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Abstract

We define a general V-fold cross-validation type method based on robust tests, which
is an extension of the hold-out defined by Birgé [7, Section 9]. We give some theoretical
results showing that, under some weak assumptions on the considered statistical proce-
dures, our selected estimator satisfies an oracle type inequality. We also introduce a fast
algorithm that implements our method. Moreover we show in our simulations that this
V-fold performs generally well for estimating a density for different sample sizes, and can
handle well-known problems, such as binwidth selection for histograms or bandwidth se-
lection for kernels. We finally provide a comparison with other classical V-fold methods
and study empirically the influence of the value of V on the risk.

1 Introduction
The purpose of this paper is to offer a new method to solve the following problem. Suppose
we are given i.i.d. observations from an unknown distribution Ps to be estimated. This
distribution is often assumed to have a density s with respect to some given measure µ,
hence our notation, but we shall also consider the case when Ps is not absolutely continuous
with respect to µ, keeping the same notation Ps for the true distribution, in which case the
subscript s just indicates that Ps is the distribution of the observations.

We also have at hand a family of statistical procedures or algorithms {Am, m ∈ M}
that can be applied to the observations in order to derive estimators of Ps. How can we use
our data in order to choose one potentially optimal algorithm in the family, provided that
a criterion of quality for the estimators has been chosen? Let us now be somewhat more
precise.
∗lucien.birge@upmc.fr
†nelo.moltermagalhaes@gmail.com
‡pascal.massart@math.u-psud.fr
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1.1 The problem of procedure choice

We observe an n-sample X = {X1, . . . , Xn} of random variables Xi with values in the mea-
sured space (X , E) and we assume (temporarily) that the distribution Ps = s · µ of the Xi

admits a density s with respect to some given positive measure µ on X and that s belongs to
some given subset S of L1(µ). The purpose here is to use the observations in order to design
an estimator ŝ = ŝ(X) of s.

There is a huge amount of strategies for solving this estimation problem, depending on
the additional assumptions one makes about s. We shall use the notion of statistical pro-
cedure (procedure for short), also denoted statistical algorithm in what follows, in order to
properly formalize these strategies. Following [1], we define a procedure or an algorithm as
any measurable mapping A from

⋃
k≥1X k to S. Such a procedure associates to any random

sample Yk ∈ X k an estimator ŝk = A(Yk) ∈ L1(µ) of s. A classical criterion from decision
theory used to measure the quality of a procedure A based on an i.i.d. sample of size k when
s obtains is its risk: Es [`(s,A(Yk)) ], where ` is some given loss function and Es denotes the
expectation when s obtains, i.e. when the distribution of Yk is P⊗ks . The smaller the risk,
the better the procedure A.

To define the risk of a procedure one can consider various loss functions. Some popular
ones are derived from a contrast function γ (see [9, Definition 1]) which is a mapping from
S × X to R such that s minimizes over S the function t 7→ Es [γ(t,X) ]. The loss ` at t is
then defined as

`(s, t) = Es [γ(t,X)− γ(s,X) ] ≥ 0 for all t ∈ S, (1)

hence `(s, s) = 0. The L2-loss derives from the choice S = L2(µ)∩L1(µ) and γ(t, x) = ‖t‖2−
2t(x), where ‖t‖ =

[∫
X t

2dµ
]1/2 denotes the L2-norm. The Kullback-Leibler loss corresponds

to the contrast function γ(t, x) = − log(t(x)) with S being the set of all probability densities
with respect to µ.

In this paper, we consider the problem of procedure selection. Let (Am)m∈M denote a
collection of candidate statistical procedures. Our goal is to choose from the observations
X one of these procedures, that is some m̂(X) ∈ M, in order to have the most accurate
estimation of s. If we apply all these procedures to the sample X we get the corresponding
collection of estimators {ŝm = Am(X), m ∈ M}. Given a loss `, the best possible choice for
m would be to select m∗ ∈M such that

Es [` (s, ŝm∗(X)) ] = inf
m∈M

Es [` (s, ŝm(X)) ] .

Unfortunately, since s is unknown, all the risks Es [`(s, ŝm) ] are unknown as well and we
cannot select the so-called oracle algorithm Am∗ . One can only hope to choose m̂ = m̂(X) in
such a way that Es

[
`(s, ŝm̂)

]
is close to Es [`(s, ŝm∗) ].

To make this presentation more explicit, let us mention some classical estimation problems
that naturally fit into it:

• Bandwidth selection (see [11, Chapter 11]). Let X = R, µ be the Lebesgue measure, K :
R→ R a given nonnegative function satisfying

∫
X K(x) dx = 1 and H = {hm,m ∈M}

be a finite or countable set of positive bandwidths. We define the kernel algorithm Am
as the procedure that produces from any sample Yk of size k a kernel density estimator
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with bandwidth hm, which means that

Am(Yk)(x) = 1
khm

∑
Yi∈Yk

K

(
x− Yi
hm

)
for all x ∈ R.

The problem of choosing a best estimator among the family {ŝm, m ∈M} amounts to
select a “best” bandwidth in H, that is one that minimizes the risk Es [`(s, ŝm) ] with
respect to m.

• Model selection (see [16]). We recall that a model S for s is any subset of S. It
follows from (1) that minimizing, for t in S, the loss `(s, t) derived from the contrast
function γ amounts to minimizing t 7→ Es [γ(t,X) ] over S. Since s is unknown, this
is impossible but if we replace Es [γ(t,X) ] by its unbiased empirical version: γn(t) =
n−1∑n

i=1 γ(t,Xi) we can derive an estimator with values in S by minimizing γn(t) over S
instead. This procedure AS is a minimum contrast algorithm that provides a minimum
contrast estimator ŝS(X) ∈ argmint∈S γn(t) on S. Using for instance, the Kullback-
Leibler contrast on a set S of densities leads to the so-called “maximum likelihood
estimator” on S.
If we have at hand some finite or countable collection of models {Sm}m∈M and a suitable
contrast function γ we may associate in this way to each model Sm a minimum contrast
algorithm Am and the corresponding minimum contrast estimator ŝm(X). The problem
of “model selection” is to select from the data a “best model” (one with the minimal
risk) in the family, leading to a “best” possible minimum contrast estimator.

Instead of deriving the loss function ` from a contrast function we may use for ` the
squared Hellinger distance provided that our estimators ŝm are genuine probability densities.
We recall that the Hellinger distance h and the Hellinger affinity ρ between two probabilities
P and Q defined on X are given respectively by

h(P,Q) =
[1

2

∫ (√
dP −

√
dQ
)2
]1/2

and ρ(P,Q) =
∫ √

dPdQ = 1− h2(P,Q), (2)

where dP and dQ denote the densities of P and Q with respect to any dominating measure
(the result being independent of this choice). One advantage of this loss function lies in the
fact that h is a distance on the set P of all probabilities on X and therefore does not require
that Ps be absolutely continuous with respect to µ, which is one of the reasons why we shall
use it in the sequel. In this case we take for S a set of probability densities with respect to
µ and we set, for all t in S and Pt = t · µ, `(s, t) = h2(Ps, Pt) which we shall write h2(s, t)
for simplicity. We shall also write ρ(t, u) for ρ(Pt, Pu). This loss then leads to the quadratic
Hellinger risk.

1.2 Cross-validation

The biggest difficulty for selecting a procedure in a given family {Am, m ∈ M} comes from
the fact that we use the same data X to build the estimators ŝm(X) and to evaluate their
quality. It is indeed well-known that evaluating the statistical performance of a procedure
with the same data that have been used for the construction of the corresponding estimator
leads to an overoptimistic result. One solution to avoid this drawback is to save a fraction of
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the initial sample to test the output of the procedures Am on it. This is the basic idea behind
cross-validation (CV) which relies on data splitting.

The simplest CV method is the hold-out (HO) which corresponds to a single split of
the data. The set X is divided once and for all into two non-empty proper subsets Xt and
Xv = X \Xt to be called respectively the training and the validation sample. First, with the
training sample Xt, we construct a set {Am(Xt), m ∈ M} of preliminary estimators. Then,
using the validation sample Xv, we choose a criterion in order to evaluate the quality of each
procedure Am from the observation of Am(Xt). Finally, we select m̂(Xv) minimizing this
criterion overM. Depending on the author, the final estimator might be either Am̂(Xt) (as
in [11]) or Am̂(X) (as in [2]). All CV methods are deduced from the HO: instead of using
one single partition of our sample, we use different partitions, compute the HO criterion for
each one and finally define the CV criterion by averaging all the HO criteria. The goal, by
considering several partitions instead of one, is to reduce the variability with the hope that
the CV criterion will lead to a more accurate evaluation of the quality of each procedure.

We shall focus here on V-fold cross-validation (VFCV) which corresponds to a particular
set of data splits1. One divides the sample X into V ≥ 2 disjointed and therefore independent
subsamples Xj , j = 1, . . . , V , of the same size p = n/V (assuming, for simplicity, that p is
an integer) so that X =

⋃V
j=1 Xj . For each split j ∈ {1, . . . , V }, one uses Xc

j to build the
family of “partial estimators” {ŝm,j = Am(Xc

j), m ∈ M} and the corresponding validation
sample Xj to define an evaluation criterion critj(m) = critj(m)(Xj) of the procedure Am(Xc

j)
corresponding to the partition (Xj ,Xc

j) of the data. One finally selects a strategy m̂VF
minimizing the averaged criterion:

m̂VF ∈ argmin
m∈M

crit(m) with crit(m) = 1
V

V∑
j=1

critj(m).

