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This paper addresses a scheduling problem with a cumulative continuous resource and energy constraints. Given a set of non-preemptive tasks, each task requires a continuously-divisible resource. The instantaneous resource usage of a task is limited by a minimum and maximum resource requirement. Its processing has to lie within a time-window and the total energy received obtained by integrating a function fi of the instantaneous resource usage over the processing interval must reach a required value (where fi is a non-decreasing, continuous function). The problem is to find a feasible schedule of the tasks, which satisfies all the constraints. This problem, which is a generalization of the well-known cumulative scheduling problem, is NP-complete. For the case where all functions fi are linear, we exhibit structural properties of the feasible solutions and we present a Mixed Integer Linear Program (MILP) based on an event-based formulation. We also adapt the famous "left-shift/right-shift" satisfiability test (energetic reasoning) and the associated time-window adjustments to our problem. To achieve this test, we present three different ways for computing the relevant intervals. Finally, we present a hybrid branch-andbound method to solve the problem, which performs, at each node, the satisfiability test and time-window adjustments and, when the domains of all start and end times are small enough, the remaining solution space is searched via the event-based MILP.

Introduction

The Continuous Energy-Constrained Scheduling Problem (CECSP) is a generalization of the well-known Cumulative Scheduling Problem (CuSP). In CuSP, given a resource with a limited capacity and a set of tasks each one having a release date, a due date, a duration and a resource requirement, we want to schedule all tasks in their time windows and without exceeding the capacity limit of the resource.

One of the main limitations of CuSP is that task durations and resource requirements do not vary over time. However, in many practical cases these variations are part of the problem.

A practical example where the task duration and resource requirement are not fixed is presented in [START_REF] Artigues | The energy scheduling problem: Industrial case-study and constraint propagation techniques[END_REF]. In this paper, a foundry application is presented where a metal is melted in induction furnaces. The electrical power of the furnaces, which can be adjusted at any time to avoid exceeding a maximum prescribed power limit, can be seen as a continuous function of time to be determined. However the function must lie within a limit; thus, a minimum and a maximum power level must be satisfied for the melting operation. Additionally, the melting operation can be stopped once the necessary energy has been received, depending of the selected power function, so the duration of this operation is not known in advance. Moreover, if we increase the power of an electrical furnace to accelerate melting operations, the energy received by the operation is not identical to the electrical energy consumed but is linked to it via a function. Efficiency functions should then be considered for the furnaces. However, the paper did not consider them. Finally, due to the complexity of the problem, the solution method proposed in [START_REF] Artigues | The energy scheduling problem: Industrial case-study and constraint propagation techniques[END_REF] considers a time discretization, which can lead to suboptimal or infeasible solutions by over-constraining the problem, as shown below in Section 3.

In the literature, several scheduling problem involving controllable timevarying resource requirements of the tasks can be found [START_REF] Józefowska | Project scheduling under discrete and continuous resources[END_REF][START_REF] Kis | A branch-and-cut algorithm for scheduling of project with variable-intensity activities[END_REF][START_REF] Wȩglarz | Project scheduling with finite or infinite number of activity processing modes -A survey[END_REF] but none of them encompasses all the characteristics of the problem we consider in this paper. For the scheduling problem with malleable tasks [START_REF] Machowiak | Scheduling Malleable Tasks on Parallel Processors to Minimize the Makespan[END_REF], the task duration depends on the number of processors allocating to it. Another problem with this property is the scheduling problem with continuous resources [START_REF] Ecker | Scheduling computer and manufacturing processes[END_REF], although in this case there is no task time-windows. The Resource-Constrained Project Scheduling Problem (RCPSP) with work-content constraint [START_REF] Fündeling | A priority-rule method for project scheduling with work-content constraints[END_REF] also has this property as a work quantity needs to be received by each task but the resource requirement of a task can only be changed at discrete time periods. Some variants of the CuSP have been proposed to relax the constraint of constant or fixed resource requirement. Baptiste et al. [START_REF] Baptiste | Constraint-based scheduling[END_REF] propose two such relaxations: the fully and the partially elastic case. But, in both cases, no fixed energy requirement is set for the tasks.

To tackle this issue, we model the scheduling problem with a continuouslydivisible resource thus, now, the resource-usage profile of a task can take any shape bounded by a time-window and a minimum and maximum resource requirement, provided that a fixed amount of energy is received by the task. This problem, called CECSP (Continuous Energy-Constrained Scheduling Problem) , has been introduced by Artigues et al. in [START_REF] Artigues | Energetic reasoning for energy-constrained scheduling with a continuous resource[END_REF] who considered the particular case in which the resource consumed by a task is equal to the energy received by it (identity function). We consider a more general case where the energy is expressed as a linear function of the resource consumed.

For CuSP and CECSP with identity functions, a polynomial satisfiability test called "left-shift/right-shift" exists [START_REF] Artigues | Energetic reasoning for energy-constrained scheduling with a continuous resource[END_REF][START_REF] Baptiste | Constraint-based scheduling[END_REF]. This test is based on the so-called energetic reasoning. One of the goals of this paper is to adapt this satisfiability test and the corresponding time-window adjustments to our problem, extending the work done in [START_REF] Nattaf | A polynomial satisfiability test using energetic reasoning for energy constraint scheduling[END_REF]. We also provide an adaptation of the new way of computing relevant intervals that was proposed for CuSP in [START_REF] Derrien | A New Characterization of Relevant Intervals for Energetic Reasoning[END_REF].

Another goal of this paper is to present a solution method for our problem. We present two methods, one consisting in solving an event-based MILP inspired by the existing one for RCPSP [START_REF] Koné | Event-based MILP models for resource-constrained project scheduling problems[END_REF] and the RCPSP with flexible resource profiles [START_REF] Naber | MIP models for resource-constrained project scheduling with flexible resource profiles[END_REF][START_REF] Naber | A continuous time model for the resourceconstrained project scheduling with flexible resource profiles[END_REF]. The second method is an hybrid branch-and-bound algorithm, using the branching scheme of Carlier et al. [START_REF] Carlier | Une méthode arborescente pour résoudre les problèmes cumulatifs[END_REF], the "left-shift/right-shift" test and the corresponding time-window adjustments and the event-based MILP.

In section 2, we describe the problem. Section 3 is dedicated to the eventbased MILP. Section 4 presents the adaptation of the "left-shift/right-shift" test and section 5 shows how we compute relevant intervals for this test. In section 6, we describe the hybrid branch-and-bound algorithm and in section 7 we present some computational results showing the interest of our approach.

Problem statement and properties

In the considered scheduling problem with a continuous resource and energy constraints (CECSP), we are given as input a set A = {1, . . . , n} of tasks and a cumulative, continuous and renewable resource with limited capacity B. During its execution, a task uses a variable amount of this resource which has to lie between a minimum and a maximum requirement, b min i and b max i , respectively. A task finishes when a required amount of energy W i has been received by it.

