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Abstract In the context of Twitter, social capitalists are
specific users trying to increase their number of followers
and interactions by any means. These users are not healthy
for the service, because they are either spammers or real
users flawing the notions of influence and visibility. Study-
ing their behavior and understanding their position in Twit-
ter is thus of important interest. It is also necessary to an-
alyze how these methods effectively affect user visibility.
Based on a recently proposed method allowing to identify
social capitalists, we tackle both points by studying how
they are organized, and how their links spread across the
Twitter follower-followee network. To that aim, we consider
their position in the network w.r.t. its community structure.
We use the concept of community role of a node, which de-
scribes its position in a network depending on its connectiv-
ity at the community level. However, the topological mea-
sures originally defined to characterize these roles consider
only certain aspects of the community-related connectivity,
and rely on a set of empirically fixed thresholds. We first
show the limitations of these measures, before extending
and generalizing them. Moreover, we use an unsupervised
approach to identify the roles, in order to provide more flex-
ibility relatively to the studied system. We then apply our
method to the case of social capitalists and show they are
highly visible on Twitter, due to the specific roles they hold.
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1 Introduction

The last decade has been marked by an increase in both the
number of online social networking services and the number
of users of such services. This observation is particularly
relevant when considering Twitter, which had 200 million
accounts in April 2011 [3] and reached 500 millions in Oc-
tober 2012 [14]. Twitter is mostly used to share, seek and de-
bate some information, or to let the world know about daily
events [15]. The amount of information shared on Twitter is
considerable: there are about 1 billion tweets posted every
two and a half days [24]. While focusing on microblogging,
Twitter can be considered as a social networking service,
since it includes social features. Indeed, to see the messages
of other users, a Twitter user has to follow them (i.e. make
a subscription). Furthermore, a user can retweet [26] other
users’ tweets, for instance when he finds them interesting
and wants to share them with his followers 1. Besides, users
can mention other users to draw their attention by adding
@UserName in their message.

Some Twitter users are trying to use these particular
properties to spread efficiently some information [11]. One
of the simplest way to reach this objective is to gain as
many followers as possible, since this gives a higher visi-
bility to the user’s tweets when using the network search en-
gines [11]. These specific users are called social capitalists.
They have been recently pointed out by Ghosh et al. [11]
in a study related to link-farming in Twitter. They noticed
in particular that users responding the most to the solicita-
tion of spammers are in fact real, active users. To increase
their number of followers, social capitalists use several tech-
niques [7,11], the most common one being to follow a lot of
users regardless of their content, just hoping to be followed
back.

Because of this lack of interest in the content produced
by the users they follow, social capitalists are not healthy for
a service such as Twitter. Indeed, this behavior helps spam-
mers gaining influence [11], and more generally makes the
task of finding relevant information harder for regular users.
Identifying them and studying their behavior in Twitter are
therefore two very important tasks to improve the service,
since they can allow designing better search engines or func-
tioning rules. In a recent article, Dugué & Perez [7] have
designed a method to efficiently detect social capitalists. In
order to better understand how they are organized, how re-
ally visible they are, and how their links spread across the
network, we propose to characterize the position of social
capitalists relatively to the community structure of the net-
work [8].

In its simplest form, the community structure of a com-
plex network can be defined as a partition of its node set,

1 For a given user, a followee (or friend in the Twitter API) is a user
he subscribed to, and a follower is a user that subscribed to him.
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each part corresponding to a community. Community detec-
tion methods generally try to perform this partition in order
to obtain densely connected groups of nodes, relatively to
the rest of the network [23]. Hundreds of such algorithms
have been defined in the last ten years, see [9] for a very de-
tailed review of the domain. The notion of community struc-
ture is particularly interesting because it allows studying the
network at an intermediate level, compared to the more clas-
sic global (whole network) and local (node neighborhood)
approaches.

The concept of community role is a good illustration of
this characteristic. It consists in describing a node depending
on the position it holds in its own community. We base our
work on the Guimerà & Amaral approach of the community
role [12]. After having applied a standard community de-
tection method, Guimerà & Amaral characterize each node
according to two ad hoc measures, each one describing a
specific aspect of the community-related connectivity. The
node role is then selected among 7 predefined ones by com-
paring the two values to some empirically fixed thresholds
assumed as universal.

In this paper, we study the community roles of so-
cial capitalists within a freely-available Twitter follower-
followee network provided by Cha et al. [5]. In a first place,
we highlight two important limitations of the community
role approach described by Guimerà & Amaral [12]. We
show that the existing measures used to characterize the
node’s position do not take into account all aspects of the
community-related external connectivity of a node. More-
over, we object the assumption of universality of the thresh-
olds applied to the measures in order to distinguish the dif-
ferent node roles. The dataset we use constitutes a counter-
example showing the original thresholds are not relevant for
all systems. We then explain how to tackle these limitations.
We first introduce three new measures to characterize the ex-
ternal connectivity of a node in a more complete and detailed
way. We then describe an unsupervised approach aiming at
identifying the node roles without using fixed thresholds. Fi-
nally, we apply our method on the Twitter network to deter-
mine the position of social capitalists, and show they occupy
specific roles in the network. In particular, most of them are
well connected to their community, and overall a large part
of them spread their links outside their community very effi-
ciently. This gives meaningful insights regarding the actual
visibility of these users. Indeed, they occupy roles leading
to a high visibility in Twitter.

We first present the concept of social capitalists in Twit-
ter in more details (Section 2). Next, we describe the method
proposed by Guimerà & Amaral [12] to identify the commu-
nity roles of nodes (Section 3.1) and provide some elements
regarding its limitation (Section 3.2.1). We then describe
the solutions we propose to tackle these limitations (Sec-
tion 3.3.1) and apply our method to study the roles of so-

cial capitalists in Twitter (Section 4). Finally, we discuss the
works related to the notion of community role (Section 5).

