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Abstract

This paper establishes a remarkable result regarding Palm distribu-
tions for a log Gaussian Cox process: the reduced Palm distribution
for a log Gaussian Cox process is itself a log Gaussian Cox process
which only differs from the original log Gaussian Cox process in the
intensity function. This new result is used to study functional sum-
maries for log Gaussian Cox processes.

Keywords: J-function; joint intensities; Laplace approximation; nearest-
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1 Introduction

Palm distributions (see e.g. Møller and Waagepetersen, 2004; Daley and Vere-
Jones, 2008) are important in the theory and application of spatial point
processes. Intuitively speaking, for a prespecified location in space, the Palm
distribution of a point process, with respect to this location, plays the role
of the conditional distribution of the point process given that the aforemen-
tioned location is occupied by a point in the point process.
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The present paper focuses on log Gaussian Cox processes (Møller et al.,
1998) which provide very flexible, useful, and popular models for modeling
spatial patterns in e.g. biology and spatial epidemiology. The paper estab-
lishes a surprisingly simple characterization of Palm distributions for such
a process: The reduced n-point Palm distribution is for any n ≥ 1 itself a
log Gaussian Cox process that only differs from the original log Gaussian
Cox process in its intensity function. This result can be exploited for func-
tional summaries as discussed later. The simplicity and completeness of this
result is remarkable when compared with Palm distributions for other com-
mon classes of spatial point processes. Reduced Palm distributions for Gibbs
point processes are also themselves Gibbs point processes but with densi-
ties only known up to a normalizing constant. For shot-noise Cox processes
(Møller, 2003) one-point reduced Palm distributions have a simple charac-
terization as cluster processes similar to shot-noise Cox processes but this is
not the case for n-point Palm distributions when n > 1.

The paper is organized as follows. Section 2 reviews the general definition
of reduced Palm distributions of any order and relates this to Cox processes.
Section 3 establishes our characterization result for log Gaussian Cox pro-
cesses. Section 4 applies this result to functional summaries for stationary log
Gaussian Cox processes, in particular the so-called F , G, and J-functions,
where we establish some new theoretical results, consider how to calculate
F , G, and J using Laplace approximations, and discuss an application. Sec-
tion 5 concludes the paper.

2 Palm distributions

Our general setting is as follows. For ease of exposition we view a point
process as a random locally finite subset X of a Borel set S ⊆ Rd; for measure
theoretical details, see e.g. Møller and Waagepetersen (2004) or Daley and
Vere-Jones (2003). Denoting XB = X∩B the restriction of X to a set B ⊆ S,
local finiteness of X means that XB is finite almost surely (a.s.) whenever
B is bounded. We denote N the state space consisting of the locally finite
subsets (or point configurations) of S. We use the generic notation h for an
arbitrary non-negative measurable function defined on N , Sn, or Sn×N for
n = 1, 2, . . .. Furthermore, B0 is the family of all bounded Borel subsets of
S. Finally, recall that the void probabilities P(XK = ∅), K ⊆ S compact,
uniquely determine the distribution of X.
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2.1 Factorial moment measures and Palm distributions

This section provides the general definition of reduced Palm distributions of
any order. For finite point processes specified by a density, a simpler and
more explicit definition is available as reviewed in Coeurjolly et al. (2015).

For n = 1, 2, . . . and Bi ∈ B0, the nth order factorial moment measure
α(n) is defined by

α(n)(B1 ×B2 × · · · ×Bn) = E

6=∑
x1,...,xn∈X

1(x1 ∈ B1, . . . , xn ∈ Bn),

where 1(·) denotes the indicator function and 6= over the summation sign
means that x1, . . . , xn are pairwise distinct. If α(n) has a density ρ(n) with re-
spect to Lebesgue measure, ρ(n) is called the nth order joint intensity function
and is determined up to a Lebesgue nullset. Therefore, we can assume that
ρ(n)(x1, . . . , xn) is invariant under permutations of x1, . . . , xn, and we need
only to consider the case where x1, . . . , xn ∈ S are pairwise distinct. Then
ρ(n)(x1, . . . , xn) dx1 · · · dxn can be interpreted as the approximate probability
for X having a point in each of infinitesimally small regions around x1, . . . , xn
of volumes dx1, . . . dxn, respectively.

