Carl Hewitt

Alonzo Church

Dennis Allison

Bruce Anderson

Bob Balzer

Bruce Baumgart

Gordon Bell

Dan Bobrow

Rod Burstall

Luca Cardelli

Vint Cerf

Keith Clark

Douglas Crockford

Jack Dennis

Peter Deutsch

Edsger Dijkstra

Scott Fahlman

Dan Friedman

Ole-Johan Dahl

Julian Davies

Patrick Dussud

Doug Englebart

Bob Filman

Kazuhiro Fuchi

Cordell Green

Jim Gray

Pat Hayes

Anders Hejlsberg

Pat Helland

John Hennessy

Tony Hoare

Mike Huhns

Dan Ingalls

Anita Jones

Bob Kahn

Gilles Kahn

Alan Karp

Alan Kay

Bob Kowalski

Monica Lam

Butler Lampson

Leslie Lamport

Peter Landin

Vic Lesser

Jerry Lettvin

Lick Licklider

Barbara Liskov

John Mccarthy

Drew Mcdermott

Dave Mcqueen

Erik Meijer

Robin Milner

Marvin Minsky

Fanya S Montalvo

Ike Nassi

Alan Newell

Kristen Nygaard

Seymour Papert

David Patterson

Carl Petri

Gordon Plotkin

Vaughan Pratt

John Reynolds

Jeff Rulifson

Earl Sacerdoti

Vijay Saraswat

Munindar Singh

Dana Scott

Ehud Shapiro

Burton Smith

Guy Steele

Gerry Sussman

Chuck Thacker

Kazunori Ueda

Dave Unger

Richard Waldinger

Peter Wegner

Richard Weyhrauch

Jeannette Wing

Terry Winograd

Glynn Winskel

David Wise

etc. greatly contributed Bill Wulf

Actor Model of Computation for Scalable Robust Information Systems One IoT is No IoT 1

Keywords: processing, storage, and communications.  Pluralism: Information is heterogeneous, overlapping and often inconsistent

This article is dedicated to

Introduction

The Actor Model is a mathematical theory that treats "Actors" as the universal conceptual primitives of digital computation. Hypothesis: i All physically possible digital computation can be directly modeled and implemented using Actors.

The model has been used both as a framework for a theoretical understanding of concurrency, and as the theoretical basis for several practical implementations of concurrent systems. Actors are direct and efficient:  Digital computation can be efficiently implemented without loss of processing, communication, or storage efficiency  Digital computation can be directly modeled without requiring extraneous elements, e.g., channels or registers.

Message passing using types is the foundation of system communication:

The Actor Model is founded on principles of authority and accountability, which provide justifications for sending messages and responding to them.

The advent of massive concurrency using many-core computer architectures and the Internet of Things for Intelligent Applications has galvanized interest in the Actor Model.

When an Actor receives a message, it can concurrently: 2  send messages to (unforgeable) addresses of Actors that it has;  create new Actors; ii  designate how to handle the next message it receives.

The Actor Model is intended to provide a foundation for inconsistency robust information coordination. Inconsistency i robustness is information system performance 3 in the face of continual pervasive inconsistencies. ii Inconsistency robustness is both an observed phenomenon and a desired feature.

The Actor Model is a mathematical theory of computation that treats "Actors" as the universal conceptual primitives of concurrent digital computation [Hewitt, Bishop, and Steiger 1973;[START_REF] Hewitt | Viewing Control Structures as Patterns of Passing Messages AI Memo 410[END_REF]. The model has been used both as a framework for a theoretical understanding of concurrency, and as the theoretical basis for several practical implementations of concurrent systems.

i An inference system is inconsistent when it is possible to derive both a proposition and its negation.

A contradiction is manifest when both a proposition and its negation are asserted even if by different parties, e.g., New York Times said "Snowden is a whistleblower.", but NSA said "Snowden is not a whistleblower." ii a shift from the previously dominant paradigms of inconsistency denial and inconsistency elimination, i.e., to sweep inconsistencies under the rug.

Unlike previous models of computation, the Actor Model was inspired by physical laws. It was also influenced by programming languages such as, the λcalculus i , Lisp [START_REF] Mccarthy | Lisp 1.5 Programmer's Manual MIT Computation[END_REF], Simula-67 [START_REF] Dahl | Class and subclass declarations[END_REF] and Smalltalk-72 [Goldberg and Kay 1976], as well as ideas for Petri Nets [START_REF] Petri | [END_REF]], capabilities systems [START_REF] Dennis | Programming Semantics for Multiprogrammed Computations CACM[END_REF] and packet switching [START_REF] Baran | On Distributed Communications Networks IEEE Transactions on Communications Systems[END_REF]]. The advent of massive concurrency through client-cloud computing and many-core computer architectures has galvanized interest in the Actor Model [Hewitt 2009b].

It is important to distinguish the following:

• modeling arbitrary computational systems using Actors. ii It is difficult to find physical computational systems (regardless of how idiosyncratic) that cannot be modeled using Actors.

• securely implementing practical computational applications using

Actors remains an active area of research and development.

Decoupling the sender from the communications it sends was a fundamental advance of the Actor Model enabling asynchronous communication and control structures as patterns of passing messages [START_REF] Hewitt | Viewing Control Structures as Patterns of Passing Messages AI Memo 410[END_REF]].

An Actor can only communicate with another Actor to which it has an address, which can be implemented in a variety of ways:  direct physical attachment  memory or disk addresses  network addresses  email addresses

The Actor Model is characterized by inherent concurrency of computation within and among Actors, dynamic creation of Actors, inclusion of Actor addresses in messages, and interaction only through direct asynchronous message passing with no restriction on message reception order.

i In general Actor systems can be thousands of times faster than the parallel λcalculus and pure Logic Programs for many Intelligent Applications. ii An Actor can be implemented directly in hardware.

The Actor Model differs from its predecessors and most current models of computation in that the Actor Model assumes the following:

 Concurrent execution in processing a message.  The following are not required by an Actor: a thread i , a mailbox ii , a message queue iii , its own operating system process iv , etc.  Message passing has the same overhead as looping and procedure calling.  Primitive Actors can be implemented in hardware. v The Actor Model can be used as a framework for modeling, understanding, and reasoning about, a wide range of concurrent systems.

For example:

 Electronic mail (e-mail) can be modeled as an Actor system. Mail accounts are modeled as Actors and email addresses as Actor addresses.  Web Services can be modeled with SOAP endpoints modeled as Actor addresses.  Objects with locks (e.g. as in Java and C#) can be modeled as Actors.

Direct communication and asynchrony

The Actor Model is based on one-way asynchronous communication. Once a message has been sent, it is the responsibility of the receiver. 4 Messages in the Actor Model are decoupled from the sender and are delivered by the system on a best efforts basis. 5 This was a sharp break with previous approaches to models of concurrent computation in which message sending is tightly coupled with the sender and sending a message synchronously transfers it someplace, e.g., to a buffer, queue, mailbox, channel, broker, server, etc. or to the "ether" or "environment" where it temporarily resides. The lack of synchronicity caused a great deal of misunderstanding at the time of the development of the Actor Model and is still a controversial issue.

i If an Actor was required to have a thread, it would not have internal parallelism.

ii If an Actor was required to have a mailbox then, the mailbox would be an Actor that is required to have its own mailbox… iii If an Actor was required to have message queue accessible by the Actor then it would be impossible to dynamically prioritize messages or to remove messages that have timed out. iv If each Actor were required to have its own operating system process, then message communication between Actors on the same computer would be slow because of marshalling. v In some cases, this involves (clocked) one-way messages so message guarantees and exception processing can be different from typical application Actors.

