracy and it is recommended to use both the reduced
scalar potential and the total scalar potential. Using an asymptotic expansion, we
investigate theoretically the underlying reasons for this lack of accuracy in permeable
regions when using the RSP as a unique potential. Moreover this investigation leads
to an efficient numerical method to compute the magnetic field in regions with high
magnetic permeability.

1 INTRODUCTION

Practical magnetic field problems usually involve regions containing current sources as well
as regions with magnetic materials. It is well known that the use of the reduced scalar
potential (RSP) as a single potential for magnetic field computations gives important loss
in accuracy in regions with high magnetic permeability, see [1], [2], [3]. The magnetic field
is computed from the RSP adding the source field to the gradient of the RSP. The lack
of accuracy can be explained in regions with high magnetic permeability from numerical
experiments: these two quantities are very close in magnitude but have different signs. In
order to investigate the underlying reasons of this cancellation we consider the classical
problem of the computation of the magnetic field H generated by an electromagnetic
device composed of a weakly ferromagnetic core Ω and an inductor Ωs characterized by
a time independent current density j in three dimensional geometry. We denote by ∁Ω
and ∁Ωs the complement of the adherence of Ω and Ωs in R

3 and their boundaries by
Σ and Σs. We assume for simplicity that the metallic core Ω has a constant relative
magnetic permeability µ. The relative magnetic permeability is a quantity greater than 1;
for a material such as soft iron µ has typically a value around 103.
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The magnetic field H satisfies the basic equations of magnetostatics:





divµH = 0 in Ω,
divH = 0 in ∁Ω,
µH

Ω
· n = H


∁Ω

· n on Σ,

rotH = j in Ωs,
rotH = 0 in ∁Ωs,
H

Ωs

∧ n = H

∁Ωs

∧ n on Σs,

(1)

where n is the outward unit normal to Σ or Σs, and H

Ω

(resp. H

∁Ω
, H

Ωs
, H

∁Ωs

)

denotes the restriction of H to the domain Ω (resp. ∁Ω, Ωs, ∁Ωs). As H is not curl free
in the domain Ωs containing the currents, it is not possible to introduce a scalar potential
as unknown in the whole space. A classical way to deal with problem (1) using a scalar
potential as unknown is to split it in two problems, see [1],[2],[3]. Namely, the magnetic
field is expressed as H = Hs+Hm where Hs, the field due to the source currents, satisfies:





divHs = 0 in R
3,

rotHs = j in Ωs,
rotHs = 0 in ∁Ωs,

Hs


Ωs

∧ n = Hs


∁Ωs

∧ n on Σs,

(2)

and Hm, the field due to the presence of magnetic material, satisfies:





rotHm = 0 in R
3,

divHm = 0 in Ω and ∁Ω,
µHm


Ω
· n−Hm


∁Ω

· n = (1− µ) Hs · n on Σ.
(3)

The field Hs can be efficiently computed (sometimes analytically), see [4], [5], through
the evaluation of the Biot and Savart integral:

Hs(x) =
1

4π

∫

Ωs

(
j(y) ∧

x− y

|x− y|3

)
dy ∀x ∈ ∁Ωs. (4)

Then it is possible to introduce the reduced scalar magnetic potential (RSP) φ as unknown
to solve problem (3) since the field Hm is curl free in the whole space. Introducing the
RSP transforms problem (3) for the three components vector field Hm = −∇φ into the
following problem for the scalar function φ,





∆φ = 0 in Ω and ∁Ω,
φ continuous on Σ,

µ
∂φ

∂n


Ω
−
∂φ

∂n


∁Ω
= (µ− 1) g on Σ,

(5)

where g = Hs · n is considered as a given function since Hs is computed using (4). Prob-
lem (5) is a classical Laplace problem set in the whole space with an interface condition. It
can be solved using various numerical methods (finite element method, boundary element
method, . . . ), see [2], [6], [7] for instance. We refer to [8] for an overview of derivative ex-
traction methods in electromagnetics used to compute Hm from the RSP φ. The magnetic
field H is then obtained by adding Hm to the source field Hs calculated using formula (4).
This approach is efficient and accurate in non-magnetic regions or in regions with low
magnetic permeability (e.g. regions with dia or paramagnetic materials). However adding
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µ ‖Hs‖2 ‖Hm‖2 ‖Hs +Hm‖2 ‖H‖2 exact error (%)

2 0.795 106 0.1929 106 0.6021 106 0.5962 106 0.97
10 0.795 106 0.5937 106 0.2013 106 0.1835 106 9.2
102 0.795 106 0.7493 106 0.4568 105 0.2316 105 65
103 0.795 106 0.7695 106 0.2551 105 0.2378 104 166
104 0.795 106 0.7716 106 0.2343 105 0.2384 103 190

Table 1: Comparison of the norms of the magnetic fields as a function of µ.

the two vector fields Hs and Hm to compute the magnetic field H within a region with
high magnetic permeability (e.g. region with soft ferromagnetic materials) leads to very
inaccurate results. Indeed, if the total field is small (for instance due to a shielding ef-
fect of the permeable region), the two components of the fields would tend to be of the
same magnitude, but of different sign leading to an oscillating error prone solution for the
magnetic field H.

