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The propagation of a relativistic electron bunch through a plasma is an important problem in both

plasma-wakefield acceleration and laser-wakefield acceleration. In those situations, the charge of

the accelerated bunch is usually large enough to drive a relativistic wakefield, which then affects

the transverse dynamics of the bunch itself. Yet to date, there is no fully relativistic, fully

electromagnetic model that describes the generation of this wakefield and its feedback on the

bunch. In this article, we derive a model which takes into account all the relevant relativistic and

electromagnetic effects involved in the problem. A very good agreement is found between the

model and the results of particle-in-cell simulations. The implications of high-charge effects for the

transport of the bunch are discussed in detail. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4870336]

I. INTRODUCTION

Over the past 10 years, the capabilities of laser-wakefield

acceleration (LWFA) evolved from hundreds of MeVs

(Refs. 1–3) to multi-GeV electron energy.4,5 Yet, as these

accelerators reach higher and higher energies, there is a grow-

ing concern for the preservation of the transverse quality of

the bunch (divergence, emittance) throughout the accelera-

tion. Accordingly, a significant effort has recently been put

into a theoretical description of the evolution of emittance.6–8

One of the standard theoretical representation of laser-

wakefield acceleration is the fully blown bubble regime.9,10

In this model, the transverse focusing fields are the same for

all the accelerated electrons. This is true even for a highly

charged electron beam, since—in the fully blown regime—

beamloading modifies the longitudinal force,11 but not the

transverse one.12 In these conditions, the only source of emit-

tance growth is the finite energy spread (which leads to a

progressive betatron decoherence7).

Yet these results are no longer true when exiting the

fully blown bubble regime: if for instance the laser intensity

is too weak (linear regime) or the waist too large (quasi-1D

non-linear regime), the ponderomotive force is not strong

enough to expel all the plasma electrons, and the plasma

wake is only partially evacuated. In this case, the intense

electron bunch can drive a wakefield of its own, within this

partially evacuated cavity. This means in particular that the

electrons at the head of the bunch (which drive this wake-

field) and the electrons at the tail of the bunch (which are

effective already in this wakefield) feel different focusing

forces. This effect has strong consequences for the evolution

of the transverse size and emittance of the bunch. In plasma-

wakefield acceleration (PWFA) where the emphasis is

mainly on the transverse size of the driving beam, this effect

is known to cause head erosion13,14 (here with a weak

pre-ionizing laser pulse). On the other hand, in LWFA, the

transverse size of the bunch is kept small by the focusing

forces of the laser-wakefield anyway, but this beamloading

effect can still lead to a growth in emittance. (Notice that we

consider the projected emittance here. As mentioned in a

related context,15 the slice emittance may still be preserved.)

Far from being marginal, this situation in which an elec-

tron beam travels behind a pre-ionizing, relatively weak laser

pulse is in fact quite common in LWFA:

• In the case of long plasmas, the laser depletes and diffracts

before reaching the end of the plasma. Simulations16 and

experiments17 showed that this leads to a transition from a

fully blown laser-wakefield to a weak laser-wakefield in

which the bunch drives its own bubble. Even for short

plasma jets, this is also likely to happen in the end gradient

of the jet, where the laser diffracts on a distance �100 lm,

whereas the density tail usually extends to �500 lm. In

both cases, it is important to determine to which extend

the bunch-driven wakefield will degrade the final trans-

verse properties of the bunch itself.
• In the context of multi-GeV two-stage acceleration, it has

been advocated that a quasi-linear laser-wakefield18,19

should be used for the second stage—mainly for the sake

of stability and controllability. Yet in this case, the emit-

tance of the bunch can be affected by the intrinsic inhomo-

geneities of the quasi-linear wakefield,6,7 but also by the

above-mentioned beamloading effects. Regarding the

impact of beamloading, the analysis is usually limited to

rough estimates (e.g., predicting that they are not too sig-

nificant for nb � np (Refs. 20 and 21)) and could benefit

from a complementary, more rigorous model.
• More generally, recent experimental results22,23 suggest

that, even for a typical 1 J self-focused laser pulse, the inten-

sity may not be high enough to blow out all electrons. This

implies that, in a significant fraction of past LWFA experi-

ments, the bubble may have been only partially evacuated.

It is thus important to have a formalism to calculate the

wakefield that an electron bunch creates in a partiallya)remi.lehe@ensta.fr

1070-664X/2014/21(4)/043104/10/$30.00 VC 2014 AIP Publishing LLC21, 043104-1

PHYSICS OF PLASMAS 21, 043104 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

147.250.130.5 On: Fri, 17 Jul 2015 07:54:02

http://dx.doi.org/10.1063/1.4870336
http://dx.doi.org/10.1063/1.4870336
http://dx.doi.org/10.1063/1.4870336
mailto:remi.lehe@ensta.fr
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4870336&domain=pdf&date_stamp=2014-04-02


evacuated wakefield, and to compute its impact on the trans-

verse dynamics of the bunch itself. Yet to date, no compre-

hensive satisfying model exists. Rosenzweig et al.24

developed an electrostatic and non-relativistic model for the

motion of the plasma electrons. This type of model is also

used in the Dawson sheet model described in Ref. 9, or in

the analysis of head erosion in Ref. 14. However, in the case

of laser-wakefield acceleration, the bunch is so intense that it

pushes the plasma electrons to relativistic speeds.25 In addi-

tion to the inertia that the electrons gain by being relativistic,

they also become sensitive to the magnetic fields of the

bunch, and this has to be accounted for. Moreover, the fast

temporal variations of these femtosecond bunches imply that

forces that are electromagnetic by nature may appear. On

the other hand, Mora and Antonsen26 derived a general fully
relativistic and electromagnetic framework. This framework

has been applied to the case of beamloading in a fully blown
bubble,9,12 but the case of a partially evacuated wakefield

remains to be studied.