Because message passing is taken as fundamental in the Actor Model, there cannot be any required overhead, e.g., any requirement to use buffers, pipes, queues, classes, channels, etc. Prior to the Actor Model, concurrency was defined in low level machine terms.

It certainly is the case that implementations of the Actor Model typically make use of these hardware capabilities. However, there is no reason that the model could not be implemented directly in hardware without exposing any hardware threads, locks, queues, cores, channels, tasks, etc. Also, there is no necessary relationship between the number of Actors and the number threads, cores, locks, tasks, queues, etc. that might be in use. Implementations of the Actor Model are free to make use of threads, locks, tasks, queues, coherent memory, transactional memory, cores, etc. in any way that is compatible with the laws for Actors [START_REF] Baker | The Incremental Garbage Collection of Processes Proceeding of the Symposium on Artificial Intelligence Programming Languages[END_REF].

As opposed to the previous approach based on composing sequential processes, the Actor Model was developed as an inherently concurrent model. In the Actor Model sequential execution is a special case in which the activation order is linear. Also, the Actor Model is based on communication rather that a global state space as in Turing Machines, CSP [START_REF] Hoare | Communicating sequential processes CACM[END_REF]], Java [Sun 1995[Sun , 2004]], C++11 [ISO 2011], X86 [AMD 2011], etc. The Actor Model does not take classical sequential processes as primitive and is not built on communicating sequential processes.

A natural development of the Actor Model was to allow Actor addresses in messages. A computation might need to send a message to a recipient from which it would later receive a response. The way to do this is to send a communication which has the message along with the address of another Actor called the customer along with the message. The recipient could then cause a response message to be sent to the customer.

Indeterminacy and Quasi-commutativity

The Actor Model supports indeterminacy because the reception order of messages can affect future behavior.

Operations are said to be quasi-commutative to the extent that it doesn't matter in which order they occur. To the extent possible, quasi-commutativity is used to reduce indeterminacy.

Locality and Security

Locality and security are important characteristics of the Actor Model [START_REF] Baker | The Incremental Garbage Collection of Processes Proceeding of the Symposium on Artificial Intelligence Programming Languages[END_REF]. 6 Locality and security mean that in processing a message: an Actor can send messages only to addresses for which it has information by the following means:

1. that it receives in the message 2. that it already had before it received the message 3. that it creates while processing the message.

In the Actor Model, there is no hypothesis of simultaneous change in multiple locations. In this way it differs from some other models of concurrency, e.g., the Petri net model in which tokens are simultaneously removed from multiple locations and placed in other locations.

That there be no single point of failure can be an important aspect of security.

The security of Actor systems can be protected in the following ways: Strong personal authentication, e.g., using (3D) continuous interactive bio-authentication instead of passwords Strong, ubiquitous public key authentication so that it can be verified to whom a public key corresponds. Often this authentication can be performed by local bank offices, etc. that publish online multi-national directories of public keys in a network of mistrust. Individual citizens can have their own directories of public keys that are used to automatically and invisibly securely communicate with others. Many citizens will have more than one authenticated public key, which can be authenticated with various levels of security. Public keys for IoT ownership so that an IoT device has both:

o a public key of its owner, which is installed when ownership is transferred o its own unique public/private key pair, which is created internally when acquired by the first owner. An owner can communicate securely with a device by encrypting information using the device's public key. (For efficiency reasons, most communication will actually be performed using symmetric keys encrypted/signed by public keys.) A device takes instructions only from its owner and is allowed to communicate with the external world only through the information coordination system of its owner. The nonprofit Standard IoT Foundation is working to develop standards based on the Actor Model of computation that provide for interoperation among existing and emerging consortium and proprietary corporate IoT standards.

Hardware architecture security

To help cope with the complexity of software systems that can never be made highly secure without hardware assistance including the following:

o RAM-processor package encryption (i.e. all traffic between a processor package and RAM is encrypted using a uniquely generated key when a package is powered up and which is invisible to all software) to protect an app (i.e. a user application, which is technically a process) from the following:

 operating systems and hypervisors  other apps  other equipment, e.g., baseband processors, disk controllers, and USB controllers. o Hardware Actors that communicate only using message passing to protect security registers o Every-word-tagged architecture to protect an Actor in an app from other Actors by using a tag on each word of memory that controls how the memory can be used. Each Actor is protected from reading and/or writing by other Actors in its process. Actors can interact only by sending a message to the unforgeable address of another Actor.

Existing software (e.g., operating systems, team integrated development environments, mail systems) will need to be upgraded to use tags.

A delicate point in the Actor Model is the ability to synthesize the address of an Actor. In some cases security can be used to prevent the synthesis of addresses in practice using the following:  every-word-tagged memory  signing and encryption of messages

Islets

Islets is a system for citizens to coordinate with IoT devices and other citizens while protecting their sensitive information i and fostering (international) commerce. ii

Sensitive information can be stored locally in Islets on users' own equipment encrypted with user keys and can be backed up elsewhere encrypted using users' keys. Furthermore, users can share Islet information that they select with other parties -encrypted with the public keys of other parties so that it be read only by the intended party.

Islets can improve information coordination over current systems that cannot coordinate among numerous competing services (such as Facebook and Google) and numerous fiercely competing merchants (such as Amazon, Home Depot, and Walmart i including sensitive health, legal, political, and social information ii by enabling conclusive verification that foreign governments are no longer conducting mass surveillance using IoT manufactured products and Internet company service provider datacenters. [11][11*][25][36] using multiple IoT devices from competing manufacturers (such as LG, Nest, Samsung, and Whirlpool). Islet-facilitated coordination can include integration of commerce (such as home, retail, food, travel, and auto), wellness (such as recreation, biometrics, nutrition, exercise, spirituality, medical, and learning), finance (such as banking, investments, and taxes), IoT (such as food management, security, energy management, infotainment, transportation, and communication), social (such as schedule, friends, and family), and work (such as contacts, schedule, and colleagues).

Islets can provide lower communications cost than current systems because it is not necessary for users and their IoT devices to always communicate with datacenters. [START_REF] Burnside | Proxy-Based Security Protocols in Networked Mobile Devices[END_REF]; Lee and Neuendorffer 2015] Such commerce agents can earn commissions and fees from merchants when the referral is exercised. Consequently, merchants will no longer be burdened by having to pay for grossly inefficient advertising that annoys potential customers. Instead, businesses can provide their information to commerce agents that aggregate and package it for users' Islets to be used in evaluating offers that can be filtered and ranked according to citizen needs and preferences. All of the convenience currently available through individual company access points must be improved in effectiveness and response time including scalable search and operations that can query commercial datacenters (such as Amazon, Facebook, Google, and LinkedIn) as well as other Islets.

Outside of citizens' Islets information protected against self-incrimination, governments (through subpoena) will be able to obtain sufficient information for law enforcement including financial transactions, physical movements outside the home, and cell tower tracking information.

Islets have large amounts of pervasively inconsistent information because IoT devices are only intermittently connected resulting in delayed coordination and because their sources of information are inconsistent including human input and information from the Web.

Islet Coordinating with Agents and Merchants Business Model

Unfortunately, current computer information systems lack fundamental inference capabilities needed by Islets. The two most common approaches, formalization using Classical First Order Logic, and statistical reasoning using machine learning, can fail catastrophically in the face of inconsistent information.

