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Abstract

Hybrid High-Order (HHO) methods are formulated in terms of discrete unknowns
attached to mesh faces and cells (hence, the term hybrid), and these unknowns are
polynomials of arbitrary order k ě 0 (hence, the term high-order). HHO methods
are devised from local reconstruction operators and a local stabilization term. The dis-
crete problem is assembled cellwise, and cell-based unknowns can be eliminated locally
by static condensation. HHO methods support general meshes, are locally conserva-
tive, and allow for a robust treatment of physical parameters in various situations, e.g.,
heterogeneous/anisotropic diffusion, quasi-incompressible linear elasticity, and advection-
dominated transport. This paper reviews HHO methods for a variable-diffusion model
problem with nonhomogeneous, mixed Dirichlet–Neumann boundary conditions, includ-
ing both primal and mixed formulations. Links with other discretization methods from
the literature are discussed.

1 Introduction

Over the last few years, a significant effort has been devoted to devising and analyzing dis-
cretization methods for elliptic PDEs on general meshes including nonmatching interfaces and
polytopal cells. Such meshes are encountered, e.g., in the context of subsurface flow simu-
lations in saline aquifers and petroleum basins, where polyhedral elements and nonmatching
interfaces appear to account for eroded layers and fractures. In petroleum reservoir model-
ing, polyhedral elements can also appear in the near-wellbore regions, where radial meshes
are usually employed to account for the (qualitative) features of the solution. A more re-
cent and original application of meshes composed of polyhedral elements is adaptive mesh
coarsening [2,7], where a coarse mesh is obtained by element agglomeration from a fine mesh
accounting for the geometric details of the domain.

Polytopal discretization methods were first investigated in the framework of lowest-order
schemes. In the context of Finite Volume methods, several families of polytopal methods
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have resulted from the effort to circumvent the superadmissible mesh condition required for
the consistency of the classical two-point scheme; cf., in particular, [38, Definition 9.1]. Inter-
estingly, most of these methods possess local conservation properties on the primal mesh and
exhibit numerical fluxes without resorting to local reconstructions. We can mention here, e.g.,
the Mixed and Hybrid Finite Volume (MHFV) schemes of [34, 39] and the Discrete Duality
Finite Volume (DDFV) method of [33].

Other families of lowest-order polytopal discretization methods have been obtained by re-
producing at the discrete level salient features of the continuous problem. Mimetic Finite
Difference (MFD) methods were originally derived by mimicking the Stokes theorem in a
discrete setting to formulate discrete counterparts of the usual first-order differential oper-
ators combined with constitutive relations and of L2-products; cf. [14, 15] and also [9] for
an overview. Another viewpoint starts from the seminal ideas of Tonti [44] and Bossavit [13]
hinging on differential geometry and algebraic topology. Related schemes include the so-called
Discrete Geometric Approach (DGA) [22], and more generally, the Compatible Discrete Opera-
tor (CDO) framework of [11,12], cf. also [10], where the building blocks are metric-free discrete
differential operators combined with a discrete Hodge operator approximating constitutive re-
lations. Another approach consists in reproducing classical properties of nonconforming and
penalized methods on general meshes, as in the Cell-Centered Galerkin (CCG) method [23]
and the generalized Crouzeix–Raviart method [32]. The idea is to formulate the method in
terms of (possibly incomplete) polynomial spaces so as to re-deploy classical (nonconforming)
Finite Element analysis tools.

Recent works have led to unifying frameworks that capture the links among (some of) the
above methods. The close relation between MHFV and MFD methods has been investigated
in [35], where equivalence at the algebraic level is demonstrated. A unifying viewpoint that
encompasses the above and other classical methods has been proposed under the name of
Gradient Schemes [36]. Another unifying viewpoint (closely related to Gradient Schemes) is
provided by the CDO framework which encompasses vertex-based schemes (such as first-order
Lagrange finite elements and nodal MFD) and cell-based schemes (such as MHFV and MFD).

In parallel, high-order polytopal discretization methods have received significant attention over
the last few years. Increasing the approximation order can significantly speed up convergence
when the solution exhibits sufficient (local) regularity. When this is not the case, the better
convergence properties of high-order methods can be recovered using mesh adaption (by local
refinement or coarsening). High-order polytopal discretization methods can be obtained by
fully nonconforming approaches such as the Discontinuous Galerkin (DG) method; cf. [4] and
also [5,16] for a unified presentation for the Poisson problem, [37] for Friedrichs’ systems, [18]
for an hp-version, and [26] for a comprehensive introduction. An interesting class of DG meth-
ods is that of Hybridizable Discontinuous Galerkin (HDG) methods [21] (cf. also [19]). Such
methods were originally devised as discrete versions of a characterization of the exact solution
in terms of solutions of local problems globally matched through transmission conditions. A
similar approach can be found in [45,46].

Very recent works have developed other viewpoints to achieve high-order polytopal discretiza-
tions. A salient example is the Virtual Element (VE) method introduced in [8, 17]. The
H1-conforming VE method takes the steps from the nodal MFD method recast in a Finite
Element framework, and can be viewed as a generalization of conforming (Lagrange, Hermite)
Finite Element methods. The main idea is to define a local space of basis functions for which
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only the values of degrees of freedom are known (i.e., no analytical expression is available).
Starting from these degrees of freedom, one devises a computable projection onto a polynomial
space so as to formulate the local contributions to the discrete problem.

Our focus is here on the Hybrid High-Order (HHO) method introduced in [29, 31]. The term
hybrid refers to the fact that the method is originally formulated using discrete unknowns
attached to mesh faces and cells. These discrete unknowns are polynomial functions, and the
cell-based ones can be eliminated locally by static condensation. The term high-order refers
to the fact that the order of the polynomial functions can be an arbitrary integer k ě 0. The
main idea of HHO methods consists in locally reconstructing high-order differential operators
acting on the face- and cell-based unkowns. The guideline underpinning such reconstructions
is an integration by parts formula. These reconstructions are then used to formulate the
elementwise contributions to the discrete problem including a high-order stabilization term
exhibiting a rich structure coupling locally the face- and cell-based unkowns. Local contri-
butions are conceived so that the only globally coupled unknowns after static condensation
are discontinuous polynomials on the mesh skeleton. This is a distinctive feature with respect
to the VE method, where H1-conforming reconstructions are present in the background. A
study of the relations between HHO and HDG methods can be found in [20], which also fits
into the HHO framework (up to equivalent stabilization) the recent high-order MFD method
of [6,43] (also referred to as nonconforming VE method in subsequent publications). We also
mention that HHO methods for polynomial order k “ 0 are closely related to MHFV (and so
to lowest-order MFD); cf., in particular, [31, Section 2.5] and [25, Section 5.4].

HHO methods offer several assets. Besides supporting general meshes, their construction
is dimension-independent, and they are locally conservative [28]. Moreover, they allow for
a natural treatment of physical parameters [30], and lead to discretizations that are robust
over the entire range of variation of physical parameters in various situations, e.g., hetero-
geneous/anisotropic diffusion [30], quasi-incompressible linear elasticity [29] and advection-
dominated transport [25]. When compared to interior penalty DG methods, HHO methods
are also appealing in terms of computational cost. To achieve an order of convergence of pk`1q
in the energy norm for a pure diffusion problem in three space dimensions, the globally coupled
degrees of freedom for DG grow as 1

6k
3NE with NE the number of mesh elements, whereas for

HHO they only grow as 1
2k

2NF with NF the number of mesh faces (only leading-order terms
are considered in the above computations).

The goal of this paper is to provide an up-to-date review of HHO methods, with a particular
focus on the various possible formulations and computational aspects. For the sake of sim-
plicity, we focus on a model elliptic problem with possibly heterogeneous/anisotropic diffusion
tensor. Most of the results contained herein can be derived from relatively straightforward
adaptations of the proofs contained in previous works [1,20,25,27–31]; for the sake of concise-
ness, we provide bibliographic references for the most technical proofs, while some details are
included for those proofs that allow us to highlight the more practical aspects of the method.
One novel aspect is that we treat nonhomogeneous mixed Dirichlet–Neumann boundary con-
ditions, while previous work has focused on homogeneous, pure Dirichlet boundary conditions.
Another novelty is that we detail the main implementation aspects under the viewpoint of an
offline/online decomposition.