Moreover, for any measurable F ⊆ N , define the nth order reduced
Campbell measure C(n)! as the measure on Sn ×N given by

C(n)!(B1 ×B2 × · · · ×Bn × F ) =

E

6=∑
x1,...,xn∈X

1(x1 ∈ B1, . . . , xn ∈ Bn,X \ {x1, . . . , xn} ∈ F ).

Note that C(n)!(· × F ), as a measure on Sn, is absolutely continuous with
respect to α(n), with a density P !

x1,...,xn
(F ) which is determined up to an α(n)

nullset, and so we can assume that P !
x1,...,xn

(·) is a point process distribution
on N , called the nth order reduced Palm distribution given x1, . . . , xn. We
denote by X!

x1,...,xn
a point process distributed according to P !

x1,...,xn
. Again

we need only to consider the case where x1, . . . , xn are pairwise distinct. Then
P !
x1,...,xn

can be interpreted as the conditional distribution of X\{x1, . . . , xn}
given that x1, . . . , xn ∈ X.
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If ρ(n) exists, then by standard measure theoretical arguments we obtain

E

6=∑
x1,...,xn∈X

h(x1, . . . , xn,X \ {x1, . . . , xn})

=

∫
S

· · ·
∫
S

Eh(x1, . . . , xn,X
!
x1,...,xn

)ρ(n)(x1, . . . , xn) dx1 · · · dxn. (1)

Suppose ρ(m+n) exists for an m ≥ 1 and n ≥ 1. Then, for pairwise distinct
u1, . . . , um, x1, . . . , xn ∈ S, it follows easily by expressing α(m+n) as an expec-
tation of the form (1) that X!

x1,...,xn
has mth order joint intensity function

ρ(m)
x1,...,xn

(u1, . . . , um) =

{
ρ(m+n)(u1,...,um,x1,...,xn)

ρ(n)(x1,...,xn)
if ρ(n)(x1, . . . , xn) > 0,

0 otherwise.
(2)

2.2 Cox processes

Let Λ = {Λ(x)}x∈S be a nonnegative random field such that Λ is locally
integrable a.s., that is, for any B ∈ B0, the integral

∫
B

Λ(x) dx exists and
is finite a.s. In the sequel, X conditional on Λ is assumed to be a Poisson
process with intensity function Λ; we say that X is a Cox process driven
by Λ. We also assume that Λ has moments of any order n = 1, 2, . . .. Then
the joint intensities of X exist: For any n = 1, 2, . . . and pairwise distinct
x1, . . . , xn ∈ S,

ρ(n)(x1, . . . , xn) = E

{
n∏
i=1

Λ(xi)

}
. (3)

The following lemma, which is verified in Appendix A, gives a character-
ization of the reduced Palm distributions and their void probabilities.

Lemma 1. Let X be a Cox process satisfying the conditions above. Then,
for any n = 1, 2, . . ., pairwise distinct x1, . . . , xn ∈ S, and compact K ⊆ S,

ρ(n)(x1, . . . , xn)E
{
h
(
x1, . . . , xn,X

!
x1,...,xn

)}
= E

{
h(x1, . . . , xn,X)

n∏
i=1

Λ(xi)

}
(4)

and

ρ(n)(x1, . . . , xn)P(X!
x1,...,xn

∩K = ∅) = E

[
exp

{
−
∫
K

Λ(u) du

} n∏
i=1

Λ(xi)

]
.

(5)
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3 Reduced Palm distributions for log Gaus-

sian Cox processes

For the remainder of this paper, let X be a Cox process driven by Λ =
{Λ(x)}x∈S, where Λ(x) = exp{Y (x)} and Y = {Y (x)}x∈S is a Gaussian
process with mean function µ and covariance function c so that Λ is locally
integrable a.s. (simple conditions ensuring this are given in Møller et al.,
1998). Then X is a log Gaussian Cox process (LGCP) as introduced by
Coles and Jones (1991) in astronomy and independently by Møller et al.
(1998) in statistics.

