
HAL Id: hal-01163676
https://hal.science/hal-01163676v1

Submitted on 23 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Slider: an Efficient Incremental Reasoner
Jules Chevalier, Julien Subercaze, Christophe Gravier, Frederique Laforest

To cite this version:
Jules Chevalier, Julien Subercaze, Christophe Gravier, Frederique Laforest. Slider: an Efficient In-
cremental Reasoner. ACM SIGMOD, May 2015, Melbourne, Australia. �10.1145/2723372.2735363�.
�hal-01163676�

https://hal.science/hal-01163676v1
https://hal.archives-ouvertes.fr


Slider: an Efficient Incremental Reasoner

Jules Chevalier, Julien Subercaze, Christophe Gravier, Frédérique Laforest
Université de Lyon, F-42023, Saint-Etienne, France,

CNRS, UMR5516, Laboratoire Hubert Curien, F-42000, Saint-Etienne, France,
Université de Saint-Etienne, Jean Monnet, F-42000, Saint-Etienne, France.

firstname.name@univ-st-etienne.fr

ABSTRACT
The Semantic Web has gained substantial momentum over
the last decade. It contributes to the manifestation of knowl-
edge from data, and leverages implicit knowledge through
reasoning algorithms. The main drawbacks of current rea-
soning methods over ontologies are two-fold: first they strug-
gle to provide scalability for large datasets, and second, the
batch processing reasoners who provide the best scalability
so far are unable to infer knowledge from evolving data. We
contribute to solving these problems by introducing Slider,
an efficient incremental reasoner. Slider goes a significant
step beyond existing system, including i) performance, by
more than a 70% improvement in average compared to the
fastest reasoner available to the best of our knowledge, and
ii) inferences on streams of semantic data, by using intrin-
sic features that are themselves streams-oriented. Slider is
fragment agnostic and conceived to handle expanding data
with a growing background knowledge base. It natively sup-
ports ρdf and RDFS, and its architecture allows to extend
it to more complex fragments with a minimal effort. In this
demo a web-based interface allows the users to visualize the
internal behaviour of Slider during the inference, to better
understand its design and principles.

Keywords
Incremental Reasoning; Streamed Reasoning; Web of Data

1. INTRODUCTION
Data available on the Web can be represented through

diverse range of formats. The Semantic Web movement
enriches the available information by providing a stack of
technologies – the core of which is the Resource Description
Framework (RDF) for publishing data in machine-readable
format. RDF data is represented as a set of triples of the
form <subject, predicate, object>. Apart from the explicit
data mapping, the integration of assertional data (i.e., in-
stance data) with terminological data (i.e., structural data)
described in ontologies permits deductive reasoning – i.e.,

.

inferring implicit knowledge. Although, various reasoning
techniques has been described in literature but most pop-
ular of them is the rule-based reasoning – where each rule
consist of i) an ’antecedent’: a clause that allows the rule
to be executed and ii) a ’consequent’: the statements that
can be inferred from the data that matched the antecedent
clause. For instance,
If <X, subClassOf, Y > and <Y, subClassOf, Z>
Then <X, subClassOf, Z>.
Reasoning can be described using a subsets of RDFS [5] and
OWL standards [14] – also described as fragments. These
fragments are set of rules with time complexity ranging from
P to NEXTPTIME, and even undecideable for OWL2 Full
[20].

Reasoning is inherently a complex process, and while there
exists a large body of work in the area of reasoning algo-
rithms and systems that work and scale well in confined
environment [10, 19]; the distributed and dynamic nature of
Web create new challenges for reasoning. This calls for new
techniques to replace batch processing – where the arrival
of new data initiate the reasoning process form the start –
to incremental reasoning [2]. Thus to handle new data as
soon as it arrive, without re-inferring the previously inferred
knowledge.

