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Abstract—Surface reconstruction from point clouds often
relies on a primitive extraction step, that may be followed by a
merging step because of a possible over-segmentation. We present
two statistical criteria to decide whether or not two surfaces are
to be considered as the same, and thus can be merged. They are
based on the statistical tests of Kolmogorov-Smirnov and Mann-
Whitney for comparing distributions. Moreover, computation
time can be significantly cut down using a reduced sampling
based on the Dvoretzky-Keifer-Wolfowitz inequality. The strength
of our approach is that it relies in practice on a single intuitive
parameter (homogeneous to a distance) and that it can be applied
to any shape, including meshes, not just geometric primitives.
It also enables the comparison of shapes of different kinds,
providing a way to choose between different shape candidates. We
show several applications of our method, experimenting geometric
primitive (planeand cylinder) detection, selection and fusion, both
on precise laser scans and noisy photogrammetric 3D data.

I. INTRODUCTION

Numerous algorithms for surface reconstruction from point
clouds have been developed over the past years, e.g., [2], [3],
[4] just to cite a few. Many are based on the detection of simple
geometric primitives: planes, but also cylinders, spheres, cones
and tori. Algorithms for primitive extraction include RANSAC
[1], region growing [2], [5] and Hough Transform [6], [7], [8].
All of these methods rely on a number of parameters, that are
sometimes difficult to tune to fit the needs of the user.

This extraction step is most often crucial for the quality of
the reconstruction and for the overall execution time. In many
cases, there is actually a trade-off between reducing the number
of segments to reduce computation time, and increasing the
number of segments to enhance accuracy. To control over-
segmentation, there often is an additional merging step that
compares the geometric primitives underlying the segments.

Vosseleman et al. [9] merge planes if their equations are
similar. It is equivalent to testing the similarity of plane
normals and positions (w.r.t. some origin). It extends to any
parametric surface but comparison between complex surfaces
may be difficult due to possible high number of parameters,
possibly with different dimensions (distances and angles). For
instance, comparing cylinders requires tuning 5 parameters:
2 for cylinder direction, 2 for position and 1 for radius.

Addressing the parameter issue, Bughin proposes an a-
contrario method to decide if a given point set can be inter-
preted as one or more planes [10]. However, it is specific to
planes and defined for single range images.

A threshold on the Hausdorff distance can also be used
to overcome the difficulty of parameterizing the comparison
of complex shapes, as it relies on one parameter only. It has
been used in particular for mesh comparison [11]. However the
Haussdorf distance can be sensitive to outliers. Moreover, it

may requires computing many pointwise distances. Last, large
sets of points are less likely to be considered as belonging to
the same surface: the more pointwise distances are taken into
account, the more likely outliers can affect the comparison test.

A better approach would be to use a criterion based on
a non-parametric statistical test. Such tests have already been
used, e.g., in the context of image segmentation [12], [13],
[14]. We use it here for comparing shapes and fusing them.

In this paper, we present a new criterion for shape similarity
relying on a single parameter (actually three, reduced to one in
practice). It can be used both for shape fusion and shape selec-
tion. Besides, our method is less sensitive to outliers and also
allows for a principled sampling strategy that greatly reduces
the number of pointwise distances to compute. Comparison
is not only faster; it also does not depend on the number of
points in the segments for which surfaces are sought.

One original aspect of our method lies in the use of
statistical tests, on a distance distribution, to decide whether
two surfaces can be considered as equal. We also introduce a
criterion inherited from robust statistics to reduce the number
of points to test and consequently reduce the computation time
and the dependence on the segment size.

The rest of the paper is organized as follows. Section II
recalls basic statistical tests we rely on. Section III presents
their application to shape comparison, fusion and selection.
Section IV describes an efficient sampling strategy to reduce
the size of the test. Section V explains how to meaningfully
parameterize the test. Several applications and practical exper-
iments are presented in Section VI: we merge over-segmented
primitives via the identification of similar shapes in registered
laser acquisitions; we illustrate shape selection on a scene
with cylinders and planes, deciding whether a cylinder can
be approximated by a plane; we show an example of primitive
fusion on a noisy photogrammetric point cloud.

II. STATISTICAL TESTS FOR SURFACE COMPARISON

For deciding if two primitives detected in a point cloud
can be merged compares the distribution of the distance of the
support points to the primitives, we rely on statistical tests.