To compute this energy we use a non-decreasing power processing rate function

f i which is continuous in [b min i , b max i
] with a special behavior at point zero, i.e. f (0) = 0. This function allows us to convert the resource quantity used by i in an energy quantity. Furthermore, each task needs to be performed in its time-window [r i , d i ]. All the following results can be adapted to the case where tasks are preemptive but, for ease of notation, in this paper, we only consider the non-preemptive case, i.e. b min i = 0. Finding a feasible solution is equivalent to finding, for each i ∈ A, a start time st i , a finish time f t i and for every t ∈ [st i , f t i ] the amount b i (t) of resource allocated to task i at time t. These three quantities have to satisfy the following constraints:

r i ≤ st i ≤ f t i ≤ d i ∀i ∈ A (1) b min i ≤ b i (t) ≤ b max i ∀i ∈ A and t ∈ [st i , f t i ] (2) b i (t) = 0 ∀i ∈ A and t ∈ [st i , f t i ] (3) 
f ti sti f i (b i (t))dt = W i ∀i ∈ A (4) i∈A b i (t) ≤ B t ∈ [0, D max ] (5) 
with D max = max i∈A d i (by translation, we can always assume that min i∈A r i = 0). This problem is NP-complete by simple reduction from the well-known Cumulative Scheduling Problem (CuSP). In this problem, given a set of n tasks and a discrete, cumulative and renewable resource available in quantity B , the goal is to find a feasible schedule of the tasks where each task consumes a fixed amount of resource b i , has a duration p i and has to lie in its time-window [r i , d i ].

The reduction from CuSP to CECSP is as follows. Let I be an instance of CuSP. We construct an instance I of CECSP in the following way: b min i and b max i are set to b i , ∀i ∈ A, f i is the identity function, W i is set to p i b i and all other data remain unchanged (r i = r i , d i = d i and B = B ). Trivially, I is feasible if and only if I is feasible. Therefore, the CECSP is NP-complete.

In this paper, we consider the case where all functions f i are linear, i.e. of the form a i b + c i with a i > 0 and c i ≥ 0. We restricted the study to positive coefficients a i and c i in order to avoid case where

f i (b) = 0 when b ∈ [b min i , b max i ].
We start by presenting an example of an instance of CECSP and one corresponding solution (see Fig. 1). In the example of Fig. 1, we can see that, the energy received by task 2 is equal to (2 × 3 + 1) + (2 × 4 + 1) + (2 × 4 + 1) = 25 which is not equal to the amount of resource consumed (11 in this case). Now, we present a property of the CECSP, which will be helpful for solving it. Actually, we prove that if a solution S exists, then another solution S can be created from S with the property that each function b i (t) is piecewise constant. This is the statement of the following theorem:

1 3 B = 5 2 i r i d i W i b min i b max i f i (b) 1 0 2 6 
Theorem 1 Let I be a feasible instance of CECSP, with linear functions f i , ∀i ∈ A. A solution such that, for all i ∈ A, b i (t) is piecewise constant, exists. Furthermore, ∀i ∈ A the only breakpoints of b i (t) can be restricted to the start and end times of the tasks.

Proof Let S be a feasible solution of I and let (t q ) {q=1..Q} be the increasing series of distinct start time and end time values (Q ≤ 2n). We construct a new solution S in the following way: ∀i ∈ A, we set st i and f t i to st i and f t i respectively, and ∀q ∈ {1, . . . , Q -1} we set, ∀t ∈ [t q , t q + 1], b i (t) to As S is a feasible solution, S clearly satisfies constraints (1) and [START_REF] Baptiste | Constraint-based scheduling[END_REF]. First, we prove that S satisfies constraint [START_REF] Ecker | Scheduling computer and manufacturing processes[END_REF]. In order to do so, we prove that ∀q ∈ {1, . . . , Q -1} and ∀i ∈ A,

tq+1 tq f i (b i (t))dt = tq+1 tq f i (b iq )dt.
As we have:

tq+1 tq f i (b iq )dt = tq+1 tq (a i b iq + c i )dt =a i (t q+1 -t q ) tq+1 tq b i (t)dt t q+1 -t q + c i (t q+1 -t q ) = tq+1 tq f i (b i (t))dt
S satisfies constraint (4). We can prove that S also satisfies constraints (2) and ( 5) in a similar way.

Notice that this theorem may be no longer valid when the CECSP constraints are used in a larger model, for example, if allocation functions b i (t) are involved in other constraints.

An interesting corollary of Theorem 1 is as follows:

Corollary 2 For fixed (st i , f t i ) i∈A the satisfiability of CECSP can be checked polynomially in function of n.

Indeed, for each interval [st i , f t j ] or [f t j , st i ] (at most 2n), we have to decide how much resource we give to tasks w.r.t (1)- [START_REF] Machowiak | Scheduling Malleable Tasks on Parallel Processors to Minimize the Makespan[END_REF]. This problem can easily be modeled by a linear program.

Another interesting remark can be made about Th.1. Indeed, in order to find a solution to CECSP, we only have to find, for each task, its start time st i , its finish time f t i and the quantity of resource allocated to i between two consecutive start/end time. This allows us to model this problem with a Mixed Integer Linear Program.

Mixed Integer Program

In this section, we present an event-based MILP for solving CECSP. We choose this representation instead of a time-indexed one for the following reason: we can build an instance, with integer data and identity functions f i , having only non-integer solutions (see Fig. 2). Note that we could scale the input in order to get back to integer solutions. However this might lead to an instance with a very large time horizon and then to a prohibitive number of variables for a time-indexed model. As a remark of this counter-example, we want to point out the fact that any solver/model used to solve correctly this problem needs to be able to handle continuous variables in the context of a cumulative constraint.