The two main approaches for reasoning as discussed in lit-
erature includes, backward-chaining and forward-chaining.
The first approach only uses the rules defined in the query
to reason incoming triples at query time, while the second
approach implements the materialisation process on the en-
tire triple store. Both of these techniques have their pros
and cons, in particular – backward-chaining suffers from
more complex query evaluation that adversely affects per-
formance and scalability but is suitable for more frequently
changing knowledge bases, while forward-chaining enables
scalability and very efficient responses at query time, but
at the cost of an expensive up front closure computation.
We choose forward-chaining (materialisation) to avoid high
query response times and high resource usage that incurs in
query-rewriting for backward-chaining – in order to conform
to the dynamic and real-time nature of Web data.

Several solutions have been proposed to optimise incre-
mental materialisation of ontologies. [8] proposed technique
maintains classification of ontologies as they evolve, and pro-
vides encouraging results. However, its not a viable solution
in case of static hierarchy of ontologies- i.e., if hierarchy is
not affected by modification. Moreover, it is not adapted for
ontologies with a high number of nominal. [12] handles both



addition and deletion in the setting of incremental classifica-
tion. It is however limited to the classification on the TBox,
and dedicated to a specific ruleset.

The major drawbacks that state-of-the art approaches suf-
fer from is the inability to deal with complex ontologies and
are not tailored to deal with large amount of dynamic RDF
data and particularly large A-Boxes.

To overcome these drawbacks, we introduce Slider, an effi-
cient reasoner to perform forward-chaining incremental rea-
soning and strikes a balance between large pre-processing
cost of materialization and complexity of pure backward-
chaining reasoning. Its core features that stands it apart
from the previous approaches are as following.
Parallel and Scalable Execution: We implement a par-
allel and scalable method to perform incremental reasoning.
Each inference rule is mapped to an independent module.
These modules receive indented triples according to defined
rules and later distribute triples to other modules for further
processing. Additionally, we refine our algorithm to avoid
bottlenecks and capitalise on scalability by allowing multi-
ple instances of same rule to run in parallel – in order to
further enhance the performance of the reasoner. Moreover,
we implement efficient techniques for synchronized access of
triple store and use buffers (blocking queues) to handle the
explosion of inferred statements and incoming triples. This
avoids any overheads and certifies the completeness of the
reasoning process.
Duplicates Limitation: Reasoning on equivalent state-
ments could result in a massive amount of duplicated data
that causes decrease in performance. Thus, to avoid such sit-
uation we use the vertical partitioning approach along-with
multiple indexing (on predicates, subjects and objects) tech-
nique. This limits the production of duplicates and avoids
any unnecessary computation.
Data Stream Support: The dynamic nature of Web data
results in data streams [9], which requires incremental exe-
cution of reasoning process. Due to the parallel nature of our
architecture, Slider can handle both dynamic triple streams
and static triples set. This, further allows the parallelisation
of parsing and reasoning process on multiple data sources at
the same time – processing data as soon as it is published.
Fragment’s Customization: Reasoning is usually consid-
ered as once-off rule processing task, where rules are known
a-priori. However, the dynamicity of data requires to mi-
grate from task-specific systems. Slider natively supports
both RDF and ρdf [16] fragments, and its architecture al-
lows it to be further extended to any other fragments.

Slider outperforms existing implementations by 70% on
average. We use OWLIM-SE (used in industry and the
fastest available reasoner to the best of our knowledge) as a
baseline system for comparative measurements. Our exper-
imental evaluations prove that Slider outperforms OWLIM-
SE by 106.86% on ρdf and 36.08% on RDFS. The source
code of Slider is publicly available here: https://github.

com/juleschevalier/slider.
Our demo system presents the reasoning process of Slider

through a web-based interface and covers three main areas:
i) Tuning reasoning process through various parameters in-
cluding buffer size, buffer timeouts and rulesets. ii) Visu-
alisation of each module behaviour and inputs. iii) Visu-
alisation of synthetic inferred data and retrieval of original
ontology.

2. SYSTEM ARCHITECTURE
In this section, we provide an overall description of the

architecture of Slider. Our decentralised system consists of
a set of autonomous modules – where each rule is mapped on
a distinct module. A single triple store is shared by various
concurrent modules in a synchronised manner and to ensure
fast data access, triples are stored in memory.