2 Social capitalists

2.1 Definition

Similarly to what is observed on the Web, where site admin-
istrators perform links exchange in order to increase their
visibility, some social network users seek to maximize their
number of virtual relationships. Because microblogging net-
works are focused on sharing information, not on develop-
ing friendship links, Twitter is particularly well-suited to ob-
serve and study this kind of behavior. Such users are called
social capitalists in [7,11] or friends infiltrators in [18].
In the rest of paper, we call these users social capital-
ists. These users exploit two relatively straightforward tech-
niques, based on the reciprocation of the follow link:

– FMIFY (Follow Me and I Follow You): the user ensures
its potential followers that he will follow them back;

– IFYFM (I Follow You, Follow Me): on the contrary, the
user systematically follows other users, hoping to be fol-
lowed back.

Social capitalists are not healthy for a social networking
service, since their methods to gain visibility and influence
are not based on the production of relevant content and on
getting a higher credibility. From this point of view, their
high number of followers can be considered as undeserved,
and biases all services based on the assumption that visible
users produce or fetch interesting content (e.g. search or rec-
ommendation engines).

Social capitalists were introduced by Ghosh et al [11] in
a paper studying spam on Twitter. They noticed that users
responding the most to the solicitations of spammers are
real (i.e. neither bots nor fake accounts), active and even
sometimes popular users. These users are engaged in a link
exchange process such as the two described above. Using
this observation, Ghosh et al. manually constituted a list of
100000 social capitalists –namely the most responsive ones
to the solicitations of spammers. Social capitalists were also
mentioned as a subset of spammers in [18,19] where authors
succeed in building a robust classifier to detect spammers
from regular users. In both these papers, social capitalists
(called friends infiltrators by the authors) are not specifically
studied. Furthermore, these papers neither studied the actual
visibility of social capitalists nor the topological properties
of their corresponding positions in the network.

In [7], Dugué & Perez proposed an automatic method
to detect social capitalists. In this article, our work is based
on a list of social capitalists identified through this method,
which is why it is presented in detail in the next section.
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Based on this list, we could compare the position and visibil-
ity of regular users and social capitalists through the notion
of community role.

2.2 Measures

The set of followees and the set of followers of a given user
largely intersect when the said user applies social capitalism
techniques. Based on this observation, Dugué & Perez [7]
designed an automatic method to detect efficiently these
users. It relies on three purely topological measures, i.e.
it does not consider any content. The first measure, called
overlap index and introduced in [10], enables to detect po-
tential social capitalists. The second, called ratio, allows to
determine if a given social capitalist uses the FMIFY or
IFYFM principle. The third is simply the incoming degree,
and indicates if the social capitalist was successful in apply-
ing these principles. All of them are defined on the follower-
followee network, which is a directed graph G = (V,A)
whose nodes V represent users and links A correspond to
follower-to-followee relationships. In this network, the in-
neighborhood Nin(u) = {v ∈ V : (v,u) ∈ A} of a node u
corresponds to the followers of the user represented by u,
whereas his out-neighborhood Nout(u)= {v∈V : (u,v)∈A}
corresponds to his followees.

The overlap index O(u) of a node u is given by:

O(u) =
|Nin(u)∩Nout(u)|

min{|Nin(u)|, |Nout(u)|}
(1)

This measure is processed for all nodes, allowing to iden-
tify social capitalists. Indeed, an overlap index close to 1
indicates the intersection of followers and followees is quite
high, and so we can conclude the considered user applied
either the FMIFY or IFYFM principle. On the contrary, a
value close to 0 means he is not a social capitalist.

The ratio r(u) of a node u is defined as:

r(u) =
|Nin(u)|
|Nout(u)|

(2)

This measure is processed for all social capitalists too, and
allows to classify them more precisely. According to Dugué
& Perez [7], social capitalists following the IFYFM princi-
ple have a ratio greater than 1 (i.e. more followees than fol-
lowers), whereas those using FMIFY have a ratio smaller
than 1. In both cases, the ratio is expected to be close to
1. However, the analysis conducted in [7] highlighted a
third behavior, called passive. Unlike other social capital-
ists (called active), these passive users consider they have
reached a sufficient level of influence, and therefore do not
need to increase their number of followers. At this point,
they stop applying the aforementioned principles, but still
get more and more followers due to their high visibility.
Consequently, their ratio is much smaller than 1.

By processing the cardinalities of the incoming and out-
going neighborhoods, we obtain the in- and out-degrees,
noted din(u) = |Nin(u)| and dout(u) = |Nout(u)|, respec-
tively. The former, which corresponds to the number of fol-
lowers, is used by Dugué & Perez [7] as a third criterion, in
order to determine if a social capitalist was successful in the
application of the FMIFY and IFYFM principles. They de-
fine low in-degree social capitalists as social capitalists hav-
ing between less than 10000 followers, and high in-degree
social capitalists as those having more than 10000 follow-
ers. The latter are efficiently gaining followers, and are con-
sidered successful, whereas the former are still less popular.

2.3 Detection

In [7], Dugué & Perez applied their method to the 2009 data
collected by Cha et al. [5]. They empirically determined that
a threshold of 0.74 for the overlap index allows a high accu-
racy detection. They also added two constraints: the first is
to consider only users with more than 500 followers, in or-
der to focus on successful social capitalists, i.e. ones having
effectively gained followers. This means low degree social
capitalists have an in-degree between 500 and 10,000. The
second constraint sets up a minimum of 500 followees, in
order to avoid detecting users whose high overlap index is
due only to a very small number of followees.