For x, y ∈ S, define the so-called pair correlation function by

g(x, y) =

{
ρ(2)(x, y)/{ρ(x)ρ(y)} if x 6= y
exp{c(x, x)} if x = y

taking 0/0 = 0 in the case x 6= y. By Møller et al. (1998, Theorem 1),

ρ(x) = exp{µ(x) + c(x, x)/2}, g(x, y) = exp{c(x, y)}, (6)

and for pairwise distinct x1, . . . , xn ∈ S,

ρ(n)(x1, . . . , xn) =

{
n∏
i=1

ρ(xi)

}{ ∏
1≤i<j≤n

g(xi, xj)

}
(7)

is strictly positive.
For u, x1, . . . , xn ∈ S, define

µx1,...,xn(u) = µ(u) +
n∑
i=1

c(u, xi).

Combining (2) and (6)-(7), we obtain for any pairwise distinct
u1, . . . , um, x1, . . . , xn ∈ S with m > 0 and n > 0,

ρ(m)
x1,...,xn

(u1, . . . , um) =

{
m∏
i=1

ρx1,...,xn(ui)

}{ ∏
1≤i<j≤m

g(ui, uj)

}
, (8)

where
ρ(m)
x1,...,xn

(u1, . . . , um) = exp {µx1,...,xn(u) + c(u, u)/2} .
Thereby the following proposition follows.
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Proposition 1. For the LGCP X and any pairwise distinct x1, . . . , xn ∈
S, X!

x1,...,xn
has m’th order joint intensity (8) which agrees with the m’th

order joint intensity function for an LGCP with mean function µx1,...,xn and
covariance function c for the underlying Gaussian process.

Proposition 1 indicates that also X!
x1,...,xn

could be an LGCP. A sufficient
condition, considered by Macchi (1975), is the existence of a number a =
a(B) > 1 for each set B ∈ B0 such that

E

[
exp

{
a

∫
B

Λ(u) du

}]
<∞. (9)

However, we have not been successful in verifying this condition which seems
too strong to hold for any of the covariance function models we have con-
sidered, including when c is constant (then X is a mixed Poisson process)
or weaker cases of correlation, e.g. if c is a stationary exponential covariance
function. The case where c is constant is closely related to the log normal
distribution which is not uniquely determined by its moments (Heyde, 1963).

Accordingly we use instead Lemma 1 when establishing the following
theorem, which implies that the LGCPs X and X!

x1,...,xn
share the same pair

correlation function and differ only in their intensity functions.

Theorem 1. For pairwise distinct x1, . . . , xn ∈ S, X!
x1,...,xn

is an LGCP
with underlying Gaussian process Yx1,...,xn where Yx1,...,xn has mean function
µx1,...,xn and covariance function c.

Let Ỹ = Y − µ be the centered Gaussian process with covariance func-
tion c. Theorem 1 is a consequence of the fact that Yx1,...,xn is absolutely con-

tinuous with respect to Ỹ, with density exp
{∑n

i=1 ỹ(xi)−
∑n

i,j=1 c(xi, xj)/2
}

when ỹ is a realization of Ỹ. This result is related to the Cameron-Martin-
Girsanov formula for one-dimensional Gaussian processes. A short selfcon-
tained proof covering our spatial setting is given in Appendix A.

Often we consider a non-negative covariance function c or equivalently
g ≥ 1, which is interpreted as ‘attractiveness of the LGCP at all ranges’, but
even more can be said: A coupling between X and X!

x1,...,xn
is obtained by

taking Yx1,...,xn(x) = Y (x) +
∑n

i=1 c(x, xi). Thus, if c ≥ 0 and we are given
pairwise distinct points x1, . . . , xn ∈ S, we can consider X as being included
in X!

x1,...,xn
, since X can be obtained by an independent thinning of X!

x1,...,xn
,

with inclusion probabilities exp{−
∑n

i=1 c(x, xi)}, x ∈ X \{x1, . . . , xn}. This
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property clearly shows the attractiveness of the LGCP if c ≥ 0 (equivalently
g ≥ 1).