In this article, we draw upon the framework of Ref. 26

to derive a model for the evolution of an intense electron

bunch in a pre-ionized plasma (e.g., a partially evacuated

bubble). This model rigorously takes into account all the

relevant relativistic and electromagnetic effects. The article

is organized as follows. The general equations of the model

are derived from first principles in Sec. II. These equations

are then applied to the simple case of a flat-top electron

bunch in Sec. III, and their predictions are compared with

the results of PIC simulations. Finally, in Sec. IV, these

results are used to discuss the transport and acceleration of

intense electron bunches in plasmas.

II. DESCRIPTION OF THE MODEL

In building this model, we aim to describe the wakefield

created by an ultrarelativistic electron bunch propagating

behind a pre-ionizing, relatively weak laser pulse. This situa-

tion is schematically represented in Fig. 1. More specifically,

we are particularly interested in the region immediately sur-

rounding the electron bunch, where the focusing forces that

control its transverse dynamics are generated. Three species

are considered in the model:

• the immobile plasma ions, which have a uniform and con-

stant density ni

• the plasma electrons, which originate from the ionization

of the plasma by the laser pulse. They may already have a

non-zero longitudinal speed before the bunch reaches

them (e.g., at n ¼ 0 on Fig. 1), since they are part of the

weakly driven laser-wakefield. Let us denote their density

np and their velocity bp.
• the ultrarelativistic electron bunch. Let us denote their

density nb and their velocity bb, with bb;z � 1. In typical

LWFA applications, this bunch is much denser than the

surrounding plasma ðnb � npÞ.

In addition, a few assumptions are made here. First of

all, the driving bunch and the resulting wakefield are

assumed to be axisymmetric with respect to the axis of

propagation. The problem is thus studied in cylindrical

coordinate r; h; z with z being the coordinate along the axis

of propagation.

Since the driving bunch is ultrarelativistic, it is also

assumed that it evolves on a timescale much longer than the

crossing time of the plasma electrons. This leads to the well-

known quasi-static approximation, in which all wakefield

quantities (such as the electric potential U, the potential vec-

tor A, and the trajectories of the plasma electrons) are solely

a function of n ¼ ct� z.

It is also assumed that the trajectories of the plasma

electrons do not cross in the neighborhood of the driving

bunch. PIC simulations tend to show that these trajectories

usually cross a few microns behind the beam. Yet the length

of the driving bunch is usually on the order of 1 lm or less,

and thus trajectory crossing can be neglected when studying

the dynamics of the driving bunch.

A. First-principle equations

Let us consider the normalized potentials / ¼ eU=mc2

and a ¼ eA=mc in the wakefield. In the Lorenz gauge, the

equations for these potentials are

$2 � 1

c2

@2

@t2

� �
/ ¼ �4pre ½ni � np � nb�

$2 � 1

c2

@2

@t2

� �
a ¼ 4pre ½npbp þ nbbb�;

where re ¼ e2=ð4p�0mc2Þ is the classical electron radius.

In the quasistatic approximation, / and a are functions of

n ¼ ct� z only, and thus the operators 1=c2 � @2
t and @2

z

cancel each other. In addition, it is convenient to decompose

a into its transverse component a? and its longitudinal com-

ponent az and to consider the quantity w ¼ /� az. Thus, a
can be expressed as a ¼ a? þ ð/� wÞuz and the field equa-

tions become

FIG. 1. Schematic representation of the situation considered. Electron den-

sity is represented in blue. The laser pulse (red) propagates to the left and

drives a weak wakefield (represented as an area of rarefied electron density,

and colored in light red). Within this wakefield, the trailing electron bunch

(green) drives a stronger wakefield of its own (colored in light green).
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$2
?/ ¼ �4pre½ni � np � nb�

$2
?a? ¼ 4pre ½npbp;? þ nbbb;?�
$2
?w ¼ �4pre½ni � npð1� bp;zÞ � nbð1� bb;zÞ�:

Using the cylindrical symmetry of the problem, we obtain

1

r

@

@r
r
@ /
@r

� �
¼ �4pre½ni � np � nb�

@

@r

1

r

@ ðr arÞ
@r

� �
¼ 4pre ½npbp;r þ nbbb;r�

1

r

@

@r
r
@ w
@r

� �
¼ �4pre½ni � npð1� bp;zÞ � nbð1� bb;zÞ�;

where the cylindrical expressions of the Laplacian operator

and vector Laplacian operator have been written explicitly.

The potentials /, w, and ar then result in forces that drive

the motion of the electrons. In this context, the radial force

felt by an electron of the plasma or of the bunch is given by

Fr ¼ �eEr þ e c bzBh

¼ mc2 1

c

@ar

@t
þ @/
@r
þ bz

@ar

@z
� @az

@r

� �� �

¼ mc2 ð1� bzÞ
@/
@r
þ @ar

@n

� �
þ bz

@w
@r

� �
:

B. Approximate system

The above equations can be simplified by taking into

account the specific features of the driving bunch, namely

1� bb;z 	 1 and nb � np. These characteristics imply that

the term associated to the driving beam clearly dominates in

the equation for /, but is negligible in the equation for w.