• In classical logic, any possible conclusion logically follows from a (hidden) inconsistency. • In current "Deep Learning" correlation engines inconsistencies are treated as "noise" that can produce unstable probability assessments washing out the ability to draw reliable conclusions. Direct Logic is a framework in which propositions have arguments for and against. Inference rules provide arguments provide justification for the inference of further propositions. Direct Logic is a bookkeeping system that helps keep track. It doesn't tell what to do when an inconsistency is derived. But it does have the great virtue that it doesn't make the mistakes of 1 st order logic when reasoning about inconsistent information. Inconsistency Robustness needs massive closely-coupled concurrency for its implementation for which the "Actor" abstraction is ideally suited [Hewitt "Actor Model" 2017, "Logic Programs" 2017,] both as a framework for modeling, and as the basis for practical implementations [Bonér 2016;[START_REF] Bernstein | Orleans: Distributed Virtual Actors for Programmability and Scalability Microsoft[END_REF]. Actors provide modularity and security without imposing any overhead on computation and storage.

Big Ontology Semantic

Existing IoT legacy systems can be extended using Actors without requiring their re-implementation.

Inconsistency Robustness reasoning facilitates systems development by removing the requirement that a system must attempt to maintain absolute consistency of its information (as in a relational database). Removing this requirement facilitates massive parallelism in reasoning using coherent many-core computers [Daya, et. al. 2014;Jones 2017].

Big Ontology systems gain performance through the following:  massive parallelism in forward/backward, descriptive, and statistical inference  synergy by bringing together processing on assertions, goals, and descriptions

Propositional Big Ontology Information

The Art of War can be used to illustrate Logic Programs. For example, "Appear strong when weak and appear weak when strong." might be applicable when there is a goal to bluff as expressed in the following Logic Programs:

When goal BluffOpponents[x:Army] ∴ (When goal Weak[x] ∴ SetGoal Appear[Strong[x]]) i When goal BluffOpponents[x:Army] ∴ (When assertion Strong[x] ∴ SetGoal Appear[Weak[x]]) ii
To facilitate inconsistency robustness, Logic Programs can provide both fine-grained control over both forward and backward inference as illustrated below:

 Forward inference o When assertion Strong[x:Army] ∴ Assert not Weak[x] iii o When assertion Weak[x:Army] ∴ Assert not Strong[x] iv  Backward inference o When goal Weak[x:Army] ∴ SetGoal not Strong[x] v o When goal Strong[x:Army] ∴ SetGoal not Weak[x] vi
i When goal to bluff opponents, then when weak, set goal to appear strong.

ii When goal to bluff opponents, then when strong, set goal to appear weak.

iii When asserted that x is strong, assert that x is not weak. iv When asserted that x is weak, assert that x is not strong. v When goal that x is a strong, set subgoal that x is not weak. vi When goal that x is a weak, set subgoal that x is not strong.

Big Ontology System

Propositional

Info

Descriptive Info

Statistical

Info

Logic Programs must be robust against inconsistencies. For example, the common situation of having multiple simultaneous goals (e.g. to both bluff opponents and to intimidate them) often leads to conflict, e.g., adding the following logic program to the ones above:

When goal IntimidateOpponents[x:Army] ∴ SetGoal Appear[Strong[x]] i

Descriptive Big Ontology Information

Inconsistencies commonly arise in large ontologies. For example, the following can arise in the case of a transgender person in which disentangling maleness can be very problematical in medical/social contexts. 7

Chris is both a Male and not a Male depending on circumstance

Statistical Big Ontology Information Statistical information can be very important in large ontologies.

For example, the diagram at the right depicts DataSet1 in which the 2006 incomes of females in the US had a mean of $32,500 with a mean logarithmic deviation of 0.55.

In summary, Big Ontology Systems make effective use of the following:  Massive concurrency of hundreds (and then thousands) of coherentmemory many-core processors  Inconsistency robustness for processing massive amounts of inconsistent information using propositional, descriptive, and statistical inference  Multiple way to organize, view, and interact with information

Resilience

Actors employ message passing using strong types as a fundamental unit of communication because of semantic integrity that is important in IoT operations. Using messages as the architectural unit of communication is a fundamental advance over existing IoT Internet protocols. Existing IoT communication systems are architected on the basis of packets which can be organized into byte streams. However, neither packets nor byte streams are themselves semantically meaningful. Consequently, additional layers of software in current systems must be layered (and then parsed) on top of byte streams to create meaningful messages. Instead, messages should be foundational to network communication and sent encrypted.

Robustness in Runtime Failures

Scalability and Modularity

ActorScript™ is a general purpose programming language for implementing iAdaptive TM concurrency that manages resources and demand.

Scalable information Coordination

Technology now at hand can coordinate all kinds of digital information for individuals, groups, and institutions so their information usefully links together. This coordination can include calendars and to-do lists, communications (including email, SMS, Twitter, Facebook), presence information (including who else is in the neighborhood), physical (including GPS recordings), psychological (including facial expression, heart rate, voice stress) and social (including family, friends, team mates, and colleagues), maps (including firms, points of interest, traffic, parking, and weather), events (including alerts and status), documents (including presentations, spreadsheets, proposals, job applications, health records, photos, videos, gift lists, memos, purchasing, contracts, articles), contacts (including social graphs and reputation), purchasing information (including store purchases, web purchases, GPS and phone records, and buying and travel habits), government information (including licenses, taxes, and rulings), and search results (including rankings and ratings).

Connections

Information coordination works by making connections including examples like the following:

 A statistical connection between "being in a traffic jam" and "driving in downtown Trenton between 5PM and 6PM on a weekday."  A terminological connection between "MSR" and "Microsoft Research."  A causal connection between "joining a group" and "being a member of the group."  A syntactic connection between "a pin dropped" and "a dropped pin."  A biological connection between "a dolphin" and "a mammal".  A demographic connection between "undocumented residents of California" and "7% of the population of California."  A geographical connection between "Leeds" and "England."  A temporal connection between "turning on a computer" and "joining an on-line discussion." By making these connections Describer TM information coordination offers tremendous value for individuals, families, groups, and institutions in making more effective use of information technology.

Information Coordination and Action Principles

In practice, coordinated information is invariably inconsistent. 9 Therefore Describer TM must be able to make connections even in the face of inconsistency. 10 The business of Describer is not to make difficult decisions like deciding the ultimate truth or probability of propositions. Instead it provides means for processing information and carefully recording its provenance including arguments (including arguments about arguments) for and against propositions. Information coordination needs to make use of the following principles:

 Persistence.

Tutes TM

The Actor Model supports authority and accountability in Tutes ii with the goal of becoming an effective readily understood approach for addressing scalability issues in Software Engineering. The paradigm takes its inspiration from human institutions. Tutes provide a framework for addressing issues of hierarchy, authority, accountability, scalability, and robustness using methods that are analogous to human institutions. Because humans are very familiar with the principles, methods, and practices of human institutions, they can transfer this knowledge and experience. Tutes achieve scalability using methods and principles similar to those used in human institutions. For example a Tute can have sub-institutions specialized by areas such as sales, production, and so forth. Authority is delegated downward and when necessary issues are escalated upward. Authority requires accountability for its use including record keeping and periodic reports.

i According to [Rovelli 1996]: Quantum mechanics is a theory about the physical description of physical systems relative to other systems, and this is a complete description of the world.

[Feynman 1965] offered the following advice: Do not keep saying to yourself, if you can possibly avoid it, "But how can it be like that?" because you will go "down the drain," into a blind alley from which nobody has yet escaped.

ii Tute TM is short for Institution.

Authority Accountability

A Tute uses institutional commitment defined as information pledged constituting an alliance to go forward. For example, a Tute can use contracts to formalize mutual commitments to fulfill specified obligations.

Scalability of Tutes

Yet, manifestations of information pledged will often be inconsistent. Any given agreement might be internally inconsistent, or two agreements in force at one time could contradict each other.

