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Introduction

Let S be a surface, possibly with boundary. A triangulation is a simplicial complex whose underlying space is S. Contracting an edge of the triangulation (identifying two adjacent vertices in the simplicial complex) is allowed if this results in another triangulation of the same surface. A triangulation is irreducible (or minimal) if no edge is contractible. Every triangulation can be reduced to an irreducible triangulation by iteratively contracting some of its edges.

Irreducible triangulations have been much studied in the context of surfaces without boundary. In this paper, we extend known results to the case of surfaces with boundary. Specifically, we prove that the number of vertices of an irreducible triangulation is linear in the genus and the number of boundary components of the surface. Compared to previous works, our theorem and its proof have two interesting features: the result is more general, since it applies to surfaces with boundary, and the arguments of the proof are simpler.

Previous Works for Surfaces Without Boundary

We first describe previous related works, on surfaces without boundary. Barnette and Edelson [5,[START_REF] Barnette | All 2-manifolds have finitely many minimal triangulations[END_REF] proved that the number of irreducible triangulations of a given surface is finite. Nakamoto and Ota [START_REF] Nakamoto | Note on irreducible triangulations of surfaces[END_REF] were the first to show that the number of vertices in an irreducible triangulation is at most linear in the genus of the surface. The best upper bound known to date is due to Joret and Wood [START_REF] Joret | Irreducible triangulations are small[END_REF], who proved that this number is at most max{13g -4, 4}. (Here and in the sequel, g is the Euler genus, which equals twice the usual genus for orientable surfaces and equals the usual genus for non-orientable surfaces.) This bound is asymptotically tight, as there are irreducible triangulations with Ω(g) vertices; however, the minimal number of vertices in a triangulation is Θ( √ g) [START_REF] Jungerman | Minimal triangulations on orientable surfaces[END_REF]. Some low genus cases were studied. Steinitz [START_REF] Steinitz | Vorlesungen über die Theorie der Polyeder[END_REF] proved that the unique irreducible triangulation of the sphere is the boundary of the tetrahedron. The two irreducible triangulations of the projective plane were found by Barnette [4], followed by the 21 irreducible triangulations of the torus by Lawrencenko [START_REF] Lawrencenko | The irreducible triangulations of the torus[END_REF] and the 29 triangulations of the Klein bottle by Sulanke [START_REF] Sulanke | Note on the irreducible triangulations of the Klein bottle[END_REF]. More recently, Sulanke [START_REF] Sulanke | Generating irreducible triangulations of surfaces[END_REF][START_REF] Sulanke | Irreducible triangulations of low genus surfaces[END_REF] developed a method to generate all the irreducible triangulations of surfaces without boundary. His algorithm rediscovered the irreducible triangulations for the projective plane, the Klein bottle, and the torus; it also built the irreducible triangulations of the double-torus (396,784 triangulations) and the non-orientable surfaces of genus three [START_REF] Cheng | Hierarchy of surface models and irreducible triangulations[END_REF]708) and four [START_REF] Barnette | All 2-manifolds have finitely many minimal triangulations[END_REF]297,982).

Generalizations of the notion of irreducible triangulations, such as k-irreducible triangulations, also called k-minimal triangulations (k ≥ 3), have also been studied [START_REF] Gao | Irreducible triangulations of surfaces[END_REF][START_REF] Malnic | k-minimal triangulations of surfaces[END_REF]. Juvan et al. [START_REF] Juvan | Systems of curves on surfaces[END_REF]Section 6] also study this concept in the case of surfaces with boundary; their proof technique implies that the number of irreducible triangulations is finite for every surface (possibly with boundary). For a more detailed survey on results on irreducible triangulations, see Mohar and Thomassen [22,Sect. 5.4]. Higher-dimensional analogs have also been studied, and in particular conditions ensuring that contracting an edge of a simplicial complex preserves the topological type [START_REF] Attali | Efficient data structure for representing and simplifying simplicial complexes in high dimensions[END_REF][START_REF] Tamal | Topology preserving edge contraction[END_REF].