For instance, a bunch containing 100 pC at 200 MeV, with a

transverse and longitudinal size of 1 lm has a density nb

¼ 2� 1020 cm�3, but nbð1� bb;zÞ ¼ 2� 1015 cm�3. By com-

parison, typical values for np and ni for tenuous plasmas are

of the order 1017 cm�3–1018 cm�3, and PIC simulations

show that, in realistic situations, ð1� bp;zÞ > 10�1. This

leads to the simplified field equations

1

r

@

@r
r
@ /
@r

� �
¼ 4pre nb; (1)

@

@r

1

r

@ ðr arÞ
@r

� �
¼ 4pre ðnbbb;r þ npbp;rÞ; (2)

1

r

@

@r
r
@ w
@r

� �
¼ �4pre½ni � npð1� bp;zÞ�: (3)

Notice that we retained both source terms in Eq. (2), since a

comparison of nbbb;r and npbp;r is inconclusive. This is

because for LWFA beams, bb;r is of the order

�10�2 � 10�3, whereas for the radially expelled plasma

electrons, bp;r can be of order 1.

According to the above set of equations, / corresponds

to the space-charge fields that would be created by the ultra-

relativistic bunch if it was in vacuum, while w represents the

fields generated by the presence of the perturbed plasma

(i.e., the wakefield). Because nb � ni and nb � np, the

above system also implies that /� w. In this limit, the term

bz@rw in the expression of Fr is negligible compared to

ð1� bzÞð@r/þ @narÞ. (A further comparison of the terms

@r/ and @nar will be carried out in the next section.) The

force felt by the plasma electrons thus simplifies to

Fp;r ¼ mc2ð1� bp;zÞ
@/
@r
þ @ar

@n

� �
: (4)

On the other hand, for the ultrarelativistic electrons of the

bunch, the term ð1� bzÞ is vanishingly small and therefore

ð1� bzÞð@r/þ @narÞ is negligible compared to bz@rw.

Fb;r ¼ mc2 @w
@r
: (5)

A consequence of the above set of approximations is

that the plasma electrons only feel the space charge forces of

the ultrarelativistic bunch (through /), but do not feel the

wakefield forces that are contained in w. This is clearly not a

good approximation when describing the wakefield over a

full plasma period, since these wakefield forces are precisely

those responsible for the plasma oscillations. Yet, when

describing the wakefield over the small length of the driving

bunch (which is much shorter than a plasma period), this is a

good approximation as these forces do not have enough time

to have a substantial impact.

Another consequence of the above approximations is that

the electrons of the bunch do not feel the space charge forces

of the bunch itself. It is indeed well-known that, due to the

compensation of the terms eE and ev� B in the Lorentz force,

these forces are usually negligible for high-energy bunches.

C. Motion of the plasma electrons

The radial motion of the plasma electrons is governed

by the equation dt ðcmvp;rÞ ¼ Fp;r, which can be rewritten as

d

dt
cpm

d rp

dt
¼ mc2ð1� bp;zÞ

@/
@r
þ @ar

@n

� �
:

In the quasistatic approximation, the trajectories of the

plasma electrons can be parametrized by n ¼ ct� z instead

of t. Making use of the relation dt ¼ cð1� bp;zÞ dn, we obtain

d

dn
cpð1� bp;zÞ

d rp

dn
¼ @/

@r
þ @ar

@n

� �
:

Notice that, in this last operation, the factors ð1� bp;zÞ
dropped from both sides of the equation, which physically

means that two relativistic effects cancel each other here.

The right-hand side factor ð1� bp;zÞ corresponds to the par-

tial compensation of the electric and magnetic forces for a

relativistic electron, while the left-hand side ð1� bp;zÞ corre-

sponds to the fact that a relativistic plasma electron tends to

travel along with the bunch and thus feels its (diminished)

force for a longer time.

In a classical and electrostatic model (e.g., Ref. 24), the

dynamics of the electrons is governed by the equation
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d2
n rp ¼ @r/. Hence, we see that taking into account relativis-

tic dynamics and the full Maxwell equations changes this

equation in two ways

• by adding a purely electromagnetic force term @nar.
• by adding a term cpð1� bp;zÞ associated with the relativis-

tic dynamics of the electrons.

Let us evaluate the importance of these two terms in

typical situations.

A comparison between the terms @nar and @r/ can

be carried out by first integrating Eqs. (1) and (2).

Assuming arðr ¼ 0Þ ¼ arðr ¼ 1Þ ¼ 0; @rarðr ¼ 1Þ ¼ 0

and @r/ðr ¼ 0Þ ¼ 0 as boundary conditions, this integra-

tion leads to

@/
@r
¼ 4pre

1

r

ðr

0

nbðr0; nÞ r0 dr0
� �

@ar

@n
¼ � 2pre

r

ðr

0

@ðnbbb;r þ npbp;rÞ
@n

ðr0Þ2 dr0

�2prer

ð1
r

@ðnbbb;r þ npbp;rÞ
@n

dr0:

If b? is the typical transverse velocity of the electrons of the

bunch, R the typical radial size of the bunch and L its typical

length scale along n, the order of magnitude of the ratio of

these terms is

@nar

@r/
� R

L
b? þ

np

nb

� �
;

where we assume that the radially expelled electrons have

bp;r � 1. In typical situations, b? < 0:01 rad; np=nb < 10�2

and the aspect ratio of the bunch R/L is usually less than 10.