The material is organized as follows. Section 2 describes the continuous and discrete settings,
including the model problem, the notion of admissible mesh sequence, and the assumptions on
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the data. Section 3 is devoted to the presentation and analysis of the HHO method in primal
form, while Section 4 is concerned with the mixed form of the HHO method. Finally, the
links between both forms are studied in Section 5, while Section 6 contains some concluding
remarks and perspectives.

2 Continuous and discrete settings

This section presents the model problem, the key definitions and notation concerning the
mesh, and the assumptions on the data of the model problem.

2.1 Model problem

Let Ω Ă Rd, d ě 2, be an open, connected, bounded polytopal domain, with boundary Γ and
unit outward normal n. We assume that there exists a partition of Γ such that Γ :“ ΓdYΓn,
with Γd X Γn “ ∅, and such that the measure of Γd is nonzero. For any connected subset
X Ă Ω with nonzero Lebesgue measure, the inner product and norm of the Lebesgue space
L2pXq are denoted by p¨, ¨qX and }¨}X , respectively, with the convention that the index is
omitted if X “ Ω.

We consider a variable-diffusion model problem with tensor-valued diffusivity M. Throughout
the paper, M is assumed to be symmetric, piecewise Lipschitz on a polytopal partition PΩ of
Ω, and uniformly elliptic, in the sense that, for a.e. x P Ω,

0 ă µ5 ď Mpxqξ¨ξ ď µ7 ă `8, @ξ P Rd such that |ξ| “ 1.

The model problem reads: Find u : Ω Ñ R such that

´divpM∇uq “ f in Ω,

u “ ψB on Γd,

M∇u¨n “ φB on Γn,

(1)

where f P L2pΩq, ψB “ puBq|Γd
with uB P H

1pΩq, and φB P L
2pΓnq (whenever the measure

of Γn is nonzero). Henceforth, u is termed the potential. Owing to the nonzero assumption
on the measure of Γd, we do not consider pure Neumann boundary conditions; the results
presented in what follows can be adapted to this case, up to minor modifications. The pure
Dirichlet case, corresponding to a pd´ 1q-dimensional zero-measure set Γn, is included in the
present setting.

2.2 Admissible mesh sequences

Denoting by H Ă R`˚ a countable set of meshsizes having 0 as its unique accumulation point,
we consider mesh sequences pThqhPH where, for all h P H, Th “ tT u is a finite collection of
nonempty disjoint open polytopes (polygons/polyhedra) T , called elements or cells, such that
Ω “

Ť

TPTh T and h “ maxTPTh hT (where hT stands for the diameter of the element T ).
Recall that polytopes in Rd have flat sides.
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A hyperplanar closed connected subset F of Ω is called a face (for d ą 3, these geometric
objects are also called facets) if it has positive pd´1q-dimensional Lebesgue measure and if
either (i) there exist T1, T2 P Th such that F “ BT1XBT2 or F Ă BT1XBT2 and F is a side of
both T1 and T2 (and F is termed interface), or (ii) there exists T P Th such that F “ BT XBΩ
or F Ă BT XBΩ and F is a side of T (and F is termed boundary face). Interfaces are collected
in the set F i

h, boundary faces in Fb
h , and we let Fh :“ F i

hYFb
h . The diameter of a face F P Fh

is denoted hF . For all T P Th, FT :“ tF P Fh | F Ă BT u denotes the set of faces lying on the
boundary of T and, symmetrically, for all F P Fh, TF :“ tT P Th | F Ă BT u denotes the set
gathering the one (if F is a boundary face) or two (if F is an interface) element(s) sharing
F . For all F P FT , we let nT,F be the unit normal vector to F pointing out of T . Finally,
for every interface F P F i

h, an orientation is fixed once and for all by means of a unit normal
vector nF .

We adopt the following notion of admissible mesh sequence, cf. [26, Section 1.4].

Definition 2.1 (Admissible mesh sequence). The mesh sequence pThqhPH is admissible if, for
all h P H, Th admits a matching simplicial submesh Th such that there exists a real number
γ ą 0, called mesh regularity parameter, independent of h and such that, for all h P H,

(i) for all simplex S P Th of diameter hS and inradius rS, γhS ď rS;

(ii) for all T P Th, and all S P TT :“ tS P Th | S Ď T u, γhT ď hS.

Consequences of Definition 2.1 are that (i) the quantity maxTPTh cardpFT q is uniformly
bounded with respect to the meshsize, and that (ii) mesh faces have a comparable diame-
ter to that of the cells they belong to; cf. [26, Lemmas 1.41 and 1.42]. We add the following
notion of compatibility, in order to deal with the partitions associated with the diffusion tensor
and with the boundary conditions.

Definition 2.2 (Compatible mesh sequence). The mesh sequence pThqhPH is compatible if,
for all h P H,

(i) Th fits the (polytopal) partition PΩ associated with the diffusion tensor M, meaning that,
for all T P Th, there is a unique Ωi in PΩ containing T ;

(ii) Th fits the partition Γ “ Γd Y Γn of the boundary, in the sense that we can define two
sets, Fd

h :“ tF P Fb
h | F Ď Γdu and Fn

h :“ tF P Fb
h | F Ď Γnu, such that Fd

h YFn
h “ Fb

h .

2.3 Broken polynomial spaces

For integers k ě 0, 1 ď l ď d, we denote by Pkl the vector space spanned by l-variate
polynomial functions of total degree ď k of dimension

Nk,l :“

ˆ

k ` l
k

˙

. (2)

For all T P Th, PkdpT q denotes the restriction to T of functions in Pkd. We also introduce the
broken polynomial space

PkdpThq :“ tv P L2pΩq | v|T P PkdpT q for all T P Thu.
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Broken polynomial spaces are special instances of broken Sobolev spaces, for an integerm ě 1:

HmpThq :“ tv P L2pΩq | v|T P H
mpT q for all T P Thu.

We use the notation ∇h to denote the broken gradient operator acting elementwise on func-
tions from broken Sobolev spaces.

We denote by πkh the L2-orthogonal projector onto PkdpThq such that, for all v P L2pΩq and all
T P Th, pπkhvq|T :“ πkT v|T , where π

k
T is the L2-orthogonal projector onto PkdpT q. Additionally,

for all F P Fh and all v P L2pF q, we denote by πkF v the L2-orthogonal projection of v onto
Pkd´1pF q, where Pkd´1pF q is the restriction to F of Pkd´1 ˝ Ξ´1, with Ξ an affine bijective
mapping from Rd´1 to the affine hyperplane supporting F .

2.4 Diffusion tensor

We assume, for the sake of simplicity, that M is piecewise constant on PΩ, and thus, by Defini-
tion 2.2, on Th for every h P H. For T P Th, we let MT :“ M|T (owing to the above assumption,
MT is a constant matrix), and we denote by µ5,T and µ7,T , respectively, the lowest and largest
eigenvalues of MT . We also introduce the local anisotropy ratio ρT :“ µ7,T {µ5,T ě 1; the
global ratio is defined as ρ :“ maxTPTh ρT . Finally, for all T P Th and F P FT , we set
µT,F :“ MTnF ¨nF ą 0.

In what follows, we often abbreviate as a À b the inequality a ď Cb, with C ą 0 independent
of the meshsize h and of the diffusion tensor M, but possibly depending on the mesh regularity
parameter γ and on the polynomial degree k.

3 The HHO method in primal form

Let U :“ H1pΩq and U0 :“ tv P U | v|Γd
“ 0u. The starting point of the HHO method in

primal form is the following weak formulation of problem (1): Find u0 P U0 such that

pM∇u0,∇vq “ pf, vq ´ pM∇uB,∇vq ` pφB, vqΓn
@v P U0. (3)

The solution u P U is then computed as u “ u0 ` uB with uB defined in Section 2.1.

3.1 Discrete setting

Let an integer k ě 0 be fixed, and let us consider an admissible and compatible mesh sequence
pThqhPH in the sense of Definitions 2.1 and 2.2. We further suppose that the assumptions of
Section 2.4 concerning the diffusion tensor hold.

3.1.1 Discrete unknowns

We adopt the convention that underlined quantities in roman font (sets, elements from these
sets) are hybrid quantities, i.e., quantities featuring both a cell-based and a face-based contri-
bution. We introduce, first locally, then globally, the discrete unknowns associated with the
potential.
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Local definition For T P Th, letting

UkT :“ PkdpT q, UkF :“ Pkd´1pF q for all F P FT , (4)

we define the local set of hybrid potential unknowns, cf. Figure 1, as

Uk
T :“ UkT ˆ UkBT , UkBT :“

ą

FPFT

UkF .