Figure 1 shows the high-level architecture of the system
with three inference rules R1, R2 and R3. Incoming triples
are send to both triple store and buffer of certain module –
where each module accepts the triples according to config-
ured rules’ predicates. Once the buffer exceeds the config-
ured size or timeouts, it initiates a new instance of a mod-
ule that applies rules on buffered triples and relevant triples
stored in the triple store. These newly created instances are
managed by the thread pool for load distribution and scal-
ability of the system. The distributor collects the resulted
inferred data to be used as an input, and identifies the mod-
ules that would require the resulted data for their inference
process – thus ensuring the completeness. For instance, the
result of R1 is used by R2, R3 and R1 itself. Distributors
and buffers play an important role in the architecture, specif-
ically buffer orchestrates the load distribution of triples and
instance creation of rule modules – as new instance for each
triple can exhaust CPU resources. The core functionality of
the system’s components is as following.
Input Manager: It receives new triples and register them
into a dictionary that maps the expensive URIs (as they in-
troduce overheads during comparison computation) to Longs.
Mapped triples are finally pushed into the triple store. Mul-
tiple instances of input manager allows to retrieve data from
various sources.
Buffers: Each rule module is assigned with a buffer that
is in-charge of collecting triples from input manager – by
comparing the predicate values of configured rules. Once
the buffer is full or in-case of timeouts, it triggers a new in-
stance of rule module that applies rules on buffered triples.
Rule Modules: Rule modules are configured with a set of
rules to be executed on incoming triples. It implements the
forward-chaining reasoning by employing the input triples
and relevant triples from the triple store.
Thread Pool: This component is responsible for: i) Receiv-
ing a new instance of rule module and implement pooling
techniques for efficient resource usage, ii) Passing the in-
ferred result to distributor. It pools and runs each instance
of rule module on available resource for load balancing and
allows asynchronous execution of instances to avoid over-
heads. Thus, ensuring the scalability of the system.
Distributors: It involves in three main tasks: i) Collecting
inferred triples from rule modules ii) Adding inferred triples
to triple store iii) Dispatching relevant inferred triples to rel-
evant set of rules. Each distributor has a list of buffers that
should receive newly inferred triples. This list is dynami-
cally generated during reasoner initialisation by employing
a rules dependency graph, as discussed later.

2.1 Rules Inference
The forward-chaining incremental reasoning is reported

in pseudocode in Algorithm 1. It specifies how a rule, e.g.
CAX-SCO (table 7 from [15]), effectively runs.

The algorithm searches for <c1 ,subClassOf, c2> in the
triple store and for <x ,type, c1> from incoming triples,
and vice versa. For each couple (<c1 ,subClassOf, c2>,



<x ,type, c1>) found, it creates a new one <x ,type, c2>.
Slider implements the rules from both ρdf and RDFS frag-

ments and also support the addition of any new custom rules
through Java interfaces.

TRIPLE STORE

Evolving
Data

Input Manager

Explicit Triples

Implicit Triples

Streamed Triples

New
triples

In
p
u
t

M
a
n
a
g
e
r

R
u
le

s
B

u
ff

e
rs

T
h
re

a
d
 P

o
o
l

D
is

tr
ib

u
to

rs

B
u
ff

e
r 

R
3

D
is

tr
ib

u
to

r 
R

3

D
is

tr
ib

u
to

r 
R

2

D
is

tr
ib

u
to

r 
R

1

B
u
ff

e
r 

R
2

B
u
ff

e
r 

R
1

R2

R1R2

R2

R1

R3

R1R1 R1 R2R2 R3R3

Incoming
triples

C
o
n
cu

rr
e
n
t 

A
cc

e
ss

Rule Modules

Figure 1: Global architecture of Slider

Algorithm 1 cax-sco

Require: tripleStore, newTriples, outputTriples

for all triple1 in TripleStore with predicate subClassOf do
for all triple2 in newTriples with predicate type do

if triple1.subject = triple2.object then
output ← (triple2.subject,type,triple1.object)
outputTriples ← outputTriples ∪ {output}

end if
end for

end for

for all triple1 in newTriples with predicate subClassOf do
for all triple2 in TripleStore with predicate type do