There are as many V-fold procedures as there are different ways to define critj(m). If
we work with a loss of the type (1), the best estimator in the family {ŝm,j , m ∈ M} is the
one minimizing the loss, i.e. the one minimizing Es [γ(ŝm,j , X) ] (with X being independent
of Xc

j). A natural idea for evaluating this quantity that we cannot compute since we do not
know s is to estimate it by its empirical version based on the independent sample Xj of size
p, which leads to the criterion

critj(m) = 1
p

∑
Xi∈Xj

γ ( ŝm,j , Xi ) .

In this classical context, we naturally select the statistical procedure with the lowest estimated
average loss crit(m). The choice γ(t, x) = − log(t(x)) leads to the Kullback-Leibler V-fold
(KLVF) whereas γ(t, x) = ‖t‖2−2t(x) provides the Least-Squares V-fold (LSVF). The chosen
estimators will be respectively denoted m̂KLVF and m̂LSVF and the relevant classical criterion
will be denoted critVFCV in what follows.

1.3 An alternative criterion

When the chosen loss function that we use is the squared Hellinger distance, an alternative
empirical criterion to evaluate the quality of an estimator has been proposed by Birgé [5]

1The concerned reader should have a look at the survey of Arlot and Celisse [1] to get a complete overview
of other CV methods.
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following ideas of Le Cam [12,13] to process estimator selection. An alternative method was
later introduced by Baraud [3]. An HO strategy based on this criterion was first proposed
by Birgé in [7], this latter procedure being recently implemented in [14]. The idea behind
the construction is as follows. Suppose we have at hand a set T of densities with respect
to µ and, for each pair (t, u), t 6= u, of points of T , a test ψt,u between t and u (ψt,u = t
meaning accepting t). Given a sample X we may perform all the tests ψt,u(X) and consider
the criterion D(t) defined on T by

D(t) = sup
u∈T , u 6=t

h(t, u)1l{ψt,u(X)=u}. (3)

It immediately follows from this definition that

h(t, u) ≤ max{D(t),D(u)} for all t, u ∈ T . (4)

This definition means that D(t) is large when there exists some u which is far from t and
which is preferred to t by the test ψt,u(X), suggesting that t is likely to be far from s, at
least if s does belong to T . In order that this be actually true even if Ps does not belong to
{Pt, t ∈ T }, it is necessary to design suitable tests. It has been shown in [5] that one can
build a special test ψt,u between the two Hellinger balls B(t, r) and B(u, r) with r < h(t, u)/2
(where B(t, r) denotes the closed ball of center t and radius r in the metric space (P, h)) which
posesses the required properties. With this special choice of tests ψt,u for all pairs (t, u), D(t)
becomes indeed a good indicator of the quality of t as an estimator of s (the smaller D(t),
the better t) and, more generally, of Pt as an estimator of Ps even if Ps is not absolutely
continuous with respect to µ. This property of D suggests to define the following criterion
on which to base a new VFCV procedure. Starting from the family of preliminary density
estimators {

ŝm,j = Am(Xc
j), m ∈M, 1 ≤ j ≤ V

}
,

we build all the corresponding tests ψŝl,j ,ŝm,j (Xj), hereafter denoted for simplicity by ψl,m(Xj),
between the densities ŝl,j and ŝm,j for l,m ∈ M, l 6= m. Then, for each j and m, we define
the criterion critj(m) by

critj(m) = D2
j (m) with Dj(m) = sup

l∈M, l 6=m
h(ŝl,j , ŝm,j)1l{ψl,m(Xj)=l}. (5)

We then naturally define our test-based V-fold criterion as

critTVF(m) := D2(m) = 1
V

V∑
j=1
D2
j (m) for all m ∈M.

Up to our knowledge, this is the first V-fold type procedure based on the Hellinger distance.
Note that this construction requires that the estimators ŝm,j be genuine probability densities
with respect to µ which we shall assume from now on.

1.4 Organization of the paper

Our goal is to study our new VFCV procedure from both a theoretical and a practical point
of view. Section 2 is dedicated to its theoretical study. In Section 3 we discuss in details
the implications of the resulting risk bounds to the case of histogram estimators, applications
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to kernel estimators and an extension to algorithms that do not lead to genuine probability
density estimators. Section 4 contains an empirical study of the influence of the value of V on
the performance of our procedure in terms of Hellinger risk and also comparisons with classical
V-fold and some especially calibrated procedures. Section 5 describes the fast algorithm that
we have designed and implemented in order to compute the selected estimator efficiently.
Finally Section 6 contains a proof of the bounds for the Hellinger risk of kernel estimators.
We provide some additional simulations in Section A.

2 T-V-fold
As already mentioned, the method proposed in [7] is based on tests and it results in what
Birgé called T-estimators (T for “test”). We shall therefore call our cross-validation method
based on the same tests T-V-fold cross-validation (TVF for short).

2.1 Tests between Hellinger balls

The tests that we use for our procedure satisfy the following assumption, which ensures their
robustness. We recall that S is the set of all probability densities with respect to µ.

Assumption (TEST). Let θ ∈ (0, 1/2) be given. For all t and u in S, z ∈ R and r =
θh(t, u) there exists some test statistic Tt,u,θ(X) depending on t, u, θ and X with the following
properties. The test ψt,u between t and u defined by

ψt,u(X) =
{
t if Tt,u,θ(X) > z
u if Tt,u,θ(X) < z

, z ∈ R, (6)

with an arbitrary choice when Tt,u,θ(X) = z, satisfies

sup
{Ps∈P |h(s,t)≤r }

Ps [ψt,u(X) = u ] ≤ exp
[
−n(1− 2θ)2h2(t, u) + z

]
(7)

and
sup

{Ps∈P |h(s,u)≤r }
Ps [ψt,u(X) = t ] ≤ exp

[
−n(1− 2θ)2h2(t, u)− z

]
, (8)

where Ps denotes the probability that gives X the distribution P⊗ns .

Any test satisfying (7) and (8) will be suitable for our needs.

Tests between balls In order to define tests between two Hellinger balls B(t, r) and B(u, r)
with r = θh(t, u), 0 < θ < 1/2, Birgé introduced the following test statistic

Tt,u,θ(X) =
n∑
i=1

log
(

sin(ω(1− θ))
√
t(Xi) + sin(ωθ)

√
u(Xi)

sin(ω(1− θ))
√
u(Xi) + sin(ωθ)

√
t(Xi)

)
with ω = arccos ρ(t, u). (9)

We should notice that for θ = 0, the test given by (9) is exactly the likelihood ratio test
between t and u. The fact that Assumption (TEST) holds for this test whatever θ ∈ (0, 1/2)
has been proven in [6] and a more up-to-date version is to be found in [8, Corollary 1].
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2.2 TVF estimators

Let (∆m)m∈M denote some collection of positive numbers satisfying

∆m ≥ 0 for all m ∈M, and 1
2 ≤ Γ =

∑
m∈M

exp(−∆m) <∞. (10)

Starting from the family of estimators ŝm,j defined in Section 1.3, we consider the correspond-
ing tests ψl,m(Xj) = ψŝl,j ,ŝm,j (Xj) with t = ŝl,j , u = ŝm,j and z = ∆l − ∆m in (6). This
results in the estimator ŝm̂TVF

derived from the procedure Am̂TVF
with

m̂TVF ∈ argmin
m∈M

D2(m) = argmin
m∈M

1
V

V∑
j=1
D2
j (m). (11)

2.3 Assumption on the family of procedures

The idea of V-fold relies on the heuristic that, for each procedure Am, the observation of
V partial estimators ŝm,j , 1 ≤ j ≤ V based on samples of size n − p with p = n/V allows
to predict the behavior of an estimator ŝm based on an n-sample. This requires that there
exists a link between the loss of ŝm and the losses of the ŝm,j . We shall need the following
assumption on the collection of procedures we consider.

Assumption (LOSS). For all procedures Am with m ∈M, the loss at s satisfies

h2 (s, ŝm ) ≤ 1
V

V∑
j=1

h2 (s, ŝm,j ) .

This implies in particular that R(Am, n, s) ≤ R(Am, n− p, s), where

R(A, k, s) = Es
[
h2
(
s,A(Yk)

)]
denotes the risk at s of the procedure A based on a sample of size k. Assumption (LOSS) is
in particular satisfied by the “additive estimators” of [11, Chapter 10].

Definition 1. An additive estimator ŝ = ŝ(X) derived from a sample X of size n is an
estimator that can be written in the form:

ŝ(x) = 1
n

n∑
i=1
K(x,Xi) for all x ∈ X , (12)

where K is a real valued function from X × X to R.