The term @nar is thus typically negligible.

Let us now evaluate the relative variation of the term

cpð1� bp;zÞ. Making use of the conservation of cpð1� bp;zÞ
�w in the quasistatic approximation (see Appendix A),

one has

cpð1� bp;zÞ ¼ cp;0ð1� bp;z;0Þ þ w� w0;

where the index 0 refers to the values of the variables just
before reaching the electron bunch (e.g., at n ¼ 0 on Fig. 1).

The variation of cpð1� bp;zÞ is thus equal to Dw ¼ w� w0.

Now, the quantity w is maximal inside the electron-driven

wakefield, and its highest possible value is reached if the

wake is fully evacuated. One may thus find an upper bound

for jDwj by calculating the value Dwmax corresponding to a

fully blown wakefield of transverse size R. By integrating Eq.

(3), one finds Dwmax ¼ �preniR
2. For a driving bunch having

a radius R � 1 lm and for plasma densities ranging from

ni¼ 1018 cm�3 to ni ¼ 1017 cm�3; jDwmaxj ranges between

10�2 and 10�3. On the other hand, for a weakly driven

laser-wakefield, cp;0ð1� bp;z;0Þ is of order 1. Hence, we see

that the variations of cpð1� bp;zÞ are usually negligible in the

situations that we consider (provided that the density ni is not

too big and that the radius R is not too large).

Taking into account all the above considerations, the

equation of motion for the plasma electrons reduces to

d2 rp

dn2
¼ 4pre

cp;0ð1� bp;z;0Þ
1

rp

ðrp

0

nbðr0; nÞ r0 dr0
� �

: (6)

A striking result here is that, although the plasma electrons

can be pushed to highly relativistic energies by the space

charge of the bunch, their equation of motion—when

expressed as a function of n—is very similar to that of a clas-

sical model.24 Yet, it differs from it in two important ways:

• It features a constant factor 1=cp;0ð1� bp;z;0Þ, which takes

into account the possible initial relativistic motion of the

plasma electrons.
• It neglects the effect of the restoring force of the ions on the

motion of the plasma electrons, as discussed in Sec. II B.

Another interesting feature of this equation is that, in

order to obtain the trajectories rpðnÞ, one does not need to

compute the longitudinal dynamics (i.e., the quantities

bp;zðnÞ, cðnÞ). This greatly simplifies the practical integration

of the equation of motion.

D. Motion of the electrons of the bunch

Equation (6) implies that the electrons are repelled from

the axis by the space charge forces of the beam, thus leaving

a depleted zone of low np near the axis (the wakefield). This

generates a field w through Eq. (3) which then acts on the

electrons of the bunch through the force �mc2@rw (Eq. (5)).

Integrating Eq. (3) leads to

@w
@r
¼ �4pre

1

r

ðr

0

½ni � npðr0; nÞ ð1� bp;zðr0; nÞÞ�r0 dr0
� �

:

The evaluation of this force seems to require the calculation

of the longitudinal dynamics bp;z of the plasma electrons,

which we precisely managed to avoid in Sec. II C. This prob-

lem can be overcome by noticing that the quantityÐ rpðnÞ
0

np ð1� bp;zÞr0 dr0 is independent of n for any plasma

electron trajectory rpðnÞ (see Appendix B). As a result,ðr

0

np ð1� bp;zÞr0 dr0 ¼
ðr0ðr;nÞ

0

np;0 ð1� bp;z;0Þr0 dr0;

where np,0 and bp;z;0 are the initial values of np and bp;z and

where r0ðr; nÞ is the radial position such that a plasma elec-

tron which is initially at r0ðr; nÞ would reach the radial posi-

tion r at n. (Notice that, since the plasma electrons are

radially expelled by the bunch, r0ðr; nÞ < r.) In practice, in

order to find r0ðr; nÞ, one needs to integrate Eq. (6) to find

rpðn; r0Þ and invert the solution. The force applied on the

electrons of the bunch can then be calculated, and the equa-

tion of motion for these ultrarelativistic electrons becomes

cbm
d2rb

dt2
¼�4premc2 nirb

2
� 1

rb

ðr0ðrb;nÞ

0

np;0ð1�bp;z;0Þr0dr0

" #
:

(7)

This equation can be compared with the corresponding equa-

tions of motion in other models. In a purely electrostatic

model,24 the term
Ð r0ðnÞ

0
np;0ð1� bp;z;0Þr0 dr0 is replaced byÐ r0ðnÞ

0
np;0r0 dr0. This is because this type of model neglects the

magnetic field produced by the plasma electrons. However, if
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the plasma electrons are relativistic ðjbp;z;0j � 1Þ, they can

produce a strong magnetic field, which can significantly

modify the total Lorentz force applied on the bunch. On the

other hand, in the fully blown bubble regime,9 the termÐ r0ðnÞ
0

np;0ð1� bp;z;0Þr0 dr0 is neglected altogether, since the

bubble is assumed to be completely void of electrons. In

this model, the electrons of the bunch feel a force Fb;r

¼ �2pre mc2 nir ¼ �mx2
pr=2 associated with the bare ion

cavity. Yet, in our case, the bunch travels in a partially evac-

uated cavity and the term
Ð r0ðnÞ

0
np;0ð1� bp;z;0Þr0 dr0 represents

the shielding effect of the plasma electrons over the ions.