4 Functional summary statistics for station-

ary log Gaussian Cox processes

Throughout this section, let S = Rd and assume that the LGCP X is station-
ary, i.e., its distribution is invariant under translations in Rd. By (6)-(7), this
is equivalent to stationarity of the underlying Gaussian process Y, that is,
the intensity ρ is constant and the pair correlation function g(x, y) = g̃(x−y)
is translation invariant, where x, y ∈ Rd, g̃(x) = exp{c̃(x)}, c̃(x) = c(o, x),
and where o denotes the origin in Rd. It is custom to call P!

o the reduced
Palm distribution at a typical point, noticing that for any x ∈ Rd, X!

o and
X!
x − x = {y − x : y ∈ X!

x} are identically distributed.
Denote B(o, r) the ball in Rd of radius r > 0 and centered at o. Popular

tools for exploratory purposes as well as model fitting and model checking are
based on the following functional summaries: The pair correlation function
g̃(x), usually provided it depends only on the distance ‖x‖, and the related
Ripley’s K-function given by

K(r) =
1

ρ
E #

{
X!
o ∩B(o, r)

}
=

∫
B(o,r)

g̃(x) dx,

so ρK(r) is the expected number of r-close points to a typical point in X;
the empty space function

F (r) = P {X ∩B(o, r) 6= ∅} ,

i.e., the probability of X having a point in a ball placed at an arbitrary fixed
location; the nearest-neighbour distribution function

G(r) = P
{
X!
o ∩B(o, r) 6= ∅

}
,

which is the probability of having an r-close point to a typical point in X;
and the J-function

J(r) =
1−G(r)

1− F (r)
,
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with the convention a/0 = 0 for any a ≥ 0; see e.g. Møller and Waagepetersen
(2004). Section 4.1 establishes some new results for these theoretical func-
tions and Section 4.2 discusses how they can be calculated using a Laplace
approximation. Section 4.3 illustrates this calculation and Section 4.4 dis-
cusses an application for a real dataset.

4.1 New formulae

By conditioning on Y, we see that

1− F (r) = E

(
exp

[
−
∫
B(o,r)

exp{Y (x)} dx

])
. (10)

Using the Slivnyak-Mecke formula, Møller et al. (1998) showed that

1−G(r) =
1

ρ
E

(
exp

[
Y (o)−

∫
B(o,r)

exp{Y (x)} dx

])
. (11)

Since the nearest-neighbour distribution function for X is the same as the
empty space function for X!

o, which is an LGCP with underlying Gaussian
process Yo(x) = Y (x) + c̃(x), and since g̃(x) = exp{c̃(x)}, we obtain an
alternative expression

1−G(r) = E

(
exp

[
−
∫
B(o,r)

g̃(x) exp{Y (x)} dx

])
. (12)

Therefore, we also obtain a new expression for the J-function,

J(r) =
E
(

exp
[
−
∫
B(o,r)

g̃(x) exp{Y (x)} dx
])

E
(

exp
[
−
∫
B(o,r)

exp{Y (x)} dx
]) . (13)

Van Lieshout (2011) established for a general stationary point process
the approximation J(r) − 1 ≈ −ρ{K(r) − ωdr

d}, where ωd = |B(o, 1)| is
Ripley’s K-function for a stationary Poisson process, and it is therefore not so
surprising that often empirical J and K-functions lead to the same practical
interpretations. In particular, if for our LGCP c̃ ≥ 0, i.e. g̃ ≥ 1, then we
have K(r)−ωdrd ≥ 0, and so we expect that J(r) ≤ 1. Indeed Van Lieshout
(2011) verified this in the case of a stationary LGCP with g̃ ≥ 1. This result
immediately follows by the new expression (13).
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4.2 Laplace approximation

This section discusses a Laplace approximation of 1 − G(r); the Laplace
approximation of 1− F (r) is similar.