i r i d i W i b min i b max i f i (b) 0 0 2 3 2 2 b 1 1 3 3 1 2 b 0 1.5 3 0 1 B = 2
Our formulation is inspired by the start/end event-based formulation for the RCPSP [START_REF] Koné | Event-based MILP models for resource-constrained project scheduling problems[END_REF]. In this formulation, the events correspond to the start and end times of tasks and are represented by continuous variables t e . Let E = {1, . . . , 2n} be the index set of these events. A decision variable x ie (resp. y ie ) is equal to 1 if task i starts (resp. ends) at event e. In addition, we define two new variables B ie and W ie , which stand for the quantity of resource (resp. energy) received by task i during interval [t e , t e+1 ]. Since there are 2n events, this model has 8n 2 variables. This yields the following formulation:

max i∈A e∈E Wie (6) te ≤ te+1 ∀e ∈ E (7) e∈E xie = 1 ∀i ∈ A (8) e∈E yie = 1 ∀i ∈ A (9) xieri ≤ te ∀i ∈ A ; ∀e ∈ E (10) te ≤ xies max i + (1 -xie)Dmax ∀i ∈ A ; ∀e ∈ E (11) te ≥ yiee min i ∀i ∈ A ; ∀e ∈ E (12) diyie + (1 -yie)Dmax ≥ te ∀i ∈ A ; ∀e ∈ E (13) i∈A Bie ≤ B(te+1 -te) ∀e ∈ E (14) 
t d ≥ te + (xie + y id -1)W i/fi(b max i ) ∀i ∈ A ; ∀(e, d) ∈ E ; d > e ( 15 
)
Wie ≤ aiBie + ci(te+1 -te) ∀i ∈ A ; ∀e ∈ E (16) Wie ≤ M ( e e =0
x ie -

e e =0 y ie ) ∀i ∈ A ; ∀e ∈ E ( 17 
) e∈E Wie = Wi ∀i ∈ A (18) Bie ≥ b min i (te+1 -te) -M (1 - e e =0 x ie + e e =0 y ie ) ∀i ∈ A ; ∀e ∈ E (19) Bie ≤ b max i (te+1 -te) ∀i ∈ A ; ∀e ∈ E (20) ( e e =0
x ie -

e e =0 y ie )Wi -Bie ≥ 0 ∀i ∈ A ; ∀e ∈ E (21) te ≥ 0 ∀e ∈ E (22) Bie ≥ 0 ∀i ∈ A ; ∀e ∈ E (23) Wie ≥ 0 ∀i ∈ A ; ∀e ∈ E (24) xie ∈ {0, 1}, yie ∈ {0, 1} ∀i ∈ A ; ∀e ∈ E ( 25 
)
where M is some large enough constant,

s max i = d i -W i /f i (b max i ) (resp. e min i = r i + W i /f i (b max i
)) is the latest start (resp. earliest end) time of task i and

D max = max i∈A d i .
In order to provide better understanding of the model, we want to point out the fact that, if task i is in process at event e, then e f =0 (x if -y if ) = 1 and 0 otherwise. We now described the constraints of the model. Constraints ( 7)-( 15) are classical constraints of an event-based MILP model for a cumulative constraint. Constraints ( 16)-( 18) combined with objective function [START_REF] Bentley | Algorithms for Reporting and Counting Geometric Intersections[END_REF] guarantee that the required energy is available for the tasks. Indeed, constraints [START_REF] Nattaf | A polynomial satisfiability test using energetic reasoning for energy constraint scheduling[END_REF] set W ie to 0 if the task is not in process and constraints ( 16) combined with the objective function ensure resource conversion. Constraints (19) (resp. ( 20)) impose that, during its execution, a task satisfies its minimum (resp. maximum) resource requirement. Constraints (21) set the resource consumption of task i to 0 if the task is not in process. Indeed, in this case, constraints become B ie ≤ 0.

We have presented an event-based MILP solving the CECSP. Experimental results are described in Section 7. The rest of the paper is dedicated to the hybrid branch-and-bound. We start by presenting the checking and filtering algorithms which will be used in the main algorithm.

Energetic Reasoning based satisfiability test 4.1 Mandatory consumption

In this section, we present a polynomial satisfiability test for CECSP. This test is based on the famous "left-shift/right-shift" test for the Cumulative Scheduling Problem [START_REF] Baptiste | Constraint-based scheduling[END_REF] and use the so-called energetic reasoning [START_REF] Erschler | Energy-based approach for task scheduling under time and resources constraints[END_REF].

Before explaining how this reasoning yields a polynomial satisfiability test for our problem, we exhibit an elementary necessary condition to check whether all task data are consistent. This condition can be expressed as follows: if there exists a task i such that f i (b max i )(d i -r i ) < W i then the instance is infeasible. Indeed, as f i (b) is a non-decreasing linear function, execute a task i at its maximum requirement during interval [r i , d i ] gives the maximum possible energy. Therefore, if W i is greater than this quantity, then we cannot have a solution for the instance.

In order to present our satisfiability test, we define two quantities: the minimum resource consumption (resp. minimum energy requirement) of a task i over an interval [t 1 , t 2 ], b(i, t 1 , t 2 ) (resp. w(i, t 1 , t 2 )). These quantities are expressed by the following equations:

b(i, t 1 , t 2 ) = min S t2 t1 b i (t)dt S = {b i (t)|b i (t) satisfies (1) -(4)} (26) w(i, t 1 , t 2 ) = min S t2 t1 1 N Z (t)f i (b i (t))dt ( 27 
)
where

1 N Z (t) := 1 if t ∈ N Z := {t|b i (t) = 0} 0 otherwise
These two values are used to compute the slack of the interval [t 1 , t 2 ] defined by

SL(t 1 , t 2 ) = B(t 2 -t 1 ) -i∈A b(i, t 1 , t 2 )
. With these definitions, we are now able to define a necessary condition for CECSP to have a solution:

Theorem 3 Let I be an instance of CECSP. If there exists (t 1 , t 2 ) ∈ R 2 , with t 1 < t 2 , such that SL(t 1 , t 2 ) < 0 then I is an infeasible instance of CECSP.
Proof By contradiction, suppose the condition is satisfied for some (t 1 , t 2 ). Since, b(i, t 1 , t 2 ) is the minimum resource consumption of i over [t 1 , t 2 ], for any feasible solution, we have

t2 t1 b i (t) ≥ b(i, t 1 , t 2 ). It implies i∈A t2 t1 b i (t) ≥ i∈A b(i, t 1 , t 2 ) ≥ B(t 2 -t 1 )
, and this is a contradiction with the integration of ( 5) on [t 1 , t 2 ].

An example of this theorem is described by Fig. 3 in which the available quantity of resource is equal to B(t 2 -t 1 ) = 3(6 -1) = 15 and the sum of all resource mandatory consumptions is equal to 18. So, SL(t 1 , t 2 ) = -3 < 0 and the instance is infeasible. The method used for computing the mandatory consumption of a task is described after the example. mandatory consumption In order to have a complete polynomial satisfiability test, we have to prove that the slack function can be computed in a polynomial time and that it is sufficient to perform the test on a polynomial number of intervals.

B = 3 t 1 = 1 t 2 = 6 available resource
To compute the slack function in polynomial time, we have analyzed the possible configurations of minimum resource consumption. First, since f i (b) is a non-decreasing function, we can observe that, given an interval [t 1 , t 2 ], the minimum consumption always corresponds to a configuration where task i is either left-shifted (the task starts at r i and is scheduled at b max i between r i and t 1 ) or right-shifted (the task ends at d i and is scheduled at b max i between t 2 and d i ) or both (both-shifted).