Applications of irreducible triangulations

One motivation for studying irreducible triangulations is that, to solve some problems on triangulations, it sometimes suffices to solve them on irreducible triangulations. For example, on a triangulation of an orientable surface with Euler genus g ≥ 4 (at least two handles), Barnette [22, Conjecture 5.9.3] conjectured that there always exists a cycle without repeated vertices that is non-null-homotopic and separating. More generally, Mohar and Thomassen [22, Conjecture 5.9.5] conjectured that for every even h, 0 < h < g, there exists a cycle without repeated vertices that splits the surface into two surfaces of genus h and g -h, respectively. To prove these conjectures, it suffices to prove them for irreducible triangulations. (See also the discussion by Sulanke [START_REF] Sulanke | Irreducible triangulations of low genus surfaces[END_REF]Sect. 5].)

Irreducible triangulations have also been used to characterize triangulations without K 6 -minors. (The characterization of abstract graphs without K m -minors has been done for any m ≤ 5, but the problem for m ≥ 6 seems to be very difficult.) The key fact for the characterization is that every triangulation on a surface S with no K 6 -minor is transformed into an irreducible triangulation with no K 6 -minor by contracting edges. The complete lists of irreducible triangulations are known only for surfaces of Euler genus at most four, and so the characterizations are done only for those surfaces [START_REF] Kawarabayashi | K 6 -minors in triangulations on the Klein bottle[END_REF][START_REF] Mukae | K 6 -minors in triangulations on the nonorientable surface of genus 4[END_REF][START_REF] Mukae | K 6 -minors in triangulations and complete quadrangulations[END_REF][START_REF] Mukae | K 6 -minors in triangulations on the nonorientable surface of genus 3[END_REF].

Irreducible triangulations can be used to generate all triangulations of a given surface [START_REF] Schipper | Generating triangulations of 2-manifolds[END_REF]. They are also a good tool to study diagonal flips on triangulations. Negami [START_REF] Negami | Diagonal flips of triangulations on surfaces, a survey[END_REF][START_REF] Negami | Diagonal flips in triangulations of surfaces[END_REF] used the fact that there are finitely many irreducible triangulations to prove that two triangulations of a surface with the same number of vertices are equivalent under diagonal flips, provided the number of vertices is greater than an integer depending only on the surface. For further applications, see the recent paper by Joret and Wood [START_REF] Joret | Irreducible triangulations are small[END_REF] and references therein.

Our Result

It turns out that the notion of irreducible triangulations extends directly to the case of surfaces with boundary. In this paper, we prove that the number of vertices of such an irreducible triangulation admits an upper bound that is linear in the genus g and the number of boundaries b of the surface. In more detail: Theorem 1. Let S be a (possibly non-orientable) surface with Euler genus g and b boundaries. Assume g ≥ 1 or b ≥ 2. Then every irreducible triangulation of S has at most 570g + 385b -573 vertices, except for the case of the projective plane (g = 1 and b = 0), in which the bound is 186. This bound is asymptotically tight; see Figure 1. Compared to the case of surfaces without boundary, the main difficulty we encountered was to prove that the number of boundary vertices is O(g + b) (there are indeed irreducible triangulations of surfaces whose single boundary contains Θ(g) vertices, as Figure 1 also illustrates); the known methods for surfaces without boundary do not seem to extend easily to surfaces with boundary. Our strategy is roughly as follows. Let T be an irreducible triangulation. First, we show that every matching of (the vertex-edge graph of) T has O(g + b) vertices. Then, we show that every inclusionwise maximal matching contains a constant fraction of the vertices of T . For technical reasons, in the case of surfaces with boundary, we actually need to restrict ourselves to a matching satisfying some additional mild conditions.