if triple1.subject = triple2.object then
output ← (triple2.subject,type,triple1.object)
outputTriples ← outputTriples ∪ {output}

end if
end for

end for

2.2 Triple Store
Triple store is another core component of the reasoning

process – as good performance of the system relies on its
ability to quickly retrieve a given pattern. In order to achieve
high performance Slider uses a vertical partitioning approach
as discussed in [1] – where triples are first indexed by pred-
icates, later by subjects and finally by objects. We use
HashMaps of MulitMaps from Guava library1 to implement
triples’ indexing. The concurrency of the triple store is
handled by using ReentrantReadWriteLock, which provides
both read and write (during addition of new triples) locks.
This two-layered locking mechanism not only ensures con-
currency, but also allows parallel access to the triple store.
The HashMap structure of indexing scheme ensures the du-
plicate management in triple store. Distributors in-charge of
dispatching new triples to the buffers use this feature to ex-
clude duplicates. Furthermore, after adding inferred triples
in the triple store only distinct triples are send to the buffers.

If we consider the entire ruleset for OWL [15] (especially
tables 4–8 and 9), all the associated rules processing require
either to walk the entire set of triples (example eq-ref from
Table 4 in [15]); or to access the triples by predicate first
(example: eq-sym from the same table). For this reason,
triples are firstly indexed by predicate, then by subject and
finally by object. This provides the best trade-off for near-
optimal indexing for nearly all rules even in the most ex-
pressive OWL fragment.

2.3 Rules Dependency Graph
During the initialization process, Slider creates a list of

dependent buffers for each rule – that is later utilise by the
distributor to send the inferred triples to the correspond-
ing buffers. To implement such functionality, Slider builds
a rules dependency graph. It is a a directed graph, where
edges represent the links (dependency) between the rules
(vertices). For instance, if there is a directed edge between
rule A and B then the output of rule A can be used by rule
B. Figure 2 depicts the dependency graph for ρdf fragment.
The rules (PRP-SPO, PRP-RNG, PRP-DOM) with universal input
accept all kinds of triples. As according to the Figure 2,
the directed edge from rule SCM-SCO to CAX-SCO depicts that
output of first rule, a subclassOf relation can be used as
an input for second rule. This dependency graph is used to
create a list of dependency buffers for each distributor.

PRP-
DOM

CAX-
SCO

PRP-
RNG

PRP-
SPO1

SCM-
SCO

SCM-
DOM2

SCM-
RNG2

SCM-
SPO

Universal Input

Figure 2: Rules dependency graph for ρdf

1https://github.com/google/guava



3. EXPERIMENTATIONS
In this section we describe the experimental details and

comparison analysis of Slider with OWLIM-SE.
OWLIM-SE (Standard Edition) [3] is a semantic reposi-

tory with reasoning features. It was setup to use the default
ρdf and RDFS rulesets along-with the custom rule config-
uration available in OWLIM-SE for ρdf. Therefore, we use
the same ruleset for inference process and it is strictly the
same. As OWLIM-SE does not allows to separately compute
the parsing and inference time, thus in our experiments, for
both systems, the running times include both parsing and
inferencing times.

Our experimental settings use a set of 13 ontologies di-
vided in three categories. The first one contains gener-
ated ontologies, where we use Berlin SPARQL Benchmark
(BSBM) [4] to generate five ontologies from 100,000 to 5
million triples. These ontologies shows Slider ability to han-
dle high rates of data by producing smaller set of inferred
triples during reasoning process.

The second category of ontologies only contains subClas-
sOf relations, where Equation 1 details how a subClassOfn
ontology is generated.

< 1, type, Class >
< i, type, Class >
< i, subClassOf, (i− 1) >

i ∈ {2, 3, . . . , n} (1)

These ontologies are easy to generate but provide the ut-
most practical interest due to their complexity. The chain
of n rules produce O(n2) unique triples, however commonly
used iterative rules schemes produceO(n3) triples [19]. These
ontologies are used to test and compare the Slider ability to
handle duplicates.