Dugué & Perez detected approximately 160000 social
capitalists. Table 1 shows how they are distributed over the
various types of identified behaviors. It is interesting to no-
tice that in this network, most users with more than 10000
followers are social capitalists (70%). Moreover, users with
such a number of followers constitute less than 0.1% of the
network.

din(u) dout(u) Number r(u) %

> 500 > 500 161424 > 1 68%
[0.7;1] 25%

> 10000 > 500 5743
> 1 66%

[0.7;1] 25%
< 0.7 9%

Table 1 Social capitalists detected on the entire Cha et al. [5] network,
with O(u)> 0.74.

In the experimental part of this work, we decided to use
the same method to identify social capitalists in the stud-
ied data, instead of the list manually curated by Ghosh et
al. [11]. The reason for this is that the latter is less exhaus-
tive, since it excludes users not following spammers, and
does not contain spammers nor bots. Dugué & Perez de-
tected approximately 160.000 social capitalists when Ghosh
et al. [11] detected 100000 users. Furthermore, some of
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the listed social capitalists have only a few followers, or
only a few reciprocal followers-followee links. Finally, the
method proposed by Dugué and Perez [7] detected 80% of
the 100000 social capitalists listed by Ghosh et al.

3 Identifying Community Roles

We now present in more details the concept of community
role in a complex network. Our work relies on the method
proposed by Guimerà & Amaral [12].We first introduce the
original measures of Guimerà & Amaral, then highlight
their limitations, and finally propose some solutions to these
problems.

3.1 Original approach

In order to characterize the roles of nodes relatively to com-
munities, Guimerà & Amaral [12] defined two complemen-
tary measures which allow them to place each node in a 2D
role space. Then, they proposed several thresholds to dis-
cretize this space, each resulting subspace corresponding to
a specific role. In this section, we first describe the measures,
then the method used to identify the roles. We then propose
a trivial extension to directed networks.

3.1.1 Role Measures

Both measures are related to the internal and external con-
nectivity of the node with respect to its community. In other
words, they deal with how a node is connected with other
nodes inside and outside of its own community, respectively.
The first measure, called within-module degree, is based on
the notion of z-score. Since the z-score will be used again
afterwards, we define it here in a generic manner. Let f (u)
be any function defined on the vertices, that is f associates
a numerical value to any vertex u of the considered graph.
The z-score Z f (u) w.r.t. the community of u is defined by:

Z f (u) =
f (u)−µi( f )

σi( f )
,u ∈Ci (3)

where Ci stands for community number i, and µi( f ) and
σi( f ) respectively denote the mean and standard deviation
of f over the nodes belonging to community Ci.

Now, let dint(u) be the internal degree of a node u, i.e.
the number of links u has with nodes belonging to its own
community. Then, the within-module degree of a node u,
noted z(u) by Guimerà & Amaral [12], corresponds to the
z-score of its internal degree. Note that z evaluates the con-
nectivity of a node with its own community, with respect to
that of the other nodes of the same community.

The second measure, called participation coefficient, is
defined as follows:

P(u) = 1−∑
i

(di(u)
d(u)

)2
(4)

where d(u) denotes the total degree of the node (i.e. the
number of links it has with any other nodes), and di(u) the
community degree of u (i.e. the number of links it has with
nodes of community Ci). Note that when Ci corresponds to
the community of u, then di(u) = dint(u). Roughly speaking,
the participation coefficient evaluates the connectivity of a
node to the community structure in general. If it is close to
0, then the node is connected to one community only (likely
its own). On the contrary, if it is close to 1, then the node is
uniformly linked to a large number of communities.

3.1.2 Community Roles

Both measures are used to characterize the role of a node
within its community. Guimerà & Amaral [12] defined 7 dif-
ferent roles by discretizing the 2D space formed by z and P
using empirically determined thresholds.

They first used a threshold on the within-module degree,
which allowed them to distinguish hubs (that is, nodes with
z > 2.5) from other nodes, called non-hubs. Such hubs are
considered as highly linked to their community, when com-
pared to other nodes of the same community. Note that the
word hub usually refers to a node with a central position in
the whole network, whereas here, the focus is on the com-
munity. In other words, in the rest of this article, hub implic-
itly means community hub.

Community role External
z P connectivity

Hub ≥ 2.5
Provincial ≤ 0.30 Low
Connector ]0.30;0.75] Strong
Kinless > 0.75 Very strong

Non-
< 2.5

Ultra-peripheral ≤ 0.05 Very low
Peripheral ]0.05;0.62] Low

Hub Connector ]0.62;0.80] Strong
Kinless > 0.80 Very strong

Table 2 Guimerà & Amaral’s roles and the corresponding z and P
thresholds [12].

Those two categories are then subdivided using several
thresholds defined on the participation coefficient, as shown
in Table 2. By order of increasing P, we have: provincial
or (ultra-)peripheral, connector and kinless nodes. The two
first roles correspond to nodes essentially connected to their
community and very (or even completely) isolated from the
rest of the network. The third one concerns nodes connected
to a number of nodes outside their community. Nodes hold-
ing the fourth role are connected to many different commu-
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nities. Note this is independent from the density of their in-
ternal connections: a node can be very well connected in its
own community, but not to the rest of the network, in which
case it is an ultra-peripheral hub.

3.1.3 Directed Variants

Many networks representing real-world systems, such as the
Twitter follower-followee network we study here, are di-
rected. Of course, it is possible to analyze them through the
undirected method, but this would result in a loss of informa-
tion. Yet, extending these measures is quite straightforward:
the standard way of proceeding consists in distinguishing in-
coming and outgoing links. In our case, this results in using
4 measures instead of 2: in- and out- versions of both the
within-module degree and participation coefficient.

First, based on the in-degree introduced in section 2.2
and the internal degree from section 3.1.1, let us define the
internal in-degree of a node, noted din

int . It corresponds to the
number of incoming links the node has inside its commu-
nity. By processing the z-score of this value, one can derive
the within-module in-degree, noted zin. Similarly, let us note
din

i the community in-degree, i.e. the number of incoming
links a node has from nodes in community Ci. We can now
define the incoming participation coefficient, noted Pin, by
substituting din to d and din

i to di in Equation (4). With the
same approach, we define zout and Pout , using the outgoing
counterparts dout , dout

int and dout
i .