There is a huge amount of literature about these estimators which already appeared in an
early version in Whittle [21]. The first results about their asymptotic properties in general
were made by Watson and Leadbetter [20], followed by Winter [22] and Walter and Blum [19]
who established rates (the latter authors called them delta sequence density estimators). They
were introduced in the context of CV by Rudemo [18] and used by Marron for comparison of
CV techniques [15]. As shown in [19] and [11], additive estimators include in particular:

7



• Histogram estimators. Given a partition {Iλ, λ ∈ Λ} of X with 0 < µ(Iλ) < +∞ for all
λ one defines the histogram estimator based on this partition as

ŝ(x) =
∑
λ∈Λ

(
1
n

n∑
i=1

1Iλ(Xi)
)
1Iλ(x)
µ(Iλ) . (13)

It corresponds to the case of K(x,Xi) =
∑
λ∈Λ[µ(Iλ)]−11Iλ(Xi)1Iλ(x).

• Parzen kernel estimators on the line. Set K(x,Xi) = w−1K
(
w−1(Xi − x)

)
for a given

nonnegative kernel K with
∫
RK(x) dx = 1 and a positive bandwidth w. Then (12)

leads to a density estimator with respect to the Lebesgue measure on R.

It is straightforward to check that if the procedure Am results in additive estimators, the
following relationship which says that the estimator built with the whole sample is exactly
the convex combination of the V partial estimators holds:

ŝm = 1
V

V∑
j=1

ŝm,j . (14)

As a consequence, we get the following elementary property:

Proposition 1. Any procedure Am which results in additive estimators does satisfy Assump-
tion (LOSS).

Proof. It follows from (14) and the concavity of the square root function that

ρ(s, ŝm) = ρ

s, 1
V

V∑
j=1

ŝm,j

 ≥ 1
V

V∑
j=1

ρ(s, ŝm,j),

which is exactly Assumption (LOSS) in view of (2).

2.4 The main result

Assumption (LOSS) ensures that, for the procedures we consider, the loss of some estimator
is bounded by the mean of the losses of the partial estimators. This motivates us to work
separately on each split j ∈ {1, . . . , V } and then to deduce a risk bound for the estimator
built with the whole sample. It is therefore natural to study for each j the deviations of the
random variable Dj(·). A deviation inequality for D has been proven in Theorem 9 of [7]. Let
us now recall it and provide a short proof for the sake of completeness.

Proposition 2. Let (∆m)m∈M be a collection of weights satisfying (10) and

A = n(1− 2θ)2

2V ; ym,j = max

 h(s, ŝm,j)
θ

,

√
∆m

A

 .
Then, for all m ∈M, and j ∈ {1, . . . , V },

Ps
[
Dj(m) ≥ y

∣∣∣Xc
j

]
≤ Γ exp

[
−2Ay2 + ∆m

]
for all y ≥ ym,j .
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Proof. Let us fix some m ∈ M and j ∈ {1, . . . , V } and work conditionally to the training
sample Xc

j so that the collection of estimators (ŝl,j)l∈M can be considered as fixed. We
perform the test ψl,m(Xj) that satisfy Assumption (TEST) with z = ∆l −∆m in (7). Then

Ps
[
Dj(m) ≥ y | Xc

j

]
= Ps

[
∃ l ∈M such that h(ŝl,j , ŝm,j) ≥ y and ψl,m(Xj) = l | Xc

j

]
≤

∑
l∈M: h(ŝl,j ,ŝm,j)≥y

Ps
[
ψl,m(Xj) = l | Xc

j

]
≤

∑
l∈M: h(ŝl,j ,ŝm,j)≥y

exp
[
−2Ah2 ( ŝl,j , ŝm,j )− (∆l −∆m )

]
≤ exp

[
−2Ay2 + ∆m

] ∑
l∈M

exp(−∆l) ≤ Γ exp
[
−2Ay2 + ∆m

]
,

where we successively used the fact that y ≥ ym,j ≥ θ−1h(s, ŝm,j) and (10).

For each fixed j, that is conditionally to each Xc
j , we deal with some “fixed geometrical

configuration” since the points (ŝm,j)m∈M are given, conditionally to Xc
j . On this configura-

tion, Proposition 2 controls the deviations of D2
j (m) which allows us to bound the expectation

of D2(m). This results in the following theorem.

Theorem 1. Under Assumption (LOSS), the estimator ŝm̂TVF
= Am̂TVF

(X) with m̂TVF

minimizing the criterion D2(m) satisfies the following inequality:

Es
[
h2
(
s, ŝm̂TVF

)]
≤ inf

m∈M

{
2
(
θ2 + 2
θ2

)
R

(
Am,

V − 1
V

n, s

)
+ 4V [∆m + log(2Γ) + 1]

n(1− 2θ)2

}
.

(15)

Proof. Let m′ be any point inM. It follows from (4) that, for all m ∈M and 1 ≤ j ≤ V ,

h
(
s, ŝm′,j

)
≤ h (s, ŝm,j ) + h

(
ŝm′,j , ŝm,j

)
≤ h (s, ŝm,j ) + max

(
Dj(m),Dj(m′)

)
.

Setting m′ = m̂TVF = m̂ for short, we derive that

1
V

V∑
j=1

h2
(
s, ŝm̂,j

)
≤ 2

 1
V

V∑
j=1

h2 (s, ŝm,j ) + 1
V

V∑
j=1

max
(
D2
j (m),D2

j (m̂)
)

≤ 2

 1
V

V∑
j=1

h2 (s, ŝm,j ) + 1
V

V∑
j=1

(D2
j (m) +D2

j (m̂))


≤ 2
V

V∑
j=1

h2 (s, ŝm,j ) + 4D2(m),

for all m ∈M. Using Assumption (LOSS) and taking expectations, we derive that

Es
[
h2 (s, ŝm̂ )] ≤ 1

V

V∑
j=1

Es
[
h2
(
s, ŝm̂,j

)]
≤ 2R(Am, n− p, s) + 4Es

[
D2(m)

]
, (16)

since the risk of ŝm,j is the same for all j and equal to R(Am, n− p, s).
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Let now m and j be fixed. Integrating the bound for Ps
[
D2
j (m) ≥ y

∣∣∣ Xc
j

]
provided by

Proposition 2 with respect to y leads to

Es
[
D2
j (m)

∣∣∣ Xc
j

]
≤ y2

m,j + Γe∆m

∫ 1

y2
m,j

e−2Az dz ≤ y2
m,j + Γe∆m

A
exp

(
−2Ay2

m,j

)
and, since Ay2

m,j ≥ ∆m,

Es
[
D2
j (m)

]
≤ Es

[
y2
m,j

]
+ ΓA−1 exp(−∆m) ≤ 1

θ2Es
[
h2 (s, ŝm,j )

]
+ ∆m + Γe−∆m

A
.

Finally

Es
[
D2(m)

]
≤ 1
θ2R(Am, n− p, s) + ∆m + Γe−∆m

A
.

One should then observe that changing ∆m into ∆m + B with B ≥ 0 does not change the
procedure since the tests only depend on differences ∆m−∆l. Since the new weights ∆m+B
also satisfy (10) with Γ changed to Γe−B, the previous bound remains valid for the new
weights leading to

Es
[
D2(m)

]
≤ 1
θ2R(Am, n− p, s) + ∆m +B + Γe−∆m−2B

A
.

An optimization with respect to B (taking into account the fact that Γ ≥ 1/2) together with
(16) leads to our conclusion.

2.5 Comments

At this stage, several comments are in order:

A simple case It is often the case thatM is finite with cardinality |M| and that we use
equal weights ∆m = ∆ ≤ log(2|M|) for all m ∈ M, in which case Γ = |M|e−∆ which leads
to the following risk bound which only depends on |M|:

Es
[
h2
(
s, ŝm̂TVF

)]
≤ 2

(
θ2 + 2
θ2

)
inf
m∈M

R

(
Am,

V − 1
V

n, s

)
+ 4V log(2e|M|)

n(1− 2θ)2 .

Modified V-fold Unfortunately, there are actually many estimators, like maximum likeli-
hood estimators or T-estimators, that do not satisfy Assumption (LOSS) and for which the
previous risk computations fail. In order to solve this problem, one should think about the
initial purpose of VF methods and, more generally, of procedure selection. Starting from the
family {Am, m ∈ M}, we want to determine, at least approximately, the best procedure for
the problem at hand. But if we design an alternative procedure A not contained in the initial
set, but as good as the best one in the set, we may consider that we have achieved our goal.

It should be noted at this stage that Assumption (LOSS) is only used to derive in (16)
that

Es
[
h2 (s, ŝm̂ )] ≤ 1

V

V∑
j=1

Es
[
h2
(
s, ŝm̂,j

)]
,

10



which, in view of Proposition 1, holds as soon as ŝm̂ = V −1∑V
j=1 ŝm̂,j . A natural solution

to deal with any family of estimators that do not satisfy Assumption (LOSS) is therefore as
follows. Define the partial estimators ŝmj and determine m̂TVF as before by (11), then define
the final TVF-estimator s̃TVF by

s̃TVF = V −1
V∑
j=1

ŝm̂TVF,j
(17)

so that (16) is satisfied and the proof proceeds as before; our modified TVF-estimator s̃TVF
satisfies the conclusion of Theorem 1.