In particular, we reprove that, on a surface without boundary of genus g, the number of vertices of an irreducible triangulation is O(g). Our method does not improve over the current best bound of max{13g -4, 4} by Joret and Wood [START_REF] Joret | Irreducible triangulations are small[END_REF]. However, it is substantially different and simpler than the other known proofs of this result. These former proofs, by Nakamoto and Ota [START_REF] Nakamoto | Note on irreducible triangulations of surfaces[END_REF] and Joret and Wood [START_REF] Joret | Irreducible triangulations are small[END_REF] (see also Gao et al. [12]), rely on a deep theorem by Miller [START_REF] Gary | An additivity theorem for the genus of a graph[END_REF] (see also Archdeacon [START_REF] Archdeacon | The nonorientable genus is additive[END_REF]) stating that the genus of a graph (the minimum Euler genus of a surface on which a graph can be embedded) is additive over 2-vertex amalgams (identification of two vertices of disjoint graphs). Another paper by Cheng et al. [START_REF] Cheng | Hierarchy of surface models and irreducible triangulations[END_REF] also claims a linear bound without using Miller's theorem, but this part of their paper has a flaw (personal communication with the authors). 1 In contrast, our proof is short and uses only elementary topological lemmas.

Finally, we refine the above technique in the case of surfaces without boundary, and obtain a bound that is better than that of Theorem 1, but no better than the current best result by Joret and Wood [START_REF] Joret | Irreducible triangulations are small[END_REF].

We shall introduce some definitions from topology and preliminary lemmas in Section 2. We then prove our main theorem (Section 3). Finally, in Section 4, we describe the improvement of the technique for surfaces without boundary.

Preliminaries

We present a few notions of combinatorial topology; for further details, see also Stillwell [32], Armstrong [START_REF] Anthony | Basic topology[END_REF], or Henle [START_REF] Henle | A combinatorial introduction to topology[END_REF].

Topological Background

Surfaces, Cycles, and Homotopy. A surface (2-manifold with boundary) is a topological Hausdorff space where each point has an open neighborhood homeomorphic to the plane or the closed half-plane; the points in the latter case are called boundary points. Henceforth, S denotes a compact, connected surface.

By the classification theorem, S is homeomorphic to a surface obtained from a sphere by removing finitely many open disks and attaching handles (orientable case) or Möbius bands (non-orientable case) along some of the resulting boundaries. In the orientable case, the Euler genus of S, denoted by g, equals twice the number of In this paper, a cycle on S is the image of a one-to-one continuous map S 1 → S, where S 1 is the standard circle. In particular, we emphasize that cycles are undirected and simple. Two cycles are homotopic if one can be deformed continuously to the other; more formally, two cycles C 0 and C 1 are homotopic if there exists a continuous map h : [0, 1] × S 1 → S such that h(0, •) is one-to-one and has image C 0 , and similarly h(1, •) is one-to-one and has image C 1 . A cycle is null-homotopic if and only if it bounds a disk on S. We emphasize that only homotopy of cycles is considered in this paper; for example, we say that two loops are homotopic if and only if the corresponding cycles are homotopic (without fixing any point of the loops).

A cycle is two-sided if cutting along it results in a (possibly disconnected) surface with two boundaries, and one-sided otherwise. Equivalently, a cycle is two-sided if it has a neighborhood homeomorphic to an annulus, and one-sided if it has a neighborhood homeomorphic to a Möbius band (which implies that the surface is non-orientable). Two cycles in general position cross at point p if they intersect at p and the intersection cannot be removed by an arbitrarily small perturbation of the cycles. Two homotopic cycles in general position cross an even number of times if they are two-sided, and an odd number of times if they are one-sided.

Graph Embeddings, Triangulations, and Edge Contractions. Let G be a graph, possibly with loops and multiple edges. An embedding of G on S is a "crossing-free" drawing of G on S. More precisely, the vertices of G are mapped to distinct points of S; each edge is mapped to a path in S, meeting the image of the vertex set only at its endpoints, and such that the endpoints of the path agree with the points assigned to the vertices of that edge. Moreover, all the paths must be without intersection or self-intersection except, of course, at common endpoints. We sometimes identify G with its embedding on S. The faces of G are the connected components of the complement of the image of G in S. A graph embedding G is cellular if each of its faces is an open disk. If it is the case, Euler's formula states that |V | -|E| + |F | = 2 -g -b, where V , E, and F are the sets of vertices, edges, and faces of G, respectively.