Executive

Sales

Accounting

Engineering info info

Inconsistency by Design for Tutes

Issues that arise from such inconsistencies can be negotiated among Tutes. For example the Sales department might have a different view than the Accounting department as to when a transaction should be booked.

Actor Addresses and Implementations

Actor addresses have types. For example the type Account has the following interface description:

Message Passing

The Actor Model is much more powerful than nondeterministic Turing Machine and λ-calculus models of computation. For example, the Actor for a SimpleAccount diagrammed below cannot be implemented using a nondeterministic Turing Machine or λ-expression:

Computational Representation Theorem

The Computational Representation Theorem [START_REF] Clinger | Foundations of Actor Semantics MIT Mathematics Doctoral Dissertation[END_REF][START_REF] Hewitt | What is Commitment? Physical, Organizational, and Social" COIN@AAMAS'06[END_REF]] 12 characterizes computation for systems which are closed in the sense that they do not receive communications from outside:

The denotation DenoteS of a closed system S represents all the possible behaviors of S as

DenoteS = limit i→∞ Progression S i
where ProgressionS takes a set of partial behaviors to their next stage, i.e., Progression S i ⇾ i Progression S i+1

In this way, S can be mathematically characterized in terms of all its possible behaviors (including those involving unbounded nondeterminism). ii

The denotations form the basis of constructively checking programs against all their possible executions, iii A consequence of the Computational Representation Theorem is that there are uncountably many different Actors.

For example, Real∎[] can output any real number between 0 and 1 where

Real∎[] ≡ [(0 either 1), ⩛Postpone Real∎[]] such that • (0 either 1) is the nondeterministic choice of 0 or 1 • [first, ⩛rest]
is the list that begins with first and whose remainder is rest • Postpone expression delays execution of expression until the value is needed.

The upshot is that concurrent systems can be axiomatized using mathematical logic iv but in general cannot be implemented. Thus, the following practical problem arose:

How can practical programming languages be rigorously defined since the proposal [START_REF] Scott | Data Types as Lattices[END_REF]Strachey 1971, Milne and[START_REF] Milne | A Theory of Programming Language Semantics Chapman and Hall[END_REF] to define them in terms λ-calculus failed because the λ-calculus cannot implement concurrency? 13

A proposed answer to this question is the semantics of ActorScript [START_REF] Hewitt | ActorScript™ extension of C# ® , Java ®, and Objective C ® :, iAdaptive TM concurrency for antiCloud TM -privacy and security in Inconsistency Robustness[END_REF]].

i read as "can evolve to" ii There are no messages in transit in DenoteS iii a restricted form of Model Checking in which the properties checked are limited to those that can be expressed in Linear-time Temporal Logic has been studied [Clarke, Emerson, and Sifakis. ACM 2007 Turing Award] iv including the λ-calculus

Using Implementations versus Interface Extension

Programming languages like ActorScript [START_REF] Hewitt | ActorScript™ extension of C# ® , Java ®, and Objective C ® :, iAdaptive TM concurrency for antiCloud TM -privacy and security in Inconsistency Robustness[END_REF]] take the approach of extending behavior in contrast to the approach of specializing behavior:  Using implementations: An implement type can make use of other implementations. However, an implementation cannot be subtyped because it is branded to guarantee its behavior that might be violated by subtypes. Consequently, Actors automatically vacuously have the substitution property [Liskov 1987, Liskov and[START_REF] Liskov | Behavioral subtyping using invariants and constraints in[END_REF] for implementations.  Interface extension: A type interface can be extended to have additional message signatures from the type interface that it extends. In general, a system cannot guarantee properties of implementations of an interface type. Consequently, the substitution property may not hold even for Actors that implement the same interface.

Language constructs versus Library APIs

Library Application Programming Interfaces (APIs) are an alternative way to introduce concurrency. For example,  A limited version of futures [START_REF] Baker | The Incremental Garbage Collection of Processes Proceeding of the Symposium on Artificial Intelligence Programming Languages[END_REF] have been introduced in C++11 [ISO 2011].  Message Passing Interface (MPI) [Gropp et. al. 1998] provides some ability to pass messages.  Grand Central Divide provides for queuing tasks.

There are a number of library APIs for Actor-like systems.

In general, appropriately defined language constructs provide greater power, flexibility, and performance than library APIs. 14

Reasoning about Actor Systems

The principle of Actor induction is:

1. Suppose that an Actor x has property P when it is created 2. Further suppose that if x has property P when it receives a message, then it has property P when it receives the next message. 3. Then x always has the property P.

In his doctoral dissertation, Aki Yonezawa developed further techniques for proving properties of Actor systems including those that make use of migration. Russ Atkinson developed techniques for proving properties of Actors that are guardians of shared resources. Gerry Barber's 1981 doctoral dissertation concerned reasoning about change in knowledgeable office systems.

Other models of concurrency

The Actor Model does not have the following restrictions of other models of concurrency: 15  Single threadedness: There are no restrictions on the use of threads in implementations.  Message delivery order: There are no restrictions on message delivery order.  Independence of sender: The semantics of a message in the Actor Model is independent of the sender.

 Lack of garbage collection (automated storage reclamation): The Actor

Model can be used in the following systems:  CLR and extensions (Microsoft and Xamarin)  JVM (Oracle and IBM)  LLVM (Apple)  Dalvik (Google) In due course, we will need to extend the above systems with a tagged extension of the X86, ARM, and RISC architectures. Many-core architecture has made a tagged extension necessary in order to provide the following:

 concurrent, nonstop, no-pause automated storage reclamation (garbage collection) and relocation to improve performance,  prevention of memory corruption that otherwise results from programming languages like C and C++ using thousands of threads in a process,  nonstop migration of Actors (while they are in operation) within a computer and between distributed computers.

Swiss Cheese

Swiss cheese [Hewitt andAtkinson 1977, 1979;[START_REF] Atkinson | Automatic Verification of Serializers[END_REF] 16 is a programming language construct for scheduling concurrent access to shared resources with the following goals:  Generality: Ability to conveniently program any scheduling policy  Performance: Support maximum performance in implementation, e.g., the ability to avoid repeatedly recalculating conditions for proceeding.  Understandability: Invariants of an Actor should hold at all observable execution points.

Concurrency control for readers and writers in a shared resource is a classic problem that illustrates limitations of Fog Cutter Actors. The fundamental constraint is that multiple writers are not allowed to operate concurrently and a writer is not allowed to operate concurrently with a reader. Note:

1. At most one activity is allowed to execute in the cheese. ii 2. The cheese has holes. iii 3. A variable can change only when in a continuous section of cheese. iv

Invariants hold at cheese boundaries, i.e., an invariant must hold when the cheese is entered. Consequently, it doesn't matter what actions other Actors may be concurrently performing.

i The interface for the readers/writer guardian is the same as the interface for the shared resource:

Interface ReadersWriter with read[Query] → QueryAnswer ¶ write[Update] → Void▮ ii Cheese is yellow in the diagram iii A

Futures

Futures [START_REF] Baker | The Incremental Garbage Collection of Processes Proceeding of the Symposium on Artificial Intelligence Programming Languages[END_REF] are Actors that provide parallel execution by providing a proxy Actor for an expression while it is being computed.

Strong Types

Strong types play a crucial role in the Actor model for equivalency (e.g., Actor equivalence in pattern matching), messaging (sending and receiving messages), encryption, and marshaling (Actor communication between IoT devices).