In the end, Eqs. (6) and (7), respectively, form the short-

timescale and long-timescale equations of our quasistatic

model. Let us give an example of application for this model.

III. APPLICATION TO A FLAT-TOP BUNCH
PROPAGATING IN A LINEAR WAKEFIELD

In the case of a flat-top bunch propagating in a linear

wakefield ða2
0 	 1Þ, Eq. (6) of our model can be integrated

analytically, and a compact expression for the resulting force

on the bunch can be obtained. We thus consider a flat-top

electron bunch of the form

nbðr; nÞ ¼
nb;0 if 0 < n < L and r < R
0 otherwise

�

which propagates behind a weak laser pulse of the form

a ¼
a0 cos½k0ðn� nlaserÞ�cos

p
2

ðn� nlaserÞ
cs

� �
exp � r2

w2
0

 !
ux

if jn� nlaserj < cs
0 otherwise

8>>><
>>>:

with nlaser < 0 (as represented in Fig. 1) and a2
0 	 1 (linear

wakefield). Here, w0 is the waist of the laser and s is its

FWHM duration. We will further assume that R	 w0 (i.e.,

the size of the bunch is much smaller that the waist of the

laser), which is typical in laser-wakefield acceleration.

In this case, the laser-driven wakefield that forms ahead

of the bunch ðn < 0Þ can be calculated analytically.27 For

our model, the quantities of interest are

bp;r ¼
g a2

0 r

kpw2
0

 !
cos½kpðn� nlaserÞ�; (8)

bp;z ¼ �
ga2

0

4
sin½kpðn� nlaserÞ�; (9)

npð1� bp;zÞ ¼ ni � ni
2 g a2

0

k2
pw2

0

sin½kpðn� nlaserÞ�; (10)

cp ¼ 1þ Oða4
0Þ; (11)

where g ¼ p2sinðxpsÞ=ðp2 � ðxpsÞ2Þ, and where kp is the

plasma wavevector associated with the background plasma

density: k2
p ¼ 4preni. Note that, in the above equations, we

used the assumptions R	 w0 to simplify the expression of

the laser wakefield.

A. Motion of the plasma electrons

In the case of a flat-top bunch, Eq. (6) reduces to

d2 rp

dn2
¼ k02b

2
rp with

k2
b ¼ 4prenb;0

k02b ¼
k2

b

1þ ga2
0 sinðkpjnlaserjÞ=4

:

8><
>:

Thus, kb is the Langmuir wavevector of the bunch and k0b

¼ kb=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cp;0ð1� bp;z;0Þ

q
takes into account the fact that the

plasma electrons can be initially mildly relativistic, due to

the laser-wakefield. (For instance, for a0 ¼ 0:5; jbp;zj can

reach 0.1 in the laser-wakefield.)

Let us consider a plasma electron which is initially at r0

for n ¼ 0. The initial value of the derivative of rp is

dnrpjn¼0 ¼ dtrpjn¼0=½cð1� bp;z;0Þ� ¼ bp;r;0=ð1� bp;z;0Þ. With

these initial conditions, the solution reads

rp ¼ r0 cosh
k0bnffiffiffi

2
p
� �

þ r0

ffiffiffi
2
p

g a2
0k0b

k2
bkpw2

0

 !
cosðkpnlaserÞsinh

k0bnffiffiffi
2
p
� �

(12)

which is valid as long as the electron remains inside the bunch

ð0 < n < L; rp < RÞ. An example of these trajectories is repre-

sented in Fig. 2 (The corresponding parameters for the plasma,

laser, and accelerated bunch are summed up in Table I).

B. Force acting on the electrons of the bunch

As explained in Sec. II D, in order to calculate the force

applied on the electrons, one should first invert the function

rpðr0; nÞ. In the case of Eq. (12), this is straightforward

r0ðrp;nÞ¼
rp

cosh
k0bnffiffiffi

2
p
� �

þ
ffiffiffi
2
p

ga2
0k0b

k2
bkpw2

0

 !
cosðkpnlaserÞsinh

k0bnffiffiffi
2
p
� �:

The force acting on the electrons of the bunch is then derived

from Eq. (7), where the term np;0ð1� bp;z;0Þ is obtained from

Eq. (10) with n ¼ 0

Fb;r ¼ �
mx2

p

2
r 1�

1þ 2 g a2
0

k2
pw2

0

 !
sinðkpnlaserÞ

cosh
k0bnffiffiffi

2
p
� �

þ
ffiffiffi
2
p

g a2
0k0b

k2
bkpw2

0

 !
cosðkpnlaserÞsinh

k0bnffiffiffi
2
p
� � !2

0
BBBBB@

1
CCCCCA: (13)
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This force is linear in r, but also depends on n. This

expression is plotted in Fig. 2, for the parameters of Table I,

with the laser parameters of the left column and the bunch

and plasma parameters of the central column (case 1).

C. Comparison with PIC simulations

In order to validate the model derived in Sec. II and the

corresponding approximations, we compared its predictions

for a flat-top bunch (Eqs. (12) and (13)) with the results of

PIC simulations.