We will denote by ω + i (t 1 , t 2 ) (resp. ω - i (t 1 , t 2 ) and ω i (t 1 , t 2 )) the minimum energy requirement of task i inside [t 1 , t 2 ] if the task is left-shifted (resp. rightshifted or both-shifted). We have:

• ω + i (t 1 , t 2 ) = max(0, W i -max(0, t 1 -r i )f i (b max i )) • ω - i (t 1 , t 2 ) = max(0, W i -max(0, d i -t 2 )f i (b max i )) • ω i (t 1 , t 2 ) = max(f i (b min i )(t 2 -t 1 ), W i -f i (b max i )(max(0, t 1 -r i )+max(0, d i - t 2 )))
Therefore, the minimum energy requirement in [t 1 , t 2 ] is:

w(i, t 1 , t 2 ) = min(ω + i (t 1 , t 2 ), ω - i (t 1 , t 2 ), ω i (t 1 , t 2 )) (28) 
We still have to compute the minimum required resource consumption. For this, let J be the interval over which task i has to receive an energy quantity

w(i, t 1 , t 2 ), i.e. J = [t 1 , t 2 ] ∩ [r i , d i ].
We have two cases to consider :

• the remaining interval is sufficiently large to schedule the task at its minimum requirement, i.e. |J| ≥ w(i,t1,

) , and then b(i, t

1 , t 2 ) = b min i w(i,t1,t2) fi(b min i )
• the remaining interval is not large enough to schedule the task at its minimum requirement and finding b(i, t 1 , t 2 ) is equivalent to solving:

minimize J b i (t)dt subject to J f i (b i (t))dt ≥ w(i, t 1 , t 2 )
The constraint can be written as:

a i J b i (t)dt + c i J dt ≥ w(i, t 1 , t 2 ), which is equivalent to J b i (t)dt ≥ 1 ai (w(i, t 1 , t 2 ) -|J|c i ).
Then, since there is only one constraint, the minimum value of

J b i (t)dt = b(i, t 1 , t 2 ) = 1 ai (w(i, t 1 , t 2 ) -|J|c i ). The expression of the minimum resource consumption of i inside [t 1 , t 2 ] is: b(i, t 1 , t 2 ) = max(b min i w(i, t 1 , t 2 ) f i (b min i ) , 1 a i (w(i, t 1 , t 2 ) -|J|c i )) (29) 
We show that we can compute the slack function in polynomial time. To have a complete polynomial satisfiability test, we have to prove that it is sufficient to perform the test on a polynomial number of intervals and that we can compute them in polynomial time. Since the same intervals are used to perform the timewindow adjustments, we start by presenting them and after that, in Section 5, we will describe the interval computation method.

Time-window adjustments

In this section, we describe some time-adjustments that can be deduced from the satisfiability test. These adjustments are an adaptation of the adjustments of Baptiste et al. [START_REF] Baptiste | Constraint-based scheduling[END_REF].

We start by defining some notations. We denote by

β + i (t 1 , t 2 ) (resp. β - i (t 1 , t 2 ) and β i (t 1 , t 2 )) the minimal resource consumption corresponding to ω + i (t 1 , t 2 ) (resp. ω - i (t 1 , t 2 ) or ω i (t 1 , t 2 )). We have β + i (t 1 , t 2 ) = max(b min i ω + i (t1,t2) fi(b min i ) , 1 ai (ω + i (t 1 , t 2 ) -c i |J|))
and similar expressions for β - i (t 1 , t 2 ) and β i (t 1 , t 2 ). Now, we are able to describe our time-window adjustments. Given a task i and an interval [t 1 , t 2 ] the goal is to decide whether i can end before t 2 .

Lemma 4 If there exists [t 1 , t 2 ] such that:

j∈A i =j b(j, t 1 , t 2 ) + min(β + i (t 1 , t 2 ), β i (t 1 , t 2 )) > B(t 2 -t 1 )
then, we have:

e min i ≥ t 2 + 1 b max i ( j∈A i =j b(j, t 1 , t 2 ) + min(β + i (t 1 , t 2 ), β i (t 1 , t 2 )) -B(t 2 -t 1 )) (30) Indeed, j∈A;i =j b(j, t 1 , t 2 ) + min(β + i (t 1 , t 2 ), β i (t 1 , t 2 
)) is the total minimum resource consumption in [t 1 , t 2 ] when i is left-shifted. Therefore, if this quantity is greater than the quantity of available resource then a part of i must be scheduled after t 2 .

Furthermore, j∈A;i =j b(j, t 1 , t 2 ) + min(β

+ i (t 1 , t 2 ), β i (t 1 , t 2 )) -B(t 2 -t 1 )
is the amount of resource that has to be allocated to i after t 2 . Hence, we can divide this number by b max i to obtain a valid lower bound of the end time of i. Similarly, if b min i = 0 then, when:

j∈A i =j b(j, t 1 , t 2 ) + min(β + i (t 1 , t 2 ), β i (t 1 , t 2 )) > B(t 2 -t 1 )
then, we have:

r i ≥ t 2 - 1 b min i (B(t 2 -t 1 ) - j∈A i =j b(j, t 1 , t 2 )) (31) 
We perform these adjustments on the intervals on which we perform the satisfiability test1 (see Algorithm 1). These intervals are described in Section 5.

Example Consider the following instance: [START_REF] Artigues | The energy scheduling problem: Industrial case-study and constraint propagation techniques[END_REF][START_REF] Ecker | Scheduling computer and manufacturing processes[END_REF], we have:

i r i d i W i b min i b max i f i (b) 1 0 6 12 1 5 b 2 0 4 12 2 5 b 3 1 4 6 2 2 b B = 5 2 1 3 t 1 = 1 t 2 = 4 On interval
• b(1, 1, 4) = min(12 -5 × 1, 3, 12 -5 × 2) = 2 (right-shifted) • b(2, 1, 4) = min(12 -5 × 1, 7, 12) = 7 (left-shifted) • b(3, 1, 4) = min(6, 6, 6) = 6 (both-shifted) • B(t 2 -t 1 ) = 5(4 -1) = 15
Considering task 1, the quantity of resource available for 1 in [START_REF] Artigues | The energy scheduling problem: Industrial case-study and constraint propagation techniques[END_REF][START_REF] Ecker | Scheduling computer and manufacturing processes[END_REF] is 15 -(15 -2) = 15 -13 = 2. If task 1 starts before t 1 , we need either β + 1 (1, 4) = 7 (the task is left-shifted) or β 1 (1, 4) = 3 (the task is both-shifted) units of resource available in [START_REF] Artigues | The energy scheduling problem: Industrial case-study and constraint propagation techniques[END_REF][START_REF] Ecker | Scheduling computer and manufacturing processes[END_REF]. So, since the task is non-preemptive, i.e. b min i = 0, task 1 cannot start before t 1 . Furthermore, since only 2 units of resource are available in [START_REF] Artigues | The energy scheduling problem: Industrial case-study and constraint propagation techniques[END_REF][START_REF] Ecker | Scheduling computer and manufacturing processes[END_REF],

r i can be set to t 2 -2/b min i = 4 -2/1 = 2.
We have presented the time-adjustments we performed in the hybrid branchand-bound procedure. Now, we prove that the time needed to apply the satisfiability test on an instance is polynomial by proving it is sufficient to do the test only on a quadratic number of intervals [t 1 , t 2 ].