In the rest of the article, we call this set of measures the
directed variants, by opposition to the original measures of
Guimerà & Amaral [12].

3.2 Limitations of this approach

We identify two limitations in the approach of Guimerà &
Amaral [12]. The first concerns the way the participation co-
efficient represents the nodes external connectivity, whereas
the second is related to the threshold used for the within-
module degree.

3.2.1 External Connectivity

We claim that the external connectivity of a given node, i.e.
the way it is connected to communities other than its own,
can be precisely described in three ways: first, by consider-
ing its diversity, i.e. the number of concerned communities
; second, in terms of intensity, i.e. the number of external
links ; and third, relatively to its heterogeneity, i.e. the distri-
bution of external links over communities. The participation
coefficient combines several of these aspects, mainly focus-
ing on heterogeneity, which lowers its discriminant power.
This is illustrated in Figure 1: the external connectivity of

the central node is very different in each one of the presented
situations. However, P is the same in all cases.

Fig. 1 Each color represents a community. In each case, the participa-
tion coefficient P of the central node is 0.58.

In order to be more illustrative, let us consider two users
from our data, which have the same community role accord-
ing to the original measures. We select two nodes both hav-
ing a z greater than 2.5 and a P close to 0.25. So accord-
ing to Guimerà & Amaral [12] (see Table 2), they both are
provincial hubs, and should have a similar behavior w.r.t.
the community structure of the network. However, let us
now point out that the first user is connected to 50 nodes
outside its community, whereas the second one has 200000
connections. This means they actually play different roles
in the community structure, either because the second one
is connected to much more communities than the first one,
or because its number of links with external communities is
much larger than for the first user. Similar observations can
be made for the directed variants of the participation coeffi-
cient. The measures used to define the external connectivity
should take this difference into account and assign different
roles to these nodes.

3.2.2 Fixed Thresholds

As indicated in the supplementary discussion of [12], the
thresholds originally used to identify the roles were obtained
empirically. Guimerà & Amaral first processed P and z for
different types of data: metabolic, proteome, transportation,
collaboration, computer and random networks. Then, they
detected basins of attraction, corresponding to regularities
observed over all the studied networks. Each role mentioned
earlier corresponds to one of these basins, and the thresholds
were obtained by estimating their boundaries.

Implicitly, these thresholds are supposed to be univer-
sal, but this can be criticized. First, Guimerà & Amaral used
only one community detection method. A different commu-
nity detection method can lead to a different community
structure, and therefore possibly different basins of attrac-
tion. Furthermore, z is not normalized, in the sense it has no
fixed boundaries. There is no guarantee the threshold origi-
nally defined for this measure will stay meaningful on other
networks. As a matter of fact, the values obtained for z in
our experiments are far higher for some nodes than the ones
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observed by Guimerà & Amaral. We also observe that the
proportion of nodes considered as hubs (i.e. z ≥ 2.5) by
Guimerà & Amaral is much smaller in our network than
in the networks they consider: 0.35% in ours versus 2% in
theirs. These thresholds seem to be at least sensitive either
to the size of the data, the structure of the network, or to the
community detection method.

It is therefore necessary to process new thresholds, more
appropriate to the considered data. However, the method
used by Guimerà & Amaral [12] itself is difficult to apply, it
requires a lot of data. Furthermore, this method assumes that
thresholds are universal, which is disproved by our data.

3.3 Proposed Approach

In this section, we propose some solutions to overcome the
limitations of the original approach. First, the participation
coefficient mixes several aspects of the external connectiv-
ity, which lowers its discriminant power: we introduce sev-
eral measures to represent these aspects separately. Second,
the thresholds used to define the roles do not necessarily
hold for all systems: we show how to apply an unsupervised
method instead.

3.3.1 Generalized Measures

In place of the single participation coefficient, we propose 3
new measures aiming at representing separately the aspects
of external connectivity: diversity, intensity and heterogene-
ity. A fourth measure equivalent to the within-degree coeffi-
cient is used to describe the internal connectivity.

Because we deal with directed links, each one of these
measures exists in two versions: incoming and outgoing (as
explained in section 3.1.3), effectively resulting in 8 mea-
sures. However, for simplicity matters, we ignore link direc-
tions when presenting them in the rest of this section.

All our measures are expressed as z-scores (cf. Equation
(3)). We know community sizes are generally power-law-
distributed, as described in [17], which means their sizes are
heterogeneous. Our community-based z-scores allow to nor-
malize the measures relatively to the community size, and
therefore to take this heterogeneity into account.

Diversity. The diversity D(u) evaluates the number of
communities to which a node u is connected (other than its
own), w.r.t. the other nodes of its community. This measure
does not take into account the number of links u has to each
community. Let ε(u) be the number of external communities
to which u is connected. The diversity is defined as the z-
score of ε w.r.t. the community of u. It is thus obtained by
substituting ε to f in Equation (3).

External intensity. The external intensity Iext(u) of a
node u measures the amount of links u has with communities

other than its own, w.r.t. the other nodes of its community.
Let dext(u) be the external degree of u, that is the number
of links u has with nodes belonging to another community
than its own. The external intensity is defined as the z-score
of the external degree, i.e. we obtain it by substituting dext
to f in Equation (3).

Heterogeneity. The heterogeneity H(u) of a node u
measures the variation of the number of links a node u has,
from one community to another. To that aim, we compute
the standard deviation of the number of links u has to each
community. We note this value δ (u). The heterogeneity is
thus the z-score of δ w.r.t. the community of u. As previ-
ously, it can be obtained by substituting δ to f in Equa-
tion (3).