Each type is an Actor, which in turn has a type. For example the type Account has type TypeAccount. A type governs equivalency of Actors of that type. For example if n and m are both of type Float, then equivalency of n and m is governed by sending Float an equivalent? message as follows:

Float∎equivalent?[n, m]
Strong types must meet the following requirements:

• Each type is well-founded being constructed from primitive types, e.g., there is no type Any. 17 • Every expression has a type and a variable always has the same type (across assignments). • Types govern Equivalence, Marshalling, and Messaging.

• Casting is well-founded as follows: 18 o Upcasting and downcasting for type extension and discrimination o Internal casting by an Actor to one of its own interfaces (facets)

Speedy Contacting

Speedy Contracting aims to establish a legal contract between different parties over the Internet, with the entire process typically taking less than 1 second from start to finish.

The activity of a notary engaged (for contracting by a specified time) has two epochs: A. Before the notary decides that the time limit has passed: for each signed copy of the contract (which specifies that it cannot be enforced without sending copies signed by all parties before the deadline) that the notary receives, it must respond with an acknowledgment (together with an ordered list of copies of all previous messages that the notary has sent and received) that says the following: The deposit was received within the time limit.

If the notary has received signed copies from all parties, it must send a notice to each party (together with an ordered list of copies of all previous messages that the notary has sent and received) that provides the statement that all parties deposited signed copies of the contract within the time limit together with their signed copies. B. After the notary decides that the time limit has passed: If it has not already sent notice that all parties have deposited signed copies of the contract before the deadline, it must send a notice to each party (together with an ordered list of copies of all previous messages that the notary has sent and received) that says the following: Not all parties deposited the signed contract within the time limit. Furthermore, for each signed copy of the contract that the notary receives, it must respond with an acknowledgment (together with an ordered list of copies of all previous messages that the notary has sent and received) that says the following: The deposit was not received within the time limit.

Also, each party that receives notice from the notary that the all parties deposited signed copies before the deadline must forward it along with the signed copies to all other parties.

If a party has not received a status message from the notary or other parties significantly after the deadline, they can communicate with the notary and other parties asking for signed copies. If the party does not quickly receive copies signed by the notary or other parties, they can petition legal authorities to cancel the contract and that the government will hopefully respond in return for a fee.

Future work

As was the case with the λ-calculus, i it has taken decades since invention [Hewitt, Bishop, and Steiger 1973] to understand the scientific and engineering of Actor Systems and it is still very much a work in progress.

Actors are becoming the default model of computation. C#, Java, JavaScript, Objective C, and SystemVerilog are all headed in the direction of the Actor i For example, it took over four decades to develop the eval message-passing model of the λ-calculus [START_REF] Hewitt | A Universal Modular Actor Formalism for Artificial Intelligence IJCAI[END_REF]Steiger 1973, Hewitt 2011] building on the Lisp procedural model.

Model and ActorScript is a natural extension of these languages. Since it is very close to practice, many programmers just naturally assume the Actor Model.

The following major developments in computer technology are pushing the Actor Model forward because Actor Systems are highly scalable:

 Many-core computer architectures  Client-cloud computing In fact, the Actor Model and ActorScript can be seen as codifying what are becoming some best programming practices for many-core and client-cloud computing.

Conclusion

The Actor Model is a mathematical theory that treats "Actors" as the universal conceptual primitives of concurrent digital computation. The model has been used both as a framework for a theoretical understanding of concurrency, and as the theoretical basis for several practical implementations of concurrent systems. Unlike previous models of computation, the Actor Model was inspired by physical laws. It was also influenced by the programming languages Lisp, Simula-67 and Smalltalk-72, as well as ideas for Petri Nets, capabilities systems and packet switching. The advent of massive concurrency through client-cloud computing and many-core computer architectures has galvanized interest in the Actor Model.

When an Actor receives a message, it can concurrently:

 Send messages to (unforgeable) addresses of Actors that it has.  Create new Actors. i  Designate how to handle the next message received.

There is no assumed order to the above actions and they could be carried out concurrently. In addition two messages sent concurrently can be received in either order. Decoupling the sender from communication it sends was a fundamental advance of the Actor Model enabling asynchronous communication and control structures as patterns of passing messages.

Preferred methods for characterizing the Actor Model are as follows:

 Axiomatically stating laws that apply to all Actor systems [START_REF] Baker | The Incremental Garbage Collection of Processes Proceeding of the Symposium on Artificial Intelligence Programming Languages[END_REF]]  Denotationally using the Computational Representation Theorem to characterize Actor computations [START_REF] Clinger | Foundations of Actor Semantics MIT Mathematics Doctoral Dissertation[END_REF][START_REF] Hewitt | What is Commitment? Physical, Organizational, and Social" COIN@AAMAS'06[END_REF]].  Operationally using a suitable Actor programming language, e.g.,

ActorScript [Hewitt 2012] that specifies how Actors can be implemented.

i with new addresses

The Actor Model can be used as a framework for modeling, understanding, and reasoning about, a wide range of concurrent systems. For example:  Electronic mail (e-mail) can be modeled as an Actor system. Accounts are modeled as Actors and email addresses as Actor addresses.  Web Services can be modeled with endpoints modeled as Actor addresses.  Objects with locks (e.g. as in Java and C#) can be modeled as Actors.  The Actor Model can be a computational foundation for Inconsistency Robustness Actor technology will see significant application for coordinating all kinds of digital information for individuals, groups, and institutions so their information usefully links together.

Information coordination needs to make use of the following information system principles:  Persistence. The Actor Model is intended to provide a foundation for scalable inconsistencyrobust information coordination in privacy-friendly client-cloud computing [Hewitt 2009b].

Inspired by the λ-calculus, the interpreter for the programming language Lisp [START_REF] Mccarthy | Lisp 1.5 Programmer's Manual MIT Computation[END_REF]] made use of a data structure called an environment so that the values of parameters did not have to be substituted into the body of an invoked λ-expression. 23 Note that in the definition in ActorScript [START_REF] Hewitt | Formalizing common sense for scalable inconsistencyrobust information integration using Direct Logic TM and the Actor Model Inconsistency Robust[END_REF]

Petri nets

Prior to the development of the Actor Model, Petri nets 24 were widely used to model nondeterministic computation. However, they were widely acknowledged to have an important limitation: they modeled control flow but not data flow. Consequently they were not readily composable thereby limiting their modularity.

Hewitt pointed out another difficulty with Petri nets: Simultaneous action, i.e., the atomic step of computation in Petri nets is a transition in which tokens simultaneously disappear from the input places of a transition and appear in the output places. The physical basis of using a primitive computational entity with this kind of simultaneity seemed questionable to him. Despite these apparent difficulties, Petri nets continue to be a popular approach to modeling nondeterminism, and are still the subject of active research.

Simula

Simula 1 [Nygaard 1962] pioneered nondeterministic discrete event simulation using a global clock:

In this early version of Simula a system was modeled by a (fixed) number of "stations", each with a queue of "customers". The stations were the active parts, and each was controlled by a program that could "input" a customer from the station's queue, update variables (global, local in station, and local in customer), and transfer the customer to the queue of another station.

Stations could discard customers by not transferring them to another queue, and could generate new customers. They could also wait a given period (in simulated time) before starting the next action. Custom types were declared as data records, without any actions (or procedures) of their own. [START_REF] Krogdahl | The birth of Simula HiNC 1 Conference[END_REF] Thus at each time step, the program of the next station to be simulated would update the variables.

Kristen Nygaard and Ole-Johan Dahl developed the idea (first described in an IFIP workshop in 1967) of organizing objects into "classes" with "subclasses" that could inherit methods for performing operations from their super classes.

In this way, Simula-67 considerably improved the modularity of nondeterministic discrete event simulations.