For ∆ > 0, define G(∆) = {(∆i1, . . . ,∆id) | i1, . . . , id ∈ Z} as the grid
of quadrature points. Further, for v ∈ G(∆), let A∆

v = [v1 − ∆/2, v1 +
∆/2[× · · · × [vd −∆/2, vd + ∆/2[ be the grid cell associated with v. For any
non-negative Borel function ` : Rd → R, we use the approximation∫

B(o,r)

exp{Y (x)}`(x) dx ≈
∑

v∈G(∆)∩B(o,r)

wv`(v) exp{Y (v)}, (14)

where the quadrature weight wv = |A∆
v ∩B(o, r)|.

Denote by M and Σ the mean vector and the covariance matrix of the
normally distributed vector {Y (v)}v∈G(∆)∩B(o,r). Then (12) and (14) give

1−G(r) ≈
∫

exp{h(y)} dy (15)

where y is the vector (yv)v∈G(∆)∩B(o,r) of dimension m = #{G(∆) ∩ B(o, r)}
and

h(y) = −
∑
v

wvg̃(v) exp(yv)−
1

2
(y −M)>Σ−1(y −M)− 1

2
log{(2π)m|Σ|}.

The gradient vector for h is

∇h(y) = −d(y)− Σ−1(y −M), (16)

where d(y) = {wvg̃(v) exp(yv)}v∈G(∆)∩B(o,r), and the negated Hessian matrix
for h is

H(y) = D(y) + Σ−1,

where D(y) = diag{d(y)v, v ∈ G(∆) ∩ B(o, r)}. Since H(y) is a positive
definite matrix, h has a unique maximum ŷ which can be found using Newton-
Raphson iterations

y(l+1) = y(l) +H−1{y(l)}∇h{y(l)}. (17)
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Therefore, the logarithm of the Laplace approximation of the right hand side
in (15) (see e.g. Stigler (1986)) gives

log{1−G(r)} ≈ −
∑

v∈G(∆)∩B(o,r)

wvg̃(v) exp(ŷv) +
1

2
(ŷ −M)>d(ŷ)

− 1

2
log |D(ŷ)Σ + I|. (18)

where I is the m×m identity matrix. For the computation of Σ−1(y −M)
in (16) we solve LL>z = y −M where L is the Cholesky factor of Σ. In
the same way, considering the QR decomposition of the matrix D(y)Σ +
I, the computation of H−(1){y(l)}∇h{y(l)} in (17) is done by first solving
Q{y(l)}R{y(l)}z̃ = ∇h{y(l)} and second by evaluating Σz̃. Finally, in (18),
|D(ŷ)Σ + I| = |R(ŷ)|.

4.3 Numerical illustration

To illustrate the Laplace approximations of the G and J-functions (Sec-
tion 4.2) we consider three planar stationary LGCPs with intensity ρ = 50
and spherical covariance function

c̃(x) =

 σ2

[
1− 2

π

{
‖x‖
α

√
1−

(
‖x‖
α

)2

+ sin−1 ‖x‖
α

}]
if ‖x‖ ≤ α,

0 otherwise,

with variance σ2 = 4 and scale parameters α = 0.1, 0.2, 0.3, respectively.
We evaluate the approximations of G(r) and J(r) at r ∈ R, where R is a
regular grid of 50 values between 0.01 and 0.25. For r ∈ R, we define the
grid G(∆r) with ∆r = 2r/q, where q is a fixed integer. Such a choice implies
that #{G(∆r) ∩ [−r, r]2} = q2, and so we have at least q2π/4 quadrature
points in B(o, r). For a given q, denote by Gq, Fq, and Jq the corresponding
Laplace approximations of G, F , and J , respectively. Figure 1 shows the
resulting curves with q = 16. To see how far these Cox processes deviate
from the Poisson case (which would correspond to σ2 = 0), we also plot the
G-function in the Poisson case, namely 1−G(r) = exp(−ρπr2). To study the
role of q, we report in Table 1 the maximal differences maxr∈R |G16(r)−Gq(r)|
and maxr∈R |J16(r) − Jq(r)| for q = 4, 8, 12. As expected, each difference is
decreasing with q and is already very small for q = 12 (less than 4 × 10−3
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Figure 1: For three planar stationary LGCPs with intensity ρ = 50 and c̃
given by a spherical covariance function, with variance σ2 = 4 and scale
parameters α = 0.1, 0.2, 0.3, respectively, Laplace approximations of the G-
function (left) and the J-function (right).