In the sequel, any element vT P Uk
T is decomposed as vT :“ pvT P U

k
T , vBT P UkBT q, with

vBT :“ pvF P U
k
F qFPFT . We also introduce the local reduction operator IkT : H1pT q Ñ Uk

T such

that, for all v P H1pT q, IkT v :“
´

πkT v, pπ
k
F vqFPFT

¯

.

‚

‚

‚
‚

‚

‚

k “ 0

‚

‚
‚

‚‚

‚
‚

‚
‚

‚‚

‚
‚

k “ 1

‚
‚

‚

‚
‚
‚

‚ ‚ ‚

‚
‚
‚

‚
‚
‚

‚‚‚

‚
‚
‚

k “ 2

‚
‚‚

‚
‚ ‚

Figure 1: Degrees of freedom associated with hybrid (cell- and face-based) potential discrete
unknowns, d “ 2, k P t0, 1, 2u.

Remark 3.1 (Variant on cell-based unknowns). A variant in the definition of cell-based un-
knowns is studied in [20], where these unknowns belong to the polynomial space PldpT q with
l P tk´ 1, k, k` 1u (up to some minor adaptations if k “ 0 and l “ ´1). The choice l “ k´ 1
allows one to establish a link (up to equivalent stabilizations) with the high-order MFD method
of [6, 43] (in the case k “ 0, l “ ´1, one can recover the classical Crouzeix–Raviart element
on simplices), while the choice l “ k` 1 is related to a variant of the HDG method introduced
in [42].

Global definition We define the global set of hybrid potential unknowns as

Uk
h :“ Ukh ˆ Ukh, (5)

with
Ukh :“

ą

TPTh

UkT , Ukh :“
ą

FPFh

UkF .

Observe that Ukh “ PkdpThq and that potential unknowns attached to interfaces are single-
valued. Given an element vh P Uk

h, we denote vh and vh its restrictions to Ukh and Ukh,
respectively, while, for any T P Th, we denote by vT “ pvT , vBT q P Uk

T its restriction to the
element T . To account for (homogeneous) Dirichlet boundary conditions in a strong manner,
we introduce the following subspace of Uk

h:

Uk
h,0 :“ Ukh ˆ Ukh,0, with Ukh,0 :“

!

vh P U
k
h | vF ” 0,@F P Fd

h

)

.

Finally, we introduce the global reduction operator Ikh : U Ñ Uk
h such that, for all v P U , and

for all T P Th, pIkhvq|T :“ IkT v|T . Single-valuedness at interfaces is ensured by the regularity of
functions in U .
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3.1.2 Potential reconstruction operator

Let T P Th. The local potential reconstruction operator pk`1
T : Uk

T Ñ Pk`1
d pT q is defined,

for all vT “ pvT , vBT q P Uk
T , as the solution of the well-posed Neumann problem (the usual

compatibility condition on the right-hand side is verified)

pMT∇pk`1
T vT ,∇wqT “ ´pvT ,divpMT∇wqqT `

ÿ

FPFT

pvF ,MT∇w¨nT,F qF @w P Pk`1
d pT q, (6)

which further satisfies
ş

T p
k`1
T vT “

ş

T vT . Computing the operator pk`1
T requires to invert a

symmetric positive-definite matrix of size Nk`1,d, cf. (2), which can be performed effectively
via a Cholesky factorization (the cost of such a factorization is roughly N3

k`1,d{3 flops). The
following result shows that pk`1

T IkT is the MT -weighted elliptic projector onto Pk`1
d pT q.

Lemma 3.1 (Characterization of pk`1
T IkT and polynomial consistency). The following holds

for all v P H1pT q:

pMT∇pv ´ pk`1
T IkT vq,∇wqT “ 0 @w P Pk`1

d pT q. (7)

Consequently, for all v P Pk`1
d pT q, we have

pk`1
T IkT v “ v. (8)

Proof. For v P H1pT q, let us plug vT :“ IkT v “
´

πkT v, pπ
k
F vqFPFT

¯

into (6). Since MT is a

constant tensor and since w P Pk`1
d pT q, we infer that divpMT∇wq P Pk´1

d pT q Ă PkdpT q and
that MT∇w|F ¨nT,F P Pkd´1pF q, which means that, for all w P Pk`1

d pT q,

pMT∇pk`1
T IkT v,∇wqT “ ´pv,divpMT∇wqqT `

ÿ

FPFT

pv,MT∇w¨nT,F qF “ pMT∇v,∇wqT ,

hence concluding the proof of (7). For v P Pk`1
d pT q, we deduce from (7) that pv ´ pk`1

T IkT vq P

P0
dpT q, and we conclude by invoking the relation

ş

T p
k`1
T IkT v “

ş

T π
k
T v “

ş

T v.

The next result can be found in [30, Lemma 2.1].

Lemma 3.2 (Approximation). For all v P Hk`2pT q, the following holds:

}v ´ pk`1
T IkT v}T ` h

1{2

T }v ´ p
k`1
T IkT v}BT ` hT }∇pv ´ p

k`1
T IkT vq}T

` h
3{2

T }∇pv ´ p
k`1
T IkT vq}BT À ρ

1{2

T h
k`2
T }v}Hk`2pT q. (9)

In the more general case of a piecewise Lipschitz diffusivity, only approximate polynomial
consistency holds, while a factor ρT instead of ρ

1{2

T appears in the estimate (9) (cf. [30]).

For further use, we define the global potential reconstruction operator

pk`1
h : Uk

h Ñ Pk`1
d pThq

such that, for all vh P Uk
h, and for all T P Th, ppk`1

h vhq|T :“ pk`1
T vT .
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3.1.3 Stabilization

For all T P Th, we define the stabilization bilinear form jT : Uk
T ˆUk

T Ñ R such that

jT puT , vT q :“
ÿ

FPFT

µT,F
hF

pπkF pq
k`1
T uT ´ uF q, π

k
F pq

k`1
T vT ´ vF qqF , (10)

with qk`1
T : Uk

T Ñ Pk`1
d pT q such that, for all wT P Uk

T ,

qk`1
T wT :“ wT ` pp

k`1
T wT ´ π

k
T p

k`1
T wT q.

Notice that jT is symmetric, positive semi-definite, and polynomially consistent (as a conse-
quence of (8)) in the sense that, for all v P Pk`1

d pT q,

jT pI
k
T v,wT q “ 0 @wT P Uk

T . (11)

Another important property of jT is the following approximation property: For all v P
Hk`2pT q, the following bound holds:

jT pI
k
T v, I

k
T vq

1{2 À µ
1{2

7,Tρ
1{2

T h
k`1
T }v}Hk`2pT q, (12)

showing that jT matches the approximation properties of the gradient of pk`1
T ; cf. Lemma 3.2.

3.2 Discrete problem: formulation and key properties

3.2.1 Formulation

For all T P Th, we define the following local bilinear form:

aT : Uk
T ˆUk

T Ñ R; puT , vT q ÞÑ pMT∇pk`1
T uT ,∇pk`1

T vT qT ` jT puT , vT q, (13)

with potential reconstruction operator pk`1
T defined by (6) and stabilization bilinear form jT

defined by (10). Introduce now the following global bilinear form obtained by a standard
element-by-element assembly procedure:

ah : Uk
h ˆUk

h Ñ R; puh, vhq ÞÑ
ÿ

TPTh

aT puT , vT q.

Then, the (primal) HHO discretization of problem (3) reads: Find uh,0 P Uk
h,0 such that

ahpuh,0, vhq “ pf, vhq ´ ahpuh,B, vhq `
ÿ

FPFn
h

pφB, vF qF @vh P Uk
h,0, (14)

where uh,B :“ IkhuB P Uk
h is the reduction of the continuous lifting uB of ψB. The discrete

solution uh P Uk
h is finally computed as

uh “ uh,0 ` uh,B. (15)

Remark 3.2 (Discrete Dirichlet datum). In practical implementation, the continuous lifting
uB of the Dirichlet datum is not needed, and one can simply select uh,B such that

uT,B ” 0 @T P Th, uF,B “ πkFψB @F P Fd
h , uF,B ” 0 @F P FhzFd

h .
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3.2.2 Stability

Let us introduce, for all T P Th, the following diffusion-dependent seminorm on Uk
T :

}vT }
2
U,T :“ ρ´1

T

˜

}M
1{2

T ∇vT }
2

T `
ÿ

FPFT

µT,F
hF

}vT ´ vF }
2
F

¸

. (16)

It can be proved that the map

}vh}
2
U,h :“

ÿ

TPTh

}vT }
2
U,T ,

defines a norm on Uk
h,0. Stability for problem (14) is expressed by the following result (cf. [30,

Lemma 3.1]).