Let e be an edge of a graph G embedded in the interior of S. Assume that e is not a loop. The contraction of e shrinks e to a single vertex; the resulting graph is in the interior of S. Loops and multiple edges may appear during this process (Figure 2).

A triangulation T on S is a graph without loops or multiple edges embedded on S such that each face is an open disk with three distinct vertices, and such that two such triangles intersect on a single edge (and its two incident vertices), a single vertex, or not at all. In other words, the vertices, edges, and faces of G form a simplicial complex whose underlying space is S.

The definition of edge contraction on a triangulation is slightly different from an edge contraction on a graph embedding. Let uv be an edge of T ; contracting edge uv identifies both vertices u and v in the simplicial complex T ; the dimension of some simplices decreases by one. We say that uv is contractible if the new simplicial complex is still homeomorphic to S (Figure 3).

In more detail, assume for now that e = uv is an interior edge, incident with triangles uvx and uvy. Contracting e shrinks e, identifying its two vertices u and v, and identifies the two pairs of parallel edges {ux, vx} and {uy, vy}. The definition is similar if e is a boundary edge, except that it has a single incident triangle uvx. If uv is not a boundary edge but exactly one vertex (say u) is incident to a boundary, then the edge uv is contracted to u, on the boundary. If this operation results in a triangulation of S, we say that e is contractible. In particular, a linking edge of T is a non-boundary edge whose both vertices are on the boundary; a linking edge is never contractible.

A triangulation of a surface is irreducible if it contains no contractible edge. For example, it is known that the only irreducible triangulation of the sphere is the boundary of a tetrahedron [START_REF] Steinitz | Vorlesungen über die Theorie der Polyeder[END_REF]. Using a similar argument, it is not hard to show that the only irreducible triangulation of the disk is a single triangle.

Preliminary Lemmas

We list here a series of basic facts that will be used in our proof.

Lemma 2. Assume S is not the sphere or the disk, and let T be an irreducible triangulation of S. Then every non-linking edge of T belongs to a non-null-homotopic 3-cycle.

Proof. This was proved by Barnette and Edelson [5, Lemma 1] for surfaces without boundary: In this case, every edge of T belongs to a 3-cycle that is not the boundary of a triangle; if that 3-cycle is null-homotopic, then it bounds a disk, and an edge inside that disk must be contractible. The argument immediately extends to nonlinking edges of surfaces with boundary. (For boundary edges, we need to distinguish whether the boundary has length at least four, in which case the previous argument applies, or exactly three, in which case the result is obvious.) Lemma 3. The degree of a non-boundary vertex of an irreducible triangulation of S is at least four.

Proof. This is a direct consequence of a result by Sulanke [START_REF] Sulanke | Generating irreducible triangulations of surfaces[END_REF]Theorem 1]. Specifically, he uses Lemma 2 to show that every vertex of an irreducible triangulation belongs to two non-separating 3-cycles crossing at that vertex. Again, the argument extends to non-boundary vertices of surfaces with boundary.

Lemma 4. Let G be a 1-vertex graph with loop edges, embedded in the interior of S. Assume that no face of G is a disk bounded by one or two edges. Then ≤ 3g + 2b -3, except if S is a sphere or a disk (in which cases = 0).

Proof. Barnette Here is a sketch of proof. Without loss of generality, we can assume that G is inclusionwise maximal; namely, no edge can be added to G without violating the hypotheses of the lemma. Then it follows from the classification of surfaces that, unless the surface is the sphere, the disk, or the projective plane, every face of the graph is a disk bounded by three edges, or an annulus bounded by a single edge and a single boundary component of S. A standard double-counting argument combined with Euler's formula concludes.

Corollary 5. Let G be a 1-vertex graph with loop edges, embedded in the interior of S. Assume that no loop of G is null-homotopic and that no two loops of G are homotopic. Then = 0 if S is a sphere or a disk, ≤ 1 if S is a projective plane, and ≤ 3g + 2b -3 otherwise.