Complexity

The following theorem establishes the polynomiality of the test by proving that the number of relevant intervals is quadratic.

Theorem 5 ([2])

The energetic reasoning (Th.3) needs only to be applied on a quadratic number of intervals.

Proof Since the slack function is the difference of one linear function B(t 2 -t 1 ) and a sum of two-dimensional piecewise linear functions, it is a two-dimensional piecewise linear function. Therefore, its minimum is reached on an extreme point of one of the convex polygons on which it is linear. As the break line segments of the slack function are the same as the ones of the sum of the individual minimum consumption functions, an extreme point of the slack function is the intersection of two break line segments of an individual task minimum consumption.

Thus, we only have to perform the satisfiability test on the intervals corresponding to these intersection points and, since for each task there is a constant number of break line segments, there is at most O(n 2 ) such points.

Algorithm 1 Time window adjustments

for every relevant interval [t 1 , t 2 ] do W ← 0 R ← 0 for all i ∈ A do W ← W + min(ω + i (t 1 , t 2 ), ω i (t 1 , t 2 ), ω - i (t 1 , t 2 )) R ← R + max(b min i W fi(b min i ) , 1 ai (W -c i |J|)) end for if R > B(t 2 -t 1 ) then instance infeasible, exit else for all i ∈ A do W ← min(ω + i (t 1 , t 2 ), ω i (t 1 , t 2 ), ω - i (t 1 , t 2 )) slack ← B(t 2 -t 1 ) -R + max(b min i W fi(b min i ) , 1 ai (W -c i |J|)) if slack < min(β + i (t 1 , t 2 ), β i (t 1 , t 2 )) then e min i ← max(e min i , t 2 + 1 b max i (min(β + i (t 1 , t 2 ), β i (t 1 , t 2 )) -slack)) r i ← max(r i , t 2 -slack b min i ) end if if slack < min(β - i (t 1 , t 2 ), β i (t 1 , t 2 )) then s max i ← min(s max i , t 1 -1 b max i (min(β - i (t 1 , t 2 ), β i (t 1 , t 2 )) -slack)) d i ← min(d i , t 1 + slack b min i ) end if end for end if end for
For each intersection point, the slack function is computed in O(n). So, the satisfiability test needs also O(n) time and, since the test is performed on a quadratic number of intervals, the total time complexity is O(n 3 ) with a naive enumeration algorithm. In the following section, we described three different methods for computing these intervals.

Computing relevant intervals

We now present three ways for computing these intervals. The first and second ones are based on an analysis of the break line segments of the individual task minimum consumption functions, as done in [START_REF] Artigues | Energetic reasoning for energy-constrained scheduling with a continuous resource[END_REF]. The first one computes the intersection points in a naive way and the second uses a sweep line algorithm to compute them. The last one is an adaptation of the work of Derrien et al. [START_REF] Derrien | A New Characterization of Relevant Intervals for Energetic Reasoning[END_REF]. It is based on an analysis of the partial derivatives of the slack function.

In our work, we have considered the following cases:

1. b min i = b max i (cumulative case) 2. 0 < b min i < b max i (a) W i ≤ (d i -r i )f i (b min i ) (b) W i ≥ (d i -r i )f i (b min i )
Since all cases are treated in a similar way, we only describe our results for case (2b).

Task break line segment analysis

In this section, we perform an analysis of the task break line segments. Indeed, we know that an extreme point of the slack function, i.e. a point for which it can be minimal, is at the intersection of two break line segments of an individual task minimum consumption. So, we are interested in finding, for each task, a list of these break line segments. Once these lists are computed, we only have to test intersection of each pair of break line segments. First, we have to analyse the expression of w(i, t 1 , t 2 ) depending on the value of (t 1 , t 2 ). This analysis has already been done in [START_REF] Artigues | Energetic reasoning for energy-constrained scheduling with a continuous resource[END_REF]. So, we just summarize these results in Fig. 4 In the red polygon, w(i, t 1 , t 2 ) = W i . In both green ones w(i, t

1 , t 2 ) = W i -(d i -t 2 )f i (b max i ). In blue ones w(i, t 1 , t 2 ) = W i -(t 1 -r i )f i (b max i ). In the white one w(i, t 1 , t 2 ) = W i -(d i -t 2 + t 1 -r i )f i (b max i
). And, in the yellow one w(i, t 1 , t 2 ) = (t 2 -t 1 )f i (b min i ). All the other areas correspond to w(i, t 1 , t 2 ) = 0. For ease of notation, we define the following set of points:

• I • I • H • F • s max i e min i • • • 0 • di Dmax 0 ri Dmax • • C t1 t2 • I • I • G • G • s max i e min i • • • 0 • di Dmax 0 ri Dmax • • C t1 t2 ( 
• C = (r i , d i ), F = (e min i , s max i ), G = (s max i , s max i
) and G = (e min i , e min i )

• I = (r i , difi(b max i )-rifi(b min i )-Wi fi(b max i )-fi(b min i ) ), I = ( rifi(b max i )-difi(b min i )+Wi fi(b max i )-fi(b min i ) , d i ) • H = ( ri(fi(b max i )-fi(b min i ))-difi(b min i )+Wi fi(b max i )-2fi(b min i ) , di(fi(b max i )-fi(b min i ))-rifi(b min i )-Wi fi(b max i )-2fi(b min i ) )
These points correspond to the intersection of two segments delimiting two areas with different expressions of w(i, t 1 , t 2 ). For example, H is the intersection point of line

W i -(d i -t 2 )f i (b max i ) = (t 2 -t 1 )f i (b min i ) and line W i -(t 1 - r i )f i (b max i ) = (t 2 -t 1 )f i (b min i ).
To perform the same analysis to function b(i, t 1 , t 2 ), we have to consider, for each polygon, the following inequality:

w(i, t 1 , t 2 ) ≤ f i (b min i )|J|, i.e. knowing whether the interval J = [r i , d i ] ∩ [t 1 , t 2 ] is large enough to execute i at b min i .
So, in the blue polygon, we consider this inequality:

W i -(t 1 -r i )f i (b max i ) ≤ f i (b min i )|J|
Since, the blue area is delimited by equation t 1 = r i , we only have to consider two cases: t 2 ≥ d i and t 2 ≤ d i . In both cases, the inequality becomes

t 1 ≥ W i + r i f i (b max i ) -t 2 f i (b min i ) f i (b max i ) -f i (b min i )
In the case where t ). So, the blue polygon is separated into two parts:

• the light one where b(i, t 1 , t 2 ) = 1 ai (w(i, t 1 , t 2 ) -c i |J|)

• and the dark one where b(i, t

1 , t 2 ) = b min i (w(i, t 1 , t 2 )/f i (b min i ))
and so does for the green polygon. By applying the same reasoning, we find that:

• in the red polygon b(i, t 1 , t 2 ) = 1 ai (W i -c i (d i -r i )) • in the yellow one b(i, t 1 , t 2 ) = 1 ai (W i -(d i -t 2 +t 1 -r i )f i (b max i )-c i (t 2 -t 1 ))
• and, in the white one b(i, t 1 , t 2 ) = (t 2 -t 1 )b min i All the other areas correspond to b(i, t 1 , t 2 ) = 0. These results are displayed in Fig. 4.

We have analyzed the expression of b(i, t 1 , t 2 ) depending of the value of (t 1 , t 2 ). The break line segments to consider correspond to segments delimiting two areas with different expressions of b(i, t 1 , t 2 ). Thus, the break line segments to consider are (we denote by I t1 (resp. I t2 ) the x-coordinate (resp. y-coordinate) of point I):

• in both cases: (r i , D max )C, (0, d i )C, (0, s max To identify the relevant intervals, we need to compute, for all pairs of break line segments, their intersection (t 1 , t 2 ). To achieve this, either we use a naive algorithm, i.e. we test intersection of all couples of break line segments, or we use the sweep line algorithm of Bentley-Ottmann [START_REF] Bentley | Algorithms for Reporting and Counting Geometric Intersections[END_REF].

The main idea of the sweep line algorithm is that two segments cannot have an intersection point if they do not share x-coordinates and y-coordinates. A fictive horizontal line is used to sweep the x-axis and, at some "events", we test the intersection of two segments if they both cross this line and if they follow each other in vertical order. So, the number of tested intersections may decrease in comparison with a naive algorithm.

In the first case, we obtain a total complexity for the satisfiability test of O(n 3 ) and, in the second case, the complexity is O((n 2 + nk) log n) with k the number of intersection points. Even if the theoretical complexity is higher with the sweep line algorithm (k may be in O(n 2 )), in practice, the algorithm can be faster than the naive one (see Section 7).

Slack function analysis

The last way of computing relevant intervals is an adaptation of work of Derrien et al. [START_REF] Derrien | A New Characterization of Relevant Intervals for Energetic Reasoning[END_REF] and is based on the following theorem: Theorem 6 The slack function is locally minimum in interval [t 1 , t 2 ] only if there exists two tasks i and j such that the following conditions are satisfied:

δ + b(i, t 1 , t 2 ) δt 1 < δ -b(i, t 1 , t 2 ) δt 1 (32) δ + b(j, t 1 , t 2 ) δt 2 < δ -b(j, t 1 , t 2 ) δt 2 (33) 
with δ + b(j,t1,t2) δt2 (resp. δ -b(j,t1 ,t2) δt2 
) the right (resp. left) derivative of b(j, t 1 , t 2 ) w.r.t t 2 .

Proof By contradiction, suppose (t 1 , t 2 ) is a local minimum of the slack function and equation ( 32) is satisfied for all tasks. Then, SL(t 1 , t 2 ) has its left derivative greater than or equal to its right. Since, by the second derivative test, minimal value of a function can only be reached at a point where its left derivative is lower than its right, (t 1 , t 2 ) can not be a local minimum of the slack function. The proof for condition (33) is similar.

In the following lemma, we characterize, for a task i and a fixed t 1 , the value of function t 2 → b(i, t 1 , t 2 ) for which its left derivative is greater than its right.

Lemma 7 Suppose task i satisfies the following condition:

W i ≥ f i (b min i )(d i - r i ).
Then, for any fixed t 1 , only one interval [t 1 , t 2 ] satisfying (33) exists:

1. if t 1 ≤ r i then only interval [t 1 , d i ] has to be considered 2. if t 1 ≥ e min i
then no interval has to be considered

3. if r i ≤ t 1 ≤ e min i ∧ t 1 ≥ I t1 ∧ (t 1 ≤ s max i ∨ t 1 ≤ H t1 ) then intervals [t 1 , U (t 1 )] and [t 1 , D(t 1 )] have to be considered 4. if r i ≤ t 1 ≤ e min i ∧ t 1 ≤ I t1 then intervals [t 1 , d i ] and [t 1 , D(t 1 )] have to be considered 5. if r i ≤ t 1 ≤ e min i ∧ t 1 ≥ H t1 then only interval [t 1 , d i + r i -t 1 ] has to be considered 6. if r i ≤ t 1 ≤ e min i ∧ t 1 ≥ s max i then only interval [t 1 , U (t 1 )] has to be considered with U (t 1 ) = Wi-t1(fi(b min i )-fi(b max i ))+rifi(b max i ) fi(b min i ) and D(t 1 ) = Wi-fi(b min i )di+t1fi(b max i ) fi(b max i )-fi(b min i ) .
Proof We only present the third case, the other ones are similar.

In order to prove the lemma, we analyse the variation of t 2 → b(i, t 1 , t 2 ). Fig. 5 represents these variations. The color corresponds to its expression w.r.t Fig. 4. The two intervals for which condition (33) is satisfied are [t 1 , U (t 1 )] and [t 1 , D(t 1 )].

s max i D(t1) U (t1) 
We can apply the symmetric reasoning on t 2 in order to obtain a list of relevant intervals. This list is described in Lemma 8: Lemma 8 Suppose tasks i and j satisfy:

W l ≥ f l (b min l )(d l -r l ), l = i, j.
Then the slack function is locally minimum in (t 1 , t 2 ) only if it is one of the following intervals:

[rj, di] if (rj ≤ ri ∨ (rj ≤ e min i ∧ rj ≤ I t 1 ))∧ (di ≥ dj ∨ (di ≥ s max j ∧ di ≥ It 2 )) [D (di), di] if (D (di) ≤ ri ∨ (D (di) ≤ e min i ∧ D (di) ≤ I t 1 ))∧ dj ≥ di ≥ s max j ∧ di ≤ It 2 ∧ di ≥ Ht 2 [U (di), di] if (U (di) ≤ ri ∨ (U (di) ≤ e min i ∧ U (di) ≤ I t 1 )) ∧ dj ≥ di ≥ s max j ∧ (di ≥ e min j ∨ di ≥ Ht 2 ) [dj + rj -di, di] if (dj + rj -di ≤ ri ∨ (dj + rj -di ≤ e min i ∧ dj + rj -di ≤ I t 1 ))∧ dj ≥ di ≥ s max j ∧ di ≤ Ht 2 [rj, U (rj)] if ri ≤ rj ≤ e min i ∧ rj ≥ I t 1 ∧ rj ≤ Ht 1 ∧ (U (rj) ≥ dj ∨ (U (rj) ≥ s max j ∧ U (rj) ≥ It 2 )) [rj, D(rj)] if (D(rj) ≥ dj ∨ (D(rj) ≥ s max j ∧ D(rj) ≥ It 2 ))∧ ri ≤ rj ≤ e min i ∧ (s max i ≥ rj ∨ rj ≤ Ht 1 ) [rj, di + ri -rj] if (di + ri -rj ≥ dj ∨ (di + ri -rj ≥ s max j ∧ di + ri -rj ≥ It 2 ))∧ ri ≤ rj ≤ e min i ∧ rj ≥ Ht 1 with D (t 2 ) = t2(fi(b min i )-fi(b max i ))+difi(b max i )-Wi fi(b min i ) and U (t 2 ) = Wi-t2fi(b min i )+rifi(b max i ) fi(b max i )-fi(b min i ) .
Lemma 8 By contradiction, suppose the slack function is locally minimum in (t 1 , t 2 ) and [t 1 , t 2 ] is not one of the intervals defined by the lemma. Then, either condition (32) or (33) is not satisfied. Then, by Th.6, the slack function can not be locally minimum in (t 1 , t 2 ).

Here, we have described only the case where i and j are such that W l ≥ f l (b min l )(d l -r l ), l = i, j. The other cases to consider are:

• W l ≤ f l (b min l )(d l -r l ), l = i, j • W i ≥ f i (b min i )(d i -r i ) and W j ≥ f j (b min j )(d j -r j )
There is no need to consider case where b min

i = b max i since it is included in case W i ≤ f i (b min i )(d i -r i ).
Cases not described in this paper can be found in a similar way to the case we have presented.

In terms of complexity, since three cases of Lemma 8 can not happen simultaneously, we have only, for all couples of tasks (i, j), at most two intervals to consider. The total complexity of the satisfiability test is still O(n 3 ) but the hidden constant is much smaller than the one of the naive algorithm.

Experiments have been done on randomly generated instances to compare these three methods (see Section 7).

Hybrid Branch and Bound

In this section, we define a hybrid branch and bound algorithm to solve CECSP. First, we use a branch and bound algorithm to reduce the size of possible start and end intervals (until their size is less than a given > 0) and, then, we use our event-based MILP in order to find exact task start and end times and to determine the quantity of resource allocated to i between two consecutive events, i.e. b ie , ∀i ∈ A; ∀e ∈ E.

We start by describing our branching procedure. This procedure is inspired by the work of Carlier et al. [START_REF] Carlier | Une méthode arborescente pour résoudre les problèmes cumulatifs[END_REF]. At the beginning, a task can start (resp. end) at any time

st i ∈ [r i , s max i ] (resp f t i ∈ [e min i , d i ]
). The idea is, at each node, to reduce the size of one of these intervals. Suppose that we choose to reduce the start time interval of i, then we create two nodes: one with constraint st i ∈ [r i , (r i + s max i )/2] and one with constraint st i ∈ [(r i + s max i )/2, s max i ]. We choose the interval to reduce randomly.

At each node, we apply first, the data consistency check and, if the data are consistent, our satisfiability test. If the test does not fail, we perform the associated time-window adjustments. We continue this procedure until all intervals are smaller than an , i.e. until arriving on a leaf of the search tree. When the algorithm is on a leaf of the tree, the remaining solution space is searched via the event-based MILP.

We follow a depth-first strategy in the search tree. We backtrack when the satisfiability test fails, i.e. the node is infeasible, or when the algorithm is on a leaf and the MILP fails to provide a solution. In the case where the MILP finds a solution, then, since the goal is only to find a feasible solution, the algorithm stops.

Computational results

The experiments are conducted on an Intel Core i7-4770 processor with 4 cores and 8 gigabytes of RAM under the 64-bits Ubuntu 12.04 operating system. We use CPLEX 12.6 with 8 threads and a time limit of 7200 seconds for solving the MILP model. The hybrid branch-and-bound algorithm is coded in C++ and uses CPLEX at each leaf. The total time limit of the algorithm is set to 7200 seconds.

First, the instances have been randomly generated with identity power processing rate functions, i.e. f i (b) = b, ∀i ∈ A. We generated 5 instances of 10 and 60 tasks and 10 instances of 20, 25 and 30 tasks according to the following framework. The resource availability B is set to 10 and all other data are randomly generated in their corresponding interval:

W i ∈ [1, 1.25 * B], b min i ∈ [0, 0.25 * W i ], b max i ∈ [b min i , 2 * b min i ], r i ∈ [0, 0.5 * n] and d i ∈ [e min i , e min i + n].
Then, we transform them in order to obtain two families of instances with power processing rate functions in the following way: we randomly generated the parameters of the function a i and c i , ∀i ∈ A, within interval [START_REF] Artigues | The energy scheduling problem: Industrial case-study and constraint propagation techniques[END_REF][START_REF] Fündeling | A priority-rule method for project scheduling with work-content constraints[END_REF] and, for the first family (Family 1), we set W i to a random number within [0, f i (W i )] and, for the second family (Family 2), we set W i to f i (W i ). Experiments are conducted on all instances of Family 1, a subset of instances of Family 2 (5 instances with 20, 25 and 30 tasks respectively) and on the family with identity functions (Family 3).

On these sets of instances, at least 76inf easible.F ortheother18not.

Table 1 presents the results of the comparison of the three ways for computing relevant intervals for the energetic satisfiability test (see Section 5). The first column corresponds to the naive algorithm, the second one to the sweepline algorithm, and the last one to the adaptation of the algorithm presented in [START_REF] Derrien | A New Characterization of Relevant Intervals for Energetic Reasoning[END_REF]. The sweep line algorithm is the one from the CGAL C++ library2 . The time is set in milliseconds and corresponds to the arithmetic mean time needed to perform the satisfiability test and the time-window adjustments on one node. As expected, the best way of computing relevant intervals is the third method. Moreover, we can see that the sweep-line algorithm does not provide better results than the naive algorithm, except for the 25 task instances. The main reason of this local result is the great number of intersection points.