Lemma 3.3 (Stability). For all T P Th and all vT P Uk
T , the following holds:

}vT }U,T À aT pvT , vT q
1{2 À ρT }vT }U,T . (17)

As a consequence, we infer that

}vh}
2
U,h À ahpvh, vhq @vh P Uk

h, (18)

implying that problem (14) is well-posed.

3.2.3 Error estimates

Let u P U be such that u “ u0` uB, where u0 P U0 is the (unique) solution to (3), and uB P U
is defined in Section 2.1. Let uh P Uk

h be such that uh “ uh,0 ` uh,B, where uh,0 P Uk
h,0 is the

(unique) solution to (14), and uh,B P Uk
h is defined in Section 3.2.1. Finally, let us introduce

the notation }¨}h :“ ahp¨, ¨q
1{2. Then, we can state the following result, which slightly improves

on [30, Theorem 4.1] (where the norm }¨}h is to be used under the supremum in Eq. (12)).
Note that the constants in the error bounds can depend on the polynomial degree following
the use of discrete trace and inverse inequalities.

Theorem 3.1 (Energy-norm error estimate). Assume that u further belongs to Hk`2pPΩq (so
that, by Definition 2.2, u P Hk`2pThq). Then, the following holds:

}Ikhu´ uh}U,h À }I
k
hu´ uh}h À

#

ÿ

TPTh

µ7,TρTh
2pk`1q
T }u}2Hk`2pT q

+1{2

, (19)

which implies, by an additional use of Lemma 3.2, that

}M1{2p∇u´∇hp
k`1
h uhq} À

#

ÿ

TPTh

µ7,TρTh
2pk`1q
T }u}2Hk`2pT q

+1{2

. (20)
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In the more general case of a piecewise (non-constant) polynomial diffusivity, estimates (19)
and (20) still hold with a factor ρ2

T instead of ρT .

Whenever elliptic regularity holds, a L2-norm error estimate of order hk`2 can be established,
which slightly improves on [30, Theorem 4.2] (where the assumption of piecewise constant
diffusivity is to be added).

Theorem 3.2 (L2-norm error estimate). Assume elliptic regularity for problem (3) under the
form }z}H2pPΩq

À µ´1
5
}g} for all g P L2pΩq and z P U0 solving (3) with data g and homogeneous

(mixed Dirichlet-Neumann) boundary conditions. Assume f P Hk`δpΩq, φB P W
k`δ,8pΓnq,

with δ “ 0 for k ě 1 and δ “ 1 for k “ 0. Then, under the same assumption on u as in
Theorem 3.1, the following holds:

µ5}I
k
hu´ uh} À µ

1{2

7
ρ

1{2h

#

ÿ

TPTh

µ7,TρTh
2pk`1q
T }u}2Hk`2pT q

+1{2

` hk`2
!

}f}Hk`δpΩq ` }φB}Wk`δ,8pΓnq

)

. (21)

3.2.4 Local conservativity

For all T P Th, let us first introduce the local bilinear form âT : Uk
T ˆ Uk

T Ñ R such that, for
all wT , vT P Uk

T ,

âT pwT , vT q :“ pMT∇pk`1
T wT ,∇pk`1

T vT qT `
ÿ

FPFT

µT,F
hF

pwT ´wF , vT ´ vF qF . (22)

Then, we use (22) to define the local isomorphism ckT : Uk
T Ñ Uk

T such that, for all wT P Uk
T ,

ckTwT is uniquely defined from the following local problem:

âT pc
k
TwT , vT q “ aT pwT , vT q `

ÿ

FPFT

µT,F
hF

pwT ´wF , vT ´ vF qF @ vT P Uk
T ,

and
ş

T c
k
TwT “

ş

T wT . Finally, we define the local gradient reconstruction operator Gk`1
T :

Uk
T Ñ∇Pk`1

d pT q such that
Gk`1
T :“∇ppk`1

T ˝ ckT q.

Adapting the arguments of [28, Lemmata 2 and 3], one can show the following result.

Lemma 3.4 (Local conservativity). Let uh P Uk
h be defined as in (15) from the solution of

problem (14). Then, for all T P Th, the following local equilibrium relation holds:

pMTG
k`1
T uT ,∇vT qT ´

ÿ

FPFT

pΦT,F puT q, vT qF “ pf, vT qT @ vT P PkdpT q, (23)

where the numerical flux operator ΦT,F : Uk
T Ñ Pkd´1pF q is such that, for all vT P Uk

T ,

ΦT,F pvT q :“ MTG
k`1
T vT ¨nT,F ´

µT,F
hF

”

pckTvT ´ vT q ´ pc
k
FvT ´ vF q

ı

. (24)
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In addition, the numerical fluxes are equilibrated in the following sense: For all F P F i
h such

that F Ď BT1 X BT2,
ΦT1,F puT q ` ΦT2,F puT q “ 0, (25)

and ΦT,F puT q “ πkFφB for all F P Fn
h such that F Ď BT X BΩ.

Numerical fluxes can thus be computed by local element-by-element post-processing.

3.3 Computational aspects

This section discusses various relevant computational aspects: the elimination of cell-based
unknowns by static condensation, the offline/online decomposition of the computations, and
the choice of polynomial bases.

3.3.1 Static condensation

Following [20, Section 2.5], we show how cell-based unknowns can be locally eliminated from
problem (14), thereby leading to a global system in terms of face-based unknowns only.

Introducing the notation fT :“ f|T for all T P Th, we begin by observing that problem (14)
can be equivalently rewritten using (15) as follows:

aT ppuT , 0q, pvT , 0qq “ pfT , vT qT ´ aT pp0, uBT q, pvT , 0qq @vT P U
k
T , @T P Th, (26a)

ahpuh, p0, vhqq “
ÿ

FPFn
h

pφB, vF qF @vh P U
k
h,0, (26b)

that is to say, problem (14) can be split into cardpThq local problems (26a) that allow one to
express, for all T P Th, uT in terms of uBT and fT , and one global problem (26b) written in
terms of face-based unknowns only.

We now introduce two local cell-based potential lifting operators:

‚ a trace-based lifting tkT : UkBT Ñ UkT such that, for all wBT P UkBT , t
k
TwBT P U

k
T solves

aT ppt
k
TwBT , 0q, pvT , 0qq “ ´aT pp0,wBT q, pvT , 0qq @vT P U

k
T ; (27)

‚ a datum-based lifting dkT : L2pT q Ñ UkT such that, for all ϕT P L2pT q, dkTϕT P U
k
T solves

aT ppd
k
TϕT , 0q, pvT , 0qq “ pϕT , vT qT @vT P U

k
T . (28)

Problems (27) and (28) are well-posed owing to the first inequality in (17) and the fact that
}¨}U,T is a norm on the zero-trace subspace of Uk

T , cf. (16). Problem (27) can be rewritten as

aT ppt
k
TwBT ,wBT q, pvT , 0qq “ 0 @vT P U

k
T . (29)

Using (26a), (29), and (28), we infer that

uT “ pt
k
TuBT ` d

k
T fT , uBT q. (30)

12



Introducing the global operators tkh : Ukh Ñ Ukh and dkh : L2pΩq Ñ Ukh such that, for all wh P U
k
h,

all ϕ P L2pΩq, and all T P Th, ptkhwhq|T :“ tkTwBT and pdkhϕq|T :“ dkTϕ|T , we can rewrite (30)
globally as follows:

uh “ pt
k
huh ` d

k
hf, uhq. (31)

Finally, we reformulate the global problem (26b) under an equivalent form. We remark,
using (31), that

ahpuh, p0, vhqq “ ahpuh, pt
k
hvh, vhqq ´ ahpuh, pt

k
hvh, 0qq

“ ahppt
k
huh, uhq, pt

k
hvh, vhqq ` ahppd

k
hf, 0q, pt

k
hvh, vhqq

´ ahppt
k
huh, uhq, pt

k
hvh, 0qq ´ ahppd

k
hf, 0q, pt

k
hvh, 0qq

:“ T1 ` T2 ´ T3 ´ T4,

where T2 “ T3 “ 0 owing to (29) and to the symmetry of ah, while T4 “ pf, tkhvhq owing
to (28). Introducing for all wh P Ukh the notation tkhwh :“ ptkhwh,whq and the decomposition
uh “ uh,0 ` uh,B for the face-based unknowns, the previous relation enables us to rewrite the
global problem (26b) as follows: Find uh,0 P U

k
h,0 such that

ahpt
k
huh,0, t

k
hvhq “ pf, t

k
hvhq ´ ahpt

k
huh,B, t

k
hvhq `

ÿ

FPFn
h

pφB, vF qF @vh P U
k
h,0. (32)

Problem (32) is well-posed owing to (18) and to the fact that }¨}U,h defines a norm on Uk
h,0.