except for the J-function and α = 1). This justifies our choice q = 16 in
Figure 1.

maxr∈R |H16(r)−Hq(r)|, H = G, J
q = 4 q = 8 q = 12

α = 0.1, G 59.9 8.4 2.1
J 505.9 96.1 20.5

α = 0.2, G 14.3 1.6 0.5
J 109.0 13.8 3.5

α = 0.3, G 4.2 0.5 0.1
J 22.1 3.1 0.3

Table 1: For the same three LGCPs as in Figure 1, maximal differences
between the Laplace approximations Gq and G16, and between the Laplace
approximations Jq and J16, with q = 4, 8, 12. Results are multiplied by 103.

The Laplace approximation of the G-function could also be derived using
the classical formula (11). To check the agreement of the numerical ap-
proximations based on equations (11) and (12), Table 2 shows the maximal
difference between the two approximations of the G-function respective the
J-function. In agreement with the theoretical developments, in both cases,
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the difference does not exceed 4× 10−4 when q = 16.

q = 4 q = 8 q = 12 q = 16
α = 0.1, G 3.8 8.4 4.4 3.2

J 15 8.5 6.1 3.9
α = 0.2, G 4.7 3.1 3.9 1.5

J 4.7 3.1 2.1 1.7
α = 0.3, G 0.1 1.9 1.4 1.1

J 0.2 2.0 1.5 1.3

Table 2: For the same three LGCPs as in Figure 1, maximal differences
between the Laplace approximations of the G-function based on (11) respec-
tive (12), with q = 4, 8, 12, 16, and similarly for the J-function. Results are
multiplied by 104.

4.4 Scots pine saplings dataset

The left panel in Figure 2 shows the locations of 126 Scots pine saplings in
a 10 by 10 metre square. The dataset is included in the R package spatstat

as finpines, and it has previously been analyzed by Penttinen et al. (1992),
Stoyan and Stoyan (1994), and Møller et al. (1998). The first two papers
fitted a Matérn cluster process, using the K-function (or its equivalent L-
function) and its nonparametric estimate both for parameter estimation and
model checking, while the third paper considered an LGCP with exponential
covariance function and used the pair correlation function for parameter es-
timation and the F and G-functions for model checking. Møller et al. (1998)
concluded that both models provide a reasonable fit although when also in-
cluding a third-order functional summary (i.e. one based on X!

o,x) the LGCP
model showed a better fit. Below we supplement this analysis by using the
J-function and the approximation established in Section 4.2.

We fitted both models by minimum contrast estimation (method kppm in
spatstat) which compares a non-parametric estimate of the K-function with
its theoretical value. When approximating the J-function for the LGCP, we
used q = 12; no improvements were noticed with higher values of q. The
right panel in Figure 2 shows the theoretical J-functions for the two fitted
models together with a non-parametric estimate of the J-function, consid-
ering 50 distances (r-values) on a regular grid between 0 and 0.9 metre (for
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the exact expression of the J-function for the Matérn cluster process, see e.g.
Møller and Waagepetersen, 2004). Clearly, the fitted LGCP provides a bet-
ter fit than the fitted Matérn cluster process. Indeed, the maximal difference
between the non-parametric estimate and the theoretical J-function equals
0.43 for the Matérn cluster model and 0.20 for the LGCP model.
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Figure 2: Left panel: Locations of 126 Scots pine saplings in a 10 by 10
metre square. Right panel: Non-parametric estimate of the J-function (solid
curve) and fitted J-functions for the Matérn cluster process (dashed curve)
and the LGCP with exponential covariance function (dotted curve).