The simulations were run with the quasi-cylindrical

code Calder Circ,28 using two azimuthal modes and a spatial

resolution Dz ¼ 1:3� 10�2 lm; Dr ¼ 2:5� 10�2 lm. In

order to avoid numerical Cherenkov emission by the relativ-

istic electron bunch, we used an extended-stencil Maxwell

solver similar to that of Cowan et al.29 Under the condition

cDt ¼ Dz (which was indeed verified in our simulations),

this solver ensures a perfect dispersion relation along the

z axis.

As mentioned in Sec. II, the forces created by the

plasma wakefield are very small compared to the space

charge fields of the bunch (or the fields of the laser).

Therefore, any source of numerical noise in the simulation

can easily exceed these forces, and thus prevent a precise

comparison with our predictions. For this reason, care has

been taken to reduce numerical noise as much as possible.

For instance, third-order interpolation factors were used,

with 64 macroparticles per cell, initially distributed in a reg-

ularly spaced manner.

At the beginning of the simulation, the relativistic flat-

top bunch is initialized in vaccuum (with cb ¼ 400 and no

radial velocity), and its initial space charge fields are

obtained by using the matrix-inversion method of Ref. 29.

The laser is initialized ahead of the bunch, with a moving

antenna. Shortly after initialization, the laser and the bunch

enter a pre-ionized plasma (a moving window is used).

We start by examining the specific case in which no

laser is present (a0¼ 0; the ultra-relativistic bunch propa-

gates in an unperturbed plasma), and for which our predic-

tions should still be valid. In this case, Eqs. (12) and (13)

reduce to

rp ¼ r0cosh
kbnffiffiffi

2
p
� �

; (14)

Fb;r ¼ �
mx2

p

2
r � tanh

kbnffiffiffi
2
p
� �2

: (15)

We ran a PIC simulation with no laser (a0¼ 0) and with

the plasma and bunch parameters of the central column of

Table I (case 1). Figure 3 shows the trajectories of the

plasma electrons as they are repelled by the relativistic

bunch and compares them with the predictions of Eq. (14).

The simulations and the model are found to be in good

agreement. Notice that, as anticipated in the previous

TABLE I. Typical laser wakefield parameters, used for Fig. 2 and for the

PIC simulations.

Laser parameters Case 1 parameters Case 2 parameters

w0¼ 10 lm R¼ 1 lm R¼ 1 lm

s ¼ 9 lm L¼ 1 lm L¼ 1 lm

nlaser ¼ �10 lm nb,0¼ 4� 1020 cm�3 nb,0¼ 2� 1020 cm�3

a0¼ 0.5 ni¼ 1� 1018 cm�3 ni¼ 1� 1018 cm�3

(Qbunch¼ 200 pC) (Qbunch¼ 100 pC)

FIG. 3. Trajectories of the plasma electrons in the absence of a laser. The

colored dots correspond to the successive positions of a few randomly cho-

sen macroparticles, from the PIC simulations. (The color scale represents

the Lorentz factor of the macroparticle.) The black lines correspond to the

prediction of Eq. (14), based on the initial radial position r0 of each of these

macroparticles.

FIG. 2. Top: Trajectories of the plasma electrons (black lines) as given by

Eq. (12) and for the parameters of Table I. The flat-top electron bunch is rep-

resented by a gray rectangle. Bottom: Radial force acting on the bunch as

obtained from Eq. (13), at a given radius r<R (solid line). This force is

compared with that of the linear laser-wakefield without beamloading

(dashed line). Without beamloading, the force is almost constant over the

length of the bunch, since L	 kp.
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sections, the plasma electrons do reach relativistic energies

ðcp � 4Þ while still lying inside the bunch. This justifies and

validates the relativistic approach that has been adopted

throughout this article.

The force felt by the electrons of the bunch is plotted in

Fig. 4, for the simulation and the model. In the case of the

simulation, this force is evaluated by calculating the radial

acceleration of the macroparticles: Fevaluated
b;r 
 cb m d2

t rb.

There is a pronounced discrepancy between the simulation

and the model at the very head ðn ¼ 0 lmÞ and the very tail

of the bunch ðn ¼ 1 lmÞ. This is most likely due to numeri-

cal noise, which was observed to accumulate around the

sharp edges of the flat-top bunch. Apart from these localized

discrepancies, the model and the simulations are again in

good agreement. In particular, as predicted by Eq. (15), the

head of the bunch does not experience any focusing in the

absence of a laser.

We now turn to the case in which a laser is present. In

the corresponding simulation, the parameters of the laser are

those of the left column of Table I and the bunch and plasma

parameters are those of the right column of Table I (case 2).

In particular, a lower bunch charge was chosen in case 2

compared to case 1, since in this case the evolution of Fb,r

with n is slower and allows a more precise comparison with

PIC simulations, despite the presence of numerical noise.

The trajectories of the plasma electrons are represented

in Fig. 5 and compared with the theoretical predictions of

Eq. (12). The simulation data and the model are in excellent

agreement. The force felt by the electrons of the bunch is

represented in Fig. 6 along with the predictions of Eq. (13)

(solid lines). Again, the agreement is good, except at the

edges of the bunch—which are presumably more affected by

numerical noise. In particular, contrary to the case without a

laser (Fig. 4 and Eq. (15)), the head of the bunch does experi-

ence a non-zero focusing force, due to the presence of the

laser-wakefield. In order to distinctively show this, the data

are contrasted with the predictions of Eq. (15) (dashed lines),

which correspond to the absence of a laser-wakefield and is

characterized by a zero focusing force on the head of the

bunch.