Internal intensity. In order to represent the internal con-
nectivity of the node u, we use the z measure of Guimerà &
Amaral [12]. Indeed, it is based on the notion of z-score, and
is thus consistent with our other measures. Moreover, we do
not need to add measures such as diversity or heterogeneity,
since we consider one node can belong only to one commu-
nity. Due to the symmetry of this measure with the external
intensity, we refer to z as the internal intensity, and note it
Iint(u).

3.3.2 Unsupervised Role Identification

Our second modification concerns the way roles are defined.
As mentioned before, the thresholds defined by Guimerà &
Amaral [12] are not necessarily valid for all data. More-
over, the consideration of link directions and our general-
ization of the measures invalidate the existing thresholds,
since we now have 8 distinct measures, all different from
the original ones. We could try estimating more appropri-
ate thresholds, but as explained in section 3.2.2, the method
originally used by Guimerà & Amaral [12] to estimate their
thresholds is impractical since it requires a certain amount
of data. The fact our measures are all z-scores also weakens
the possibility to get thresholds applicable to all systems,
which means the estimation process should potentially be
performed again for each studied system.

To overcome these problems, we propose to apply an
automatic method instead, by using unsupervised classifica-
tion. First, we process all the measures for the considered
data. Then, a cluster analysis method is applied. Each one of
the clusters identified in the 8-dimensional role space is con-
sidered as a community role. This method is not affected by
the number of measures used, and allows to adjust thresh-
olds to the studied system. If the number of roles is known
in advance, for instance because of some properties of the
studied system, then one can use an appropriate clustering
method such as k-means, which allows specifying the num-
ber k of clusters to find. Otherwise, it is possible to use clus-
ter quality measures to determine which k is the most appro-
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priate ; or to apply directly a method able to estimate at the
same time the optimal number of clusters and the clusters
themselves.

4 Community Roles of Social Capitalists

In this section, we present the results we obtained on a Twit-
ter network using the methods presented in Section 3. We
first introduce the data and tools we used, then the roles we
identified. We then focus social capitalists and the roles they
hold.

4.1 Data and Tools

We analyze a freely-available anonymized Twitter follower-
followee network, collected in 2009 by Cha et al. [5]. It con-
tains about 55 million nodes representing Twitter users, and
almost 2 billion directed links corresponding to follower-
followee relationships. We had to consider the size of these
data when choosing our analysis tools.

For community detection, we selected the Louvain
method [2], because it is widespread and proved to be very
efficient when dealing with large networks. We retrieved the
C++ source code published by its authors, and adapted it
in order to optimize the directed version of the modularity
measure, as defined by Leicht and Newman [20]. Empirical
benchmarks show that our adapted version performs better
than the original one on directed network. All the role mea-
sures, that is Guimerà & Amaral’s original measures, their
directed variants (section 3.1) and our new measures (sec-
tion 3.3), were computed using the community structure de-
tected through these means. We also implemented them in
C++, using the same sparse matrix data structure than the
one used in the Louvain method.

All resulting values were normalized, in order to avoid
scale difference problems when conducting the cluster anal-
ysis. The clustering was performed using an open source im-
plementation of a distributed version of k-means [21]. Since
we do not know the expected number of roles, we applied
this algorithm for k ranging from 2 to 15, and selected the
best partition in terms of Davies-Bouldin index [6]. We se-
lected this index because it is a good compromise between
the reliability of the estimated quality of the clusters, and
the computing time it requires. All pre- and post-processing
scripts related to the cluster analysis were implemented in
R. The whole source code is freely available online2. Be-
cause we are dealing with 55 millions of objects and only
8 attributes, we know that a lot of local maximums exist
while minimizing the within-cluster sum of squares with the
k-means algorithm. In this paper, we are specifically looking

2 https://github.com/CompNet/Orleans

for assessing the social capitalists visibility in the Twitter
network. To achieve this goal, we do not necessarily need
to get the best partition of the role space. We are actually
looking for a partition in which clusters are well separated
and interpretable according to Guimerà & Amaral’s termi-
nology. With such a partition, it is possible to look at the
specific roles held by social capitalists in these clusters and
to determine their actual visibility.

4.2 Roles Expected for Social Capitalists

We expect the degree of social capitalists to play an impor-
tant role considering their position (see Section 2). High in-
degree social capitalists (namely greater than 10000) should
be well connected to their communities -hubs- or to the other
communities -connectors, or both. Being connectors would
indicate they obtained a high visibility on the whole network
and not only in their own communities.

Furthermore, because we take the direction of links into
account in our measures, we expect social capitalists to be
discriminated according to their ratio, i.e. the number of out-
going links divided by the number of incoming links. We es-
pecially expect high in-degree social capitalists with a small
ratio (so-called passive social capitalists according to [7]) to
be highly connected to their communities and to the rest of
the graph. Considering low degree social capitalists, it is not
possible to predict their roles without any further informa-
tion. The study will thus be of great interest to characterize
their visibility.

4.3 Detected Roles

For the sake of completeness, we first used the directed mea-
sures (section 3.1) of Guimerà & Amaral [12]. As mentioned
in Section 3.2.2, the threshold they defined for z is irrelevant
for our data. Furthermore, this threshold was determined for
an undirected version. So we adopted here the unsupervised
role identification method we proposed (section 3.3.2).

4.3.1 Directed Variants

A correlation study shows zout and zin are slightly correlated
(with a correlation coefficient ρ < 0.3), whereas the cor-
relation is zero for all other pairs of measures. This seems
to confirm the interest of considering link directions in the
role measures. When doing the cluster analysis, the most
separated clusters are obtained for k = 6. An ANOVA fol-
lowed by post hoc tests (t-test with Bonferroni’s correction)
showed significant differences exist between all clusters and
for all measures.