Let X1, . . . , Xm and Y1, . . . , Yn be two random samples,
i.e., two collections of i.i.d. random variables with respective
distribution FX and FY . Given observations x1, . . . , xm and
y1, . . . , yn, let F̂X and F̂Y be the corresponding empirical
cumulative distribution functions.

FX(t) = P(X ≤ t) (1)

F̂X(t) =
1

m

m∑
i=1

1{xi≤t} (2)

The objective is to test the hypothesis H0: FX = FY .



(a) Segmentation with RANSAC-based method [1]. (b) Primitive types assigned to segments. (c) Primitive type reassignment with our method.

Fig. 1. RANSAC-based shape detection (one color per segment) and assignment of primitive types. Shades of red correspond to planes, green to cylinders.

A. Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test (KS-test) [15], [16] mea-
sures the deviation between two distributions. With this test,
we mainly reject H0 if the distributions have different shapes.
For X,Y two samples of i.i.d. random variables, the test
considers the statistic KS stat = DX,Y , which is the maximum
deviation between the two empirical distribution functions:

DX,Y = sup
t∈R
|F̂X(t)− F̂Y (t)| (3)

To compute DX,Y , observations x1, . . . , xm and y1, . . . , yn
are merged and sorted in increasing order into sequence
z1, . . . , zm+n. Let Sk = 1

m if zk corresponds to an element xi,
and Sk = − 1

n if zk corresponds to an element yj . We have:

DX,Y = max
1≤k≤m+n

|
k∑
l=1

Sl| (4)

According to the KS-test, we reject H0 if

DX,Y > c(α)

√
m+ n

mn
(5)

where c(α) can be tabulated according to the Kolmogorov-
Smirnov distribution. Table I shows values of c(α) for common
values of significance level α.

α 0.10 0.05 0.025 0.01 0.005 0.001
c(α) 1.22 1.36 1.48 1.63 1.73 1.95

TABLE I. c(α) FOR COMMON VALUES OF SIGNIFICANCE LEVEL α.

B. Mann-Whitney test

The Mann-Whitney test (MW-test) [17], [18] measures the
interlacing of two distributions. This test mainly reject H0 if
the two distributions have different locations. The test is based
on the MW-statistic MW stat = UY,X defined by:

UY,X =
∑

1≤i≤m
1≤j≤n

1{Yj>Xi} (6)

If Um,n is a random variable of law U(m,n), which is the law
of UY,X , and if min(m,n) −→∞, then ζm,n defined by

ζm,n =
Um,n − mn

2√
mn(m+n+1)

12

(7)

converges in law to the normal law N (0, 1).

For practical computation of the statistic, as in the KS-test,
we merge and sort the values x1, . . . , xm and y1, . . . , yn into

a sequence z = (z1, . . . , zm+n). If Sj is the rank of yj in z,
we compute the cumulated rank sum for Y :

RY =

n∑
j=1

Sj (8)

UY,X = RY −
n(n+ 1)

2
. (9)

For a test with significance level α, we use the quantile 1− α
2 .

III. SURFACE COMPARISON, FUSION AND SELECTION

A. Criterion for surface comparison and fusion

The above criteria can be used to test whether two surfaces
extracted or defined from sets of points are likely to be
identical. Let S1 and S2 be two surfaces, and let P1 and P2

be two sets of possibly noisy points associated respectively
with S1 and S2. Let d(p,S) be the distance from point p to
surface S. We consider the following two sets of values:

X = {d(p1,S1), p1 ∈ P1} ∪ {d(p2,S2), p2 ∈ P2} (10)
Y = {d(p1,S2), p1 ∈ P1} ∪ {d(p2,S1), p2 ∈ P2} (11)

If S1 and S2 are the same or almost the same surfaces, then
the distribution of distances in X and Y are similar, and the
above tests should not reject H0, i.e., FX = FY . Using a
non-symetrized definition such as X = {d(p1,S1), p1 ∈ P1}
and Y = {d(p2,S2), p2 ∈ P2} could lead to reject H0 if the
distribution of P1 and P2 are too different, even if S1 = S2.

