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. Lorsque les évaluations sont très bruitées, l'erreur d'estimation de l'entropie par simulation conditionnelle devient non négligeable par rapport à ses variations sur son domaine de définition. Nous proposons une solution à ce problème en choisissant les points d'évaluation comme si plusieurs évaluations allaient être faites en ces points. Une application à l'optimisation d'une stratégie d'insertion des énergies renouvelables dans un réseau de distribution d'électricité illustre la méthode proposée.

Introduction

Let f be a continuous real-valued function, defined on R d (or a subset of R d ), d ≥ 1. Given a finite set X ⊂ R d , we consider the problem of estimating the minimum M = min x∈X f (x) and the corresponding set of minimizers, x ⋆ ∈ argmin x∈X f (x), using a sequence of evaluations of f at points X 1 , X 2 , . . . X n ∈ X. In this article, the evaluation results are assumed noisy: at each X i , we observe a perturbed value of f (X i ). The construction of an optimization algorithm X = (X 1 , X 2 , . . .) is viewed as a sequential decision problem: given n (noisy) evaluation results at X 1 , . . . , X n , we must choose X n+1 in order to get, in the end, the best estimators of x ⋆ and M according to a certain loss function.

We adopt the following (classical) Bayesian approach for constructing X. The unknown function f is considered as a sample path of a Gaussian random process ξ defined on some probability space (Ω, B, P 0 ), with parameter x ∈ X. Then, a noisy evaluation of f at X i ∈ X is modeled by the random variable

ξ obs i := ξ(X i ) + ε i , i = 1, 2, . . . , with ε 1 , ε 2 . . . i.i.d
∼ N (0, σ 2 ) (here, σ 2 is assumed to be known). Denote by P n the condi- Following [START_REF] Villemonteix | An informational approach to the global optimization of expensive-to-evaluate functions[END_REF] and [START_REF] Vazquez | Global optimization based on noisy evaluations: An empirical study of two statistical approaches[END_REF], the efficiency of an algorithm X after n evaluations is measured using the posterior Shannon entropy

tional distribution P 0 ( • | I n ), where I n = X 1 , ξ obs 1 . . . , X n , ξ obs
H(x ⋆ ; I n ) = - x∈X P n (x ⋆ = x) log P n (x ⋆ = x) ,
(1) which quantifies the residual uncertainty about the position of x ⋆ . Then, each new evaluation point is chosen using a Stepwise Uncertainty Reduction (SUR) approach, which consists in minimizing a sampling criterion J n that corresponds to the expected residual uncertainty on x ⋆ after n + 1 evaluation results:

X n+1 = argmin x∈X J n (x) with J n (x) := E n (H(x ⋆ ; I n+1 ) | X n+1 = x) .
(2)

Notice that J n (x) is an expectation with respect to the random evaluation result ξ obs n+1 at X n+1 = x. Minimizing J n is equivalent to maximizing the mutual information between x ⋆ and ξ obs n+1 . The reader is referred to [START_REF] Picheny | A benchmarck of kriging-based infill criteria for noisy optimization[END_REF] to a review of other sampling criteria for noisy optimization.

From a numerical point of view, the computation of J n is based on two approximations. A first approximation is required for the computation of the expectation in (2) with respect to the posterior distribution of ξ obs n+1 at X n+1 = x. Since ξ and the evaluation noise are Gaussian, the expectation in (2) is a one-dimensional integral with respect to the Gaussian posterior density of ξ obs n+1 , which can be carried out with a standard Gauss-Hermite quadrature. A second approximation is needed to compute the entropy of the posterior distribution of x ⋆ . [START_REF] Villemonteix | An informational approach to the global optimization of expensive-to-evaluate functions[END_REF] estimate this entropy by plugging into (1) an estimator of P n (x ⋆ = x), with x ranging over X, which, in turn, is estimated by Monte-Carlo simulations of sample paths of ξ conditioned on I n .

When evaluations are noise-free, it is often possible to obtain a satisfactory estimator of the entropy with a moderately large number of sample paths (≈ 1000). However, when the evaluation noise becomes large, it appears that, for the same moderately large number of sample paths, the variance of estimation of the entropy becomes non negligible with respect to the information provided by a single evaluation. Then, minimizing J n to choose new evaluation points becomes questionable. In this article, we propose to circumvent this problem with a new sampling criterion where, in essence, we pretend that several evaluations are going to be carried out instead of a single one.

The Informational Approach to Global Optimization with (very) noisy evaluations

Since a single noisy evaluation provides limited information about x ⋆ , and therefore yields by itself little progress in the optimization procedure, the variations of J n on X can be dominated by its estimation error (as illustrated in Figure 1, first left).

A natural idea to gain more information from noisy evaluations is to perform several evaluations at each iteration of the optimization algorithm. Our contribution is as follows: we suggest to build a sampling criterion J ′ n such that for all x ∈ X, J ′ n (x) corresponds to the expected residual uncertainty about x ⋆ when K (noisy) evaluations of f are performed at x:

J ′ n (x) := E n (H(x ⋆ ; I n+K ) | X n+1 = . . . = X n+K = x) .
(3)

The resulting criterion is illustrated in Figure 1 with K equal to 10, 100 and +∞. We refer to K as the virtual batch size, since we do not actually intend to perform K evaluations at the minimizer X n+1 of J ′ n . Once X n+1 has been obtained by minimizing (3), any number K 0 of evaluations (between K 0 = 1, as assumed in Section 1, and K 0 = +∞) can actually be performed at this point; this number K 0 is the actual batch size. We suggest to take K large enough to make the error of estimation of J ′ n small with respect to the variations of the criterion, and to carry out only one actual evaluation (K 0 = 1) at each iteration if evaluations are very expensive, or a batch of size K 0 > 1 (typically, K 0 ≪ K) if evaluations are only moderately expensive or if parallel processing is available. Another possibility would be to update K at each iteration so as to consider the whole remaining budget of evaluations as suggested in [START_REF] Picheny | Noisy expected improvement and on-line computation time allocation for the optimization of simulators with tunable fidelity[END_REF].