To illustrate this issue table 1 shows the norms of the fields Hs, Hm computed using
a finite element method, and H computed by the relation H = Hm +Hs as well as the
exact values of H for increasing values of µ in a domain chosen to be a ball (see section 4
for the computational details). One can see that the values for Hm tend to be of the same
magnitude as the values for Hs when µ increases leading to very inaccurate results for H.

The consequence of this inaccuracy is that in regions with high magnetic permeability
the magnetic field has to be computed directly and not from the RSP through the relation
H = −∇φ +Hs. This is usually done, see [1], [2], [3], by introducing the total magnetic

potential ψ: since H is curl-free in ∁Ωs there exists a scalar potential ψ such that H =
−∇ψ. In ∁Ωs the total magnetic potential ψ satisfies:

{
∆ψ = 0 in Ω and ∁Ωs \ Ω,

µ
∂ψ

∂n


Ω
−
∂ψ

∂n


∁Ω
= 0 on Σ.

(6)

The total scalar magnetic potential is not defined in the conductors domain Ωs where
rotHs 6= 0. The recommended way to proceed is then to compute the magnetic field H

from the RSP φ in the current sources region and to use the total magnetic potential ψ
elsewhere. The space is thus divided by a closed surface Γ into two regions Ω1 and Ω2. The
first one Ω1 includes the ferromagnetic domain Ω and possibly part of the free space. In
this region the magnetic field H is curl free and we introduce the total scalar potential ψ
such that H = −∇ψ. The second region Ω2 is composed of free space and conductors
domain Ωs. As the magnetic field H is not curl free in Ωs we introduce in Ω2 the reduced
scalar potential φ such that H = −∇φ + Hs with Hs given by (4). At the boundary Γ
between Ω1 and Ω2 we have to require the continuity of the normal component of the
magnetic induction B and the continuity of the tangential component of the magnetic
field H. This leads to the following boundary conditions on Γ for ψ and φ

µ1
∂ψ

∂n
= µ2

∂φ

∂n
− µ2 (Hs · n) (7)

∂ψ

∂t
=

∂φ

∂t
−Hs · t (8)

where n denotes a unit normal vector to Γ and t denotes an arbitrarily chosen unit vector
tangent to Γ. Relation (8) can be integrated along a path γ on Γ from a given fixed point
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x0 on Γ to any general point x on Γ. We obtain

φ(x)− ψ(x) =

∫

γ
Hs · dt (9)

if at point x0 the two potential φ and ψ (defined up to a constant) are taken to be equal.
The line integral in (9) is path-independent because of Stokes’ theorem applied to the curl
free field Hs.

In this paper we investigate the way the cancellation occurs when the magnetic field
H is computed by adding the two fields Hm and Hs in regions with high magnetic perme-
ability µ in the single potential approach. The study is based on an asymptotic expansion
for the RSP. We show that the leading term in the asymptotic development of Hm in
power of 1/µ is −Hs. For large values of µ the other terms in the development are below
the accuracy level of the computation leading to very inaccurate results when adding the
two fields Hm and Hs to calculate H. As a by-product of the study we give a method to
compute the total field H within a region with high magnetic permeability directly from
the RSP without introducing the total magnetic potential.

The content of the paper is the following: in section 2 we derive some properties of the
RSP. We set up an integral formula to computeHm from the RSP and do a careful analysis
to know the dependence of the RSP on µ. In section 3 we use the results of section 2 to
explain why, in regions with high magnetic permeability, adding the source field to the
reaction field to compute the total magnetic field leads to very inaccurate results. This
investigation also leads to an efficient numerical method to compute the magnetic field in
regions involving domains with high magnetic permeability. We compair this numerical
method for the RSP to the two potential method and conclude in section 4 with numerical
illustrations.