The last category of ontologies contains the real-world on-
tologies: a Wikipedia based ontology, and the other based
on WordNet [18].

These ontologies are representative of synthetic data (is-
sued from BSBM benchmark generator tool), extensive clo-
sure computation[11] (chained subsomptions), and ontolo-
gies of practical interest (Wordnet and Wikipedia). This
dataset contains more ontologies and of higher diversity than
previous studies in the field [13, 17], and is publicly available
on the Web using the link provided in this demo.

We ran our benchmark on on a standalone machine under
Linux Ubuntu 12.04, with an AMD processor with 4 1.4GHz
cores, and 16GB RAM.

Table 1 enumerates the ontologies, with the results of the
benchmark. Figure 3 shows the comparison of inference time
between OWLIM-SE and Slider, for both ρdf and RDFS.
The results on BSBM_5M ontology have been omitted in Fig-
ure 3 for the sake of clarity.

These experiments show that Slider on average is 71.47%
faster than OWLIM-SE, with a throughput up to 36,000
Triples/sec. It exhibits an interesting speed-up of 106.86%
for ρdf and 36.08% for RDFS.

We believe that the outcome of our evaluation is very
significant: Slider outperforms OWLIM-SE, a commercial
product that itself outperforms Jena [7] and Sesame [6] na-
tive reasoners.

R
D
F
S

owlimse

slider

5

10

15

20

25

30

35

40

In
fe

re
n
ce

 T
im

e
(i

n
 s

e
co

n
d

s)

ρ
df

5
10
15
20
25
30
35
40
45

BS
BM

_1
00

k

BS
BM

_2
00

k

BS
BM

_5
00

k

BS
BM

_1
M

wik
ip

ed
ia

wor
dn

et

su
bC

la
ss

Of1
0

su
bC

la
ss

Of2
0

su
bC

la
ss

Of5
0

su
bC

la
ss

Of1
00

su
bC

la
ss

Of2
00

su
bC

la
ss

Of5
00

owlimse

slider

In
fe

re
n
ce

 T
im

e
(i

n
 s

e
co

n
d

s)

Figure 3: Inference time comparison between Slider
and OWLIM-SE, on ρdf and RDFS(Lower is better)

ρdf reasoning RDFS reasoning

Ontology Input Inferred OWLIM Slider Gain Inferred OWLIM Slider Gain

BSBM 100k 99914 544 9.907s 4.636s 113.69% 33752 7.487s 4.558s 64.25%

BSBM 200k 200007 1102 13.338s 6.059s 120.12% 64492 11.064s 6.198s 78.52%

BSBM 500k 500037 4347 23.595s 11.133s 111.93% 157831 20.580s 10.984s 87.36%

BSBM 1M 1000000 8664 39.364s 22.357s 76.07% 304065 35.602s 22.192s 60.43%

BSBM 5M 5000000 43212 170.151s 126.292s 34.73% 1449107 160.699s 127.037s 26.50%

wikipedia 458369 191574 18.802s 17.422s 7.92% 555653 17.186s 22.443s -23.42%

wordnet 473589 0 - - - 321888 15.075s 8.828s 70.77%

subClassOf10 20 36 3.507s 1.209s 190.05% 50 1.423s 1.216s 16.99%

subClassOf20 40 171 3.730s 1.316s 183.41% 195 1.536s 1.330s 15.53%

subClassOf50 100 1176 4.159s 1.615s 157.49% 1230 1.865s 1.583s 17.78%

subClassOf100 200 4851 4.397s 1.827s 140.60% 4955 2.242s 1.805s 24.21%

subClassOf200 400 19701 4.962s 2.210s 124.56% 19905 2.837s 2.170s 30.69%

subClassOf500 1000 124251 9.862s 8.102s 21.72% 124755 7.584s 7.625s -0.54%

Average 106.86% Average 36.08%

Table 1: Benchmark results for Slider and OWLIM-SE inference on ρdf and RDFS



Figure 4: Demonstration Web Interface

4. DEMONSTRATION
The demonstration will allow attendees to visualize the

internal behaviour of Slider during the inference. A compre-
hensive web GUI will enable users to edit Slider’s parame-
ters, to choose from a set of 11 ontologies, to interact with
the inference process and to experience how the system ac-
tually performs. It allows the user to edit 24 configurations
of the reasoner, and implement 264 different scenarios. For
each one, we ran the reasoner and logged the state of all the
modules of Slider at each step of the process. This allows the
user, through an inference player, to pause the inference, to
go backwards, and to replay any part of the inference. All
the information on the inference process is presented to the
users, and to provide them with the opportunity to appre-
ciate the effect of each parameter.