According to [START_REF] Krogdahl | The birth of Simula HiNC 1 Conference[END_REF]]:

Objects could act as processes that can execute in "quasi-parallel" that is in fact a form of nondeterministic sequential execution in which a simulation is organized as "independent" processes. Classes in Simula 67 have their own procedures that start when an object is generated. However, unlike Algol procedures, objects may choose to temporarily stop their execution and transfer the control to another process. If the control is later given back to the object, it will resume execution where the control last left off. A process will always retain the execution control until it explicitly gives it away. When the execution of an object reaches the end of its statements, it will become "terminated", and can no longer be resumed (but local data and local procedures can still be accessed from outside the object).

The quasi-parallel sequencing is essential for the simulation mechanism.

Roughly speaking, it works as follows: When a process has finished the actions to be performed at a certain point in simulated time, it decides when (again in simulated time) it wants the control back, and stores this in a local "next-event-time" variable. It then gives the control to a central "timemanager", which finds the process that is to execute next (the one with the smallest next-event-time), updates the global time variable accordingly, and gives the control to that process.

The idea of this mechanism was to invite the programmer of a simulation program to model the underlying system by a set of processes, each describing some natural sequence of events in that system (e.g. the sequence of events experienced by one car in a traffic simulation).

Note that a process may transfer control to another process even if it is currently inside one or more procedure calls. Thus, each quasi-parallel process will have its own stack of procedure calls, and if it is not executing, its "reactivation point" will reside in the innermost of these calls. Quasiparallel sequencing is analogous to the notion of co-routines [START_REF] Conway | Design of a separable transition-diagram compiler CACM[END_REF]].

Note that Simula-67 operated on the global state of a simulation of which the local variables of simulated objects formed state components. 25 Simulated objects were conceived as abstract data types in a class hierarchy that were operated on by virtual procedures [START_REF] Dahl | Hierarchical Program Structures in "Structured Programming[END_REF]] rather than as independent Actors asynchronously sent messages. Also Simula-67 lacked formal interfaces and instead relied on inheritance in a hierarchy of objects thereby placing limitations to the ability to define and invoke behavior not directly inherited.

Types in Simula-67 are the names of implementations called "classes" in contrast with ActorScript in which types are interfaces that do not name their implementation. Also, although Simula-67 had nondeterminism, it did not have concurrency. 26

Planner

The two major paradigms for constructing semantic software systems were procedural and logical. The procedural paradigm was epitomized by using Lisp [START_REF] Mccarthy | Lisp 1.5 Programmer's Manual MIT Computation[END_REF]Minsky, et al. 1968] recursive procedures operating on list structures. The logical paradigm was epitomized by uniform resolution theorem provers [Robinson 1965].

Planner [Hewitt 1969] was a kind of hybrid between the procedural and logical paradigms. 27 An implication of the form (P implies Q) was procedurally interpreted as follows: 28

 When asserted P, Assert Q  goal Q, SetGoal P  When asserted (not Q), Assert (not P)  When goal (not P), SetGoal (not Q)
Planner was the first programming language based on the pattern-directed invocation of procedural plans from assertions and goals. It represented a rejection of the resolution uniform proof procedure paradigm.

Smalltalk-72

Alan Kay was influenced by message passing in the pattern-directed invocation of Planner in developing Smalltalk-71. However, the message passing of Smalltalk-72 was quite complex [START_REF] Kay | Personal Computing[END_REF]].

Code in the language was viewed by the interpreter as simply a stream of tokens. According to [Ingalls 1983]: 30

The first (token) encountered (in a program) was looked up in the dynamic context, to determine the receiver of the subsequent message. The name lookup began with the class dictionary of the current activation. Failing there, it moved to the sender of that activation and so on up the sender chain. When a binding was finally found for the token, its value became the receiver of a new message, and the interpreter activated the code for that object's class. 31 Thus the message passing model in Smalltalk-72 was closely tied to a particular machine model and programming language syntax that did not lend themselves to concurrency. SENDER was retained as part of the message-passing protocol, which is problematical for distributed systems. Also, although the system was bootstrapped on itself, the behavior of language constructs was defined (like Lisp) by an interpreter instead by their response to eval messages.

Planner, Simula-67, Smalltalk-72 [START_REF] Kay | Personal Computing[END_REF]Ingalls 1983] and packetswitched networks had previously used message passing. However, they were too complicated to use as the foundation for a mathematical theory of computation. Also they did not address fundamental issues of concurrency.

Actors

The invention of digital computers caused a decisive paradigm shift when the notion of an interrupt was invented so that input that is received asynchronously from outside could be incorporated in an ongoing computation. At first concurrency was conceived using low level machine implementation concepts like threads, locks, coherent memory, channels, cores, queues, etc.

The Actor Model [Hewitt, Bishop, and Steiger 1973;etc.] was based on message passing that was different from previous models of computation because the sender of a message is not intrinsic to the semantics of a communication. 32 In contrast to previous global state model, computation in the Actor Model is conceived as distributed in space where computational devices called Actors communicate asynchronously using addresses of Actors and the entire computation is not in any well-defined state. 33 Axioms of locality including Structural and Operational hold as follows:

 Structural: The local storage of an Actor can include addresses only 1. that were provided when it was created 2. that have been received in messages 3. that are for Actors created here  Operational: In response to a message received, an Actor can 1. create more Actors 2. send messages i to addresses in the following:  the message it has just received  its local storage 3. designate how to process the next message received

In concrete terms for Actor systems, typically we cannot observe the details by which the order in which an Actor processes messages has been determined. Attempting to do so affects the results. Instead of observing the internals of arbitration processes of Actor computations, we await outcomes. 34 Indeterminacy in arbiters produces indeterminacy in Actors. ii After the above circuit is started, it can remain in a meta-stable state for an unbounded period of time before it finally asserts either Output1 or Output2. So there is an inconsistency between the nondeterministic state model of computation and the circuit model of arbiters. 36

The internal processes of arbiters are not public processes. Attempting to observe them affects their outcomes. Instead of observing the internals of arbitration processes, we necessarily await outcomes. Indeterminacy in arbiters produces indeterminacy in Actors. The reason that we await outcomes is that we have no realistic alternative.

i Likewise the messages sent can contain addresses only 1. that were provided when the Actor was created 2. that have been received in messages 3. that are for Actors created here ii The dashed lines are used only to disambiguate crossing wires.

The Actor Model integrated the following:

 1977].

Indeterminacy in Concurrent Computation

The first models of computation (e.g. Turing machines, Post productions, the λ-calculus, etc.) were based on mathematics and made use of a global state to represent a computational step (later generalized in [START_REF] Mccarthy | Some Philosophical Problems from the Standpoint of Artificial Intelligence Machine Intelligence 4[END_REF] and [Dijkstra 1976]). Each computational step was from one global state of the computation to the next global state. The global state approach was continued in automata theory for finite state machines and push down stack machines, including their nondeterministic versions. 37 Such nondeterministic automata have the property of bounded nondeterminism; that is, if a machine always halts when started in its initial state, then there is a bound on the number of states in which it halts. 38

Gordon [START_REF] Plotkin | A powerdomain construction SIAM Journal of Computing[END_REF] gave an informal proof as follows:

Now the set of initial segments of execution sequences of a given nondeterministic program P, starting from a given state, will form a tree. The branching points will correspond to the choice points in the program. Since there are always only finitely many alternatives at each choice point, the branching factor of the tree is always finite. 39 That is, the tree is finitary. Now König's lemma says that if every branch of a finitary tree is finite, then so is the tree itself. In the present case this means that if every execution sequence of P terminates, then there are only finitely many execution sequences. So if an output set of P is infinite, it must contain a nonterminating computation. 40 The above proof is quite general and applies to the Abstract State Machine (ASM) model [Blass, Gurevich, Rosenzweig, andRossman 2007a, 2007b;[START_REF] Glausch | Distributed Abstract State Machines and Their Expressive Power Informatik Berichete 196[END_REF], which consequently are not really models of concurrency. It also applies to the parallel λ-calculus, which includes all the capabilities of the nondeterministic λ-calculus. Researchers (before the Actor Model was invented) hypothesized that the parallel λ-calculus naturally modeled all of computation and their research programme was to reduce all computation to the parallel λ-calculus [START_REF] Scott | Data Types as Lattices[END_REF]Strachey 1971, Milne and[START_REF] Milne | A Theory of Programming Language Semantics Chapman and Hall[END_REF]. One of the important early discoveries in the development of the Actor Model was that all of computation is not reducible to the parallel λcalculus. In fact, there are Actor computations that cannot be implemented in the parallel λ-calculus. For example, by the semantics of the Actor Model of computation [START_REF] Clinger | Foundations of Actor Semantics MIT Mathematics Doctoral Dissertation[END_REF][START_REF] Hewitt | What is Commitment? Physical, Organizational, and Social" COIN@AAMAS'06[END_REF]], concurrently sending the Actor below both a start message and a stop message will result in returning an integer of unbounded size for the stop message.

Theorem. There are nondeterministic computable functions on integers that cannot be implemented by a nondeterministic Turing machine. Proof. The above Actor system implements a nondeterministic function i that cannot be implemented by a nondeterministic Turing machine.

Consequently, the above concurrent algorithm for Unbounded∎[] cannot be implemented using nondeterministic abstract state machines or using the nondeterministic λ-calculus. Nondeterminism is a special case of Indeterminism.

Consider the following Nondeterministic Turing Machine that starts at Step 1:

Step 1 : Either print 1 on the next square of tape or execute Step 3.

Step 2 : Execute Step 1.

Step 3 : Halt. According to the definition of Nondeterministic Turing Machines, the above machine might never halt.

Note that the computations performed by the above machine are structurally different than the computations performed by the above counter Actor in the following way:

1. The decision making of the above Nondeterministic Turing Machine is internal (having an essentially psychological basis). 2. The decision making of the above counter Actor exhibits physical indeterminacy.

Edsger Dijkstra further developed the nondeterministic global state approach, which gave rise to a controversy concerning unbounded nondeterminism i . Unbounded nondeterminism is a property of concurrency by which the amount of delay in servicing a request can become unbounded as a result of arbitration of contention for shared resources while providing a guarantee that the request will be serviced. The Actor Model provides the guarantee of service. In Dijkstra's model, although there could be an unbounded amount of time between the execution of sequential instructions on a computer, a (parallel) program that started out in a well-defined state could terminate in only a bounded number of states [Dijkstra 1976]. He believed that it was impossible to implement unbounded nondeterminism.

Computation is not subsumed by logical deduction

Kowalski claims that "computation could be subsumed by deduction" 41 The gauntlet was officially thrown in The Challenge of Open Systems [Hewitt 1985] to which [Kowalski 1988b] replied in Logic-Based Open Systems. ii This was followed up with [Hewitt and Agha 1988] in the context of the Japanese Fifth Generation Project.

According to Hewitt, et. al. and contrary to Kowalski computation in general cannot be subsumed by deduction and contrary to the quotation (above)

i A system is defined to have unbounded nondeterminism exactly when both of the following hold: 1. When started, the system always halts.

2. For every integer n, the system can halt with an output that is greater than n.

ii [START_REF] Kowalski | Logic + Control CACM[END_REF]] forcefully stated: There is only one language suitable for representing information --whether declarative or procedural --and that is first-order predicate logic. There is only one intelligent way to process information --and that is by applying deductive inference methods.

attributed to Hayes computation in general is not subsumed by deduction. [START_REF] Hewitt | Guarded Horn clause languages: are they deductive and Logical?[END_REF]] and other published work argued that mathematical models of concurrency did not determine particular concurrent computations because they make use of arbitration for determining the order in which messages are processed. These orderings cannot be deduced from prior information by mathematical logic alone. Therefore mathematical logic cannot implement concurrent computation in open systems.

A nondeterministic system is defined to have "unbounded nondeterminism" i exactly when both of the following hold: 1. When started, the system always halts. 2. For every integer n, it is possible for the system to halt with output that is greater than n.

This article has discussed the following points about unbounded nondeterminism controversy:

 A Nondeterministic Turing Machine cannot implement unbounded nondeterminism.  A pure Logic Program 42 cannot implement unbounded nondeterminism.  Semantics of unbounded nondeterminism are required to prove that a server provides service to every client. 43  An Actor system [Hewitt, et. al. 1973] can implement servers that provide service to every client and consequently unbounded nondeterminism.  Dijkstra believed that unbounded nondeterminism cannot be implemented [Dijkstra 1967;Dijkstra and van Gasteren 1986].  The semantics of CSP [START_REF] Francez | Semantics of nondeterminism, concurrency, and communication[END_REF] specified bounded nondeterminism for reasons mentioned above in the article. Since Hoare et. al. wanted to be able to prove that a server provided service to clients, the semantics of a subsequent version of CSP were switched from bounded to unbounded nondeterminism.  Unbounded nondeterminism was but a symptom of deeper underlying issues with sequential processes using nondeterministic global states as a foundation for computation. ii

The Computational Representation Theorem [START_REF] Clinger | Foundations of Actor Semantics MIT Mathematics Doctoral Dissertation[END_REF][START_REF] Hewitt | What is Commitment? Physical, Organizational, and Social" COIN@AAMAS'06[END_REF]] characterizes the semantics of Actor Systems without making use of sequential processes.

i For example the following systems do not have unbounded nondeterminism: • A nondeterministic system which sometimes halts and sometimes doesn't • A nondeterministic system that always halts with an output less than 100,000.

• An operating system that never halts.

ii See [Knabe 1992].

Actor Model versus Classical Objects

The following are fundamental differences between the Actor Model and Classical Objects [Nygaard andDahl 1967, Nygaard 1986]:  Classical Objects 44 are founded on "a physical model, simulating the behavior of either a real or imaginary part of the world" 45 , whereas the Actor Model is founded on the physics of computation.  Every Classical Object 46 is an instance of a Class i in a hierarchy 47 , whereas an Actor can implement multiple interfaces. 48  Virtual Procedures can be used to operate on Objects, whereas messages ii can be sent to Actors. 49 Unfortunately, Objects remain ill-defined. Consequently, the term "Object" bas been used in inconsistent ways in the literature.

Hairy Control Structure

Peter Landin introduced a powerful co-routine control structure using his J (for Jump) operator that could perform a nonlocal goto into the middle of a procedure invocation [Landin 1965]. In fact the J operator enabled a program to jump back into the middle of a procedure invocation even after it had already returned! [START_REF] Reynolds | Definitional interpreters for higher order programming languages[END_REF]] introduced control structure continuations using a construct called escape that is a more structured versions of Landin's J operator.

Sussman and Steele called their variant of escape by the name "call with current continuation." Using escape can leave Actor customers stranded. Consequently, use of escape is generally avoided these days and exceptions 50 are used instead so that clean up can be performed.

Using the J operator, McDermott, and Sussman [1972] developed the Lispbased language Conniver based on "hairy control structure" that could implement non-chronological backtracking that was more general than the chronological backtracking in Planner. However, hairy control structure did not work out well in practice because it was very difficult to understand and debug procedures that could return more than once.