In practice, P1 and P2 are generally known, and S1 and S2
are hypothesized, e.g., guessed using some kind of regression
and/or RANSAC-like model detection. The statistical tests then
provide a way to tell whether S1 and S2 are likely to be
identical. If so, it means that P1 and P2 can be joined and
associated to a single surface S1 or S2.

Provided we can hypothesize a common, merged surface
S3 for P1 ∪ P2, as well as corresponding point distances, this
also provides a direct test for telling whether P1 and P2 support
surface S3. For this, we replace Y in equation (11) by

Y = {d(p1,S3), p1 ∈ P1} ∪ {d(p2,S3), p2 ∈ P2} (12)

As an example, consider two planes S1 and S2, and the set of
points P1 and P2 that was used to generate them. Considering
S3, the regression plane of the set of points P1 ∪ P2, the test
tells whether it is legitimate to merge S1 and S2 into S3.

It is important to note that only a distance function to
the surfaces is required here. Considering the problem of
comparing and merging geometric primitives, it is easy to test
planes, cylinders and other type of primitives. In fact, the two
surfaces to compare can be of different kinds. The test actually
also applies to mesh comparison and fusion.



B. Criterion for choosing surfaces or surface types

Sometimes it is difficult to assign a specific surface or
surface type to a given set of points. Several candidates can
be possible, with fitting scores that may not compare easily, or
because a point set can be better fitted by one kind of surface
than another. For instance, if a point set can be approximated
by a plane, it can be approximated by a wide cylinder too and
the cylinder is likely to have a smaller error.

Assuming there is a preference for certain directions or
for certain kinds of surfaces (e.g., if planes are preferred
to cylinders because they are considered simpler), then the
surface comparison test also provides a way to choose between
several candidates surfaces for a given set of support points.

For this, consider a set of points P and two surfaces S1
and S2 as candidate to approximate P . If the above test passes
for P1 = P2 = P , then S1 and S2 can be considered as similar
with respect to P . In this case, if additionally S1 is preferred
to S2 for some other reason, it is safe to assign P to S1.

IV. EFFICIENT SAMPLING STRATEGY

Both tests have some dependence on the size of point sets:
the distribution of distances to a surface is better estimated for
a large number of points, but a small difference in the shape
of the distribution then yields a rejection. Besides, the test
computation time grows with the size of the point sets. These
two issues can be addressed by an adequate point sampling.

Let X = X1, . . . , Xn be a set of i.i.d. random variables
with distribution function F , and F̂n the empirical distribution
function. Let β ∈ ]0, 1[ be a probability threshold expressing
the confidence of the test for comparing F̂n to F , and let ε > 0
be a threshold for the deviation of the distributions. We want to
estimate the minimum cardinal of X such that the maximum
deviation between F and F̂n is less than ε, with probability β:

P(sup
t∈R
|F̂n(t)− F (t)| ≤ ε) ≥ β (13)

To estimate the number of points to use, we resort to the
Dvoretzky-Kiefer-Wolfowitz (DKW) inequality [19]:

P(sup
t∈R
|F̂n(t)− F (t)| > ε) ≤ 2e−2nε

2

(14)

Using equation (13), we obtain a lower bound for n:

n ≥ 1

2ε2
ln(

2

1− β
) (15)

In the following, we use β = 1−α, where α is the significance
level of the test.

V. GIVING CONTROL TO THE USER

The method only depends on two parameters, a significance
level α and a threshold ε for the distribution deviation.But the
user has no control over the degree of similarity of the shapes.
The slightest difference in the distributions leads to a rejection
of the equality hypothesis. We want to introduce a parameter
that is homogeneous to a distance and that defines some kind
of acceptance level. Therefore, we consider a controlled noise
that we add to the point set. The idea is that a larger noise
yields a greater likelihood of similarity.

Fig. 2. Evolution of the KS and MW statistics for two co-centered spheres
of different radii: the unit sphere and one with a variable radius in abscissa.

Given points sampled on two shapes, we empirically deter-
mine the standard deviation σ of the isotropic Gaussian noise
to add to these points so that the shapes merge for the KS-test.
We have experimented with four synthetic configurations: two
parallel planes at a given distance h, two planes intersecting
with a small angle θ � π/2, two parallel cylinders with equal
radius r and axis distance h� r, and two spheres with equal
radius r and center distance h � r. (“a � b” indicates one
order of magnitude or more, i.e., 10 a < b.)