2 GENERAL PROPERTIES OF THE REDUCED SCALAR

POTENTIAL

2.1 Variational formulation

In the following, the ferromagnetic core domain Ω is assumed to be an open, bounded
and connected set in R

3 with boundary Σ Lipschitz continuous. L
2(Ω) denotes the set

of square integrable functions over Ω and H
1(Ω) denotes the set of functions in L

2(Ω)
with derivatives in L

2(Ω). The set H
1(Ω) is equipped with the norm ‖ . ‖1,Ω defined for

ζ ∈ H
1(Ω) by ‖ζ‖2

1,Ω =
∫
Ω
ζ2 dx+

∫
Ω
∇ζ · ∇ζ dx. We also introduce the Sobolev space

H
1/2(Σ) =

{
ζ : Σ → R ; ∃ξ ∈ H

1(Ω) ξ

Σ
= ζ
}

endowed with the norm ‖ζ‖ 1
2
,Σ = inf

ξ∈H1(Ω)
ξ|Σ=ζ

‖ξ‖1,Ω. We denote by H
−1/2(Σ) the dual space

of H1/2(Σ). To handle functions defined over the unbounded domain ∁Ω we will use the
standard weighted Sobolev space W

1(∁Ω) defined by

W
1(∁Ω) =

{
ζ ;

ζ√
1 + |x|2

∈ L
2(∁Ω), ∇ζ ∈ L

2(∁Ω)3
}
.

This set is equipped with the norm | . |1,∁Ω defined for ζ ∈ W
1(∁Ω) by |ζ|2

1,∁Ω
=
∫
∁Ω

∇ζ ·

∇ζ dx. We also introduce the space W
1(R3) defined in a similarly way.
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We obtain the weak form of problem (5) by the following standard formal procedure:
we multiply the differential equation in Ω and ∁Ω by an arbitrary ϕ ∈ W

1(R3), integrate
over Ω and ∁Ω and apply Green’s theorem to the two integral equalities. Summing up the
two equalities (the one in Ω multiplied by µ) and using Neumann interface condition on Σ
get the following variational formulation for problem (5): find φ ∈ W

1(R3) such that

µ

∫

Ω

∇φ · ∇ϕ dx+

∫

∁Ω

∇φ · ∇ϕ dx = (µ − 1)

∫

Σ

g ϕ dσ ∀ϕ ∈ W
1(R3). (10)

For g ∈ H
−1/2(Σ) from the Lax-Milgram theorem one can prove that problem (10) has a

unique solution in the Sobolev space W1(R3) and this solution is continuous in R
3, see [9].

2.2 Integral representation formula for the RSP

Let G denote the Green kernel associated with the three-dimensional Laplacian:

G(x, y) =
1

4π|x− y|
for x, y ∈ R

3, x 6= y,

and Gn(x, y) = ∇xG(x, y).n, x ∈ Σ, y ∈ R
3, denotes its normal derivative on Σ. Since

the magnetic potential φ is harmonic in Ω we have the Green representation formula for
y ∈ Ω, see [7],[9],

φ(y) = −

∫

Σ

φ

Ω
(x) Gn(x, y) dσx +

∫

Σ

∂φ

∂n


Ω
(x) G(x, y) dσx. (11)

Let’s take x ∈ ∁Ω and y ∈ Ω. We deduce from Green’s second identity the relation:

0 =

∫

∁Ω

(∆xφ(x) G(x, y)− φ(x)∆xG(x, y)) dx

= −

∫

Σ

(
∂φ

∂n


∁Ω
(x) G(x, y)− φ


∁Ω
(x) Gn(x, y)

)
dσx.

(12)

Then we multiply (11) by µ and add it to (12) to get for y ∈ Ω:

µ φ(y) =

∫

Σ

(
φ

∁Ω
(x)− µ φ


Ω
(x)
)
Gn(x, y) dσx

−

∫

Σ

(
∂φ

∂n


∁Ω
(x)− µ

∂φ

∂n


Ω
(x)

)
G(x, y) dσx. (13)

Using the boundary condition on Σ in (5), we obtain the following representation formula
for y ∈ Ω:

φ(y) =
µ− 1

µ

∫

Σ

g(x) G(x, y) dσx −
µ− 1

µ

∫

Σ

φ(x) Gn(x, y) dσx. (14)

As a consequence, we can express for y ∈ Ω the field Hm(y) = −∇φ(y) as:

Hm(y) = −
µ− 1

µ

∫

Σ

g(x) ∇yG(x, y) dσx +
µ− 1

µ

∫

Σ

φ(x)∇yGn(x, y) dσx. (15)

It can also be shown that for y ∈ ∁Ω the field Hm is given by

Hm(y) = −(µ− 1)

∫

Σ

g(x)∇yG(x, y) dσx + (µ − 1)

∫

Σ

φ(x)∇yGn(x, y) dσx. (16)
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2.3 Dependence of the RSP on µ in permeable regions

To understand why the RSP is not well adapted to compute the total magnetic field in a
region with high magnetic permeability, let us investigate how the solution φ to (5) depends
on µ considered as a parameter. We write down an asymptotic expansion of the RSP φ
in power of 1/µ. For convenience φi denotes the restriction of the RSP to the interior
domain Ω and φe the restriction of the RSP to the exterior domain ∁Ω. Problem (5) then
reads : find φi ∈ H

1(Ω) and φe ∈ W
1(∁Ω) such that





∆φi = 0 in Ω,

∆φe = 0 in ∁Ω,

φe = φi on Σ,

1

µ

∂φe

∂n
−
∂φi

∂n
= (

1

µ
− 1)g on Σ.