Extension It should be noted that the following analogue of (15) holds (with the same
proof)

Es
[
h2
(
s, ŝm̂TVF

)]
≤ inf

m∈M

{
C1(θ, a)R

(
Am,

V − 1
V

n, s

)
+ C2(θ, a)V (∆m + log(2Γ) + 1)

n

}
,

if we replace Assumption (TEST) by the following

Assumption (TEST’). Let θ ∈ (0, 1/2) and a > 0 be given. For all t and u in S and
r = θh(t, u) there exists some test statistic Tt,u,θ(X) depending on t, u, θ and X with the
following properties. The test ψt,u between t and u defined by

ψt,u(X) =
{
t if Tt,u,θ(X) > z
u if Tt,u,θ(X) < z

, z ∈ R,

with an arbitrary choice when Tt,u,θ(X) = z, satisfies

sup
{Ps∈P |h(s,t)≤r }

Ps [ψt,u(X) = u ] ≤ exp
[
−nah2(t, u) + z

]
and

sup
{Ps∈P |h(s,u)≤r }

Ps [ψt,u(X) = t ] ≤ exp
[
−nah2(t, u)− z

]
,

where Ps denotes the probability that gives X the distribution P⊗ns .

In particular Baraud introduced in [3] and for the same purpose of estimator selection
the following statistic that relies on a variational formula for the Hellinger affinity. For
r = (t+ u)/2, let

Tt,u(X) = 1
2

(
1
n

n∑
i=1

√
t(Xi)−

√
u(Xi)√

r(Xi)
+
∫ (√

t(x)−
√
u(x)

)√
r(x) dµ(x)

)
. (18)

The corresponding test ψt,u actually satisfies Assumption (TEST’) for small enough constants
θ and a. This follows from Baraud (2008, unpublished manuscript). Therefore the test
ψ(t, u) derived from Baraud’s statistic could be used instead of the tests between balls. Some
simulations based on this alternative test will be provided in Section A.
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3 About the choice of V
Let us now come back to the bound (15). It follows from our empirical study in Section 4.2
below that a good choice of θ is 1/4. Therefore assuming, to be specific and for simplicity,
that θ = 1/4 and that

log(2Γ) + 1 ≤ 3∆m for all m ∈M, (19)

(15) becomes

Es
[
h2
(
s, ŝm̂TVF

)]
≤ 66 inf

m∈M

{
R

(
Am,

V − 1
V

n, s

)
+ V∆m

n

}
. (20)

Although this risk bound is certainly far from optimal in view of the large constant 66 and
our extended simulations show that the actual risk is indeed substantially smaller, it is never-
theless already enlightening. To see it, let us begin with the simple case of regular histograms.

3.1 Regular histograms

Let us analyze the problem of estimating an unknown density s with respect to the Lebesgue
measure on [0, 1] from n i.i.d. observations with density s. We consider, for each positive
integer m, the histogram estimator ŝm based on the partition Im of [0, 1] into m intervals of
equal length m−1. It is known from [10, Theorem 1] that the risk at s of the histogram ŝm
built from n i.i.d. observations is bounded by

Es
[
h2 (s, ŝm )

]
≤ h2 (s, sm ) + m− 1

2n , (21)

where sm is the L2-projection of s onto the m-dimensional linear space of piecewise constant
functions on the partition Im. It is also shown in this theorem that this bound is asymptot-
ically optimal, up to a factor 4, since the asymptotic risk (when n goes to infinity) is of the
form

Es
[
h2 (s, ŝm )

]
= h2 (s, sm ) + m− 1

8n
(
1 + o(1)

)
. (22)

In view of (22), the bound in (21) can be considered as optimal, up to a constant factor and
it follows from (21) that

R

(
Am,

V − 1
V

n, s

)
≤ h2 (s, sm ) + (m− 1)V

2n(V − 1) = h2 (s, sm ) + m− 1
2n + m− 1

2n(V − 1) (23)

and that

inf
m∈M

Es
[
h2 (s, ŝm )

]
≤ h2 (s, sm∗ ) + (m∗ − 1)

2n = inf
m∈M

{
h2 (s, sm ) + (m− 1)

2n

}
, (24)

where this last bound can be considered as a benchmark for the risk of any selection procedure
applied to our family of histograms. Since the Hellinger distance is bounded by 1, it clearly
appears that one should restrict to values of m that are not larger than 2n. We shall therefore
now assume thatM = {1, 2, . . . , 2n}.
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Applying (23) to (20), we get

1
66Es

[
h2
(
s, ŝm̂TVF

)]
≤ inf

m∈M

{
R

(
Am,

V − 1
V

n, s

)
+ V∆m

n

}
(25)

≤ inf
m∈M

{(
h2 (s, sm ) + m− 1

2n

)
+
(

m− 1
2n(V − 1) + V∆m

n

)}
(26)

≤
[
h2 (s, sm∗ ) + (m∗ − 1)

2n

]
+
[
m∗ − 1

2n(V − 1) + V∆m∗

n

]
, (27)

with m∗ defined by (24). We see from (26) that, up to the multiplicative constant 66, we
have to optimize with respect to m a bound for the risk of ŝm plus a residual term which
depends in a non-monotonous way of V . The bound (27) shows that, up to a constant factor,
we actually recover our benchmark (24) plus an error term which writes

g(V − 1) with g(x) = 1
n

(
m∗ − 1

2x + x∆m∗

)
+ ∆m∗

n
.

Clearly, g(x) is minimum for x = x0 =
√

(m∗ − 1)/(2∆m∗). It follows that the optimal value
of V is two if m∗ − 1 ≤ 2∆m∗ . This occurs in particular if m∗ = 1, for instance when Ps is
the uniform distribution on [0, 1] or close enough to it. It also occurs if ∆m ≥ (m− 1)/2 for
all m ≥ 2.

Let us now consider the situation for which m∗−1 > 2∆m∗ so that x0 > 1 and the optimal
value of V belongs to (x0 − 1, x0 + 1). If (m − 1)/∆m is an increasing function of m, the
optimal value of V will be a non-decreasing function of m∗ which, as m∗ does, depends on
the true unknown value of s, large values of m∗ leading to large values for V and vice-versa.
For instance, the choice of equal weights, ∆m = log 2n for m ∈ M leads to Γ = 1 which
satisfies (19) and to an optimal V of order

√
(m∗ − 1)/(2 log 2n). But this choice of ∆m is

certainly not optimal in view of (25). A better one would be ∆m = (1/3) + 2 logm which
also satisfies (19) but improves (25) substantially. Then the optimal value of V is of order√

(m∗ − 1)/((2/3) + 4 logm∗), still depending on the true unknown s. Only larger values of
∆m of the form ∆m = a(m − 1) for m ≥ 2 that deteriorate the bound (25) and therefore
should not be recommended lead to an optimal value of V which is independent of m∗, hence
of s.

3.2 The typical situation

A risk bound of the form (21) is actually not specific of histograms but actually rather typical.
There are many procedures for which the risk, for a convenient choice of the index m and of
the setM⊂ R can be bounded in the following way:

Es
[
h2 (s, ŝm )

]
≤ H(s,m) + Cmn−1, (28)

where H is a nonincreasing function ofm, leading to an optimal choicem∗ form (with respect
to this bound which we take as a benchmark for the risk) given by

m∗ = argminm∈M
{
H(s,m) + Cmn−1

}
.

13



It then follows from (20) that we get an analogue of (27), namely

1
66Es

[
h2
(
s, ŝm̂TVF

)]
≤ inf

m∈M

{
H(s,m) + CmV

n(V − 1) + V∆m

n

}
≤

[
H(s,m∗) + Cm∗

n

]
+ 1
n

[
Cm∗

V − 1 + (V − 1)∆m∗

]
+ ∆m∗

n

and we see that the choice of V is driven, as in the case of regular histograms, by the quantity

(V − 1)−1Cm∗ + (V − 1)∆m∗ . (29)

The same arguments as before show that the optimal choice of V then depends on the ratio
m∗/∆m∗ and therefore on s in many situations. This dependence of the optimal value of V
with respect to the true density s will actually be confirmed by our simulations below. A
density which is difficult to estimate by a histogram with a few bins will lead to a large value
of m∗ hence a large optimal V while a simple density, for which m∗ is rather small, is better
estimated by a V-fold with a small V . In the case of a finite set M, which is the practical
one, and of equal weights, which is the simplest but suboptimal choice, the optimal V varies
like m∗.

3.3 Kernel estimators

We consider here estimation of an unknown density s by a kernel estimator ŝw using a non-
negative kernel K and a positive bandwidth w which means that

ŝw(x) =
n∑
i=1

Kw(x−Xi) with Kw(y) = w−1K
(
w−1y

)
. (30)

Although there are many papers which study the performance of kernel estimators, in par-
ticular their risk with respect to Lp-type losses, we were unable to find a result about their
non-asymptotic risk with respect to the squared Hellinger loss. This is why we provide one
below, the proof of which is deferred to Section 6.