Figure 4 is a screenshot of the demonstration. It is fully
accessible at this link:
http://demo-satin.telecom-st-etienne.fr/slider/

The interface of the demonstration is composed of three
sections, corresponding to the three following steps of the
demonstration.
1 Setup: To begin, the users can tune the parameters of
the reasoner. They can choose the ontology among the 11
available ones. Then three additional parameters can be ad-
justed. The fragment (ρdf or RDFS), which defines the set
of rules applied during the inference; the size of the buffers,
which determines how many triples are needed to fire a new
rule execution; and the timeout, which defines after how
long a inactive buffer is forced to flush and throw a rule ex-
ecution. The table Informations, located on the right of the
panel, summarizes essential informations about the ontol-
ogy. The ontologies can be downloaded following the links
provided in this table. The definition of each rule of the
chosen fragment is available on the bottom of the panel 1 .

The rules dependency graph follows this.

2 Run: Once the configuration of the parameters is fin-
ished, users will be able to lunch the inference process. They
will observe the internal modules behaviour during the rea-
soning process. The state of the input parsed, as well as
the buffers and the triple store, are represented by progress
bars. The input is progressively emptied, while the triples
go through the buffers. For each buffer, three counters rep-
resent: i) the number of times it has been full (and so a new
thread has been created), ii) the number of times the buffer
has been forced to flush because of the timeout and iii) the
amount of triples the rule associated to the buffer has in-
ferred. Under the buffers, the thread pool is represented by
the last five executed rules. Finally, on the bottom of the
panel, the triple store is represented with a two-coloured
progress bar, the green part representing the input triples,
coming from the ontology, while the orange part represents
the inferred triples.

To let the user see exactly what happened at every step,
the entire process can be played, paused, accelerated and
slowed down, played step by step, and a slider bar allow to
scroll through each step.

3 Summarize: The last panel summarizes the informa-
tions about the inference: proportion of triples from the
ontology compared with the triples inferred, distribution by
rule of the triples inferred, and number of time each rule
has run are presented in three charts. Miscellaneous infor-
mations on the quality of the inference and the impact of
the parameters on it are shown in the table below. Num-
ber of rules executions, inferred triples, inference time, all
these measures, coupled with the animation, help the user
to evaluate the impact of the different parameters on the
performance and on the behaviour of the reasoner.



5. CONCLUSION AND FUTURE WORK
In the frame of reasoning on evolving data, few proposals

enable to continuously infer new knowledge as new explicit
triple are sent to the reasoner. Most of the solutions limit
the amount of data in the knowledge base by eliminating
former triples.

Instead of firing a full inference at regular interval of time,
we propose Slider, a reasoner that handles triples flows as
the very core of its architecture. The triple store, built with
the vertical partitioning, ensures fast triples retrieval and a
minimal space occupation. To be fragment agnostic, Slider
builds a rules dependency graph of the fragment it reasons
over at initialization time. It then uses this information to
plug the rules together, creating the route of the triples in
the reasoner. This provides a high flexibility in its archi-
tecture. This design is strongly original towards traditional
reasoning scheme like the famous RETE algorithm.

We evaluate Slider against 3 sets of ontologies : a first
set containing generated ontologies, issued by BSBM bench-
mark tools, a second set specific to the worst-case reasoning
on subsumption relationship, and finally real field ontologies.
On all kinds of ontologies Slider significantly outperforms
OWLIM-SE, an industrial-strength reasoner, by a factor of
71,47%.