An analysis of the distribution of high in-degree social
capitalists in these clusters shows that a few of these users

https://github.com/CompNet/Orleans
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occupy a connector hub role. This is quite expected as said in
section 4.2. However, most of the high in-degree social cap-
italists are considered as non-hubs and peripheral or ultra-
peripheral nodes. More than 60% of the users with a high
ratio are classified as ultra-peripheral nodes for both incom-
ing and outgoing directions, which is rather surprising since
they have a really high degree. However, they are classi-
fied in a cluster with low z and P (both in- and out- ver-
sions). The low z indicates these users are not much con-
nected to their community (relatively to the other nodes of
the same community), and must thus be more connected to
other communities. Still, P does not highlight this aspect of
their community-related connectivity, and they appear as pe-
ripheral. This inconsistency of the detected roles confirms
the limitations of P described in section 3.2.1.

4.3.2 Generalized Measures

The correlation between the generalized measures is very
low overall, ranging from almost 0 to 0.4. In particular, both
versions of the same measure (incoming vs. outgoing) are
only slightly correlated, which is another confirmation of the
interest of considering link directions. Only three measures
are strongly correlated: internal and external intensities and
heterogeneity (ρ ranging from 0.78 to 0.92). The relation
between both intensities seems to indicate that variations on
the total degree globally affect similarly internal and exter-
nal degrees. The very strong correlation observed between
heterogeneity and intensity means only nodes with low in-
tensity are homogeneously connected to external communi-
ties, whereas nodes with many links are connected hetero-
geneously.

Similarly to the directed measures, the most separated
clusters are obtained with k = 6. These 6 clusters are given
in Table 3 with their sizes and roles. However, the correspon-
dance with the original nomenclature is rougher, since these
measures are farther from the original ones. The average of
each measure per cluster is showed in Table 4. Like before,
ANOVA and post hoc tests showed significant differences
between all clusters and for all measures. We now conduct a
detailed analysis of the different roles we obtain.

C Size Proportion Role
1 24543667 46.68% Ultra-peripheral non-hubs
2 304 < 0.01% Kinless hubs
3 303674 0.58% Connector hubs
4 11929722 22.69% Incoming Peripheral non-hubs
5 10828599 20.59% Outgoing Peripheral non-hubs
6 4973717 9.46% Connector non-hubs

Table 3 Clusters detected with the generalized measures: cluster num-
ber C used in the paper, sizes in terms of node count and proportion of
the whole network, and roles according to the Guimerà & Amaral [12]
nomenclature.

Cluster 1. Because both internal intensity versions (equiva-
lent to z) are negative, nodes in this cluster cannot be hubs.
The negative external measures indicate these nodes are
not connectors either. We can thus consider them as ultra-
peripheral non-hubs. This cluster is the largest one, with
47% of the network nodes. This confirms the matching with
this role, whose nodes constitute generally most of the net-
work.
Clusters 4 and 5. Cluster 4 is very similar to Cluster 1.
However, its incoming diversity is 0.69. These nodes are
again peripheral, because the external intensity is negative.
Still, incoming links come from a larger number of commu-
nities. Cluster 5 is also similar to Cluster 1. However, both
versions of diversity are positive for this cluster, with an out-
going diversity of 0.60. External links are thus connected to
a larger number of communities. Clusters 4 and 5 are the
second (23%) and third (21%) largest ones, respectively. By
gathering all the peripheral and ultra-peripheral nodes, we
obtain 91% nodes of the network.
Cluster 6. The internal intensity is still close to 0 but posi-
tive. Thus, these nodes are non-hubs, even if they are more
connected to their community than those of the previous
clusters. Like the other external measures, the external in-
tensity is low but still positive. These nodes are relatively
well-connected to other communities, and we can therefore
consider them as connectors. Both versions of the diversity
are relatively high, which indicates these nodes are not only
more connected to their community as well as others, but
also to a larger number of distinct communities.
Cluster 3. The high internal intensity allows us to state that
these nodes are hubs. Furthermore, the high external mea-
sures indicate these nodes are connected to a high number of
nodes from a lot of other communities, and thus are connec-
tor hubs. Notice outgoing measures are higher. This cluster
represents only 0.6% of the network, meaning this role is
very uncommon.
Cluster 2. This observation is even more valid for Cluster 2,
which represents much less than 1% of the nodes. For this
cluster, all measures are really high. The incoming versions
are always higher than their outgoing counterparts. We call
these users kinless hubs according to Guimerà & Amaral’s
nomenclature.

It is worth noticing that, whatever the considered mea-
sures, some of the roles defined by Guimerà & Amaral [12]
are not represented in the studied network. This is consistent
with the remarks previously made for other data by Guimerà
& Amaral [12], and confirms the necessity of having an un-
supervised approach to define roles in function of measures.
It is also consistent with the strong correlation observed be-
tween internal and external intensities: missing roles would
be nodes possessing a high internal intensity but a low ex-
ternal one, or vice-versa. However, those are very infrequent
in our network.
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Cluster Iout
int Iin

int Dout Din

1 −0.12 −0.03 −0.55 −0.80
2 94.22 311.27 7.18 88.40
3 5.52 1.40 5.60 3.10
4 −0.04 0.00 −0.37 0.69
5 −0.03 −0.01 0.60 0.19
6 0.48 0.12 1.96 1.70

Cluster Iout
ext Iin

ext Hout Hin

1 −0.09 −0.04 −0.12 −0.06
2 113.87 283.79 112.79 285.57
3 5.28 1.43 6.76 2.34
4 −0.07 0.00 −0.10 −0.01
5 −0.03 −0.02 −0.04 −0.02
6 0.35 0.12 0.53 0.19

Table 4 Average generalized measures obtained for the 6 detected
clusters .

4.4 Relations between clusters

We now discuss how the nodes are connected depending on
the role they hold. Figure 2 is a simplified representation of
this interconnection pattern.