Theorem 2. Let s be a density on the real line which is supported on an interval of length
2L and such that

√
s has an L2-modulus of continuity

ω2
(√
s, η
)

= sup
|z|≤η

∥∥√s (·+ z)−
√
s
∥∥ =
√

2 sup
|z|≤η

h
(
s(·+ z), s

)
. (31)

Let φ be a nondecreasing and concave function on [0,+∞) with φ(0) = 0 and ω2 (
√
s, η) ≤ φ(η)

for η ≥ 0. Assume moreover that the kernel K is bounded with
∫
x2K(x) dx < +∞ and that

it is ultimately monotone around −∞ and +∞. Then the kernel estimator ŝw given by (30)
satisfies

Es
[
h2 (ŝw, s)

]
≤ 2

[∫
R

(
1 ∨ x2

)
K(x) dx

]
φ2(w) + 2L‖K‖∞

nw
+ C(K)

n
, (32)

where the constant C only depends on the kernel K and is equal to 1 when K is unimodal.
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If we restrict to densities s with a known compact support, this bound takes the form
(28) with the choice m = w−1 + 1. A “classical” smoothness assumption on

√
s corresponds

to the choice φ(η) = Mηα, for some exponent α ∈ (0, 1]. In this case the smallest quantity
M such that ω2 (

√
s, η) ≤ φ(η) holds true is merely the Besov semi-norm of

√
s in the Besov

space Bα
2,∞. In such a case, we see that the optimal value of η is of order n−1/(2α+1), leading

to a risk bound of order n−2α/(2α+1). This is completely analogous to what we get for the
squared L2-risk, apart from the fact that for Hellinger we put the smoothness assumption on√
s instead of s.

3.4 Handling arbitrary estimators

The previous construction of TVF-estimators is only valid for genuine preliminary density
estimators ŝm, that is such that ŝm(x) ≥ 0 for all x ∈ X and

∫
ŝm(x) dµ(x) = 1, but this

is definitely not the case for all classical estimators. For instance additive estimators given
by (12) do not satisfy these requirements when the function K may take negative values.
This actually happens for projection estimators derived from wavelet expansions or kernel
estimators based on kernels that take negative values. Not only TVF-estimators cannot be
built from preliminary estimators that take negative values but the Hellinger distance cannot
be defined for such estimators since it involves the square roots of the densities. There is
actually a simple and reasonable solution to this problem which is to transform any function
t such that

∫
t>0 t dµ > 0 into a probability density π(t) with respect to µ using the following

operator π:
π(t) = t ∨ 0∫

(t(x) ∨ 0) dµ(x) . (33)

It is clear that for any probability density s, |s(x) − (t(x) ∨ 0)| ≤ |s(x) − t(x)| so that t ∨ 0
is closer from s than t for any reasonable distance, including all Lp-distances. Moreover
the following lemma shows that h(s, π(t)) ≤

∥∥∥√s−√t ∨ 0
∥∥∥ which justifies the use of the

transformation π when dealing with the Hellinger distance.

Lemma 3. Let f, g be two nonegative elements of L2(µ) with ‖f‖ = 1 and ‖g‖ > 0. Let
g = g/‖g‖ so that ‖g‖ = 1. Then

‖f − g‖2 ≤ 4‖f − g‖2

4− ‖f − g‖2 ≤ 2‖f − g‖2.

If s is a density with respect to µ, g a nonegative element of L2(µ) with positive norm and
u = (g/‖g‖)2, then u is also a density with respect to µ and

h2(s, u) ≤ 1−
√

1−
(∥∥√s− g∥∥2 ∧ 1

)
≤
∥∥√s− g∥∥2 ∧ 1.

If, in particular, t is an arbitrary element of L1(µ) such that
∫

(t ∨ 0) dµ > 0, then

h2(s, π(t)) ≤ 1−
√

1−
(∥∥∥√s−√t ∨ 0

∥∥∥2
∧ 1
)
≤
∥∥∥√s−√t ∨ 0

∥∥∥2
∧ 1.

Proof. Let ‖g‖ = λ so that g = λg and let ρ = 〈f, g〉 ∈ [0, 1]. Then

‖f − g‖2 = 1 + λ2 − 2λρ and ‖f − g‖2 = 2(1− ρ) ≤ 2.
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It follows that, for a given value of ρ, the minimum value of ‖f − g‖2 is obtained for λ = ρ
and equal to 1− ρ2 which implies that(‖f − g‖

‖f − g‖

)2
≤ 2

1 + ρ
= 4

4− ‖f − g‖2 ≤ 2. (34)

If f =
√
s, then ρ = ρ(s, u) = 1− h2(s, u) and ‖f − g‖2 = 2h2(s, u), so that (34) becomes

h2(s, u) ≤ ‖f − g‖2

1 + ρ(s, u) = ‖f − g‖2

2− h2(s, u)

and, since h(s, u) ≤ 1, it also follows from elementary calculus that

h2(s, u) ≤ 1−
√

1− (‖f − g‖2 ∧ 1) ≤ ‖f − g‖2 ∧ 1.

The last inequality is just the case of g =
√
t ∨ 0.

Using the transformation π amounts to replace the initial family {Am, m ∈M} by a new
one {A′m, m ∈M} via the tranformation A′m(Yk) = π

(
Am(Yk)

)
which results in procedures

that now make sense for the Hellinger loss. Unfortunately, this transformation does not
preserve the linearity so that if we apply this recipe to projection or kernel estimators, we
cannot know whether the transformed estimators satisfy Assumption (LOSS). Nevertheless,
as we have seen in Section 2.5, we may change the definition of TVF-estimators to (17) in
order to solve this problem.

Starting from a family of estimators that are not probability densities, we merely begin
with a preliminary application of the transformation π, as given by (33), and then define
our modified TVF-estimator via (17) so that Theorem 1 applies to the family of procedures
{A′m, m ∈M}.

4 Empirical study
The theoretical bounds that we have derived, for instance (20), are quite pessimistic because of
the large constants that are present in our risk bounds. It is therefore crucial to know whether
such large values are only artifacts or really enter the risk. In order to check the real quality
of our selection procedure and evaluate the influence of the various parameters involved in it,
we performed an extensive set of simulations the results of which are summarized below.

4.1 Simulation protocol

We studied the performances of the TVF procedure on 18 out of the 28 densities described
in the benchden 2 R-package [17] which provides a full implementation of the distributions
introduced in [4] as benchmarks for nonparametric density estimation. We only show our
simulations for the eleven densities in the subset L = {si, i = 1, 2, 3, 4, 5, 7, 12, 13, 22, 23, 24}
(where the indices refer to the list of benchden) the graphs of which are shown in Figure 1,
except for the uniform density s1 on [0, 1]. For a given loss ` = h2, d1 or d2

2 (respectively
the squared Hellinger, L1- and squared L2-losses), we decided to evaluate the accuracy of

2Available on the CRAN http://cran.r-project.org.
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Figure 1: Graphs of all densities mentioned in the paper apart from the uniform.

some estimator s̃ = ŝm̂ by empirically estimating its risk R(s̃, s, `) = Es [`(s, s̃) ]. To do so,
we generated 1000 pseudo-random samples Xi = {Xi

1, . . . , X
i
n}, 1 ≤ i ≤ 1000, of size n and

density s and approximated R(s̃, s, `) by its empirical version:

Rn ( s̃, s, `) = 1
1000

1000∑
i=1

`
(
s, s̃(Xi)

)
.

As in [14], we considered several families of estimators. We present here our simulations
for the well-known problems of bandwidth selection for kernel estimators with a Gaussian
kernel and the choice of the bin number for regular histograms. We therefore introduce the
following families of estimators.

• FR is the set of regular histograms with bin number varying from 1 to dn/ logne as
described in [10],

• FK is the set of Gaussian kernel estimators with bandwidths wm of the form

wm = 1
n logn

(
1 + 1.5

logn

)m
, for m = 1, . . . , ( logn)2 ,

• FKR = FK ∪ FR.

Besides the classical VF methods, we considered two alternative procedures that are known
to perform well in practice in order to have an idea of the performance of the T-V-fold as
compared to some especially calibrated methods. When studying the problem of bandwidth
selection, we compared the TVF with the unbiased cross-validation selector, implemented
in the density generic function available in R, which provides an estimator which does not
belong to the set {ŝm, m ∈ M}. When dealing with the bin number choice we implemented
the penalization procedure of Birgé and Rozenholc (described in [10]) which selects a regular
histogram in FR. These two competitors will be denoted “UCV” and “BR” respectively in
our study. To implement the TVF and process our simulations we used an algorithm which
is described in Section 5 with the tests defined in (9) and constant weights ∆m = ∆ = 0 for
all m ∈M.

We made thousands of simulations (varying the sample size n, the density, the family
of estimators, the number V of splits in our V-fold procedures, etc.) but since the results
we found were very similar in all situations, we only show the conclusion for n = 500 and
V = 2, 5, 10 and 20.
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4.2 The influence of the parameter θ

As in [14, Section 5.1], we have studied the influence on the performance of the TVF procedure
of the parameter θ that is used in the definition of the test statistic (9). The parameter
influences the performance of the tests ψt,u as shown by (7) and (8) and therefore the whole
procedure. Since on the one hand θ = 0 corresponds to the KLVF and on the other hand θ
must be less than 1/2, we made comparisons between the versions of s̃TVF deduced from the
tests with θ ∈ Θ = {1/16, 1/8, 1/4, 3/8, 7/16}. For the sake of clarity and to emphasize the
stability of the behavior of the procedure in terms of risk, we present for each V the ratio

inf
s∈L

{
inf
θ∈Θ

Rn
(
ŝm̂(θ), s, h

2
)/

sup
θ∈Θ

Rn
(
ŝm̂(θ), s, h

2
)}

, (35)

which gives the largest difference in terms of risk among the densities in L. The closer the
ratio to 1, the more stable the procedure with respect to the variations of θ. We may conclude

family V = 2 V = 5 V = 10 V = 20
FR 92,95 94,87 96,39 96,96
FK 91,31 92,94 94,79 96,44
FKR 87,81 94,36 97,48 95,15

Table 1: 100 times the ratio (35) for n = 500 and families FR, FK and FKR.

from this picture that θ has little influence on the quality of the resulting estimator for families
FK and FR, even if we did observe that θ = 1/16 is in general slightly worse than the other
values (in particular for the family FR). Considering family FKR, we have observed that there
might be some noticeable difference for V = 2 for one specific density. Nevertheless no clear
conclusion can be derived from our simulations as the best value of θ varies with the setting.
Finally, it appears that the choice θ = 1/4 is always satisfactory and should be recommended.