Note that the situation is identical up to a scale factor. For
parallel planes, σ thus depends linearly on h. Moreover, for
cylinders and spheres it is enough to experiment with r = 1.
Besides, given the above order of magnitude hypotheses, we
experimentally observed that for intersecting planes, σ does
not depend on θ. More importantly, for all configurations,
σ depends linearly on the the mean distance δ between points
sampled on a surface and the other surface (which is related
to h), with a factor λ slightly depending on the configuration.
It means, conversely, that given an average distance δ between
points and shapes, adding noise on points with a standard
deviation σ > λ δ is enough for the KS-test to predominantly
decide merging. Experimentally, for α = 0.01 and ε = 0.1,
we get λ = 1.5 for parallel planes and λ = 1.6 for the other
configurations, with a standard deviation of 0.1.

In the following, we use δ rather than σ as the main
parameter for deciding primitive fusion. We also rely on the
value of λ for parallel planes, which provides a conservative
lower bound: identical shapes may incorrectly not be merged,
but different shapes are unlikely to be merged. From the point
of view of the user, δ is the maximum distance (relative to
scale) for which two parallel planes are allowed to merge.

VI. EXPERIMENTS

In this section, we present several experiments illustrating
applications of our method. For all experiments, we use values
α = 0.01, ε = 0.1, and thus nmin = 265 points (cf. Eq. (15)).

A. Empirical comparison: KS-test vs MW-test

We empirically compare KS and MW tests on synthetic
data. Figure 2 illustrates the response of the KS and MW



statistics for different values of δ when testing sphere similar-
ity: we synthesize points on two co-centered spheres, one with
unit radius, and the other one with a small radius variation. We
consider 3 values for δ: 0.01, 0.03 and 0.05. The results are
averaged over 100 drawings of point sets on the spheres for
each value of δ. In this setting (with α = 0.01 and ε = 0.1),
the KS-test seems to be more stable than the MW-test. Still,
the two tests agree on the acceptance level for a given δ. In
the following, we only use the KS-test to compare surfaces.

B. Merging regions grown from laser point clouds

Next we describe how our criterion can be practically used
to extract consistent planes from a laser point cloud.

1) Algorithm: For segmentation into planar patches, we
use a region growing algorithm similar to Bughin’s [5], taking
advantage of the image structure of laser acquisitions. A point
is added to a growing region if it is at the border of the region
and if it is less than 0.005 m far from the plane associated
to the region. Point neighborhood is defined according to the
8-connectivity of the pixels in the depth image (spherical
acquisition unfolded on a vertical cylinder, which is then
unfolded on a rectangle). Seeds are selected randomly and only
regions with at least 300 points are kept.

With this method, some planes can be over-segmented,
i.e., if the regions are not connected in the image. Almost
parallel planes can also be separate, e.g., posters on the wall
or whiteboard. Both kinds of segments can be merged, in a
controlled way.

Primitive merging is performed greedily. First, the test is
performed for all pairs of primitives. Those that pass the KS-
test are sorted by increasing KS-statistic. (When using the
MW-test, the order is reversed as the MW-statistic is higher
for closer surfaces.) The pair of primitives with the lowest
KS-statistic is merged and the sorted list of primitive pairs is
updated with respect to the fusion. This process is repeated
until no pair passes the test.

2) Evolution of fusion for different δ: Figure 3 illustrates
the influence of parameter δ on the final segmentation. The
scene is a laser acquisition of more than one million points. As
expected, a growing δ leads to more fusions of primitives. Still,
even with a big δ, the decision for merging primitives makes
a lot of sense. Note that for δ = 0 (not shown), no primitive
happens to be merged due to the very high precision of the
laser: any small variation in the shape of what we consider as
planes is significant enough to reject fusion.

3) Primitive merging for separate acquisitions: To save
memory and computation time, it is useful to treat laser
scans in a hierarchical manner: first separately, possibly in
parallel, then globally. Figure 4 illustrates the steps of this
hierarchical segment-and-merge approach on three laser acqui-
sitions. Regions are computed for each acquisition separately
(4(a)), planes are merged inside each acquisition (4(b)), and
finally primitives of all acquisitions are considered together for
merging (4(c)).

C. Comparing apples and oranges

As already said, our test for surface similarity only requires
the availability of distances of support points to the surfaces.