Proof. The hypotheses imply that no face of G is a disk bounded by one or two edges (and thus Lemma 4 concludes), unless that disk is bounded by twice the same edge (in which case S is the projective plane). if there are ten homotopic edge-disjoint 3-cycles, there must be four pairwise disjoint homotopic 3-cycles, so there is at least one contractible edge.

Proof. First case: C is two-sided. This case is a small variation on a lemma by Barnette and Edelson [5, Lemma 9]. Any two distinct 3-cycles homotopic to C must cross an even number of times, hence cannot cross at all; thus two such 3-cycles bound an annulus, possibly "pinched" on a vertex or an edge. So the set of 3cycles homotopic to a given 3-cycle can be ordered linearly. Assume there are at least ten pairwise edge-disjoint 3-cycles of T homotopic to C; let us consider ten such consecutive cycles in this ordering, C 1 , . . . , C 10 . See Figure 4.

For every i, the annulus between C i and C i+3 cannot be pinched along a vertex: otherwise, it is easy to see that an edge between C i+1 and C i+2 would be contractible [START_REF] Barnette | All orientable 2-manifolds have finitely many minimal triangulations[END_REF]Lemma 7]. This annulus cannot be pinched along an edge, since the cycles are edge-disjoint. So any two consecutive cycles in the sequence C 1 , C 4 , C 7 , C 10 bound a non-pinched annulus. Now, similarly, some edge between C 4 and C 7 is contractible [5, Lemma 9], which is a contradiction.

Second case: C is one-sided. In this case, any 3-cycle homotopic to C crosses C exactly once, and must therefore share exactly one vertex with C. Let v be any vertex of C; we prove below that at most two 3cycles different from C and homotopic to C pass through v. This proves that there are at most seven 3-cycles homotopic to C (including C itself), which concludes.

So assume that (at least) four 3-cycles (including C) homotopic to C share together a vertex v. These cycles lie in a Möbius band "pinched" at v, and we can order them linearly; let C 1 , . . . , C 4 be consecutive cycles in this ordering. As in the first case [START_REF] Barnette | All orientable 2-manifolds have finitely many minimal triangulations[END_REF]Lemma 7], an edge between C 2 and C 3 would be contractible, a contradiction.

Proof of Theorem 1

A matching M of a graph G is a set of edges of G such that every vertex of G belongs to at most one edge of M .

The Size of a Matching

Our first task is to prove that a matching of an irreducible triangulation has size O(g + b). Proposition 7. Let T be an irreducible triangulation of S, where g ≥ 1 or b ≥ 2. Let M be a matching of T containing no linking edge. Then the number of edges of M is at most 27 if S is the projective plane (g = 1 and b = 0) and 81g + 54b -81 otherwise.

Proof. The structure of the proof is as follows. In three steps, we remove edges from M , obtaining successive matchings M 1 , M 2 , and M 3 , each of them satisfying additional properties. We show that the edge set of M 3 is in bijection with the edge set of a 1-vertex graph on S where no edge is null-homotopic and no two edges are homotopic. By Corollary 5, this implies that M 3 has O(g + b) edges. Furthermore, we show that M 3 contains some constant fraction of the edges of M , so that M also has O(g + b) edges.

Recall that every edge e of M belongs to a non-null-homotopic 3-cycle (Lemma 2); let C e be such a cycle.

Construction of M 1 . Assume that there are three distinct edges e 1 , e 2 , and e 3 of M such that C e 1 shares an edge with both C e 2 and C e 3 . Then C e 1 ∪ C e 2 ∪ C e 3 has at most 5 vertices, implying that two of e 1 , e 2 , e 3 have an endpoint in common. This contradiction proves that every 3-cycle C e 1 shares an edge of T with at most one Construction of M 3 . For every e ∈ M 2 , let π e be the path of length two obtained from C e by removing e. We orient the two edges of π e towards the extremities of π e (which are also the endpoints of e ∈ M 2 ). Since M 2 is a matching, every vertex of the triangulation T is the target of at most one oriented edge.