(17)

Let us look for φi and φe in the form of :

φi =
+∞∑

k=0

1

µk
φik and φe =

+∞∑

k=0

1

µk
φek. (18)

One can easily check that φik ∈ H
1(Ω) and φek ∈ W

1(∁Ω), k ∈ {0, 1}, should be solutions
of the following interior Neumann and exterior Dirichlet coupled problems:

(Pi
0)





∆φi0 = 0 in Ω,

∂φi0
∂n

= g on Σ,

(Pe
0)





∆φe0 = 0 in ∁Ω,

φe0 = φi0 on Σ,

(Pi
1)





∆φi1 = 0 in Ω,

∂φi1
∂n

=
∂φe0
∂n

− g on Σ,

(Pe
1)

{
∆φe1 = 0 in ∁Ω,

φe1 = φi1 on Σ.

For k ≥ 2, φik ∈ H
1(Ω) and φek ∈ W

1(∁Ω) should satisfy :

(Pi
k)





∆φik = 0 in Ω,

∂φik
∂n

=
∂φek−1

∂n
on Σ,

(Pe
k)





∆φek = 0 in ∁Ω,

φek = φik on Σ.

Proposition 1 There exists sequences of functions (φik)k∈N, (φ
e
k)k∈N solution to the above

coupled problems (Pi
k)k∈N, (P

e
k)k∈N; the solutions are unique.
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Proof. First to have existence for (Pi
0) we need the compatibility condition

∫
Σ
g dσ = 0

which is satisfied since
∫

Σ

g dσ =

∫

Σ

Hs · n dσ =

∫

Ω

divHs dx = 0. (19)

Then, there exists a unique φ̃i0 ∈
{
ψ ∈ H

1(Ω),
∫
Ω
ψ dx = 0

}
solution to (Pi

0) and φi0 =

φ̃i0+C0 is determined up to a constant. Once C0 is known, then φ
e
0 is uniquely determined

by (Pe
0). To have existence for (Pi

1), the compatibility condition then reads
∫
Σ

∂φe
0

∂n dσ = 0.
This condition is satisfied with a convenient choice for C0. Let us consider v ∈ W

1(∁Ω)
the unique solution of

(Pv)

{
∆v = 0 in ∁Ω,

v = 1 on Σ.

Clearly

∫

Σ

∂v

∂n
dσ =

∫

∁Ω

∇v · ∇v dx > 0 and we set:

C0 = −

(∫

Σ

∂φ̃e0
∂n

dσ

)
×

(∫

Σ

∂v

∂n
dσ

)
−1

with φ̃e0 given by

(P̃e
0)

{
∆φ̃e0 = 0 in ∁Ω,

φ̃e0 = φ̃i0 on Σ.

Then with φe0 = φ̃e0 +C0v the compatibility condition
∫
Σ

∂φe
0

∂n dσ = 0 is satisfied. Similarly
we continue to construct in a unique way the functions φik and φek for k ≥ 1.

Proposition 2 The series

+∞∑

k=0

1

µk
φik and

+∞∑

k=0

1

µk
φek converge to (the restriction of) φ in

H
1(Ω) and W

1(∁Ω) respectively.
Moreover the following estimates hold, for any integer N

|φ−

N∑

k=0

1

µk
φek|1,∁Ω ≤

Ce

µN
‖g‖

−
1
2
,Σ,

‖φ−
N∑

k=0

1

µk
φik‖1,Ω ≤

Ci

µN+1
‖g‖

−
1
2
,Σ,

where Ce, Ci are positive constants independent of µ, and ‖g‖
−

1
2
,Σ the norm of g in the

dual space of the Sobolev space H1/2(Σ).

