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Abstract—This paper addresses the issue of low-power posture
and gesture recognition in indoor or outdoor environments
without any additional equipment. For applications based on
predefined postures such as environment control and physical
rehabilitation, we show that low cost and fully distributed
solutions, that minimize radio communications, can be efficiently
implemented. Considering that radio links provide distance infor-
mation, we also demonstrate that the matrix of estimated inter-
node distances offers complementary information that allows for
the reduction of communication load. Our results are based
on a simulator that can handle various measured input data,
different algorithms and various noise models. Simulation results
are useful and used for the development of real-life prototype.

I. INTRODUCTION

Numerous applications in domains such as healthcare and
sports rely on Wireless Body Sensor Networks (WBSN).
When inertial sensors from inertial measurement unit (IMU)
are considered, posture and gesture recognitions can be imple-
mented but the power consumption is a key issue that limits
usage and autonomy. The system in [1] is for instance widely
used for motion capture based on IMU. Although it offers
good performance, it last few hours and the computation of
the associated avatar orientation is performed on a remote PC,
which means that this solution is not compliant with outdoor
and autonomous activities such as sport training (i), envi-
ronment remote control (ii), physical therapy exercices (iii)
or working gestures analysis (iv). Another solution proposed
in [2] for motion capture uses IMU and acoustic measures
to provide distances information. Data are collected and post-
processed, but this does not last few hours either. Autonomy
of the system is a still a real challenge, which means an ultra-
low power implementation of computation within a wearable
system without the need of any remote device.

The main source of energy consumption of WBSN is
the radio transceiver. This can be highlighted by a simple
comparison between the energy cost per bit for a wireless
transceiver and the energy cost of a computing operation. The
energy to transmit one bit on a Zigbee Transceiver corresponds
to about 100 to 1000 32-bit Multiply and Accumulate (MAC)
operations on a Cortex M3 processor [3] [4]. This clearly
shows that the best way to increase the lifetime of a node is to
reduce the number of data to be sent by means of increasing
the complexity of local processing.

The objective is this work is the design of an autonomous
WBSN for posture and gestures recognition. Our approach first

relies on local and distributed computing to minimise commu-
nications and provide a wearable solution. Power optimisation
is also based on the appropriate selection of algorithms and
sensors that meet application requirements while minimising
operation and data transfers. Finally we consider two case
studies that match with the four application domain previously
cited (i-iv). The first one is the recognition of a posture
among a set of predefined postures and the second one is the
recognition of a gesture previously learned.

With the aim to reach an energy-autonomous system, we
have tested different strategies and algorithms. Ideally algo-
rithms should be tested with real measured data, however it
is not always possible to set a new experiment for each case.
So we developed our own simulator based on Matlab. This
framework allows to use measured data or to generate sensor
data with captured motion data files and noise models, and
then to apply algorithms and to give feedback with statistics
and performance results.

In order to reach the autonomy objective (low power and
wearable computing), we use low-power MEMS and take
full advantage of redundancy and of existing radio commu-
nications that provide information on postures as well. This
strategy leads to a solution that combines local computation
and a posture classification based on a Principal Component
Analysis (PCA) and the Nearest Centroid Classifier (NCC).
This is tested for a set of postures considering different
combinations of sensor inputs to compare performance. The
proposed method for gesture recognition is constructed by
extension of the posture case considering a gesture as a
sequence of postures. We both tested a slow and a fast gesture.
Results show the possibility/necessity to adapt the pace of the
system to the motion considered.

The paper is organised as follows. Section II presents the
two application case studies. Section III presents the algo-
rithms for calculation and classification and the way they were
designed for this study. Section IV presents the simulation
framework used to test the algorithms before presenting the
results in Section V.