(a) Region growing result.

(b) δ = 0.01m.

(c) δ = 0.02m.

(d) δ = 0.03m.

Fig. 3. Evolution of plane fusion on a laser acquisition (1.1M points) for
different values of δ. There is one color per segment. Examples of fusion
between two consecutive values of δ are marked in white.

It applies to simple geometric primitives as well as arbitrary
surfaces, including meshes. As explained in Section III-B,
we can actually compare and choose between shapes that are
different in nature, e.g., plane vs cylinder, as long as they are
associated to point sets and corresponding distances.

To illustrate this application, Figure 1 shows the result of
a RANSAC-based segmentation with both plane and cylinder
detection [1]. The segmentation is greedy: once a primitive has
been detected, its points are removed from the set of points to
segment. In practice, as planes can approximate many surfaces,
cylinders are generally sought first. However, an actual plane
can then be misdetected as a flat fragment of cylinder. The
question is, for each cylinder, whether the regression plane of
its support points is a better primitive. Figure 1(a) shows the
result of segment detection, and 1(b) the segment type (red



(a) After region growing in each acquisition separately.

(b) After primitive merging in each acquisition separately.

(c) After globally merging primitives.

Fig. 4. Plane merging on multiple laser acquisitions (one color per segment): fusion is first applied to each acquisition separately, then globally (with δ = 0.01).

for planes, green for cylinders). Note that some primitives are
wrong. In particular, the door, part of the ceiling and the side
of a large box are considered as cylinders rather than planes.

To address this issue, for each cylinder primitive, we
compute its regression plane and compare the cylinder to the
plane with respect to the (same) support points, with δ = 0.01.
According to the principle defined in Section III-B, if the test
is positive, we choose the plane to best represent the segment.
Figure 1(c) presents the result of such a choice. All segments
that were erroneously considered as cylinders are now treated
as planes. However, the chair backs and the pillar on the right
are still correctly considered as cylinders.

D. Experimenting with photogrammetric data

We also experimented with photogrammetric 3D data, that
are more noisy and whose density is less (locally) uniform
than with laser scans. The input here is an actual point cloud,
not (registered) depth images. We thus have to use a different
approach than in Section VI-B to segment the acquisition
into geometric primitives. However, we still resort to region
growing. A point is added into a segment if its normal and
the normal of its neighbors are nearly the same. Normals
are computed using the approach proposed by Boulch and
Marlet [20], which is robust to sharp angles. This results
in segments with smooth curvature that do not necessarily
correspond to simple geometric primitives. Then, for each
segment, we compute its regression plane and, possibly, a
cylinder. The cylinder is sought in a RANSAC fashion, picking
random pairs of points, hypothesizing a corresponding cylinder
(based on the normal of the two points), checking how many
points fit the cylinder, and keeping the cylinder with the most
points. After that, we use the principle defined in Section III-B
to choose between the plane and the cylinder. Finally, cylinders
and planes are merged separately, as defined in Section VI-B1.

This process is illustrated on Figure 5 using 3D data of the
Pavillon de l’Aurore in Sceaux, reconstructed automatically by
photogrammetry (from pictures) with the method of Moulon
et al. [21], yielding a 3D point cloud with 1.6M points. As
can be seen, the four segment of the central part are properly
detected as cylinder fragments, and properly merged.

VII. CONCLUSION

We have presented two variants of a general statistical test
to assess the similarity of surfaces underlying point clouds.
We have explained how it can be used to compare and merge
surfaces, in particular geometric primitives, and also to choose
between different shape candidates. We have shown how a
small number of points can be enough the evaluate the test, also
providing insensitivity to point set size, and we have introduced
a meaningful parameter δ for the user to tune the acceptance
level of the test. The strength of our approach lies in its single
(in practice) and intuitive parameter, as well as in the generality
of the test because it applies to any surface as long as we can
compute distances. We have extensively illustrated how our
criterion could be used to consistently segment a point cloud
into primitives, possibly of different kinds, using either clean
and precise laser scans as well as noisy photogrammetric data.

In these experiments, the merging strategy is driven by
test statistics but it is still iterative and greedy. It is future
work to use our criterion in a more principled algorithm for
primitive merging, with better optimality guarantees. Applica-
tion to other shape regularities can also be though of, such as
polygonalization of segment borders.
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