Let Π 2 be the union of the graphs π e , e ∈ M 2 . We claim that Π 2 is a pseudoforest: every connected component Π 2 of Π 2 contains at most one cycle (see Figure 5). Indeed, every vertex of Π 2 is the target of at most one oriented edge, so the number of edges of Π 2 is at most the number of vertices of Π 2 , and Π 2 is connected; so a spanning tree of Π 2 contains all but at most one edge of Π 2 .

If Π 2 is not a tree, let e be an edge such that Π 2 -e is a tree. The edge e belongs to some π e . We remove e from M 2 (and consequently π e from Π 2 ); the graph Π 2 becomes one or two trees, and the other connected components of Π 2 are unaffected. We do this iteratively for every connected component Π 2 of Π 2 . Let M 3 be obtained from M 2 after removing these edges.

Before the removal of any edge of M 2 , if a connected component Π 2 of Π 2 is not a tree, it contains a cycle C of length at least three (Figure 5); since each vertex of C has at most one incoming edge, the edges of C belong to distinct C e , for e ∈ M 2 . Therefore, when removing edges of M 2 to form M 3 , we remove at most one third of the edges of M 2 . So |M 2 | ≤ 3 2 |M 3 |. End of the proof. Let Π 3 be the union of the graphs π e , for e ∈ M 3 ; by construction, Π 3 is a forest. We now view T as a graph embedded on S (slightly moving it towards the interior of S, if S has a boundary), and contract all the edges of Π 3 in this graph; this is legal since this set contains no cycle. Each edge e of M 3 is transformed into a loop e homotopic to C e . The loops e form a graph Γ embedded on S; that graph has a single vertex per connected component. There exists a tree U embedded on S meeting Γ exactly at its vertex set. We may contract U on the surface; now Γ is transformed into a set of simple, pairwise disjoint loops Γ with the same vertex. Furthermore, the loops are non-null-homotopic and pairwise non-homotopic, so Corollary 5 implies that |M 3 | = |Γ | ≤ 3g + 2b -3 (unless S is the projective plane, in which case the upper bound is one). By construction, we also have

|M | ≤ 2|M 1 | ≤ 2 * 9|M 2 | ≤ 2 * 9 * 3 2 |M 3 | = 27|M 3 |, which concludes the proof.

An Inclusionwise Maximal Matching Covers Many Vertices

Now, we prove that an inclusionwise maximal matching of T must cover a constant fraction of the edges of T . Proposition 8. Let T be an irreducible triangulation of S. Let W be a set of vertices of T . Let M be an inclusionwise maximal matching of T among those that avoid W . Assume further that every boundary vertex of T is either in W or incident to an edge of M . Then the number of vertices of T is at most 7|M | + 4|W | + 3g + 3b -6.

Proof. Let us denote by V , E, and F the vertices, edges, and faces of T , respectively. Let V M be the vertices reached by M and X be the vertices neither in V M nor in W . Let M be the set of the edges of T that are not in M . Thus {W, V M , X} is a partition of V , and {M, M } is a partition of E.

Let v ∈ X. Recall that v is a non-boundary vertex by hypothesis. According to Lemma 3, v has degree at least four, so it is incident to at least four edges in M . By the maximality of the matching M , the other vertex of each of these four edges is not in X. So, charging each vertex v of X with these four edges, we obtain that

4|X| ≤ | M |.
The rest of the proof is standard machinery. Since T is a triangulation, by double-counting we obtain |F | ≤ 2 3 |E| (this is not an equality in general since S may have boundary). Plugging this relation into Euler's formula |V | -|E| + |F | = 2 -g -b, we obtain:

(|W | + |V M | + |X|) - 1 3 (|M | + | M |) ≥ 2 -g -b.
|V M | = 2|M | gives, after some rearranging:

| M | -3|X| ≤ 5|M | + 3|W | + 3g + 3b -6.
As 

End of Proof

The proof of Theorem 1 combines Propositions 7 and 8:

Proof of Theorem 1. Let W be a set of vertices, one on each boundary component of S having an odd number of vertices. Build a matching M made of edges on the boundary of S and covering the vertices on the boundary of S that are not in W . Extend M to an inclusionwise maximal matching of T that avoids W ; we still denote it by M . M contains no linking edge by construction so, by Proposition 7, M has less than 81g + 54b -81 edges (27 if S is the projective plane). By Proposition 8, and since |W | ≤ b, the number of vertices of T is at most 7|M | + 3g + 7b -6.