II. CASE STUDY: POSTURE AND GESTURE RECOGNITION

A. Posture Recognition

A posture is a particular position of the human body, which
can provide a significant amount of important information on



nonverbal communication or embodied emotions. As exam-
ples, postures can signal both the enduring characteristics of
a person and his current emotions and attitudes. In this study
we consider posture analysis and recognition with data issued
from a WBSN composed of set of nodes distributed on the
human body. We consider a set of 12 arm postures, which can
for example be used for home automation control.The idea is
that postures are based on a combination of a set of angles
between joints. For this study, postures have been captured
in a BVH file using the Xsens/MVN system [1]. From these
captured data, orientation of nodes are computed and used to
build the library of reference postures. A second dataset is
constructed by adding a variable error to ideal orientations
of nodes. This emulates the situation when the user does not
exactly replicate the expected orientations of arms and will be
used to test the tolerance of algorithms to data variability. This
orientation error has been modeled by an Additional White
Gaussian Noise (AWGN) on each axis of the Euler angles
of orientation. Although it is a very general and simple error
model, it is relevant to model experiments in real conditions.
Moreover, specific noise models can be easily added for each
node orientation, for specific result validations.

B. Gesture Recognition

A gesture can be defined as a movement of part of the
body.The aim of gesture recognition is to interpret human
gestures via mathematical algorithms and to enable humans to
communicate with the machine and interact naturally without
any mechanical devices. Gesture recognition is so performed
as an extension of the static posture case. A gesture is therefore
divided into several postures and the recognition of successive
postures from a library validates the gesture.

For this case study, two gestures were tested. The first one
is a quick kick coming from a capoeira movement and is
depicted in Fig. 2. The second is a slow gesture generated
from the sequence of the transition between postures number
3, 11 and 6 of the static case depicted in Fig. 1. It corresponds
to a movement that can be used in functional rehabilitation
applications.

Figure 1: Posture of arms chosen for recognition.

Figure 2: Frames extracted from the capoeira move.

III. RADIO-AIDED POSTURE RECOGNITION

Figure 3 presents the principle of our WBSN, a node is
composed of sensors, computing and radio-communication
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Figure 3: WBSN for posture/gesture recognition.

resources. Each node can communicate with other nodes and
a central device (typically a smartphone) linked to a local
network.

Considering the power consumption of radio communica-
tion order of magnitude larger than processing operations (1
transmitted bit corresponds to the energy of 100-1000 MAC
operations), our objective is to implement posture/gesture
recognition by means of distributed computing so that ra-
dio communication energy can be drastically reduced. We
identified the Principal Component Analysis (PCA) as good
candidate to efficiently implement such a classification. Firstly
it is a linear method that allows to reduce the minimal vector
basis to compute posture coordinates, secondly each node
can compute its local contribution to the complete projection.
Finally a central node gathers all contributions and computes
the Nearest Centroid Classifier (NCC) to select the best posture
among the remaining candidates.

PCA is a generic method that can use different hetero-
geneous data. Our objective is to use low-cost and low
power IMU sensors (accelerometer, magnetometer, gyroscope,
anemometer). These sensors require additional signal pro-
cessing to deliver relevant data. We have tested different
configurations and, more importantly, we have also considered
the signal strength matrix – radio signal power from node
i to node j, which are freely available data in the context
of a WBAN – that can be used to improve the robustness
of the IMU-based classification. An accelerometer is very
low power component (10µW) that can be used permanently,
it can also be used for movement detection. In this project
we consider different combinations including accelerometer,
magnetometer, radio and gyroscope, these data can be used
as raw values or after a local computing. In the next sections
we first present the node-orientation computation in both static
and dynamic cases, then we give details about the classification
algorithm.



A. Orientation Calculation

1) Static case (postures): vector reduction: In the static
case, accelerometer and magnetometer provide a minimum set-
up to compute orientation of nodes. There are several methods
to compute this orientation. Here, since the posture is static,
a computation can be performed with a simple algorithm.
Moreover, we consider that for each node the data update
is done only if the node is really static. It ensures that data
transmitted are reduced to new relevant information and it also
allows to compute orientation being sure of the input stability.

The principle of the computation is to use environmental
information. An accelerometer measures gravity so the down
direction and the magnetometer measures earth magnetic field
that hold north direction. These two vectors can be used to
compute unit vectors of body frame.