Table 2 presents the results of the MILP model and of the hybrid branchand-bound algorithm. Both algorithms have been tested on the three families of instances. Since the average size of interval [r i , s max i ] and [e min i , d i ] being 32, we tested our branch-and-bound procedure for parameter ∈ {2.5, 5, 10, 15}. However, we only present our results for = 5 since it is the parameter value which gives the best results.

The first three columns correspond to the results of the MILP model. The first column represents the average time (arithmetic mean) needed to solve the instances. If the MILP reach the time limit, we set the execution time at 7200s. The second column corresponds to the percentage of solved instances and the last one shows the number of node consumed by CPLEX.

The other eight column correspond to the results of the hybrid branch-andbound. The first column represents the average time (arithmetic mean) needed to solve the instances. The time, set in seconds, is the average of four runs of the algorithm. Furthermore, when one run of the branch-and-bound reach the time limit, we set the execution time of this run at 7200 seconds (this execution time is playing the role of a penalty especially if only one run of the branch-and-bound solves the instance). The second and third columns shows the comparison of the time spend to solve the MILPs in leaves and the time spend in the tree. The fourth and fifth columns correspond to the percentage of solved instances. The fourth is the percentage of instances solved on at least one run of the algorithm and the fifth is the percentage solved on at least three runs. The sixth column correspond to the average number of nodes of the branching tree. The seventh column shows the percentage of nodes on which either the checker succeed (the instance is proved infeasible) or the algorithm performs some time-adjustments. Finally, the last column correspond to the average deviation of the run, i.e. if we denote by x i , i = 1, . . . , 4 the CPU time of each run of the branch-andbound and by x the average time (in column 4), then the average deviation is The hybrid branch-and-bound solves generally more instances than the eventbased MILP alone and takes less time to solve these instances. We can also see that, for the fist family of instances, the "left-shift/right-shift" test is not really efficient. This comes from the fact that instances from this set are not very constrained, i.e. there exists many feasible solutions for them.

Conclusions and perspectives

We have adapted the famous "left-shift/right-shift" satisfiability test for CuSP to our problem and we present three ways for computing relevant intervals for this test. These methods have been compared experimentally and we show that the adaptation of the methods of Derrien et al. [START_REF] Derrien | A New Characterization of Relevant Intervals for Energetic Reasoning[END_REF] is the most efficient.

We also presented a new hybrid branch-and-bound algorithm for CECSP as well as an event-based MILP. We have compared these two methods and we have thereby shown the interest of integrating MILP and energetic reasoning to solve the problem.

Further research on this subject is necessary, especially to obtain an efficient method for large instances. For example, knowing whether an adaptation of the incremental algorithm for energetic reasoning [START_REF] Baptiste | Constraint-based scheduling[END_REF] exists will be an interesting problem. Another open question is whether the intervals on which we perform the time-window adjustments are sufficient to perform all the possible adjustments and if we can adapt the algorithm of [START_REF] Bonifas | Fast propagation for the Energy Reasoning[END_REF] to our problem. The adaptation of the MILP (event-based and time-indexed), heuristics and priority rules of Resource-Constrained Project Scheduling Problem with flexible resource profiles [START_REF] Naber | MIP models for resource-constrained project scheduling with flexible resource profiles[END_REF] or of scheduling problems with work-content resources [START_REF] Fündeling | A priority-rule method for project scheduling with work-content constraints[END_REF] might bring interesting results. Furthermore, these linear programs might include valid inequalities deduced from energetic reasoning.

Finally, in order to provide better applications to actual scheduling problems under energy constraints, it will be interesting to study the case where function f i (b) is no longer linear.
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 1 Figure 1: An example of instance and corresponding solution of CECSP.
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 2 Figure 2: Counter-example for integer data.
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 3 Figure 3: Illustration of Theorem 3.

  before doing the analysis for function b(i, t 1 , t 2 ). The left part of the figure corresponds to the case where e min i ≤ s max i and the right part to the case where e min i ≥ s max i .
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 4 Figure 4: Break line analysis.

  2 ≥ d i , replacing t 2 by d i gives us the ordinate of point I and, in the other case, the inequality corresponds to the equation of either the segment I H (e min i ≤ s max i ) or the segment I G (e min i ≥ s max i
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 5 Figure 5: Relevant intervals for case (3).

Table 1 :

 1 Results of experiments for computing relevant intervals.

	# tasks	naive	sweep-line	adaptation [9]
			time(ms)	
	10	0.51	1.56	0.22
	20	3.67	5.39	0.92
	25	7.79	6.45	1.59
	30	14.59	15.26	4.08
	60	43.03	54.76	13.7

Table 2 :

 2 ) %sol. #nodes Total time(s) CPLEX time(s) Tree time(s) %sol.(1) %sol.(3) #nodes %cons./adj. ) %sol. #nodes Total time(s) CPLEX time(s) Tree time(s) %sol.(1) %sol.(3) #nodes %cons./adj. Comparison between the MILP model and the hybrid branch-andbound.

	1 4	4 i=1 |x i -x|.								
	# task	MILP model			hybrid branch-and-bound		
									= 5			
	Family 1										
		time(s) %sol. #nodes Total time(s) CPLEX time(s) Tree time(s) %sol.(1) %sol.(3) #nodes %cons./adj.	AD
	10	0.62		100	0	0.52	0.51	0.01	100	100	13.1	5.50	0.14
	20	295.44		100	2544.97	111.58	111.49	0.08	100	100	26.35	5.44	112.58
	25	2060.64	77	1979.79	1434.84	1434.71	0.14	100	100	43.65	11	1500.56
	30	5418.2		40	4614	3684.34	3684.14	0.22	90	60	58.77	7.08	1979.10
	60	7200		0	X	6968.01	6967.91	0.53	20	0	78	0	347.98
	Family 2										
		time(sAD
	20	4788		40	5789.5	3637.63	3637.59	0.07	60	40	25.33	61.44	712.64
	25	7200		0	X	5086.14	5086.13	0.01	40	20	1.5	75	673.86
	30	7200		0	X	7200	7200	X	0	0	X	X	0
	Family 3										
		time(sAD
	10	0.94		100	17.4	0.48	0.47	0.01	100	100	16	26.1	0.11
	20	2237.76	77	10406.38	2079.57	2079.52	0.05	100	73	21.64	61.38	2052.22
	25	5508.41	33	9619.46	3523.38	3523.32	0.06	100	56	27.28	77.78	2299.54
	30	6509.03	10	4146.5	5193.32	5193.28	0.06	70	10	35.5	63.04	1506.27
	60	7200		0	X	5760	5760	0.01	20	20	1	100	0

Note that we did not prove that these intervals are sufficient to perform all the relevant adjustments.

Cgal, Computational Geometry Algorithms Library. http://www.cgal.org.