Combining these equations proves that T has at most 570g + 385b -573 vertices (186 if S is the projective plane).

Improvement for Surfaces Without Boundary

The purpose of this section is to improve the previous bound when S has no boundary (b = 0). The strategy is to improve the bound of Proposition 8 using a more careful analysis. Theorem 9. Let S be a (possibly non-orientable) surface with Euler genus g ≥ 1 and without boundary. Then every irreducible triangulation of S has at most f (g) vertices, where f (1) = 55, f (2) = 194, f (3) = 333, and f (g) = 163g -164 if g ≥ 4.

The following lemma appears in an article by Fujisawa et al. [11,Sect. 2]; we reproduce the proof in more detail here for convenience.

Lemma 10. Let S be a surface of Euler genus g ≥ 1 without boundary, and let G = (V, E) be a 4-connected graph embedded on S. Then for every U ⊆ V , the number of components of G -U is at most max{1, |U | + g -2}.

Proof. We can assume that U = ∅ and that G -U has at least two connected components; otherwise, the result is clear. Let K be the graph obtained from G by the following steps:

1. Contract the edges of a spanning forest of G -U . Now the current graph has vertex set U ∪ W , where W has one element for each component of G -U . The following steps will only add and remove edges of this graph.

2. Delete each edge with both endpoints in U . Similarly, delete each edge with both endpoints in G -U (such edges are actually loops, by the first step). Now the current graph is bipartite.

3. On each face of the resulting graph that is not a disk, add edges to cut that face into a disk. This can be done without violating bipartiteness, because every face has a boundary component with at least one vertex in U and at least one vertex in W (since U and W are non-empty).

4. If there exists a face incident with exactly two edges, remove one of these two edges. (The two edges incident to the face are distinct, because S is not the sphere and the edge is not a loop.) Repeat this step as much as possible.

We now have:

4|W | ≤ |E(K)| ≤ 2(|E(K)| -|F (K)|) = 2(|W | + |U | + g -2).
Indeed, the first inequality holds by 4-connectivity of G: since |W | ≥ 2, every component of G -U is adjacent to at least four different vertices of U ; therefore, in K, every vertex of W is adjacent to at least four different vertices of U . The second line follows from the fact that each face is incident to at least four edges (by bipartiteness of K and using Step 4). The third line holds by virtue of Euler's formula, since K is cellularly embedded on S.

Proposition 11. Let S be a surface of Euler genus g ≥ 1 without boundary, and let G = (V, E) be a 4connected graph embedded on S. Let M be a maximum-size matching of G. Then the number of vertices of G is at most 2|M | + max{1, g -2}.

Proof. The Tutte-Berge formula [START_REF] Berge | Sur le couplage maximum d'un graphe[END_REF][START_REF] West | A short proof of the Berge-Tutte formula and the Gallai-Edmonds structure theorem[END_REF] If T is not 4-connected, this means that a vertex set U of size at most three separates T . Actually, |U | = 3, and U forms a 3-cycle C in T . This cycle C must be separating, but also non-null-homotopic, for otherwise some edge of T would be contractible (as in the proof of Lemma 2). Let S 1 and S 2 be the surfaces obtained by cutting S along C and attaching a triangle to each copy of C. The Euler genera of S 1 and S 2 add up to g. Furthermore, C is two-sided (since it is separating), so the number of 3-cycles homotopic to C in S is at most 27 [5, Lemma 9]. Any edge that is contractible in S 1 or S 2 belongs to such a cycle. So the total number of edges in S 1 and S 2 that are contractible is at most 3 × 27 + 3 = 84 (the "+3" term comes from the fact that the three edges of C may be contractible in both S 1 and S 2 .) A similar reasoning is used by Barnette It follows that the number of vertices of an irreducible triangulation of a surface without boundary with Euler genus g is bounded from above by f (g), where f satisfies the induction formula: 