~uz = − ~acc/|| ~acc|| (1)
~Ux = − ~mag − ~uz( ~uz · ~mag) (2)

~ux = ~Ux/|| ~Ux|| (3)
~uy = ~uz × ~ux (4)

Equations (1) to (4) show a simple way to compute unit vectors
of the body frame in static case. ~acc and ~mag are vectors
measured by accelerometer and magnetometer and ~ux, ~uy, ~uz

are unit vectors of body frame. These vectors form the rotation
matrix and so orientation of node.

2) Dynamic case (gestures): Kalman filtering: In dynamic
conditions, real time orientation is needed. A tracking has to
be done using appropriate algorithms that take advantage of
gyroscope measurement. The point is that, in the dynamic
case, accelerometer does not only measure gravity but also
linear acceleration. Magnetometer is not affected but is not
enough to compensate for this error. Gyroscope then helps
to track orientation during motion while accelerometer and
magnetometer correct orientation during static phase. In our
case this data fusion is done by an Extended Kalman Filter
(EKF). Several kinds of EKF already exist for orientation
estimation. Our EKF is based on [5] version that is gyro-free.
Considering the power consumption of a gyroscope, which
is two orders of magnitude larger than the accelerometer, it is
important to make a sparse use of it. That is why we implement
two versions of the filters: with and without gyroscope inputs.

B. Classification

Classification is performed in two steps. The first step is a
dimension reduction, similar to a data fusion. The choice of
PCA is due to its simplicity in terms of computation. Moreover
the linearity of this method allows to distribute computation
over all nodes of the WBSN. An important parameter of PCA
is the number of eigenvalues considered. Each eigenvalue
contains a part of whole information. Then by accepting
an information degradation, the number of dimensions kept
can be reduced. As power optimization is a key factor, the
number of eigenvalues must be minimized to reduce local
memory size and the amont of data to transmit with wireless
communications.

The second step is the classification by a Nearest Centroid
Classifier (NCC). For each reference posture, the projection
resulted from PCA is the center of this class. Then, for any
posture tested, the distances between the projection and class
centers are computed and the nearest one is chosen.

IV. SIMULATION FRAMEWORK

The objective of this work is the development of pos-
ture/gesture recognition algorithms based on inertial sensor
and radio measurements. However, for the development and
the validation of the algorithms, a direct implementation in
a hardware prototype is a difficult and error prone task and
it was therefore necessary to build a specific simulator. Fig.
1 presents the principle of the developed simulator and the
different parts of the simulation framework are detailed in the
following sections.

Figure 4: Principle of the developed simulator.

A. Input data generation

In the study, we considered two types of data to be
processed: data issued from an Inertial Measurement Unit
(IMU), i.e., accelerometer, magnetometer and gyroscope, and
Euclidean distances between nodes of the WBSN obtained
from radio received signal strength measurements.

The simulator uses standard BVH files that contain motions
of an avatar to generate these IMU and radio data. The captures
of the avatar movements can be performed using a motion
capture system such as Xsens/MVN [1] or Vicon [6] – in the
following experiments we used Xsens/MVN. From the BVH
file, the position and orientation of each joint of the avatar can
be computed for each frame and it is then possible to compute
ideal values of IMU sensors as if they were located on any
segment of the avatar. The same is true for the real distances
between any couple of nodes on the avatar, which can also be
directly computed. Then for each IMU axis, an error compliant
with different noise models is added to generate realistic but
synthetic measurements. Concerning the synthesis of realistic
radio signals compliant with scenarios, if Received Signal
Strength Indication (RSSI) method is chosen, the received
radio signal power P in [dB] at distance d from the transmitter
is defined as P = P0 + n log (d0/d) where n is the loss
exponent and P0 the reference power at distance d0. Then,
combined with appropriate channel and noise model [7] [8],
realistic distance measurement data can be generated. With
this method, any scenario stored in a BVH file can be used to
generate data from sensors and radio signal.



B. Data computation

During simulation, all the WBSN nodes are updated at each
simulation step and the algorithms are executed using gener-
ated sensor and radio data for each node. The simulation step is
driven by the data originally captured with a given acquisition
rate (e.g. 30Hz for the movement in Fig. 2). Depending
on the scenario, adequate algorithms can be tested together
with variations of some parameters to explore solutions with
different trade-offs in communication and computation load.