4.3 About the choice of V

The main question when considering VF type procedures is maybe “which V is optimal?” or,
more generally, “what is the influence of V on the quality of the VF procedure?”. According
to our theoretical study in Section 3 the optimal value of V depends on the optimal value
m∗ of m. In the case of equal weights the best V appears to be an increasing function of m∗.
In the case of histograms, if the best one has many bins, one should take a large value of V
and the same would hold for a kernel estimator with a small bandwidth. To understand what
actually happens in practice, we study here how the risk of the chosen estimator behaves
when V varies.

Since θ has little influence, we made all the simulations with θ = 1/4. We also implemented
the calibrated procedures BR and UCV described in Section 4.1 in order to have a benchmark
for the risk for the families FR and FK respectively.

The empirical results summarized in Table 2 actually confirm what we derived from (29).
The quality of the estimation increases with V when the true density is difficult to estimate
which corresponds to an optimal estimator ŝm∗ with a large value of m∗ in (29). For a simple
density like the uniform s1 which is better estimated by an histogram with few bins, the best
choice of V is 2 for the families FR and FKR which include histograms. On the contrary,
when dealing with the family FK for which s1 is not easy to estimate, we need to use a larger
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family V s1 s2 s3 s4 s5 s7 s12 s13 s22 s23 s24

FR

2 2,9 10,4 9,29 13,8 10,9 11,4 17,9 14,5 10,5 20,8 27,5
5 4,31 9,9 8,75 12,7 10 10,6 17,3 13,5 9,56 18,4 25,2
10 6,18 9,81 8,64 12,3 9,77 10,6 17,2 13,7 9,51 17,8 24,8
20 9,39 9,65 8,54 12,2 9,59 10,4 17,3 14,1 9,28 17,9 24,8
BR 2,20 9,94 9,27 12,98 10,53 11,14 17,85 14,63 10,37 17,98 25,15

FK

2 15,4 29,9 5,67 5,1 3,56 4,26 28,5 20 3,96 10,6 18,1
5 12,7 25,5 5,06 4,95 3,61 3,98 23,4 18,1 3,86 9,28 16,2
10 12,4 24,3 4,94 5,01 3,96 4,04 21,8 17,7 3,91 9,08 15,8
20 12,2 23,5 4,97 5,41 4,9 4,27 20,9 17,6 4,11 9,05 15,7

UCV 15,86 22,20 5,57 6,16 3,74 4,10 18,80 17,16 3,88 9,52 15,91

FKR

2 2,88 10,4 8,32 6,35 5,81 6,57 18,5 14,4 7,3 12,8 20
5 4 9,91 7,86 5,64 5,11 6,06 17,7 13,2 5,76 9,66 16,7
10 4,34 9,95 7,66 5,64 5,4 6,18 17,6 13,7 5,82 9,12 16
20 4,34 9,86 7,49 5,91 5,81 6,5 17,5 14,5 5,88 9,08 15,7

Table 2: 103 times the Hellinger risks of the TVF procedure.

value of V . A similar situation occurs with densities s4, s5, s7 and s22 which appears to be
easily estimated by a kernel estimator with a large bandwidth but poorly by histograms. It
seems that, apart from the exceptional situation of s1, the best value of V is not 2 and the
most significant gain appears between V = 2 and V = 5, then the quality sometimes keeps
improving from V = 5 to V = 20, but with very little difference between V = 10 and V = 20.

Interestingly, we also observe that when using the mixed collection FKR the TVF pro-
cedure shows a good adaptation behaviour since it selects the best family in all settings.
For instance for s5 it chooses a kernel estimator since these are better than histograms for
estimating it, whereas it selects an histogram for s2 for the opposite reason.

The numerical complexity of the TVF procedure is quite important in practice and in-
creases with V so that large values of V should be avoided because they lead to a much larger
computation time. In particular the Leave-one-out (V = n) should be excluded since it is typ-
ically impossible to compute it in a reasonable amount of time. Of course, since the optimal
value of V , as we have seen, depends on unknown properties of the procedures with respect
to the true density it is not possible to practically define an optimal choice of V . Neverthe-
less our empirical study suggests that a good compromise, which leads to both a reasonable
computation time and a good performance (apart from some exceptional situations like the
estimation of the uniform by histograms), is V = 5. We would therefore recommend the user
to process the TVF procedure with this value.

4.4 Comparison with others VF procedures

The goal of this section is to compare our TVF procedure with other general VF procedures
namely LSVF and KLVF, which do not depend on the family of estimators from which we
estimate s. In order to compare two VF procedures t̃1 and t̃2, we consider the log2-ratio of
their empirical risk,

W s
(
t̃1, t̃2, `

)
= log2

Rn
(
t̃1, s, `

)
Rn

(
t̃2, s, `

) .
ThusW s

(
t̃1, t̃2, `

)
= c means that Rn

(
t̃1, s, `

)
= 2c×Rn

(
t̃2, s, `

)
. Hence, for a given density

s, t̃2 is a better estimator than t̃1 if c > 0. In our empirical study, a selection procedure t̃2

19



is thus considered better than t̃1 in terms of risk for a given loss function ` if the values of
W s(t̃1, t̃2, `) are positive when the density s varies in L.

Rather than presenting exhaustive results, that is the evaluation of W s for all densities s
in L, different loss functions, various observations numbers n and different choices of V , we
shall illustrate the results of our simulations by showing boxplots of {W s(t̃1, t̃2, `), s ∈ L}
with the discriminating value zero emphasized in red. We actually observed similar results
and behaviours for all losses and all sample sizes and therefore present here only the results
for ` = h2 and n = 500 for the sake of simplicity. Figure 2 is built with t̃1 = ŝm̂LSVF

(upper
line) or ŝm̂KLVF

(bottom line) and t̃2 = ŝm̂TVF
with θ = 1/4.
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Figure 2: From left to right, the boxplots W s(s̃, ŝ
m̂TVF

, h2) using families FK,FR,FKR (up for
s̃ = ŝ

m̂LSVF
, down for s̃ = ŝ

m̂KLVF
). Each subfigure shows the boxplots for V = 2, 5, 10 and 20. The

horizontal red dotted line indicates the reference value 0.

In nearly all cases, the median and most of the distribution are positive, which means
that the TVF outperforms LSVF (with an average gain of about 20% for the three families
of estimators FK, FR and FKR) and KLVF as well. For the collection FK we observe that
the empirical risks of TVF and KLVF are similar with boxplots of W s(ŝm̂KLVF

, ŝm̂TVF
, h2)

highly concentrated around zero. But there is a huge difference between TVF and KLVF
procedures for families FR and FKR (average gain of about 100% and 180% respectively).
For the uniform density estimated with regular histograms, the estimator derived from our
procedure is worse since we found, for both classical VF, W s1(s̃, ŝm̂TVF

, h2) < 0 (with an
increasing difference with V for FR). Finally, let us notice that the difference between TVF
and classical VF does not change much with V .
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5 Our computational algorithm
For the practical computation of the TVF as well as any other VF procedure, we assume that
M is finite with cardinality M .

Let us compare the complexity of a classical V -fold method with ours. Since for every
VF method the construction of all partial estimators (ŝm,j)1≤j≤V,1≤m≤M is required, we only
have to focus on the “validation part” which requires to compute all quantities D2

j (m) for
1 ≤ j ≤ V and m ∈ M and therefore to perform all tests ψl,m(Xj) for 1 ≤ j ≤ V and
l,m ∈ M with l 6= m. This means performing V × M × (M − 1)/2 tests leading to a
computational cost of order O(V ×M2) that can be prohibitive as compared to the one of
either LSVF or KLVF which have a maximum complexity of order O(V ×M) (since in this
case no more than M calculations are needed for each split). For instance, a 10-fold with
100 different procedures would require at most 1000 evaluations for a classical VF whereas
we would need the computation of 49500 tests for the TVF. It is already huge and does not
even take into account the computation of the distances h2(ŝl,j , ŝm,j), each one requiring the
evaluation of an integral. Therefore a “naive” algorithm based on the computation of all the
V ×M values D2

j (m) would be very slow.
Fortunately, there is a smarter way to determine which m̂ minimizes D(·) over M. Our

algorithm is inspired in some way by the one described in [14, Section 3]. In order to explain
how this “fast” algorithm works, it will be convenient to single an element of M, that we
shall denote by “ms”, to serve as a starting point for our algorithm which begins with the
computation of D(ms). We store in R the minimal value of those D2(m) that have already
been computed and in opt the corresponding optimal value of m with initial values opt = ms

and R = D2(ms). We update them after each computation of a new D2(m) such that
D2(m) < R, then setting opt := m and R := D2(opt) so that R can only decrease during the
computational procedure.