The following proposition summarizes the above considerations.

Proposition 3.1 (Characterization of the approximate solution). The solution Uk
h Q uh “

uh,0 ` uh,B with uh,0 P Uk
h,0 solving (14) can be expressed as (31), where the operator tkh

and the vector of cell-based unknowns dkhf are defined cell-wise as the solutions of the local
problems (27) and (28), respectively, and where uh P Ukh is such that uh “ uh,0 ` uh,B with
uh,0 P U

k
h,0 the unique solution of the global problem (32).

3.3.2 Offline/online solution strategy

Static condensation naturally points to an offline/online decomposition of the computations.

In the offline step, we begin by solving, for all T P Th, the local problems (6), in order to
compute the operator pk`1

h . This first substep essentially requires to invert cardpThq sym-
metric positive-definite matrices of size Nk`1,d. This can be done effectively using Cholesky
factorization. Then, for all T P Th, we solve the local problems (27) and (28). As both
problems involve the same matrix, this second substep essentially requires the inversion of
cardpThq symmetric positive-definite matrices of size Nk,d. Note that both substeps are fully
parallelizable. At the end of the offline step, one has computed the trace-based lifting tkh, and
the restriction of the datum-based lifting dkh to Ukh “ PkdpThq. This fully determines dkh since
the right-hand side of (28) only requires the projection of the datum onto Ukh .

In the online step, given a right-hand side f P L2pΩq, we compute its L2-orthogonal projection
onto Ukh , and we solve the global problem (32); the size of this problem is approximately
equal to cardpFhq ˆNk,d´1. The approximate solution is finally computed applying (31). A
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(b) Hexagonal mesh family

Figure 2: Assembly time divided by the solution time as a function of cardpFhq for a triangular
mesh family (left panel) and a (predominantly) hexagonal mesh family (right panel); the
symbols indicate in both panels the polynomial degree that is being used.

modification of the right-hand side (or of the boundary conditions) only requires to perform
again the online step.

The offline/online solution strategy is particularly attractive in a multi-query context where
one wants to compute the solution of problem (14) for a large number of right-hand sides
f P L2pΩq.

3.3.3 Implementation

An important step in the implementation consists in selecting bases for the polynomial spaces
on elements and faces that appear in the construction (cf. (6), (27), (28), (32)). For T P Th,
we denote by xT a point in T (typically the barycenter of T ). One possibility leading to
a hierarchical basis for PldpT q, l P tk, k ` 1u, is to choose the following family of monomial
functions:

#

d
ź

i“1

ξαiT,i | ξT,i :“
xi ´ xT,i
hT

@ 1 ď i ď d, α “ pαiq1ďiďd P Nd, }α}l1 ď l

+

.

Similarly, for all F P Fh, we can define a basis for Pkd´1pF q spanned by monomials with respect
to a local frame scaled using the face diameter and, say, the barycenter of F .

3.3.4 Cost assessment

Another important question linked to implementation is the scaling of the time devoted to
the assembly (computation of the local contributions, static condensation, and matrix/right-
hand side assembly) with respect to the time devoted to the solution (solving of the global
problem), and how this scaling depends on the meshsize and on the order of approximation.
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Let us assume a naive implementation that does not exploit parallelism, and let us focus on
problem (14) for a given right-hand side in two space dimensions. On Figure 2, we plot, for
polynomial degrees up to 5, the assembly/solution time ratio as a function of the number
of mesh faces for two families of meshes corresponding, respectively, to the triangular (first)
mesh family of the FVCA5 benchmark [41] and to the (predominantly) hexagonal mesh family
introduced in [32, Section 4.2.3]. The global system is solved using the sparse direct solver
of Eigen v3. This way, both the assembly and solution times are only marginally influenced
by the problem data (right-hand side, boundary conditions). As illustrated in Figure 2, the
overall cost of the assembly time becomes quickly negligible in comparison with the solution
time with mesh refinement (except for k “ 0). This can be dramatically improved, e.g., using
thread-based parallelism to solve the (independent) local problems for both the computation
of the potential reconstructions and the static condensation inside each element.

4 The HHO method in mixed form

In this section, we study the HHO method in mixed formulation. The starting point is the
following mixed form of the model problem (1): Find s : Ω Ñ Rd, u : Ω Ñ R, such that

s “ M∇u in Ω,

´divs “ f in Ω,

u “ ψB on Γd,

s¨n “ φB on Γn.

(33)

To write this problem in weak form, we introduce the functional spaces

S :“Hpdiv,Ωq, S0 :“
 

t P S | t¨n|Γn
“ 0

(

, V :“ L2pΩq,

so that the weak problem reads: Find ps0, uq P S0 ˆ V such that

pM´1s0, tq ` pu,div tq “ xt¨n, puBq|ΓyΓ ´ pM
´1sB, tq @t P S0,

´pdivs0, vq “ pf, vq ` pdivsB, vq @v P V,
(34)

where sB P S is a lifting of the Neumann datum such that psB¨nq|Γn
“ φB (which can be taken

to be sB “ ∇θ where θ P H1pΩq solves θ ´∆θ “ 0 in Ω with ∇θ¨n “ φΓ on Γ where φΓ is
the zero-extension of φB to Γ), and x¨, ¨yΓ denotes the duality pairing between H´1{2pΓq and
H1{2pΓq (note that, owing to the fact that t P S0, xt¨n, puBq|ΓyΓ does not depend on the choice
of the lifting uB of ψB). The solution ps, uq P S ˆ V is then computed as ps, uq “ ps0 ` sB, uq.

4.1 Discrete setting

Let us fix an integer k ě 0 and consider an admissible and compatible mesh sequence pThqhPH
in the sense of Definitions 2.1 and 2.2. We suppose that the assumptions of Section 2.4
concerning the diffusivity hold.
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4.1.1 Discrete unknowns

We adopt the same notation as in Section 3.1.1, to which we add the use of boldface to denote
vector-valued quantities. We introduce, first locally then globally, the discrete unknowns
associated with the flux and with the potential. For the flux, we consider hybrid unknowns,
in the sense that they consist of both cell- and face-based contributions. The cell-based flux
unknowns are vector-valued while the face-based ones are scalar-valued. For the potential, we
consider scalar-valued cell-based unknowns.

Local definition Let T P Th. Setting

SkT :“ MT∇PkdpT q, Sk
F :“ Pkd´1pF q for all F P FT ,

we define the local set of hybrid flux unknowns, cf. Figure 3, as

SkT :“ SkT ˆSk
BT , where Sk

BT :“
ą

FPFT

Sk
F .

In the lowest-order case k “ 0, cell-based flux unknowns are unnecessary and SkT has dimension
zero. Any element tT P SkT can be decomposed as tT :“ ptT P S

k
T , tBT P Sk

BT q, with tBT :“
ptF P S

k
F qFPFT .

Ò

Ò

Ò
Ò

Ò

Ò

k “ 0

Ò
Ò

ÒÒ

Ò
Ò

Ò
Ò

ÒÒ

Ò
Ò

k “ 1

‚‚

Ò
Ò
Ò

ÒÒÒ

Ò
Ò
Ò

Ò
Ò
Ò

ÒÒÒ

Ò
Ò
Ò

k “ 2

‚
‚‚

‚ ‚

Figure 3: Degrees of freedom associated with hybrid flux discrete unknowns, d “ 2, k P
t0, 1, 2u.

Letting, for q ą 2,
S`pT q :“ tt P LqpT q | div t P L2pT qu,

and recalling that functions in this space have integrable normal component on all faces of T ,
we introduce the local reduction operator IkT : S`pT q Ñ SkT such that, for all t P S`pT q,

IkT t :“
´

MT∇y, pπkF pt¨nF qqFPFT

¯

,

where y P PkdpT q is a solution (defined up to an additive constant) of the Neumann problem

pMT∇y,∇wqT “ pt,∇wqT @w P PkdpT q, (35)

observing that the required compatibility condition on the right-hand side is verified.