Proof. We set Si
N =

N∑

k=0

1

µk
φik and Se

N =
N∑

k=0

1

µk
φek. Green’s first identity yields

|φ− Se
N |2

1,∁Ω =

∫

∁Ω

∇(φe − Se
N ) · ∇(φe − Se

N ) dx

= −

∫

Σ

(φe − Se
N )

∂

∂n
(φe − Se

N ) dσ, (20)

7



and

|φ− Si
N |21,Ω =

∫

Ω

∇(φi − Si
N ) · ∇(φi − Si

N ) dx (21)

=

∫

Σ

(
φi − Si

N

) ∂

∂n

(
φi − Si

N

)
dσ. (22)

Since we have µ > 1 and on the boundary Σ Si
N = Se

N and φi = φe, it follows that:

|φ− Se
N |2

1,∁Ω ≤ |φ− Se
N |2

1,∁Ω + µ|φ− Si
N |21,Ω

= µ

∫

Σ

(φe − Se
N )

{
∂

∂n

(
φi − Si

N

)
−

1

µ

∂

∂n
(φe − Se

N )

}
dσ. (23)

The term between the brackets reads:

∂

∂n

(
φi − Si

N

)
−

1

µ

∂

∂n
(φe − Se

N ) =
∂

∂n
(φi −

1

µ
φe)−

∂

∂n
(Si

N −
1

µ
Se
N )

= −

(
1

µ
− 1

)
g +

N∑

k=0

(
1

µk+1

∂φek
∂n

−
1

µk
∂φik
∂n

)

=

N∑

k=2

1

µk

(
∂φek−1

∂n
−
∂φik
∂n

)
+

1

µN+1

∂φeN
∂n

=
1

µN+1

∂φeN
∂n

. (24)

Now (23) together with (24) give

|φ− Se
N |2

1,∁Ω ≤
1

µN

∫

Σ

(φe − Se
N )

∂φeN
∂n

dσ ≤
1

µN
‖
∂φeN
∂n

‖
−

1
2
,Σ ‖φ− Se

N‖ 1
2
,Σ

≤
C

µN
‖g‖

−
1
2
,Σ ‖φ− Se

N‖ 1
2
,Σ,

where C is a positive constant independent of µ and ‖ . ‖ 1
2
,Σ denotes the norm in the

Sobolev space H
1/2(Σ). We then deduce the estimate

|φ− Se
N |1,∁Ω ≤

Ce

µN
‖g‖

−
1
2
,Σ (25)

where Ce is a positive constant independent of µ. In a similar way, we obtain

|φ− Si
N |21,Ω ≤

1

µN+1

∫

Σ

(
φi − Si

N

) ∂φiN
∂n

dσ ≤
C

µN+1
‖g‖

−
1
2
,Σ ‖φ− Si

N‖ 1
2
,Σ (26)

and

‖φ− Si
N‖1,Ω ≤

Ci

µN+1
‖g‖

−
1
2
,Σ (27)

where Ci is a positive constant independent of µ.

3 COMPUTATION OF THE MAGNETIC FIELD FROM

THE RSP

3.1 Why adding the source field to the reaction field leads to inaccurate

results ?

With the expansions (18) we can explain the reason of the cancellation and propose a way
to circumvent it. Writing formula (15) for Hm with the expression (18) for φ, we get for
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y ∈ Ω

Hm(y) = −
µ− 1

µ

∫

Σ

(
g(x) ∇yG(x, y) − φi0(x) ∇yGn(x, y)

)
dσx (28)

+
µ− 1

µ

∫

Σ

(
+∞∑

k=1

1

µk
φik(x)

)
∇yGn(x, y) dσx.

Now, since φi0 is the solution of problem (Pi
0) we have for y ∈ Ω

∫

Σ

(
∂φi0
∂n

(x) G(x, y) − φi0(x) Gn(x, y)

)
dσx = φi0(y) (29)

and by differentiation with respect to y,
∫

Σ

(
g(x) ∇yG(x, y) − φi0(x) ∇yGn(x, y)

)
dσx = ∇yφ

i
0(y). (30)

Thus (28) reads for y ∈ Ω

Hm(y) = −
µ− 1

µ
∇φi0(y) +

µ− 1

µ

∫

Σ

(
+∞∑

k=1

1

µk
φik(x)

)
∇yGn(x, y) dσx. (31)

On the other hand, the source field Hs satisfies in the permeable region Ω, see (2), the
following equations: 




divHs = 0 in Ω,
rotHs = 0 in Ω,

Hs


Ω
· n = Hs


∁Ω

· n on Σ.
(32)

As Hs is curl free in ∁Ωs, there exists a scalar function φs such that Hs = ∇φs in ∁Ωs.
From (32), we deduce that the function φs satisfies in Ω: φs ∈ H

1(Ω) and

{
∆φs = 0 in Ω,
∂φs
∂n

= Hs


∁Ω

· n on Σ.
(33)

It means that φs is a solution of problem (Pi
0) and therefore in Ω we have φs = φi0 + C

where C ∈ R is a constant. Thus:

Hs(y) = ∇φi0(y) ∀y ∈ Ω. (34)

For y ∈ Ω we can then express Hm as given by (31) as

Hm(y) = −Hs(y) +
1

µ
Hs(y) +

µ− 1

µ

∫

Σ

(
+∞∑

k=1

1

µk
φik(x)

)
∇yGn(x, y) dσx. (35)