By (11), minimizing D2(m) is equivalent to minimizing
∑V
j=1D2

j (m). Since

D2
j (m) = sup

l∈Mm

h2 ( ŝl,j , ŝm,j ) 1l{ψl,m(X)=l} with Mm =M\ {m},

one can compute it iteratively, starting with Lj(m) = 0 and setting

Lj(m) := max
(
Lj(m), h2 ( ŝl,j , ŝm,j )

)
when ψl,m(Xj) = l for l ∈Mm.

If ψl,m(Xj) = m we can instead update Lj(l) by Lj(l) := max(Lj(l), h2(ŝl,j , ŝm,j)) using
the result of the test ψl,m(Xj) for the calculation of both D2

j (m) and D2
j (l). Our algorithm

proceeds in this way, with a set of M V -dimensional vectors L·(m), m ∈ M, initially set to
zero. The updating procedure of Lj(m) stops when all updates, with l ∈ Mm, have been
done (which means that the present value of Lj(m) is D2

j (m)) and we finally set D2(m) =∑V
j=1 Lj(m).
We also use another trick in order to shorten our computations. Since Lj(m) can only

increase during the updating procedure,
∑V
j=1 Lj(m) is, at any time, a lower bound for D2(m),

whatever m ∈ M. Therefore it is useless to go on with the computation of the vector L·(m)
if
∑V
j=1 Lj(m) > R since then D2(m) ≥

∑V
j=1 Lj(m) cannot minimize the function D(·) over

M. Taking this fact into account, we denote by G ⊂ M the set of all procedures which are
potentially “better” than the current optimal one stored in opt. This means that we store in
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G all m ∈ M for which we do not yet know whether D2(m) < R or not and each time we
find m such that

∑V
j=1 Lj(m) > R, we remove it from G. We also remove m from G once

we have computed D2(m) with m ∈ G and then proceed with the computation of some new
vector L·(l) for l ∈ G until G is empty and the algorithm stops with the final value m̂ = opt.

Algorithm 1: Selection of the TVF estimator
Initialization:

1 Set G = Mms and opt = ms

2 for (l ∈ M) do
3 for (j = 1, . . . , V ) do
4 Lj(l) = 0
5 end
6 end

1st step:
7 for (l ∈ G) do
8 Compute ψms,l(Xj)
9 if (ψms,l(Xj) = ms) then

10 Lj(l) = h2(ŝl,j , ŝms,j)
11 else
12 Lj(ms) = max(Lj(ms), h2(ŝl,j , ŝms,j))
13 end
14 end
15 Set R =

∑V

j=1 Lj(ms) and G = G \ {l ∈ G :
∑V

j=1 Lj(l) > R}

Next steps:
16 while (|G| > 0) do
17 Choose m ∈ G and set G = G \ {m}
18 for (j = 1, . . . , V ) do
19 for (l ∈ Mm) do
20 Compute ψm,l(Xj) // if it has not been done yet
21 if (ψm,l(Xj) = m and l ∈ G) then
22 Lj(l) = max(Lj(l), h2(ŝl,j , ŝm,j))
23 if (

∑V

i=1 Li(l) > R) then
24 G = G \ {l}
25 end
26 end
27 if (ψm,l(Xj) = l) then
28 Lj(m) = max(Lj(m), h2(ŝl,j , ŝm,j))
29 if (

∑V

i=1 Li(m) > R) then
30 break // quit the two “for” loops
31 end
32 end
33 end
34 end
35 if (

∑V

j=1 Lj(m) < R) then
36 Set opt = m, R =

∑V

j=1 Lj(m) and G = G \ {l ∈ G :
∑V

j=1 Lj(l) > R}
37 end
38 end
39 Return opt

Some important remarks

• The algorithm is designed to work with any test procedure ψ which satisfies Assumption
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(TEST) or, more generally, Assumption (TEST’), like the procedures based on the
statistics (9) or (18).

• It is important to notice that, at any step, we cannot “delete” once and for all the
procedures which do not belong to the set G. Even if we do not compute the value of D
for these procedures, we still need to test them against the remaining procedures in G.

• We hoped that by starting from a good initial estimator, only a few procedures would
be in the first set G, resulting in just a few tests. In the simulations we always started
from ms = m̂LSVF since the computation of m̂LSVF is less costly than the one of m̂TVF
and provides a good starting point. If D(m̂LSVF) = 0 at the first step the algorithm
stops immediately and the chosen procedure is m̂ = m̂LSVF. In this special case, the
complexity of our algorithm is the same as the one of the classical approach.

• Clearly, the choice of m at line 17 of the algorithm, as well as the choice of the starting
procedure, have no influence on the final estimator, only on the computational time.
To avoid a quadratic complexity, we need to ensure that we don’t “jump” to the worst
procedure inside the set G at each iteration. In our simulations, we chose to jump to
the statistical method k ∈ G with the lowest temporary criterion among the procedures
in G, that is k = argminl∈G

∑V
j=1 Lj(l). We also tried two alternative options: jumping

to k = argmaxl∈G
∑V
j=1 Lj(l) and to the most chosen statistical method k in G against

m. Both options lead of course to the same final estimator but were definitely slower.

6 Proof of Theorem 2
First note that the kernel estimator ŝw can be written, according to (30), Kw ∗ Pn where
Pn = n−1∑n

i=1 δXi denotes the empirical measure based on the i.i.d. sample X1, ..., Xn. It
then follows from the triangle inequality that

Es
[
h2 (ŝw, s)

]
= 1

2Es
∥∥∥√Kw ∗ Pn −

√
s
∥∥∥2

≤
∥∥∥√s−√Kw ∗ s

∥∥∥2
+ Es

∥∥∥√Kw ∗ Pn −
√
Kw ∗ s

∥∥∥2
, (36)

which is the usual bound of the risk as squared bias plus variance, and we shall bound both
terms successively.

6.1 Bounding the bias

It is well known that whenever the function s belongs to L2, the quality of approximation of
s by the convolution Kw ∗ s depends on the modulus of continuity ω2(s, ·) of s in L2 as given
by (31). If we consider the Hellinger distance instead of the L2-distance it is expected that
the quality of approximation should rather depend on the the modulus of continuity of

√
s

instead. The control of the bias term is provided by the following lemma:
Lemma 4. Let s and K be some density functions with respect to Lebesgue measure on the
real line. Let g =

√
s and assume that ω2(g, η) ≤ φ(η) for every nonnegative η and some

nondecreasing and concave function φ on [0,∞) with φ(0) = 0. Then for every positive real
number w ∥∥∥√s−√Kw ∗ s

∥∥∥2
≤ 2

[∫
R

(
1 ∨ x2

)
K(x) dx

]
φ2(w). (37)
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Proof. The key of the proof is to compare D2 =
∥∥∥g −√Kw ∗ g2

∥∥∥2
with ∆2 = ‖g −Kw ∗ g‖2.

Our arguments are easier to explain within a probabilistic framework. Let ξ be some random
variable with density K with respect to the Lebesgue measure. Then the convolution operator
can be written as

(Kw ∗ g)(x) = E[g(x− wξ)] for all x ∈ R.

From Jensen’s inequality we know that

E[g(x− wξ)] ≤
√
E [g2(x− wξ)],

or equivalently
√
Kw ∗ g2 ≥ Kw ∗ g, and a fortiori,∫

g(x)
√

(Kw ∗ g2) (x) dx ≥
∫
g(x)(Kw ∗ g)(x) dx. (38)

Expanding the square norms, we derive from (38) that

D2 −∆2 ≤
∥∥∥∥√Kw ∗ g2

∥∥∥∥2
− ‖Kw ∗ g‖2 .

The trick is to notice that∥∥∥∥√Kw ∗ g2
∥∥∥∥2
− ‖Kw ∗ g‖2 =

∫
R

Var
(
g(x− wξ)

)
dx.

Now since the computation of the variance is not sensitive to the substraction of a constant

Var
(
g(x− wξ)

)
= Var

(
g(x− wξ)− g(x)

)
≤ E

[(
g(x− wξ)− g(x)

)2
]

and Fubini’s Theorem implies that∥∥∥∥√Kw ∗ g2
∥∥∥∥2
− ‖Kw ∗ g‖2 ≤ E

[
ω2

2(g, w|ξ|)
]
.

This achieves the first step of the proof. The second step is straightforward. We just have to
bound ∆2 which is an easy task since

∆2 =
∫
R

(
E[g(x− wξ)− g(x)]

)2
dx

implies by Jensen’s inequality and Fubini’s Theorem that

∆2 ≤ E
[∫

R

(
g(x− wξ)− g(x)

)2
dx

]
≤ E

[
ω2

2(g, w|ξ|)
]
.

Collecting these bounds, we derive that

D2 ≤ 2E
[
ω2

2(g, w|ξ|)
]
≤ 2E

[
φ2(w|ξ|)

]
.