As far as the potential is concerned, we let UkT , introduced in (4), be the associated local set
of (cell-based) discrete unknowns.
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Global definition We define the global set of hybrid flux unknowns as

Skh :“ Skh ˆ

#

ą

FPFh

Sk
F

+

,

where Skh :“
Ś

TPTh S
k
T . Observe that the flux unknowns attached to interfaces are single-

valued. Given an element th P Skh, for any T P Th, we denote by tT “ ptT , tBT q P SkT its
restriction to the element T . We introduce the following subspace of Skh, that allows one to
account for (homogeneous) Neumann boundary conditions in a strong manner:

Skh,0 :“
!

th P Skh | tF ” 0,@F P Fn
h

)

.

We also define the global reduction operator Ikh : S X S`pThq Ñ Skh such that, for all
t P S X S`pThq, and for all T P Th, pIkhtq|T :“ IkT t|T . Single-valuedness at interfaces is
ensured by the regularity of functions in S X S`pThq.

We finally define Ukh , cf. (5), as the global set of discrete (cell-based) potential unknowns, and
we denote by vT P UkT the restriction of any vh P Ukh to the element T P Th.

4.1.2 Divergence reconstruction operator

Let T P Th. We define the local divergence reconstruction operator Dk
T : SkT Ñ UkT as the

operator such that, for all tT “ ptT , tBT q P SkT ,

pDk
T tT , vT qT “ ´ptT ,∇vT qT `

ÿ

FPFT

ptF εT,F , vT qF @vT P U
k
T , (36)

where εT,F :“ nF ¨nT,F for all T P Th and F P FT . This definition reproduces at the discrete
level an integration by parts formula, that brings into action the local hybrid flux unknowns.
The following property is crucial for inf-sup stability, cf. [27, Lemmas 2 and 5].

Lemma 4.1 (Commuting property). The following holds for all t P S`pT q:

Dk
T IkT t “ πkT pdiv tq. (37)

Proof. For t P S`pT q, let us plug the quantity tT :“ IkT t “
´

MT∇y, pπkF pt¨nF qqFPFT

¯

into (36), where y P PkdpT q is a solution to (35). Let vT P UkT , and observe that vT P PkdpT q
and vT |F P Pkd´1pF q. Hence,

pDk
T IkT t, vT qT “ ´pt,∇vT qT `

ÿ

FPFT

pt¨nT,F , vT qF “ pdiv t, vT qT ,

which concludes the proof.

For further use, we introduce the global divergence reconstruction operator Dk
h : Skh Ñ Ukh

such that, for all th P Skh, and all T P Th, pDk
hthq|T :“ Dk

T tT .
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4.1.3 Flux reconstruction operator

Let T P Th. The local flux reconstruction operator F k`1
T : SkT Ñ Sk`1

T is defined, for all
tT “ ptT , tBT q P SkT , as F

k`1
T tT :“ MT∇z, where z P Pk`1

d pT q is a solution (defined up to an
additive constant) of the Neumann problem

pMT∇z,∇wqT “ ptT ,∇πkTwqT `
ÿ

FPFT

ptF εT,F , π
k
Fw ´ π

k
TwqF @w P Pk`1

d pT q, (38)

observing that the required compatibility condition on the right-hand side is verified. The
definition of F k`1

T tT is motivated by the following link between F k`1
T tT and the divergence

reconstruction operator defined in (36): For all tT “ ptT , tBT q P SkT ,

pF k`1
T tT ,∇wqT “ ´pD

k
T tT , wqT `

ÿ

FPFT

ptF εT,F , wqF @w P Pk`1
d pT q. (39)

As in Section 3.1.2, computing the operator F k`1
T using (38) or (39) requires to invert a

symmetric positive-definite matrix of size Nk`1,d, cf. (2), which can be performed effectively
via Cholesky factorization. The following result can be found in [27, Lemma 3] (and requires,
as its primal counterpart (8), that the diffusion tensor be piecewise constant).

Lemma 4.2 (Polynomial consistency). The following holds for all t P Sk`1
T :

F k`1
T IkT t “ t. (40)

Proof. Let t P Sk`1
T and plug tT :“ IkT t into (39). Using the commuting property (37) leads to

Dk
T IkT t “ πkT pdiv tq “ div t since t P Sk`1

T Ă PkdpT q (MT is a constant tensor), which combined
with the fact that πkF pt¨nF q “ t¨nF (since faces are planar), allows us to infer that, for all
w P Pk`1

d pT q,

pF k`1
T IkT t,∇wqT “ ´pdiv t, wqT `

ÿ

FPFT

pt¨nT,F , wqF “ pt,∇wqT .

This last relation proves (40) since pF k`1
T IkT t´ tq P S

k`1
T “ MT∇Pk`1

d pT q.

The next result is adapted from [27, Lemma 9], and is related, in the light of Lemma 5.1
below, to Lemma 3.2.

Lemma 4.3 (Approximation). For all v P Hk`2pT q, letting t :“ MT∇v, the following holds
for all F P FT :

}M´
1{2

T pt´ F k`1
T IkT tq}T ` h

1{2

F µ
´1{2

T,F }pt´ F
k`1
T IkT tq¨nF }F À ρ

1{2

T µ
1{2

7,Th
k`1
T }v}Hk`2pT q. (41)

For further use, we define the global flux reconstruction operator F k`1
h : Skh Ñ Sk`1

h such
that, for all th P Skh, and all T P Th, pF k`1

h thq|T :“ F k`1
T tT .
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4.1.4 Stabilization

For all T P Th, we define the stabilization bilinear form JT : SkT ˆ SkT Ñ R such that

JT psT , tT q :“
ÿ

FPFT

hF
µT,F

ppF k`1
T sT q¨nF ´ sF , pF

k`1
T tT q¨nF ´ tF qF .

Notice that JT is symmetric, positive semi-definite, and polynomially consistent (as a conse-
quence of Lemma 4.2) in the sense that, for all t P Sk`1

T ,

JT pI
k
T t, rT q “ 0 @rT P SkT . (42)

This result can be found in [27, Eq. (18)]. Another important property of JT is the following
approximation property (see [27, Lemma 9] and Lemma 4.3 above): For all v P Hk`2pT q, the
following holds with t :“ MT∇v:

JT pI
k
T t, I

k
T tq

1{2 À ρ
1{2

T µ
1{2

7,Th
k`1
T }v}Hk`2pT q. (43)

4.2 Discrete problem: formulation and key properties

4.2.1 Formulation

For all T P Th, we define the following local bilinear form:

HT : SkT ˆ SkT Ñ R; psT , tT q ÞÑ pM´1
T F

k`1
T sT ,F

k`1
T tT qT ` JT psT , tT q, (44)

where the notation HT is reminiscent of the similarity with the discrete Hodge operator
considered in the CDO framework in the lowest-order case [11]. Introduce now the following
global bilinear form:

Hh : Skh ˆ Skh Ñ R; psh, thq ÞÑ
ÿ

TPTh

HT psT , tT q. (45)

The mixed form of the HHO method for problem (34) reads: Find psh,0, uhq P Skh,0 ˆU
k
h such

that
Hhpsh,0, thq ` puh, D

k
hthq “

ÿ

FPFd
h

ptF , ψBqF ´Hhpsh,B, thq @th P Skh,0,

´pDk
hsh,0, vhq “ pf, vhq ` pD

k
hsh,B, vhq @vh P U

k
h ,

(46)

where sh,B :“ IkhsB P Skh is the reduction of the lifting sB of the Neumann datum φB. The
discrete solution psh, uhq P Skh ˆ U

k
h is finally computed as

psh, uhq “ psh,0 ` sh,B, uhq. (47)

Remark 4.1 (Discrete Neumann datum). Similarly to Remark 3.2, the discrete lifting sh,B of
the Neumann datum can be obtained without explicitly knowing sB by setting

sT,B ” 0 @T P Th, sF,B “ πkFφB @F P Fn
h , sF,B ” 0 @F P FhzFn

h .
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4.2.2 Stability

Let us introduce, for all T P Th, the following norm on SkT :

}tT }
2
S,T :“ µ´1

7,T

˜

}tT }
2
T `

ÿ

FPFT

hF }tF }
2
F

¸

. (48)

Setting }th}
2
S,h :“

ř

TPTh }tT }
2
S,T for all th P Skh, it follows that }¨}S,h defines a norm on Skh.