The idea of considering K evaluations at the same point in (3) is only an artificial construction, motivated by the fact that the numerical complexity of the computation of J ′ n is the same as that of J n . Indeed, it can be shown that the distribution of ξ conditioned on I n+K only depends in this case on ξ obs 1 , . . . , ξ obs n and ξn+1 = 1

K K k=1 ξ obs n+k = ξ(x) + 1 K k ε n+k .
This has two consequences. First, the expectation in (3) is simply 3
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Figure 1 -Realizations of the numerical estimate of the sampling criterion J ′ n (x) for the data shown in Figure 2 (right). Each figure represents 15 independent realizations (corresponding to independent samples of conditional simulations). The batch size is, from left to right: K = 1, 10, 100 and +∞. A standard 15-order Gauss-Hermite is used for the integration and 1000 conditional samplepaths.

a one-dimensional integral with respect to the (conditional) distribution of ξn+1 , which is Gaussian, with mean equal to E n (ξ(x)) and variance equal to var n (ξ(x)) + 1 K σ 2 . Second, the simulation of sample paths of ξ conditioned on the n + K random variables ξ obs 1 , . . . , ξ obs n+K boils down to the simulation of sample paths of ξ conditioned on the n + 1 random variables ξ obs 1 , . . . , ξ obs n , ξn+1 . The optimization algorithm with the new criterion J ′ n is available for testing in a development branch of the STK toolbox [START_REF] Bect | STK: a Small (Matlab/Octave) Toolbox for Kriging[END_REF].

Application

The method is applied to the optimization of a strategy for the integration of Renewable Energy Sources (RES) into an electrical distribution network. This strategy describes how the Distribution System Operator (DSO) connects new producers to the network under strict economic, safety and regulatory requirements (Dutrieux et al., 2015a,b). Our objective is to find the optimal value of one parameter of the strategy, x ∈ [-1; 0], so as to minimize the mean global cost of integrating about 20 megawatts of RES over 10 years.

The objective function is f (x) = E S (C (x, S)), where S denotes a 10-year scenario (consisting of several time series, together with the characteristics of RES connection requests), E S the expectation with respect to a random scenario, and C(x, S) the cost of the strategy with parameter x applied to the scenario S. The computation of C is performed by an expensive-to-evaluate computer program. We assume evaluations of the form ξ obs i = C (X i , S i ), where S 1 , S 2 , . . . are independent scenarios generated by the same scenario generator (and therefore identically distributed). This can be rewritten as ξ obs i = f (X i ) + ε i , where the variables ε i = C (X i , S i )f (X i ) are independent and have zero mean. As shown in Figure 2 (left), the evaluation results are very noisy in this application. For the sake of simplicity, the noise variance is assumed to be a known constant (estimated based on a few result evaluations) and the variables ε i , i = 1, 2, . . . will be assumed Gaussian. We consider a budget of 2000 evaluations (without the initial sample) to find the minimizer among 51 candidate points linearly spaced in [-1, 0]. A batch of K 0 = 10 evaluations is performed at each iteration. We compare three ways of constructing X: using the sampling criterion J ′ n when K = K 0 = 10 (denoted as IAGO 10); using J ′ n with K = +∞ (denoted as IAGO +∞); and, as reference, choosing X n+1 at random, uniformly in the set of candidate points (denoted as IID). The kriging model parameters are firstly estimated on an initial sample of 110 evaluations (11 batches of 10 evaluations as shown in Figure 2, right), then adjusted after each new batch of evaluations.

Figure 3 depicts the distribution of the estimated minimizer, the estimated minimum and the posterior entropy of the minimizer over the 500 optimization runs. IAGO +∞ converges towards the area of interest faster than IID and IAGO 10. It is worth noting that a budget of 2000 evaluations does not suffice to locate the minimizer accurately. In fact, even 1000 evaluations at each candidate point (as in Figure 2, left), would not locate it much more precisely (result not shown).

Conclusion

We have proposed a new sampling criterion for the problem of global optimization in presence of very noisy evaluations, assuming that several evaluations are going to be made at a new evaluation point (even if they are not in practice). The proposed method has been applied to the optimization of a renewable energy integration strategy and shown to outperform plain IID sampling and the original IAGO criterion. 

n,

  and by E n and var n the conditional expectation E( • | I n ) and conditional variance var( • | I n ) respectively.
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 2 Figure 2 -Left: Reference data. The search grid (on the x-axis) has m = 51 points. On each point, approx. 1000 evaluation results are available. The solid black line represents the empirical mean. Right: initial sample of 110 evaluations (11 batches of 10 evaluations). The dashed gray line represents the kriging mean. The grayed region represents pointwise credibility intervals with probability 95%.
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 3 Figure3-Distribution of the estimated minimizer x * n (left), the estimated minimum M n (center) and the posterior entropy H n of the minimizer (right) over 500 optimization runs. On each box, the central mark is the median, the edges of the box are the 25th and 75th percentiles, and the whiskers are the 5th and 95th percentiles. The thick black lines indicate the value obtained on our reference dataset.
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