Finally the magnetic field H is given for y ∈ Ω by:

H(y) = Hm(y) +Hs(y)

=
1

µ
Hs(y) +

µ− 1

µ

∫

Σ

(
+∞∑

k=1

1

µk
φik(x)

)
∇yGn(x, y) dσx

=
1

µ
Hs(y) +

1

µ

∫

Σ

φi1(x) ∇yGn(x, y) dσx (36)

+
+∞∑

k=1

(
1

µk+1

∫

Σ

(
φik+1(x)− φik(x)

)
∇yGn(x, y) dσx

)
.
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We are now in position to understand why adding the source fieldHs to the fieldHm =
−∇φ leads to inaccurate results inside Ω. In (35) we have the asymptotic development of
Hm in power of 1/µ. For large values of µ, the leading term is −Hs while the other terms
are below the accuracy level of the computation. However, from (36) we understand that
these other terms are the ones that give H. So when we compute H by adding Hs to Hm,
we cancel the leading term in Hm and loose the relevant numerical values.

3.2 Comparison with the two potential method

Let us now investigate the link between the classical two potential method and the above
asymptotic expansion. For the two potential method we consider the case where the total
magnetic potential ψ is used in Ω and the RSP φ elsewhere. The magnetostatic problem
is formulated in term of these two scalar potentials as follows:





∆ψ = 0 in Ω,

∆φ = 0 in ∁Ω,

∂φ

∂n
− µ

∂ψ

∂n
= g on Σ,

(37)

with a jump between ψ and φ on Γ given by, see relation (9),

φ(x)− ψ(x) =

∫

γ
Hs · dt (38)

where γ denotes a path on Σ from a given fixed point x0 on Σ where φ(x0) = ψ(x0) to
any general point x on Σ. As Hs is curl free in ∁Ωs, there exists a scalar function φs such
that Hs = ∇φs in ∁Ωs, see (33). This implies that

φ(x)− ψ(x) = φs(x)− φs(x0) (39)

and φs can be chosen so that φs(x0) = 0.
The two potential method can therefore be formulated in the following way: find χ

such that 



∆χ = 0 in Ω and ∁Ω,

∂χ

∂n


∁Ω

− µ
∂χ

∂n


Ω
= g on Σ,

χ

∁Ω

− χ

Ω
= φs on Σ,

(40)

where χ

Ω
represents the total magnetic potential in Ω, χ


∁Ω

the RSP, φs ∈ H
1/2(Σ) is a

scalar potential of the source field Hs and g = Hs · n ∈ H
−1/2(Σ).

We get the weak form of problem (40) using a procedure analogous to the one presented
in section 2.1. It reads: find χ ∈ L

2(R3) with χ

Ω
∈ H

1(Ω) and χ

∁Ω

∈ W
1(∁Ω) such that

χ

∁Ω

− χ

Ω
= φs on Σ and

µ

∫

Ω

∇χ · ∇ϕ dx+

∫

∁Ω

∇χ · ∇ϕ dx = −

∫

Σ

g ϕ dσ ∀ϕ ∈ W
1(R3). (41)

In (41) the solution χ and the test functions ϕ belong to different spaces. To overcome
this limitation, let us consider the substitution χ = ξ + χs where χs ∈ L

2(R3) with
χs


Ω
∈ H

1(Ω) and χs


∁Ω

∈ W
1(∁Ω) satisfies the condition χs


∁Ω

−χs


Ω
= φs on Σ. We get

10



the following equivalent variational formulation for problem (40): find ξ ∈ W
1(R3) such

that ∀ϕ ∈ W
1(R3)

µ

∫

Ω

∇ξ·∇ϕ dx+

∫

∁Ω

∇ξ·∇ϕ dx = −

∫

Σ

g ϕ dσ−µ

∫

Ω

∇χs·∇ϕ dx−

∫

∁Ω

∇χs·∇ϕ dx. (42)

From the Lax-Milgram theorem one can prove that problem (42) has a unique solution in
the Sobolev space W

1(R3), see [9].
Let us now consider the functions χi ∈ H

1(Ω) and χe ∈ W
1(∁Ω) defined by

χi = −φi0(x0) +

+∞∑

k=1

1

µk
φik and χe =

+∞∑

k=0

1

µk
φek (43)

where the functions φik ∈ H
1(Ω) and φek ∈ W

1(∁Ω) are solutions of the coupled problems

(Pi
k) and (Pe

k). We have ∆χi = 0 in Ω, ∆χe = 0 in ∁Ω and ∂χe

∂n −µ∂χi

∂n = g on Σ. Moreover
χe − χi = −φi0(x0) + φe0 = −φi0(x0) + φi0 on Σ and from (33) φs = φi0 + C where C is a
constant given by C = −φi0(x0) since φs(x0) = 0. It follows that χe − χi = φs and since
problem (40) has a unique solution we can conclude that relations (43) give the RSP and
the total scalar potential in the two potential method in terms of the potentials involved
in our asymptotic method.