The coercivity of Hh can be expressed in terms of this norm, cf. [27, Lemma 4].

Lemma 4.4 (Stability for Hh). For all T P Th, and for all tT P SkT , the following holds:

}tT }S,T À HT ptT , tT q
1{2 À ρ

1{2

T }tT }S,T . (49)

Consequently, we infer that

}th}
2
S,h À Hhpth, thq @th P Skh. (50)

We can then state the following result, whose proof hinges on Lemma 4.1, and which is a
slightly modified version of [27, Lemma 5].

Lemma 4.5 (Well-posedness of (46)). For all vh P Ukh , the following holds:

µ
1{2

5
}vh} À sup

thPS
k
h,0,}th}S,h“1

pDk
hth, vhq. (51)

Combining (51) with Lemma 4.4, we infer that problem (46) is well-posed.

4.2.3 Error estimates

Let ps, uq P S ˆ V be such that ps, uq “ ps0 ` sB, uq, where ps0, uq P S0 ˆ V is the (unique)
solution to (34), and sB P S is defined above. We further assume that s P S fulfills the
additional regularity s P S`pThq. Similarly, let psh, uhq P Skh ˆ Ukh be such that psh, uhq “
psh,0 ` sh,B, uhq, where psh,0, uhq P Skh,0 ˆ U

k
h is the (unique) solution to (46), and sh,B P Skh is

defined in Section 4.2.1. Finally, let us introduce the notation }¨}h :“ Hhp¨, ¨q
1{2. Then, we can

state the following result, whose proof can be easily adapted from the one of [27, Theorem 6].
Note that, here again, the constants in the error bounds can depend on the polynomial degree
following the use of discrete trace and inverse inequalities.

Theorem 4.1 (Error estimate for the flux). Assume the additional regularity u P Hk`2pPΩq

(so that, by Definition 2.2, u P Hk`2pThq). Then, the following holds:

}Ikhs´ sh}S,h À }I
k
hs´ sh}h À

#

ÿ

TPTh

µ7,TρTh
2pk`1q
T }u}2Hk`2pT q

+1{2

, (52)

which implies, by an additional use of Lemma 4.3,

}M´1{2ps´ F k`1
h shq} À

#

ÿ

TPTh

µ7,TρTh
2pk`1q
T }u}2Hk`2pT q

+1{2

. (53)
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Whenever elliptic regularity holds, a supercloseness result for the potential can be established,
as an adaptation of [27, Theorem 7].

Theorem 4.2 (Supercloseness of the potential). Assume elliptic regularity for problem (3)
under the form }z}H2pPΩq

À µ´1
5
}g} for all g P L2pΩq and z P U0 solving (3) with data g and

homogeneous (mixed Dirichlet-Neumann) boundary conditions. Assume f P Hk`δpΩq, φB P
W k`δ,8pΓnq, with δ “ 0 for k ě 1 and δ “ 1 for k “ 0. Then, under the same assumption on
u as in Theorem 4.1, the following holds:

µ5}I
k
hu´ uh} À µ

1{2

7
ρ

1{2h

#

ÿ

TPTh

µ7,TρTh
2pk`1q
T }u}2Hk`2pT q

+1{2

` hk`2
!

}f}Hk`δpΩq ` }φB}Wk`δ,8pΓnq

)

. (54)

4.3 Static condensation

There are two ways of reducing the size of the discrete problem (46).

First, as exposed in [27, Section 3.4], it is possible to eliminate locally the cell-based flux
unknowns and the potential unknowns, up to one constant value per element. Thus, the
global system to solve only writes in terms of the face-based flux unknowns and of the mean
value of the potential in each element. For all T P Th, let Uk,0T be the space of d-variate
polynomials of degree at most k having zero mean value in T , so that UkT “ U0

T ‘U
k,0
T . Hence,

any function vT P UkT can be written vT “ v0
T ` v̂T with v0

T P U
0
T and v̂T P U

k,0
T . Then, we infer

from (46) that, for all T P Th, psT , ûT q P SkT ˆ Uk,0T can be eliminated locally by solving the
following saddle point problem with right-hand side depending on sBT P S

k
BT and fT :“ f|T :

ĤT psT , tT q ´ ptT ,∇ûT qT “ ´HT pp0, sBT q, ptT , 0qq @ tT P S
k
T ,

psT ,∇v̂T qT “ pfT , v̂T qT `
ÿ

FPFT

psF εT,F , v̂T qF @ v̂T P U
k,0
T , (55)

where ĤT psT , tT q :“ HT ppsT , 0q, ptT , 0qq. Problem (55) is the counterpart in a mixed context
of problem (26a) obtained in the primal context; the further splitting of (55) leading to
datum- and trace-based lifting operators is omitted for brevity. Problem (55) is well-posed,
since, according to (49) and (48), ĤT ptT , tT q is uniformly equivalent to }tT }2T and the inf-sup
condition holds. The global (saddle point) problem resulting from the local elimination (55)
has the same size and structure as that obtained with the Multiscale Hybrid-Mixed (MHM)
method derived in [3, 40] on simplicial meshes.

The second static condensation approach is based on a reformulation of the mixed problem (46)
into a primal problem. Following [1, Section 3.3], the reformulation is based on the introduction
of Lagrange multipliers that enforce the continuity of interface-based flux unknowns and that
can be interpreted as potential traces on mesh faces. One can eliminate the cell- and face-based
flux unknowns, and, once the reformulation has been performed, one can adapt the arguments
of Section 3.3.1 to further eliminate locally the cell-based potential unknowns, ending up with
a global system only depending on the Lagrange multipliers (face-based potential unknowns).
This static condensation approach has the double advantage that it requires to solve local
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coercive problems (as opposed to local saddle point problems) and that it yields a coercive
global problem. For this reason, we discuss it in more detail in Section 5.

5 Bridging the primal and mixed forms of the HHO method

The goal of this section is to bridge the primal and mixed forms of the HHO method studied
in Sections 3 and 4, respectively. As discussed in the previous section, this can be exploited
in practice to implement the mixed form of the HHO method in terms of a coercive problem
posed on the Lagrange multipliers only.

5.1 Unpatching interface-based flux unknowns

We introduce a global set of hybrid flux unknowns where interface-based unknowns are two-
valued; we refer to these unknowns as unpatched. The unpatched global set of hybrid flux
unknowns is defined as

Š
k
h :“

ą

TPTh

SkT ,

with subset
Š
k
h,0 :“

!

ťh P Š
k
h | ťF ” 0,@F P Fn

h

)

. (56)

Given an element ťh P Š
k
h, for any T P Th, we denote by ťT :“ pťT , p̌tT,F qFPFT q P SkT its

restriction to the element T . For boundary faces F P Fb
h , the subscript T in ťT,F can be

omitted, and we simply write ťF , as we already did in (56).

Let us introduce the following subspace of Š
k
h (respectively, Š

k
h,0):

Ž
k
hp,0q :“

#

ťh P Š
k
hp,0q |

ÿ

TPTF

ťT,F “ 0,@F P F i
h

+

.

It can be easily seen that there exists a natural isomorphism Jkh from Ž
k
h onto the space Skh.

Note that the restriction of Jkh to Ž
k
h,0 defines an isomorphism onto Skh,0.

5.2 Unpatched mixed formulation

We begin by extending to Š
k
h the definitions, respectively built from (36) and (38), of the

divergence reconstruction operator Dk
h and of the flux reconstruction operator F k`1

h , for which
we keep the same notation (locally, the definitions are unchanged up to the replacement of
tF εT,F by ťT,F in face terms). We can then naturally extend the bilinear form Hh, defined
in (45) and built from (44), to the product space Š

k
h ˆ Š

k
h.

We next introduce, for all T P Th, the additional bilinear form

BT : SkT ˆUk
T Ñ R; pťT , vT q ÞÑ pvT , D

k
T ťT qT ´

ÿ

FPFTXF i
h

pvF , ťT,F qF , (57)
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whose global version is as usual obtained by element-by-element assembly:

Bh : Š
k
h ˆUk

h Ñ R; pťh, vhq ÞÑ
ÿ

TPTh

BT pťT , vT q.

This bilinear form includes interface terms that enforce the single-valuedness constraints for
interface-based flux unknowns. In that vision, the face-based potential unknowns can be seen
as Lagrange multipliers.