For our future endeavours, we would like to focus on two
main aspects of Slider. First, we will implement more com-
plex inference rules, in order to implement reasoning over
a more complex fragments. Second, we will implement a
just-in-time optimisation of the rules execution’s schedul-
ing. Therefore, migrating from ’static’ plans produced by
traditional optimizers to the run-time dynamic plans will
improves the Slider ability to adapt and be more reactive –
i.e., learning from ontologies structures and previously exe-
cuted runs.

6. ACKNOWLEDGMENTS
This work is supported by the OpenCloudware project.

OpenCloudware is funded by the French FSN (Fond national
pour la Société Numérique), and is supported by Pôles Mi-
nalogic, Systematic and SCS. We would also like to thank
Syed Gillani for his careful help in proofreading this paper.

7. REFERENCES
[1] D. J. Abadi, A. Marcus, S. R. Madden, and

K. Hollenbach. Scalable Semantic Web Data
Management Using Vertical Partitioning. In PVLDB,
2007.

[2] D. Barbieri, D. Braga, S. Ceri, E. Valle, and
M. Grossniklaus. Incremental Reasoning on Streams
and Rich Background Knowledge. In The Semantic
Web: Research and Applications. 2010.

[3] B. Bishop, A. Kiryakov, D. Ognyanoff, I. Peikov,
Z. Tashev, and R. Velkov. OWLIM: A Family of
Scalable Semantic Repositories. Semantic Web, 2011.

[4] C. Bizer and A. Schultz. The berlin sparql benchmark.
International Journal on Semantic Web and
Information Systems, 2009.

[5] D. Brickley and R. V. Guha. RDF vocabulary
description language 1.0: RDF schema. 2004.

[6] J. Broekstra, A. Kampman, and F. van Harmelen.
Sesame: A Generic Architecture for Storing and
Querying RDF and RDF Schema. In ISWC. 2002.

[7] J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds,
A. Seaborne, and K. Wilkinson. Jena: Implementing
the Semantic Web Recommendations. In WWW, 2004.

[8] B. Cuenca Grau, C. Halaschek-Wiener, and
Y. Kazakov. History Matters: Incremental Ontology
Reasoning Using Modules. In The Semantic Web.
2007.

[9] M. M. Gaber, A. Zaslavsky, and S. Krishnaswamy.
Mining data streams: a review. SIGMOD, 2005.

[10] J. Hoeksema and S. Kotoulas. High-performance
distributed stream reasoning using s4. In ISWC, 2011.

[11] H. Jagadish, R. Agrawal, and L. Ness. A study of
transitive closure as a recursion mechanism. In
SIGMOD, 1987.

[12] Y. Kazakov and P. Klinov. Incremental Reasoning in
OWL EL without Bookkeeping. In ISWC. 2013.

[13] J. Liagouris and M. Terrovitis. Efficient Identification
of Implicit Facts in Incomplete OWL2-EL Knowledge
Bases. PVLDB, 2014.

[14] D. L. McGuinness, F. Van Harmelen, et al. OWL web
ontology language overview. W3C Recommendation,
2004.

[15] B. Motik, B. C. Grau, I. Horrocks, Z. Wu, A. Fokoue,
and C. Lutz. Owl 2 web ontology language: Profiles.
http://www.w3.org/TR/owl2-profiles/, 2009.

[16] S. Munoz, J. Pérez, and C. Gutierrez. Minimal
deductive systems for RDF. In The Semantic Web:
Research and Applications. 2007.

[17] T. Neumann and G. Weikum. The RDF-3X engine for
scalable management of RDF data. VLDB.

[18] V. Snasel, P. Moravec, and J. Pokorny. WordNet
ontology based model for web retrieval. In Web
Information Retrieval and Integration, 2005.

[19] J. Urbani, S. Kotoulas, J. Maassen, F. Van Harmelen,
and H. Bal. OWL reasoning with WebPIE: calculating
the closure of 100 billion triples. In The Semantic
Web: Research and Applications. 2010.

[20] W3C. OWL 2 Language Primer.
http://www.w3.org/TR/owl2-primer/, 2012.