C. Performance analysis

Different performance metrics are calculated during simu-
lation and are summarised in a log file. In case of posture
and gesture recognition, the simulator computes a success
metric, which is the number of correct matches for all runs
(1000 runs in the following experiments). Due to the fact that
scenario data are known, we can easily compare results with
original data. Not only postures but also intermediate data
as orientation of nodes can be compared. It is then easier to
identify which part of the algorithm process is accurate, or if
particular nodes calculate wrong values. Other metrics, such
as node activity for power consumption or computation load,
will be added in future versions of the simulator.

V. SIMULATION RESULTS

In this section we present results on posture and ges-
ture recognition. For each case experimental conditions and
testbeds are first described before giving some results on
recognition accuracy for different conditions and algorithms.

A. Posture Recognition

The 12 postures depicted in Fig. 1 were chosen as a testbed
for this case study. Nodes of the WBSN are located on the
shoulders, elbows, wrists, chest, and hip. As discussed in Sec-
tion II-A, there are two kinds of errors that affect the inputs.
The first one is the error on the posture reproduction and the
second one is the sampling noise of the inertial sensors (IMU).
The standard deviation of sensor noises is set to 2% of gravity
norm for the accelerometer and to 2% of earth magnetic field
norm for magnetometer. For distances an AWGN is also added
with a standard deviation of 1 centimeter. This noise model
on distances corresponds to the case where distances can be
evaluated with centimeter precision. The following results are
done by the average of 1000 runs for each score bar. The
orientation errors on limbs are with a standard deviation of 0◦

to 10◦. Considering that the differences between angles of the
12 different reference postures are about 90◦, then all postures
can be classified with a very low asymptotic error.

PCA is tested for different numbers of eigenvalues. A higher
number of eigenvalues means more precision but also requires
more data to be transmitted. First simulation results showed
that only few eigenvalues are enough to give good recognition
rate for each posture. Then, the following simulations are
performed with only 2, 3, and 4 eigenvalues.

Figure 5 gathers simulation results with 2, 3, and 4 eigen-
values for four combinations of inputs: orientations only;

raw distances only; orientations and raw distances; raw ac-
celerometer data and distances. Simulations are performed to
measure the recognition tolerance for orientation errors that
represent the inexact reproduction of posture by the user. When
there exists recognition errors with only 0◦ or 2◦ of error on
postures, recognition can be considered as inefficient. The first
row of Fig. 5 shows that inputs with orientation only provide
good results with at least 3 eigenvalues. The maximum error is
about 12% for posture 7 and other postures are about 1%. But
with only 2 eigenvalues the decrease in information is to large
to provide good results. Even orientation errors of 2◦ or 4◦

lead to errors of up to 30%. On the other hand, the difference
between 3 and 4 eigenvalues is not significant, and adding
more eigenvalues does not decrease error rate significantly.

The second row of Fig. 5 shows that distances only are
not tolerant at all to orientation errors. There is no error with
original postures, which means that 1 centimeter precision
on distances is enough to allow the discrimination between
postures. But, no tolerance to orientation error means that
user has to be extremely precise on his posture. In most of
the cases, this is a strong constraint for the user and for the
application. Moreover increasing the number of eigenvalues
does not improve significantly the results. Therefore, distances
only are not a good candidate for a posture classification.

The third row of Fig. 5 presents interesting results. Even if
distances only does not help that much, the combination of
distances and orientations provides better results than orien-
tations only. Results with 3 and 4 eigenvalues are similar and
slightly better for the third combination. Once again, posture
7 gives the maximum error with about 9%. The interesting
point here is the case with only two eigenvalues on the left
that shows a real improvement. The maximum error is about
20% with no significant error before 6◦ of orientation error.
Depending on the accuracy required by the application, two
eigenvalues can be enough.

Magnetometer data could be very frequently disrupted by
other objects (e.g. phones) or by parts of metal. In this case,
only accelerometer data and distances can be used and results
without magnetometer are given in the fourth row of Fig. 5.
From the figure, it can be observed that 3 or 4 eigenvalues give
good results with no significant error before 6◦ of orientation
error. This shows that even without magnetometer, a classi-
fication is possible with an acceptable error rate. Moreover,
acceleration and distances are independent of north direction,
which means that no pre-processing on inputs is necessary to
remove this dependency. Raw data extracted from sensors can
be used directly on this case.