IV. IMPLICATIONS FOR THE TRANSPORT OF
INTENSE BUNCHES IN PLASMAS

Although Eq. (13) was derived for the specific case of a

flat-top bunch in a linear wakefield, some of its qualitative

features can be reasonably generalized to other bunch pro-

files, as well as to the case of a quasi-linear wakefield. One

of these features is the qualitative evolution of the focusing

force Fb,r along the bunch. As shown in Fig. 2, this force

transitions between two regimes depending on n and k�1
b . (In

Fig. 2, k�1
b ¼ 0:27 lm. Notice also that the slight difference

between kb and k0b—which was taken into account in the pre-

vious section in order to have precise agreement between

simulation and theory—is neglected in the following

discussion.)

FIG. 4. Force felt by the electrons of the bunch in the absence of a laser, at

a given time in the simulation (�50 lm after the entrance in the plasma).

The results are plotted for different radii r and each dot corresponds to one

macroparticle. (Only the macroparticles lying close to either r¼ 0.1, 0.4,

0.6, or 0.9 lm have been represented.) The lines correspond to the prediction

of Eq. (15).

FIG. 5. Trajectories of the plasma electrons in the case where a laser is
present. The colored dots correspond to the successive positions of a few

randomly chosen macroparticles in the PIC simulation. The black lines

correspond to the prediction of Eq. (12), based on the initial radial position

r0 of each of these macroparticles.

FIG. 6. Force felt by the electrons of the bunch in the presence of a laser, at

a given time in the simulation (�50 lm after the entrance in the plasma).

The results are plotted for different radii r and each dot corresponds to one

macroparticle. The solid lines correspond to the prediction of Eq. (13) with

takes into account the presence of the laser-wakefield. For comparison, the

dashed lines represent the predictions of Eq. (15), which neglects the pres-

ence of the laser-wakefield.
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• For n	 k�1
b , Eq. (13) reduces to Fb;r � �ga2

0

sinðkpjnlaserjÞ � mc2r=w2
0, which is the usual expression of

the focusing force in a linear laser-wakefield and in the

absence of beamloading.
• For n� k�1

b , Eq. (13) implies that jFb;rj increases as a

function of n and eventually saturates at jFmaxj ¼ mx2
pr=2.

This is the standard focusing force inside a fully blown

ion cavity,9 and it shows that the accelerated beam has

repelled all plasma electrons at this point.

Therefore, the overall transverse dynamics of the bunch

will be radically different depending on whether the bunch is

long enough to experience the second regime. The key

parameter here is kbL, which can be easily evaluated for a flat-

top bunch as

kbL ¼ 2:6
Qbunch

100 pC

� �1=2 L

1 lm

� �1=2 R

1 lm

� ��1

: (16)

In the case of LWFA-generated bunches, typical values are

1 pC < Qbunch < 200 pC; 0:3 lm < L < 3 lm and 0:1 lm

< R < 3 lm, and thus kbL can range between 0.05 (short,

wide bunch with low charge) and 60 (long, narrow bunch

with high charge).

If kbL > 1, the head of the bunch experiences a purely

laser-driven wakefield—which is relatively weak for

a2
0 	 1—while its tail experiences the strong forces of a

purely beam-driven bubble. As shown in Fig. 2, the focusing

forces on the head and the tail of the bunch can vary by

almost an order of magnitude. This situation is thus very dif-

ferent from that of a low-charge bunch described in Ref. 7.

In this reference, the focusing of the head and the tail vary

by only a few tens of percent, and this difference is due to

the finite energy spread and intrinsic wakefield inhomogene-

ities (without beamloading). In this case, the degradation of

emittance occurs over a distance of �1 mm, and is nonexis-

tent for an initially matched beam. On the contrary, for

kbL > 1 it is nearly impossible for the beam to be initially

matched to the very inhomogeneous focusing forces, and in

any realistic case, the emittance will strongly degrade over

less than a betatron wavelength.

On the other hand, if kbL	 1, the situation is more simi-

lar to that of Ref. 7, and in fact the beamloading effects

described here compete with the effects of finite energy spread

and wakefield inhomogeneities. All these effects contribute to

betatron decoherence, and each of them leads to a characteris-

tic decoherence distance. In the case of energy spread and

wakefield inhomogeneities, their respective expressions are7

Ldu;Dc ¼ kb
cb

Dcb

and Ldu;inhom: ¼ kb
tanðkpjnlaserjÞ

kpL
;

where kb ¼ 2pw0
ffiffiffiffiffi
cb
p

=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g sinðkpjnlaserjÞ

p
a0Þ is the betatron

wavelength in a linear laser-wakefield. In the case of beam-

loading, we obtain, based on a Taylor expansion of Eq. (13)

Ldu;beam: ¼ kb
4 g a2

0

ðkbLÞ2ðkpw0Þ2
:

In the context of a linear-wakefield staged accelerator,

the above discussion can mitigate previous discussions on the

maximal allowable charge density.20,21 In these references, it

was suggested that the bunch density should be lower than the

background plasma density ðnb < npÞ, so as to avoid blowout

and its deleterious consequences on the transverse emittance

of the bunch. The above discussion shows that, although

blowout does happen for nb > np, its consequences on the

emittance of the bunch crucially depend on the length of the

bunch. (If the bunch is very short, the inertia of the electrons

is such that the blown-out wakefield only develops behind the

beam.) In fact, in order to prevent a rapid degradation of

transverse emittance, the bunch should satisfy kbL	 1

(where kbL is given by Eq. (16)) rather than nb < np.