The outgoing links of ultra-peripheral (Cluster 1) and
peripheral (Clusters 4 and 5) nodes target mainly kinless
hubs (Cluster 2) and connectors (Clusters 3 and 6), repre-
senting 74% (Cluster 1), 82% (Cluster 4), and 74% (Clus-
ter 5) of their connections. These (ultra-)peripheral nodes,
which are the most frequent in the network, thus mainly fol-
low very connected users, probably the most influent and
relevant ones. This seems consistant: they follow only a few
users, and so choose the most visible ones.

Connector nodes (Clusters 3 and 6) are mainly linked to
other connectors nodes. They have the tightest connection,
since their arcs amounts to a total of 43% of the network
links. This is worth noticing, because these clusters are far
from being the largest ones. They are also largely connected
to the rest of the clusters too, especially with outgoing links.
Connectors follow massively users of all clusters, so we sup-
pose they constitute the backbone of the network.

Kinless hubs (Cluster 2) are massively followed by non-
hubs, representing 38% (Cluster 1), 43% (Cluster 4), 19%
(Cluster 5) and 8% (Cluster 6) of these Clusters’ outgoing
links. And interestingly, the links coming from kinless hubs
target the same clusters: 9% go to Cluster 1, 20% to Clus-
ter 4, 22% to Cluster 5 and 41% to Cluster 6. This means
the most visible and popular nodes of the network mostly
follow and are followed by much less popular users. One
could have expected the network to be hierarchically orga-
nized around roles, with more peripheral nodes connected to
less peripheral nodes. But this is clearly not the case. First,
(ultra-)peripheral nodes are marginally connected to other
nodes holding the same role, they prefer to follow connec-
tors and/or hubs. Second, kinless and connector hubs, al-
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Fig. 2 Interconnection between clusters. A vertex Ci corresponds to
Cluster i from Table 3. An arc (i, j) represents the set of links connect-
ing nodes from Cluster i to nodes from Cluster j, labeled with 3 values.
Each value describes which proportion of links the arc represents, rela-
tively to 3 distinct sets: first relatively to all links starting from Cluster
i, second relatively to all links in the whole network, and third rela-
tively to all links ending in Cluster j. The arc thickness is proportional
to the second value, the vertex size to the number of nodes the corre-
sponding cluster contains. For matters of readability, arcs representing
less than 1% of the network links and 10% of the cluster links are not
displayed.

though well connected to connector non-hubs, do not have
direct links, i.e. these users do not follow each other.

4.5 Position of Social Capitalists

As stated previously, we use a list of approximately 160000
social capitalists detected by Dugué & Perez [7]. In the fol-
lowing, we analyze how social capitalists are distributed am-
ongst the detected roles. As explained in Section 2, we split
social capitalists according to their in-degree (number of fol-
lowers). Recall that low in-degree social capitalists have an
in-degree between 500 and 10000, and high in-degree so-
cial capitalists an in-degree greater than 10000. These social
capitalists are known for having especially well succeeded
in their goal of gaining visibility.

The tables in this section describe how the various types
of social capitalists are distributed over the clusters. In each
cell, the first row is the proportion of social capitalists be-
longing to the corresponding cluster, and the second one is
the proportion of cluster nodes which are social capitalists.
Values of interest are indicated in bold and discussed in the
text.
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4.5.1 Low in-degree social capitalists

Low in-degree social capitalists are mostly assigned to three
clusters: 3, 5 and 6 (see Table 5). Most of them belong to
Cluster 6, which contains non-hub connector nodes. These
nodes, which have only slightly more external connections
than the others, are nevertheless connected to far more com-
munities. Social capitalists in this cluster seem to have ap-
plied a specific strategy consisting in creating links with
many communities. This strategy is still not completely
working, though, as shown by the relatively low external in-
coming intensity (meaning they do not have that many fol-
lowers).

Nodes from Cluster 3 are connector hubs, who follow
more users than the others. Because IFYFM social capital-
ists have a ratio greater than 1 and thus more followees than
followers, it is quite intuitive to observe that they are twice
as many than the other users in this cluster. The high outgo-
ing diversity of Cluster 3 tells us that these social capitalists
follow users from a large variety of communities, not only
theirs (to which they are well connected). The high external
outgoing intensity shows that these users massively engage
in the IFYFM process, but did not yet receive a lot of fol-
lowing back, as shown by their low external incoming in-
tensity. Finally, roughly 20% of social capitalists with ratio
r < 1 belong to Cluster 5, which contains non-hub peripheral
nodes. This shows that a non-neglictible share of social cap-
italists are isolated relatively to both their community and
the other ones.

Ratio Cluster 1 Cluster 2 Cluster 3

r ≤ 1 0.01% 0.00% 23.10%
< 0.01% 0.00% 3.71%

r > 1 0.03% 0.00% 18.78%
< 0.01% 0.00% 6.61%

Ratio Cluster 4 Cluster 5 Cluster 6

r ≤ 1 3.42% 18.28% 55.19%
0.14% 0.08% 0.54%

r > 1 0.48% 14.31% 66.40%
< 0.01% 0.14% 1.43%

Table 5 Distribution of low in-degree social capitalists over clusters
obtained from the generalized measures.

These observations show that most of these users are
deeply engaged in a process of soliciting users from other
communities, not only theirs. Some of them are even mas-
sively following users from a wide diversity of communities.
This tends to show that these users may obtain an actual visi-
bility across many communities of the network by spreading
their links efficiently.

4.5.2 High in-degree social capitalists

Most of the high in-degree social capitalists are gathered in
Cluster 3 (see Table 6), corresponding to connector hubs.
This is consistent with the fact these users have a high de-
gree. Users of Cluster 3 have a high outgoing diversity and a
high outgoing external intensity: this shows they practice the
IFYFM strategy actively, by following a lot of users from a
wide range of communities. The rest of these users is con-
tained in Cluster 2. Nodes in these clusters are kinless hubs
and can thus be considered as successful users. Indeed, they
are massively followed by a very high number of users from
an extremely large variety of communities. Only high in-
degree social capitalists with a ratio smaller than 0.7 and a
few with a ratio smaller than 1 are classified in this cluster.
This is consistent with the roles one could expect for social
capitalists (Section 4.2).