B. Gesture Recognition

All postures forming a gesture can be considered as a
posture library. Applying a PCA on this library would lead to
a continuous curve in the PCA space. Then a curve matching
algorithm could be used to recognize a gesture. Here we
propose and use a less sophisticated method based on the
same principle. For this simulation, the two tested gestures
are presented in Section II-B: a fast gesture from a capoeira



Figure 5: PCA error rate for different combinations of inputs and number of eigenvalues.

2 Eigenvalues 3 Eigenvalues 4 Eigenvalues

1 2 3 4 5 6 7 8 9 10 11 12
0

20

40

60

80

100

Posture number

E
rr

o
r 

ra
te

 (
%

)
Orientations using 2 eigen values

 

 

Original orientation

2° Orientation error

4° Orientation error
6° Orientation error

8° Orientation error

10° Orientation error

1 2 3 4 5 6 7 8 9 10 11 12
0

20

40

60

80

100

Posture number

E
rr

o
r 

ra
te

 (
%

)

Orientations using 3 eigen values

 

 

Original orientation

2° Orientation error

4° Orientation error
6° Orientation error

8° Orientation error

10° Orientation error

1 2 3 4 5 6 7 8 9 10 11 12
0

20

40

60

80

100

Posture number

E
rr

o
r 

ra
te

 (
%

)

Orientations using 4 eigen values

 

 

Original orientation

2° Orientation error

4° Orientation error
6° Orientation error

8° Orientation error

10° Orientation error

Orientations only

1 2 3 4 5 6 7 8 9 10 11 12
0

20

40

60

80

100

Posture number

E
rr

o
r 

ra
te

 (
%

)

Distances using 2 eigen values

 

 

Original orientation

2° Orientation error

4° Orientation error
6° Orientation error

8° Orientation error

10° Orientation error

1 2 3 4 5 6 7 8 9 10 11 12
0

20

40

60

80

100

Posture number

E
rr

o
r 

ra
te

 (
%

)

Distances using 3 eigen values

 

 

Original orientation

2° Orientation error

4° Orientation error
6° Orientation error

8° Orientation error

10° Orientation error

1 2 3 4 5 6 7 8 9 10 11 12
0

20

40

60

80

100

Posture number

E
rr

o
r 

ra
te

 (
%

)

Distances using 4 eigen values

 

 

Original orientation

2° Orientation error

4° Orientation error
6° Orientation error

8° Orientation error

10° Orientation error

Distances only

1 2 3 4 5 6 7 8 9 10 11 12
0

20

40

60

80

100

Posture number

E
rr

o
r 

ra
te

 (
%

)

Orientations and Distances using 2 eigen values

 

 

Original orientation

2° Orientation error

4° Orientation error
6° Orientation error

8° Orientation error

10° Orientation error

1 2 3 4 5 6 7 8 9 10 11 12
0

20

40

60

80

100

Posture number

E
rr

o
r 

ra
te

 (
%

)

Orientations and Distances using 3 eigen values

 

 

Original orientation

2° Orientation error

4° Orientation error
6° Orientation error

8° Orientation error

10° Orientation error

1 2 3 4 5 6 7 8 9 10 11 12
0

20

40

60

80

100

Posture number

E
rr

o
r 

ra
te

 (
%

)

Orientations and Distances using 4 eigen values

 

 

Original orientation

2° Orientation error

4° Orientation error
6° Orientation error

8° Orientation error

10° Orientation error

Orientations and Distances

1 2 3 4 5 6 7 8 9 10 11 12
0

20

40

60

80

100

Posture number

E
rr

o
r 

ra
te

 (
%

)

Accelerations and Distances using 2 eigen values

 

 

Original orientation

2° Orientation error

4° Orientation error
6° Orientation error

8° Orientation error

10° Orientation error

1 2 3 4 5 6 7 8 9 10 11 12
0

20

40

60

80

100

Posture number

E
rr

o
r 

ra
te

 (
%

)

Accelerations and Distances using 3 eigen values

 

 