This is particularly important when discussing the effects

of beamstrahlung. In Ref. 20, it was shown that reducing the

bunch length decreased the deleterious effects of beamstrah-

lung and was thus desirable. On the other hand, it was also

suggested that a smaller bunch length imposed a smaller bunch

charge so as to remain below the blowout limit ðnb < npÞ. On

the opposite, here we show that, with our proposed criterion

kbL	 1, decreasing the bunch length does not impose stron-

ger constraints on the bunch charge. (Eq. (16) suggests on the

contrary that the constraints on the charge are looser.)

V. SUMMARY AND CONCLUSION

In this article, we derived a fully relativistic quasistatic

model for the evolution of an electron bunch traveling

through a pre-ionized plasma. Throughout the derivation, we

made a certain number of approximations, which hold true in

the case of LWFA-generated bunches traveling through tenu-

ous plasmas (1018–1017 cm�3). This model leads to simple

analytical results in the case of a flat-top bunch, and these

results were confirmed by PIC simulations.

However, it should be noted that realistic bunches

cannot always be approximated by a flat-top distribution,

and that, at any rate, even an initially flat-top bunch evolves

into other distributions as it travels through a plasma.

Yet our model can also be useful in these cases, since it can

be numerically integrated, and thereby provides a light-

weighted alternative to a full PIC simulation.

Our model can be particularly useful when studying the

transverse focusing forces that apply on the bunch. As is well-

known in PWFA, the tail and the head of the bunch do not

feel the same focusing forces—a phenomenon which leads to

head erosion. Here, we emphasized that a similar phenom-

enon can occur in LWFA if the laser-wakefield is only par-

tially evacuated. We evaluated the characteristic magnitude

and length scale of this effect and showed that it can have a

significant degrading impact on the emittance of the bunch.

Yet we also showed that this impact crucially depends on the

length of the bunch, and that the constraints placed on the

charge of the bunch may thus be relaxed for very short bunch.
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APPENDIX A: CONSERVATION OF cpð12bp;zÞ2w

The conservation of this quantity is a general conse-

quence of the application of the Noether theorem to the qua-

sistatic approximation, and it can also easily be proved in the

Hamiltonian formalism (as, e.g., in Ref. 26). An alternative

demonstration using the covariant formalism is given here.

In covariant notations, the motion of a given plasma electron

is given by30

m
d ul

ds
¼ �eu�F

l� ¼ �eu�ð@lA� � @�AlÞ

with ul ¼ ðcpc; cpvpÞ; Al ¼ ðU=c;AÞ and the convention

gl� ¼ diagð1;�1;�1;�1Þ. As a consequence,

d cpð1� bp;zÞ
ds

¼ 1

c

d ðu0 � u3Þ
ds

¼ � e u�
mc
ð@0 � @3ÞA� þ e u�

mc
@�ðA0 � A3Þ

¼ � e u�
mc

1

c
@t þ @z

� �
A� þ e

mc

d

ds
ðU=c� AzÞ:

In the quasistatic appoximation, the fields U and A only

depend on n ¼ ct� z, and thus ð1=c� @t þ @zÞA� ¼ 0. The

above equations thus reduce to

d

ds
cpð1� bp;zÞ �

eU
mc2
� eAz

mc

� �� �
¼ 0:

Hence, cpð1� bp;zÞ � w is constant.

APPENDIX B: CONSERVATION OF
R rpðnÞ

0 np ð12bp;z Þr dr

The conservation equation for the plasma electrons reads

@np

@t
þ $ � ðc np bpÞ ¼ 0:

Since np and bp only depend on n ¼ ct� z (quasistatic

approximation) and r (cylindrical symmetry), this becomes

@

@n
npð1� bp;zÞ þ

1

r

@

@r
ðr np bp;rÞ ¼ 0:

Let us use this equation to calculate the variation of
Ð rpðnÞ

0
np

ð1� bp;zÞr dr. (Notice that, in this expression, rpðnÞ is a

Lagrangian variable describing the trajectory of one given

plasma electron, while npðr; nÞ and bpðr; nÞ are Eulerian

variables.)

d

dn

ðrpðnÞ

0

np ð1�bp;zÞrdr

¼
ðrpðnÞ

0

@

@n
½np ð1�bp;zÞ�rdrþ drp

dn

� �
npðrp;nÞ½1�bp;zðrp;nÞ�rp

¼�
ðrpðnÞ

0

@

@r
½rnpbp;r�drþ drp

dn

� �
npðrp;nÞ½1�bp;zðrp;nÞ�rp

¼�rp npðrp;nÞbp;rðrp;nÞþ
drp

dn

� �
npðrp;nÞ½1�bp;zðrp;nÞ�rp:

(B1)

Now, by definition of the Eulerian variable bp,

bp;rðrpðnÞ; nÞ 

1

c

d rp

dt

� �
¼ ð1� bp;zÞ

d rp

dn

� �

and thus Eq. (B1) reduces to

d

dn

ðrpðnÞ

0

np ð1� bp;zÞr dr ¼ 0:
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