5 Concluding remarks

We expect that our results for the reduced Palm distributions for an LGCP
can be exploited further regarding third-order and higher order functional
summaries (one such characteristic was briefly mentioned in Section 4.4),
parameter estimation procedures, model checking, etc. For example, for
any point process, the pair correlation function (when it exists) is invariant
under independent thinning; could this property be exploited in connection
to LGCPs where we know how the pair correlation function is related to
those of the reduced Palm distributions?
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A Proofs

Proof of Lemma 1: By conditioning on Λ, (1) becomes

EE

{ 6=∑
x1,...,xn∈X

h(x1, . . . , xn,X \ {x1, . . . , xn})
∣∣∣∣Λ
}

= EE

{∫
S

· · ·
∫
S

h(x1, . . . , xn,X)
n∏
i=1

Λ(xi) dx1 · · · dxn

∣∣∣∣Λ
}

(19)

=

∫
S

· · ·
∫
S

E

{
h(x1, . . . , xn,X)

n∏
i=1

Λ(xi)

}
dx1 · · · dxn. (20)

Here, in (19) we use that X given Λ is a Poisson process and apply the
extended Slivnyak-Mecke theorem (Møller and Waagepetersen, 2004), and
in (20) we use Fubini’s theorem. Combining (1) and (20), we deduce (4).
Finally, (5) follows from (4) with h(x1, . . . , xn,x) = 1[x ∩K = ∅].

Proof of Theorem 1: By (5) and (6)-(7), we just have to show that for any
compact K ⊆ S and pairwise distinct points x1, . . . , xn ∈ S,

E exp

[
−
∫
K

exp
{
Ỹ (u) + µx1,...,xn(u)

}
du

]
= E exp

[
n∑
i=1

Ỹ (xi)−
n∑

i,j=1

c(xi, xj)/2−
∫
K

exp
{
µ(u) + Ỹ (u)

}
du

]
.

This follows by showing that the distribution of {Ỹ (u) +
∑n

i=1 c(u, xi)}u∈S
is absolutely continuous with respect to the distribution of Ỹ = {Ỹ (u)}u∈S,

14



with density exp
{∑n

i=1 ỹ(xi)−
∑n

i,j=1 c(xi, xj)/2
}

when ỹ is a realization

of Ỹ. Since the distribution of a random field is determined by its finite
dimensional distributions, we just need to verify the agreement of the char-
acteristic functions of the probability measures Q1 and Q2 given by

Q1(B) = P

(
{Ỹ (u) +

n∑
i=1

c(u, xi))}u∈U ∈ B

)
and

Q2(B) = E

(
1
[
{Ỹ (u)}u∈U ∈ B

]
exp

{
n∑
i=1

Ỹ (xi)−
n∑

i,j=1

c(xi, xj)/2

})
,

for any Borel set B ⊆ Rn+m, any pairwise distinct locations u1, . . . , um ∈
Rd \ {x1, . . . , xn}, with m > 0 and U = {x1, . . . , xn, u1, . . . , um}. Let Σ =
{c(u, v)}u,v∈U denote the covariance matrix of {Ỹ (u)}u∈U , and let cx1,...,xn =
{
∑n

i=1 c(u, xi)}u∈U = Σe, where e consists of n 1’s followed by m 0’s. For
t ∈ Rn+m, the characteristic function of Q2 is (with i2 = −1)

E exp
[
i{Ỹ (u)}Tu∈It+ {Ỹ (u)}Tu∈Ie+ eTΣe/2

]
= exp

(
eTΣe/2

)
E exp

[
i{Ỹ (u)}Tu∈I(t− ie)

]
= exp

(
eTΣe/2 + ieTΣt− tTΣt/2− eTΣe/2

)
= exp

(
ieTΣt− tTΣt/2

)
.

The last expression is the characteristic function of Q1 which concludes the
proof. For the second last equality in the above derivation we considered
{Ỹ (u)}u∈U as a complex Gaussian vector and used the expression for its
characteristic function.
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