It remains to decouple w and ξ in the last expression above. This can be done by noticing
that the monotonicity and concavity properties of φ imply that φ(w|ξ|) ≤ (1 ∨ |ξ|)φ(w) and
the result follows.
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6.2 The variance term

We now turn to the analysis of the variance term of the Hellinger risk of a kernel estimator.

Lemma 5. Let us denote by Aw the Borel set {x ∈ R | (Kw ∗ s)(x) > 0}, then

Es
[∥∥∥√Kw ∗ Pn −

√
Kw ∗ s

∥∥∥2
]
≤ 1
nw

∫
Aw

(
(K2)w ∗ s

)
(x)

(Kw ∗ s)(x) dx. (39)

In particular if s is supported on an interval of finite length 2L, then

Es
[∥∥∥√Kw ∗ Pn −

√
Kw ∗ s

∥∥∥2
]
≤ 1
nw

∫
sup

−L≤z≤L
K

(
x− z
w

)
dx. (40)

If the kernel K is bounded, non-decreasing on (−∞,M1) and non-increasing on (M2,+∞)
with M1 ≤M2, then∫

sup
−L≤z≤L

K

(
x− z
w

)
dx

≤ 2L‖K‖∞ + w

[
(M2 −M1)‖K‖∞ +

∫ M1

−∞
K(x) dx+

∫ ∞
M2

K(x) dx
]
. (41)

If, in particular, K is unimodal, then

Es
[∥∥∥√Kw ∗ Pn −

√
Kw ∗ s

∥∥∥2
]
≤ 2L‖K‖∞

nw
+ 1
n
.

Proof. Since, for u, v ≥ 0,

(u− v)2 =
(√
u−
√
v
)2 (√

u+
√
v
)2 ≥ v (√u−√v)2 ,

it follows that∫ (√
u(x)−

√
v(x)

)2
dx ≤

∫
v(x)>0

[u(x)− v(x)]2

v(x) dx+
∫
v(x)=0

u(x) dx,

hence∥∥∥√Kw ∗ Pn −
√
Kw ∗ s

∥∥∥2
≤
∫
Aw

[(Kw ∗ Pn)(x)− (Kw ∗ s)(x)]2

(Kw ∗ s)(x) dx+
∫
Acw

(Kw ∗ Pn)(x) dx.

By Fubini and the definition of Aw,

Es

[∫
Acw

(Kw ∗ Pn)(x) dx
]

=
∫
Acw

Es [(Kw ∗ Pn)(x)] dx =
∫
Acw

(Kw ∗ s)(x) dx = 0.

Taking expectations and using Fubini again, we therefore get

Es
[∥∥∥√Kw ∗ Pn −

√
Kw ∗ s

∥∥∥2
]
≤

∫
Aw

Es
[
[(Kw ∗ Pn)(x)−Kw ∗ s(x)]2

]
(Kw ∗ s(x) dx

=
∫
Aw

Var
(
(Kw ∗ Pn)(x)

)
Kw ∗ s(x) dx
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and (39) follows since

Var
(
(Kw ∗ Pn)(x)

)
=

Var
(
Kw(x−X)

)
n

≤
Es
[(
Kw(x−X)

)2
]

n
=
(
(K2)w ∗ s

)
(x)

nw
. (42)

Now observe that if f is supported on [a, a+ 2L],
(
(K2)w ∗ s

)
(x) =

∫ a+2L

a

1
w
K2

(
x− z
w

)
s(z) dz ≤ sup

a≤z≤a+2L
K

(
x− z
w

)
(Kw ∗ s)(x),

so that by (39)

Es
[∥∥∥√Kw ∗ Pn −

√
Kw ∗ s

∥∥∥2
]
≤ 1
nw

∫
sup

a≤z≤a+2L
K

(
x− z
w

)
dx.

Since∫
sup

a≤z≤a+2L
K

(
x− z
w

)
dx =

∫
sup

−L≤y≤L
K

(
x− a− L− y

w

)
dx =

∫
sup

−L≤y≤L
K

(
v − y
w

)
dv,

(40) follows.
If K is nonincreasing on (M2,+∞) and x > M2w+L, then sup−L≤y≤LK

(
w−1(x− y)

)
=

K
(
w−1(x− L)

)
and∫ ∞

M2w+L
sup

−L≤y≤L
K

(
x− y
w

)
dx =

∫ ∞
M2w+L

K

(
x− L
w

)
dx = w

∫ ∞
M2

K(y) dy.

Similarily, ∫ M1w−L

−∞
sup

−L≤y≤L
K

(
x− y
w

)
dx = w

∫ M1

−∞
K(y) dy

and finally∫
sup

−L≤y≤L
K

(
x− y
w

)
dx ≤ (M2w+L−M1w+L)‖K‖∞ +w

∫ M1

−∞
K(x) dx+w

∫ ∞
M2

K(x) dx,

which is (41). The unimodal case immediately follows from (40) and (41) with M1 = M2.
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A Supplementary material
We provide here additional simulations about the TVF based on the test statistic Tt,u(X)
designed by Baraud in [3] and given by (18). As in Section 4, we study the influence of
V and we compare the TVF based on this test with classical VF procedures. The results
are summarized in Table 3 and Figure 3 which are the analogues of Table 2 and Figure 2
respectively.

family V s1 s2 s3 s4 s5 s7 s12 s13 s22 s23 s24

FR

2 2,89 9,97 9,07 13,2 10,5 11 17,5 14,7 10,3 19,9 26,9
5 4,33 9,68 8,61 12,4 9,87 10,4 17,1 13,4 9,37 17,8 24,7
10 6,13 9,65 8,56 12,1 9,65 10,4 17 13,7 9,36 17,5 24,3
20 9,28 9,47 8,4 12 9,36 10,3 16,9 14,2 9,17 17,4 24,6
BR 2,20 9,94 9,27 12,98 10,53 11,14 17,85 14,63 10,37 17,98 25,15

FK

2 15,6 29,4 5,69 5,07 3,55 4,24 27,2 20 3,97 10,3 18
5 13,2 25,7 5,1 4,94 3,58 3,97 23 18,1 3,85 9,18 16,2
10 12,9 24,8 5 5,02 3,86 4,01 22,2 17,7 3,87 9,04 15,8
20 12,7 24,4 4,98 5,28 4,54 4,1 21,6 17,6 3,98 8,98 15,8

UCV 15,86 22,20 5,57 6,16 3,74 4,10 18,80 17,16 3,88 9,52 15,91

FKR

2 2,87 10 7,47 5,88 5,04 5,6 18,9 14,7 6,38 11,6 19,1
5 3,68 9,77 6,81 5,48 4,64 5,19 17,7 13,3 5,01 9,3 16,4
10 3,58 9,84 6,71 5,53 4,99 5,26 17,6 13,7 5,11 9,04 15,9
20 3,79 9,84 6,45 5,65 5,31 5,83 17,6 14,6 5,22 9,01 15,7

Table 3: 1000 times Hellinger risks for the TVF procedure based on Baraud’s test.

Influence of the test on the TVF

We compare here the performances of the best TVF procedure (among the five values of θ
described above) derived from Birgé’s test (9) against the one deduced from Baraud’s test
(18) (denoted ŝm̂TVF

). We show the conclusion of our study for the families FR, FK and FKR,
n = 500 and V = 2, 5, 10 and 20. The results are very similar for other values of n. For the
sake of clarity and to emphasize the similarity of both procedures in terms of Hellinger risk,
we present for each family, for each V , the supremum and the infimum over L of the ratio

Υ(s) =
{

inf
θ∈Θ

Rn
(
ŝm̂(θ), s, h

2
)/

Rn
(
ŝm̂TVF

, s, h2
)}

.

If infs∈LΥ(s) ≥ 1 the TVF using Baraud’s test behaves in a better way than the one using
Birgé’s test for all densities in L while if sups∈LΥ(s) ≤ 1 the opposite holds. The closer the
two values, the more similar the quality of both procedures.
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Figure 3: From left to right, the boxplots of W s

(
s̃, s̃TVF, h

2 ) using families FK,FR and FKR (up
for s̃ = ŝ

m̂LSVF
, down for s̃ = ŝ

m̂KLVF
). Each subfigure shows the boxplot for V = 2, 5, 10 and 20. The

horizontal red dotted line provides the reference value 0.

family Υ(s) V = 2 V = 5 V = 10 V = 20

FR
sups 103,68 102,59 101,72 102,27
infs 98,16 100,07 99,59 99,13

FK
sups 102,78 100,80 100,92 105,10
infs 99,58 98,72 97,45 96,13

FKR
sups 116,71 115,80 116,79 116,73
infs 96,70 98,84 99,08 99,30

Table 4: Supremum and infimum of 100 times the ratio, see the text.

We see from this table that Baraud’s and Birgé’s test are very similar to process the TVF
procedure for families FR and FK. There is indeed no noticeable difference for these families,
the largest gain (for a density in L) being of 5% only. The procedure based on Baraud’s test
becomes much better for the family FKR. We observe indeed that a potential gain of 15%
appears (since the sups is close to 115%) while the loss is negligible (since the infs is close
to 99%). Moreover, the ratios are quite similar when V increases. Finally, let us recall that
the TVF procedure based on (9) is less time-consuming since it requires to compute only one
integral instead of two for (18).
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