The unpatched (mixed) HHO discretization of problem (34) then reads: Find pšh,0, ǔh,0q P

Š
k
h,0 ˆUk

h,0 such that, for all pťh, vhq P Š
k
h,0 ˆUk

h,0,

Hhpšh,0, ťhq `Bhpťh, ǔh,0q “
ÿ

FPFd
h

p̌tF , ψBqF ´Hhpšh,B, ťhq ´Bhpťh, uh,Bq, (58a)

´Bhpšh,0, vhq “ pf, vhq `Bhpšh,B, vhq, (58b)

where šh,B :“ pJkhq
´1psh,Bq P Ž

k
h is such that, for all T P Th, šT,B “ psT,B, psF,BεT,F qFPFT q, with

sh,B P Skh defined in Section 4.2.1, and where uh,B is defined in Section 3.2.1. Finally, we define

pšh, ǔhq :“ pšh,0 ` šh,B, ǔh,0 ` uh,Bq P Š
k
h ˆUk

h. (59)

5.3 Equivalence between primal and mixed formulations

The bridge between primal- and mixed-form HHO methods is built in two steps: first, we
prove the equivalence between the mixed and unpatched mixed formulations; then, we prove
that the unpatched mixed formulation can be recast into a primal formulation.

The following result is an adaptation of [1, Lemma 3.3].

Theorem 5.1 (Equivalence (46)-(58)). Denote by psh,0, uhq P Skh,0 ˆ Ukh and pšh,0, ǔh,0q P

Š
k
h,0 ˆUk

h,0 the solutions to (46) and (58), respectively. Then, šh,0 P Ž
k
h,0 and sh,0 “ Jkhpšh,0q,

so that sh “ Jkhpšhq (sh and šh are defined in (47) and (59), respectively); furthermore,
uh “ ǔh (recall that ǔh denotes the cell-based part of ǔh, defined in (59)).

Following [1, Section 3.3], let us now introduce, for all T P Th, the local potential-to-flux
mapping operator ς̌kT : Uk

T Ñ SkT such that, for all vT P Uk
T ,

HT pς̌
k
TvT , ťT q “ ´BT pťT , vT q `

ÿ

FPFTXFb
h

p̌tF , vF qF @ ťT P SkT . (60)

This yields a well-posed problem owing to the first inequality in (49). Defining next another
local flux reconstruction operator F̌ k`1

T : Uk
T Ñ Sk`1

T such that

F̌
k`1
T :“ F k`1

T ˝ ς̌kT , (61)

one can prove the following result.

Lemma 5.1 (Link between F k`1
T and pk`1

T ). For all vT P Uk
T , the following holds:

F̌
k`1
T vT “ MT∇pk`1

T vT . (62)
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Proof. Let vT P Uk
T , and let us plug, for w P Pk`1

d pT q, ťT :“ IkT pMT∇wq into (60). Us-
ing (57), (36), the polynomial consistency property of Lemma 4.2 coupled to (61), and the
one of (42), we get

pF̌
k`1
T vT ,∇wqT “ p∇vT ,MT∇wqT `

ÿ

FPFT

pvF ´ vT ,MT∇w¨nT,F qF , (63)

where we have used that pťT ,∇vT qT “ pMT∇w,∇vT qT and ťT,F “ MT∇w¨nT,F , owing to (35)
and to the fact that w P Pk`1

d pT q. Finally, performing a last integration by parts in (63), and
comparing to the definition (6) of pk`1

T , we prove (62).

Now, defining ς̌kh : Uk
h Ñ Š

k
h such that, for all vh P Uk

h, and for all T P Th, pς̌khvhq|T :“ ς̌kTvT ,
we infer from (60) that

Hhpς̌
k
hǔh, ťhq “ ´Bhpťh, ǔhq `

ÿ

FPFd
h

p̌tF , ψBqF @ ťh P Š
k
h,0, (64)

where we have used the fact that ťF ” 0 for all F P Fn
h and that ǔF “ πkFψB for all F P Fd

h .
Comparing (64) with (58a), it is readily inferred that šh “ ς̌khǔh. Plugging this relation
into (58b), we get that

´Bhpς̌
k
hǔh, vhq “ pf, vhq @vh P Uk

h,0. (65)

Using again (60), we additionally prove that

Hhpς̌
k
hvh, ς̌

k
hǔhq “ ´Bhpς̌

k
hǔh, vhq `

ÿ

FPFn
h

pšF , vF qF @ vh P Uk
h,0, (66)

where we have used the fact that vF ” 0 for all F P Fd
h . Plugging (66) into (65), using the

symmetry of Hh, the decomposition ǔh “ ǔh,0 ` uh,B, and the fact that šF “ πkFφB for all
F P Fn

h , we obtain

Hhpς̌
k
hǔh,0, ς̌

k
hvhq “ pf, vhq ´Hhpς̌

k
huh,B, ς̌

k
hvhq `

ÿ

FPFn
h

pφB, vF qF @ vh P Uk
h,0. (67)

Finally, introducing the global bilinear form Ah : Uk
h ˆ Uk

h Ñ R such that Ahpuh, vhq :“
Hhpς̌

k
huh, ς̌

k
hvhq, problem (67) can be rewritten under the form

Ahpǔh,0, vhq “ pf, vhq ´Ahpuh,B, vhq `
ÿ

FPFn
h

pφB, vF qF @ vh P Uk
h,0. (68)

Using (45), (44), (61), and (62), we also infer that

Ahpuh, vhq “
ÿ

TPTh

pMT∇pk`1
T uT ,∇pk`1

T vT qT `
ÿ

TPTh

JT pς̌
k
TuT , ς̌

k
TvT q. (69)

Finally, owing to (69), the comparison of problem (68) to problem (14) allows to infer the
following result, cf. [1, Section 3.3.4].
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Theorem 5.2 (Equivalence (14)-(58)). Let us denote by uh,0 P Uk
h,0 and pšh,0, ǔh,0q P Š

k
h,0 ˆ

Uk
h,0 the solutions to (14) and (58), respectively. Then, up to a choice of stabilization jT p¨, ¨q :“

JT pς̌
k
T ¨, ς̌

k
T ¨q in (13) for problem (14), uh,0 “ ǔh,0, so that uh “ ǔh (uh and ǔh are defined

in (15) and (59), respectively).

The combination of Theorems 5.1 and 5.2 states the equivalence between primal- and mixed-
form HHO methods, up to an appropriate choice of stabilization.

From a practical point of view, to compute the solution psh,0, uhq of the mixed problem (46),
it suffices to solve the coercive global problem (68) (once the operator ς̌kh has been computed
solving (60) locally in each element) and to use the relation psh,0 ` sh,B, uhq “ pJ

k
hpς̌

k
hǔhq, ǔhq

combined with ǔh “ ǔh,0`uh,B. Adapting the arguments of Section 3.3.1, static condensation
can be performed on problem (68), hence leading to a global problem expressed in terms of
Lagrange multipliers (face-based potential unknowns) only.

6 Conclusion and perspectives

HHO methods are very recent polytopal discretization methods which, by now, rest on a firm
theoretical basis for elliptic PDEs in primal and mixed forms. Advantages offered by HHO
methods are a dimension-independent construction, local conservativity, the possibility to
consider an arbitrary polynomial order, a natural treatment of variable diffusion coefficients,
and tight computational costs in particular owing to static condensation and an offline/online
decomposition of the solution procedure. The price to pay is, on the one hand, the need to
solve local problems in the assembly phase (numerical experiments indicate, however, that the
relative cost with respect to solving the global problem swiftly decreases as mesh resolution in-
creases). On the other hand, HHO methods are essentially nonconforming (as DG methods) so
that some post-processing of the discrete solution may be useful when visualizing the solution
on coarse meshes (on fine meshes, the jumps swiftly converge to zero). Note, however, that
contrary to interior penalty DG methods, the stabilization does not require user-dependent
parameters that must be large enough. Expanding the HHO methodology to systems of quasi-
linear or even nonlinear PDEs poses new challenges. Encouraging results (in the linear case)
include the robustness with respect to Péclet number in case of advection-diffusion and with
respect to incompressibility in linear elasticity, while a nonlinear Leray–Lions problem is ad-
dressed in [24]. Another attractive potential application of HHO methods is in the context of
multiscale problems, where adequate local problems that take into account the small scales of
the problem can be coupled through a global problem posed on a coarse mesh.
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