3.3 Computation of the magnetic field using the asymptotic method

Details on the finite element implementation of the two potential method can be found for
instance in [1], [10], [11], [3] or [12]. A drawback of the two potential method is that the
unknown χ is a discontinuous function across the interface Σ and the method require the
computation of the line integral (38). To avoid these deficiencies a formulation involving
two scalar potentials which must be evaluated sequentially has been propound in [13].
The first potential is calculated under the assumption that the magnetic permeability of
the ferromagnetic domain Ω is infinite and a fictitious magnetic field is obtained. Then an
unknown field which is defined as the difference between the real magnetic field and the
fictitious magnetic field is considered and the total scalar potential associated with the
difference field is introduced. This potential is continuous in the whole space and enables
the computation of the real magnetic field within the ferromagnetic domain without any
cancellation error.

As a by-product of the study presented in section 2 we give another way to compute
the magnetic field H within a region with high magnetic permeability without introducing
the total magnetic potential. For µ in the range [102, 104], relation (36) shows that H can
be approximated by

H(y) ≈
1

µ
Hs(y) +

1

µ

∫

Σ

φi1(x) ∇yGn(x, y) dσx

+
1

µ2

∫

Σ

(
φi2(x)− φi1(x)

)
∇yGn(x, y) dσx. (44)

Relation (44) gives a way to compute H once φi1 and φi2 are known. To compute φi1,
and φi2 we can follow the steps presented in the proof of proposition 1. We have to solve
the three Neumann problems (Pi

0), (P
i
1), and (Pi

2) in the bounded domain Ω and the two
Dirichlet problems (Pe

0) and (Pe
1) in the exterior domain ∁Ω.

Problem (Pi
0) can be solved using the finite element method on the bounded domain Ω.

Its solution is unique up to a constant C0 and the numerically computed solution is an

11



approximation of φ̃i0 where φ̃i0 = φi0+C0. As shown in the proof of proposition 1, we have

C0 = −

(∫

Σ

∂φ̃e0
∂n

dσ

)
×

(∫

Σ

∂v

∂n
dσ

)
−1

where v ∈ W
1(∁Ω) is given by

(Pv)

{
∆v = 0 in ∁Ω,

v = 1 on Σ,

and φ̃e0 is given by

(P̃e
0)

{
∆φ̃e0 = 0 in ∁Ω,

φ̃e0 = φ̃i0 on Σ.

Problems (Pv) and (P̃e
0) involve Laplace equation with Dirichlet boundary conditions on

the exterior domain ∁Ω. We refer to [14] for a review of numerical methods for solving
such problems on unbounded domains using a finite element approach. Typically one
truncates the domain and sets artificial boundary conditions on the external boundary of
the bounded computational domain. The solution to (Pe

0) is then given by φe0 = φ̃e0+C0v.
As shown before, the compatibility condition for problem (Pi

1) is automatically satisfied.
Computation of φi1 and φe1 and then computations of φi2 are achieved in the same way.
The approach described here is efficient since the whole computation reduces to solve
sequentially two Laplace equations, one in Ω and one in ∁Ω with several right-hand sides.

The numerical results presented in section 4 were obtained following this computation
procedure. Problems (Pi

k) in the ferromagnetic core can be solved using the finite element
method. The matrix of the discretized problem is the same for all the (Pi

k) and therefore
time is saved in the matrix assembling process. Furthermore if a direct method is used
to solve the linear system then only one matrix factorization is required. If an iterative
method is used, depending on the preconditioning technique used this advantage can be
lost. Problems (Pe

k) are set in an unbounded domain. The method we used to compute
φek is discussed in [15]. An artificial boundary is introduced at a close distance from the
ferromagnetic core and the behavior of φek at infinity is handle through an exact boundary
condition which is set on this artificial boundary. It has the advantage of greatly reducing
the size of the domain to be mesh and therefore the size of the linear system. The
boundary can be set very closely to Ω since the only relevant information for the following
computations are the values of φek on the boundary Σ. One advantage in using the method
presented in [15] is that it enables the computation of the magnetic field H in any point
of the space through relation (44) without numerical differentiation.

So far we have assumed for simplicity that the metallic core Ω has a constant relative
magnetic permeability µ. This assumption is not a limitation of the study and the general
case of a domain Ω with piecewise constant permeabilities could be studied in a similar
way but involves cumbersome notations.