Original orientation

2° Orientation error

4° Orientation error
6° Orientation error

8° Orientation error

10° Orientation error

1 2 3 4 5 6 7 8 9 10 11 12
0

20

40

60

80

100

Posture number

E
rr

o
r 

ra
te

 (
%

)

Accelerations and Distances using 4 eigen values

 

 

Original orientation

2° Orientation error

4° Orientation error
6° Orientation error

8° Orientation error

10° Orientation error

Accelerations and Distances

movement and a slow gesture corresponding to a functional
rehabilitation movement. The capoeira movement is recorded
with the Xsens/MVN system [1] and is composed of 84
frames at 30 frames per second (fps). The second movement
is generated at 30 fps with a duration of 3 seconds. For the
classification, the reference postures of the gesture are taken
every 10 frames that mean 3Hz. The nodes of the WBSN
considered for these simulations are those located on ankles,
knees, elbows, and wrists.

Inputs of PCA classification are orientations of nodes rep-

resented by quaternions calculated by an Extended Kalman
Filter (EKF). For each gesture three configurations are tested.
The first configuration is the normal mode of the EKF at
30Hz, the second one is the normal mode of the EKF at 8Hz,
and the last one is the EKF without gyroscope data at 30Hz.
Figure 6 presents the results of the gesture recognition for
the two gestures and for the three configurations. For each
frame of the gesture, the detected posture, if any, is given.
Bounds that delimit time domain of each posture are the
middle of consecutive references postures. The objective is to



test different sensor data sets and acquisition rates that directly
impact power consumption.

Figure 6: Results on gesture recognition of rehabilitation and
capoeira movements.
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In the first configuration, at 30Hz, both slow and quick
gestures are well decomposed and recognised. We can clearly
see a regular monotonic progression of detected posture num-
ber that corresponds to the continuity of the gesture. In the
second configuration, at 8Hz, the slow gesture is still well
decomposed. Even if some postures are not within the right
bounds, we can observe that the detection profile is still regular
and monotonic. On the other side the quick gesture is not so
well decomposed, especially in the beginning and at the end.
This is due to the fact that the first and the last postures of
this gesture are physically similar.

For the two considered gestures, the reduction of sampling
rate (and so the computation requirements ) does not have
the same impact. This shows that, depending on the type of
application (slow or fast movements), a coarse or fine detection
can be used. Therefore, different algorithm configurations can
be considered to address each case and thus allowing for a
significant reduction in the energy consumption.

In the last configuration, without gyroscope data, the two
gestures show significantly different results. The slow ges-
ture is still well decomposed but the algorithm is unable
to decompose and to track the quick gesture. This shows
the importance of gyroscope measurement in case of quick

motion tracking. This is a really interesting achievement since
the power consumption of the gyroscope is three order of
magnitude higher than the accelerometer. Then, these results
give room to save energy by keeping high computation rate
but by cutting off the gyroscope when considering applications
dealing with slow gestures.

In these results, bounds that delimit the time domain validity
were chosen arbitrary in the middle of references postures.
But the real posture transitions do not necessary happen at the
chosen middle time. So in the case where a fine detection is
required, future work may include the definition of a precise
time domain or domain transition.

Moreover, there are many ways to compute a metric for
Quality of Service (QoS). For example, we can take into ac-
count the duration of each posture in addition to the sequence
of postures. The metric has to be defined accordingly to the
application chosen. The advantage here is that this metric is
only computed by the central node which can be configured
at will. These kind of configurations can be explored with our
simulator which was designed for that purpose.

VI. CONCLUSION

The proposed posture recognition algorithm is simple and
efficient. Different combinations of inputs allow for an adap-
tive behavior according to environmental constraints. We
showed that an alternative is possible when magnetometer
is disturbed using distance information. Moreover, using the
fusion of orientation and distances shows better results than
orientation only. It proves that distances holds relevant infor-
mation which are complementary to orientations. The study on
gesture recognition shows that different velocities of motion
leads to different processing rate. The use, or not, of gyroscope
data also permits to save a significant amount of energy. This
leads to the development of adaptive algorithms that would
be able to manage the operating mode of each node to save
power and keep a good application quality of service.
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