Ratio Cluster 1 Cluster 2 Cluster 3

r ≤ 0.7 0.00% 12.14% 87.29%
0.00% 21.05% 0.15%

0.7 < r ≤ 1 0.00% 1.55% 95.64%
0.00% 7.24% 0.45%

r > 1 0.00% 0.03% 97.99%
0.00% 0.33% 1.22%

Ratio Cluster 4 Cluster 5 Cluster 6

r ≤ 0.7 0.00% 0.00% 0.57%
0.00% 0.00% < 0.01%

0.7 < r ≤ 1 0.00% 0.00% 2.81%
0.00% 0.00% < 0.01%

r > 1 0.00% 0.00% 1.98%
0.00% 0.00% < 0.01%

Table 6 Distribution of high in-degree social capitalists over clusters
obtained from the generalized measures.

These observations mean that most of these users are
well connected in their communities but also with the rest of
the network. This shows the efficiency of these users strate-
gies. Indeed, most of the users are linked to a wide range of
communities, and thus reach a high visibility in a large part
of the network.

5 Related Works

The notion of role in network science first appeared in the
seventies. Two nodes are considered as holding the same
roles if they are structurally equivalent [22], namely if they
share the same neighbors in the graph representing their re-
lations [4]. This notion also appears in block models, where
networks are partitioned as groups sharing the same patterns
of relations [13]. In both cases, the concept of role is defined
globally, i.e. relatively to the whole network.
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More recently, Guimerà & Amaral introduced the con-
cept of community role to study metabolic networks [12],
by considering node connectivity at the level of the com-
munity structure, i.e. an intermediate level. As explained in
Section 3.1, they fist apply a standard community detection
method, and then characterize each node according to two
ad hoc measures, each one describing a specific aspect of
the community-related connectivity. The first expresses the
intensity of its connections to the rest of its own community,
whereas the second quantifies how uniformly it is connected
to all communities. The node role is then selected among 7
predefined ones by comparing the two values to some empir-
ically fixed thresholds. Guimerà & Amaral showed certain
systems possess a role invariance property: when several in-
stances of the system are considered, nodes are different but
roles are similarly distributed.

Scripps et al. [25], apparently unaware of Guimerà &
Amaral’s work, later adopted a similar approach, but this
time for influence maximization and link-based classifica-
tion purposes. They also use two measures: first the degree,
to assess the intensity of the general node connectivity, and
second an ad hoc measure, to reflect the number of com-
munities to which it is connected. They then use arbitrary
thresholds to define 4 distinct roles.

Even more recently, Klimm et al. [16] criticized
Guimerà & Amaral’s approach, and proposed a modifica-
tion based on two different measures. They first defined the
hubness index, which compares the degree of a node u with
the probability for this node to have the same number of
links in a subgraph with fixed density and size. Their local
hubness index is a variant using the density and size of the
community containing u while their global hubness index
uses the whole network density and size. They claim nor-
malizing the internal degree with this method (using density
and size) leads to better results than with the z-score used by
Guimerà & Amaral. However, the expected improvement is
not clearly shown in the article. The second measure is a
modification of the participation coefficient, taking the form
of a normalized vector representing the participation of a
node to each community of the network. They also intro-
duced a dispersion index that is a normalized vector repre-
senting the participation of a node to each community he is
connected to. The limitations we highlighted for the origi-
nal participation coefficient are also valid for these two vari-
ants: none of them is able to model all aspects of the external
connectivity of a node. The first measure still encapsulates
all aspects of the external connectivity, while the second one
deals simultaneously with its heterogeneity and diversity (cf.
Section 3.2.1). Furthermore, Klimm et al. do not propose a
method to assign roles to nodes according to their measures,
even empirically, they only analyze a few small biological
networks.

6 Conclusion

In this article, our goal is to characterize the position of so-
cial capitalists in Twitter. For this purpose, we propose an
extension of the method defined by Guimerà & Amaral [12]
to characterize the community role of nodes in complex net-
works. We first define directed variants of the original mea-
sures, and extend them further in order to take into account
the different aspects of node connectivity. Then, we propose
an unsupervised method to determine roles based on these
measures. It has the advantage of being independant from
the studied system. Finally, we apply our tools to a follower-
followee Twitter network. We find out the different kinds of
social capitalists occupy very specific roles. Those of low
in-degree are mostly connectors non-hubs. This shows they
are engaged in a process of spreading links across the whole
network, and not only their own community. Those of high
in-degree are classified as kinless or connectors hubs, de-
pending on their ratio r. This shows the efficiency of their
strategies, which lead to a high visibility for a vast part of
the network, not only for their own community.

The most direct perspective for our work is to assess its
robustness. In particular, it is important to know how the sta-
bility of the detected communities and clusters affects the
identified roles. In this study, our aim was to assess the so-
cial capitalist visibility, which is independant of this goal.
Furthermore, the very large size of the data prevented us to
do so efficiently. On a related note, we want to apply our
method to other smaller systems, in order to check for its
general relevance. The method itself can also be extended
in two ways. First, it would be relatively straightforward to
take link weights into account (although this was not needed
for this work). Second, and more interestingly, it is also pos-
sible to adapt it to overlapping communities (by opposition
to the mutually exclusive communities considered in this
work) in a very natural way, by introducing additional in-
ternal measures symmetrical to the existing external ones.
This could be a very useful modification when studying so-
cial networks, since those are supposed to possess this kind
of community structures, in which a node can belong to sev-
eral communities at once [1].
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