4 NUMERICAL ILLUSTRATIONS

4.1 A test case

In order to illustrate our discussion we consider the case where the domain Ω is a ball
of radius R = 1 cm and of relative magnetic permeability µ. The source field Hs is
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µ ‖H‖2 exact ‖H‖2 using 1 term error (%) ‖H‖2 using 2 terms error (%)

10 0.1835 106 0.2157 106 16.2 0.2107 106 13.8
102 0.2316 105 0.2349 105 1.4 0.2343 105 1.2
103 0.2378 104 0.2370 104 0.32 0.2370 104 0.32
104 0.2384 103 0.2372 103 0.50 0.2372 103 0.50

Table 2: Comparison of the magnitude of H in Ω computed analytically and using
(46), (47).

assumed to be constant in intensity and direction (Hs = 0.795 106 H/m) so that the exact
expression for the magnetic field H is known. In the domain Ω the magnetic field H is
constant and given by, see [16],

H =
3

µ+ 2
Hs. (45)

The values for H computed over Ω by adding the two vector fields Hs and Hm are shown
in table 1. Namely we give the magnitude of H computed by adding the two fields Hs and
Hm and computed analytically for different values of the magnetic permeability µ for an
arbitrary point chosen in Ω. The field Hm is computed from the RSP by relation (15) with
a quadratic error smaller than 1%. The numerical implementation is achieved using the
program Mélina [17] developed at the Institut de Recherche Mathématique de Rennes,
University of Rennes 1. As mentioned before, the accuracy in the values of the magnetic
field H decreases when the magnetic permeability µ increases due to the cancellation
phenomenon. The components of the two quantities Hs and Hm have nearly the same
magnitude with opposite signs and thus computation errors dominate when the two fields
are added.

In table 2 we show the values of H computed using relation (36). Namely we give for
several values of µ the magnitude ofH in Ω computed using one term in the expansion (36),

H(y) ≈
1

µ
Hs(y) +

1

µ

∫

Σ

φi1(x) ∇yGn(x, y) dσx (46)

and two terms,

H(y) ≈
1

µ
Hs(y) +

1

µ

∫

Σ

φi1(x) ∇yGn(x, y) dσx

+
1

µ2

∫

Σ

(
φi2(x)− φi1(x)

)
∇yGn(x, y) dσx. (47)

The three Neumann problems (Pi
0), (P

i
1), and (Pi

0) in the bounded domain Ω are solved
using the P2 Lagrange finite element method. To solve the two Dirichlet problems (Pe

0)
and (Pe

1) in the exterior domain ∁Ω we couple the finite element method with a boundary
integral method as described in [15].

It can be seen that for µ in the range [102, 104] formula (46) gives accurate results
for the magnetic field H. Using two terms in the asymptotic expansion does not improve
significantly the accuracy: the term in 1/µ2 falls under the accuracy of the numerical
method used to compute Hm from the RSP.
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4.2 Example of an electromagnet

We consider an electromagnet which consists of a cylindrical core situated inside a pair
of coils, see figure 1. The currents in the two coils are imposed in same direction and
of constant density (1 A/mm2). The electromagnet core has the following physical and
geometric features: diameter: 1.5 cm, length: 4 cm, magnetic permeability µ = 103. We
have bounded the domain with a sphere of radius 3 cm and have meshed the bounded
domain ΩΓ with 56160 tetrahedral elements, see figure 2. We couple the finite element
method with a boundary integral method as described in [15] to compute the first three
terms φi0, φ

i
1 and φi2 in the asymptotic expansion of the RSP. The isolines for the RSP

inside the core are depicted in figure 2. The magnetic field in the core is then computed
using relation (47). The whole computation, done on a desktop computer (Pentium IV
3Ghz), required 166 s. Figure 3 shows the total magnetic field H inside the core.
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Figure 1: Example of the electromagnet under consideration.

Figure 2: Visualisation of the mesh of the computational domain ΩΓ (left) and isovalues
for the RSP inside the core (right) on the plane depicted in fig. 1.
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Figure 3: Total magnetic field H (right) inside the core on the plane depicted in fig. 1.

5 CONCLUSION

Usually to solve three-dimensional magnetic field problems, the use of both the reduced
scalar potential and the total scalar potential is recommended since the use of the reduced
scalar potential φ alone gives severe loss of accuracy in the regions with high magnetic
permeability. Firstly we explained the reasons for this lack of accuracy. For large µ the
numerical values of the field Hm = −∇φ are not precise enough to get the total magnetic
field H by adding Hm to the source field Hs since Hm and Hs cancel each other out. We
were able to analyze the cancellation in the asymptotic expansions of Hm in power of 1/µ.
Moreover we have shown that the use of the two potentials is not necessarily required and
we have presented a method to accurately compute the magnetic field H in the permeable
region through an asymptotic expansion of H in power of 1/µ.
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