f (g) = max    h(g), max
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 1 Figure 1: For any even g ≥ 0 and any b ≥ 1 (one of these two inequalities being strict), there exists an irreducible triangulation of an orientable surface with Euler genus g with b boundary components, and with 5g/2 + 4b -2 vertices. The figure illustrates the case g = 4 and b = 3. Starting with a set of triangles glued together, all meeting at a vertex (bottom part), attach a set of g/2 pairs of interlaced rectangular strips (top left) and a set of b -1 non-interlaced rectangular strips (top right), and triangulate every strip by adding an arbitrary diagonal (not shown in the picture). That the resulting triangulation is irreducible follows from the fact that every edge belongs to a non-null-homotopic 3-cycle or is a linking edge (a non-boundary edge whose endpoints are both boundary vertices). Also, note that all vertices are on the boundary. In particular, taking b = 1, we obtain an irreducible triangulation whose single boundary component contains 5g/2 + 2 vertices.

Figure 2 :

 2 Figure 2: Edge contraction on an embedded graph.

Figure 3 :

 3 Figure 3: Edge contraction on a triangulation.
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 6 Let C be a non-null-homotopic 3-cycle in an irreducible triangulation T of S. No more than nine pairwise edge-disjoint 3-cycles of T are homotopic to C.

Figure 4 :

 4 Figure4: Illustration of the proof of Lemma 6 (in the two-sided case): if there are ten homotopic edge-disjoint 3-cycles, there must be four pairwise disjoint homotopic 3-cycles, so there is at least one contractible edge.

Figure 5 :

 5 Figure5: In light lines, the matching M 2 ; in bold lines, the graph Π 2 , here forming a tree plus an edge.

6 .

 6 shown above, 4|X| ≤ | M |, implying |X| ≤ | M | -3|X| and so |X| ≤ 5|M | + 3|W | + 3g + 3b -This bound on |X| allows to bound |V | = 2|M | + |W | + |X| in terms of |M |, |W |, g, and b, implying the result.

[ 30 ,

 30 Sect. 24.1] asserts that the number of vertices of G not covered by a maximum-size matching of G is the maximum, over all U ⊆ V , of o(G -U ) -|U |, where o(G -U ) denotes the the number of components of the graph G -U with an odd number of vertices. By Lemma 10, for every U ⊆ V , we have o(G -U ) -|U | ≤ max{1, g -2}. The result follows. Proof of Theorem 9. If T is 4-connected, by Proposition 11, T has at most 2|M |+max{1, g-2} vertices where M is a maximum-size matching of T . Using the bound on the size of a maximal matching M (Proposition 7), we deduce that T has at most h(g) vertices, where h(1) = 55, h(2) = 163, and h(g) = 163g -164 if g ≥ 3.

and Edelson [ 5 ,

 5 Proof of Theorem 2].

g 1 +g 2 =g g 1 ,g 2 .

 12 ≥1f (g 1 ) + f (g 2 ) + 84   .Thus, we have f (1) = 55, f (2) = 194, and for g ≥ 3:f (g) = max    163g -164, max g 1 +g 2 =g g 1 ,g 2 ≥1 f (g 1 ) + f (g 2 ) + 84   It is easily checked by induction that f (3) = 333 and f (g) = 163g -164 for g ≥ 4.

Specifically, in the proof of their Lemma 3, the authors incorrectly claim that there are at most g pairwise non-homologous cycles on an orientable surface of Euler genus g.

Acknowledgment. We would like to thank Gwenaël Joret, Thom Sulanke, and David Wood for helpful comments which improved the readability of this article.

* This work was done during the first author's internship at École normale supérieure. The internship was funded by the Agence Nationale de la Recherche under the Triangles project of the Programme blanc ANR-07-BLAN-0319.