Pat Hayes remarked: Their [Sussman and McDermott] solution, to give the user access to the implementation primitives of Planner, is however, something of a retrograde step (what are Conniver's semantics?). [Hayes 1974]

i A Class is an implementation of an Actor.

ii A message can be one-way and each must be of type Message. For example, futures can be adaptively created to do the kind of computation performed by hairy structure. [Hewitt 1974] invented the same-fringe problem as an illustration where "fringe" of a tree is a list of all the leaf nodes of the tree. Below is the definition of a procedure that computes a List that is the "fringe" of the leaves of tree.

Fringe∎[aTree:Tree]:List ≡ aTree

� Leaf[x] ⦂ [x] Fork[tree1, tree2] ⦂ [⩛Fringe∎[tree1], ⩛Fringe∎[tree2]]
The above procedure can be used to define SameFringe that determines if two lists have the same fringe [Hewitt 1972 In the 1960's at the MIT AI Lab a remarkable culture grew up around "hacking" that concentrated on remarkable feats of programming. 52 Growing out of this tradition, Gerry Sussman and Guy Steele decided to try to understand Actors by reducing them to machine code that they could understand and so developed a "Lisp-like language, Scheme, based on the lambda calculus, but extended for side effects, multiprocessing, and process synchronization." [START_REF] Sussman | Scheme: An Interpreter for Extended Lambda Calculus AI Memo 349[END_REF]].

Their reductionist approach included primitives like the following: START!PROCESS, STOP!PROCESS, and EVALUATE!UNINTERRUPTIBLEY. i Of course, the above reductionist approach is unsatisfactory because it missed a crucial aspect of the Actor Model: the reception ordering of messages. [START_REF] Sussman | Scheme: An Interpreter for Extended Lambda Calculus AI Memo 349[END_REF] noticed some similarities between Actor programs and the λ-calculus. They mistakenly concluded that they had reduced Actor programs to a "continuation-passing programming style": It is always possible, if we are willing to specify explicitly what to do with the answer, to perform any calculation in this way: rather than reducing to its value, it reduces to an application of a continuation to its value. That is, in this continuation-passing programming style, a function always "returns" its result by "sending" it to another function.

(emphasis in original) However, some Actor programming language constructs are not reducible to a continuation-passing style. For example, futures are not reducible to continuation-passing style.

The λ-calculus is capable of expressing some kinds of sequential and parallel control structures but, in general, not the concurrency expressed in the Actor Model. 53 On the other hand, the Actor Model is capable of expressing everything in the parallel λ-calculus and pure Logic Programs [Hewitt 2008f] and can be thousands of times faster for many Intelligent Applications [Hewitt 2012].

Early Actor Programming languages

Henry Lieberman, Dan Theriault, et al. developed Act1, an Actor programming language. Subsequently for his master's thesis, Dan Theriault developed Act2. These early proof of concept languages were rather inefficient and not suitable for applications. In his doctoral dissertation, Ken Kahn developed Ani, which he used to develop several animations. Bill Kornfeld developed the Ether programming language for the Scientific Community Metaphor in his doctoral dissertation. William [START_REF] Athas | An Actor Programming System for Scientific Computing in Proceedings of the NSF Workshop on Object-Based Concurrent Programming[END_REF] developed Cantor which is an Actor programming language for scientific computing. Jean-Pierre [START_REF] Briot | From objects to Actors: Study of a limited symbiosis in Smalltalk-80 Rapport de Recherche 88-58[END_REF][START_REF] Briot | Acttalk: A framework for object-oriented concurrent programming-design and experience 2nd France-Japan workshop[END_REF] developed means to extend Smalltalk 80 for Actor computations. Darrell [START_REF] Woelk | Developing InfoSleuth Agents Using Rosette: An Actor Based Language Proceedings of the CIKM '95 Workshop on Intelligent Information Agents[END_REF] at MCC developed an Actor programming language for InfoSleuth agents in Rosette. [START_REF] Hewitt | Delegation in Message Passing Proceedings of First International Conference on Distributed Systems Huntsville[END_REF] developed proposals for delegation in message passing. This gave rise to the so-called inheritance anomaly controversy in concurrent programming languages [Satoshi Matsuoka and Aki i "This is the synchronization primitive. It evaluates an expression uninterruptedly; i.e. no other process may run until the expression has returned a value." Yonezawa 1993, Giuseppe Milicia and[START_REF] Milicia | The Inheritance Anomaly: Ten Years After SAC[END_REF]. ActorScript [START_REF] Hewitt | ActorScript™ extension of C# ® , Java ®, and Objective C ® :, iAdaptive TM concurrency for antiCloud TM -privacy and security in Inconsistency Robustness[END_REF]] has proposal for addressing delegation issues.

Garbage Collection

Garbage collection (the automated reclamation of unused storage) was an important theme in the development of the Actor Model.

In his doctoral dissertation, Peter Bishop developed an algorithm for garbage collection in distributed systems. Each system kept lists of links of pointers to and from other systems. Cyclic structures were collected by incrementally migrating Actors (objects) onto other systems which had their addresses until a cyclic structure was entirely contained in a single system where the garbage collector could recover the storage. Henry Baker developed an algorithm for real-time garbage collection is his doctoral dissertation. The fundamental idea was to interleave collection activity with construction activity so that there would not have to be long pauses while collection takes place. [START_REF] Lieberman | A real Time Garbage Collector Based on the Lifetimes of Objects CACM[END_REF] developed a real time garbage collection based on the lifetimes of Actors (Objects). The fundamental idea was to allocate Actors (objects) in generations so that only the latest generations would have to be examined during a garbage collection.

Cosmic Cube

The Cosmic Cube was developed by Chuck Seitz et al. at Caltech providing architectural support for Actor systems. A significant difference between the Cosmic Cube and most other parallel processors is that this multiple instruction multiple-data machine used message passing instead of shared variables for communication between concurrent processes. This computational model was reflected in the hardware structure and operating system, and also the explicit message passing communication seen by the programmer.

Communicating Sequential Processes

Arguably, the first concurrent programs were interrupt handlers. During the course of its normal operation, a computer needed to be able to receive information from outside (characters from a keyboard, packets from a network, etc.). So when the information was received, execution of the computer was "interrupted" and special code called an interrupt handler was called to put the information in a buffer where it could be subsequently retrieved.

In the early 1960s, interrupts began to be used to simulate the concurrent execution of several programs on a single processor. Having concurrency with shared memory gave rise to the problem of concurrency control. Originally, this problem was conceived as being one of mutual exclusion on a single computer. Edsger Dijkstra developed semaphores. In contrast, the Actor Model does not take classical sequential processes as primitive and is not built on communicating sequential processes.

Dijkstra was certain that unbounded nondeterminism is impossible to implement. Hoare was convinced by Dikstra's argument. Consequently, the semantics of CSP specified bounded nondeterminism.

Consider the following program written in CSP [START_REF] Hoare | Communicating sequential processes CACM[END_REF]]: According to [START_REF] Clinger | Foundations of Actor Semantics MIT Mathematics Doctoral Dissertation[END_REF]: this program illustrates global nondeterminism, since the nondeterminism arises from incomplete specification of the timing of signals between the three processes X, Y, and Z. The repetitive guarded command in the definition of Z has two alternatives: either the stop message is accepted from X, in which case continue is set to false, or a go message is accepted from Y, in which case n is incremented and Y is sent the value of continue. If Z ever accepts the stop message from X, then X terminates. Accepting the stop causes continue to be set to false, so after Y sends its next go message, Y will receive false as the value of its guard and will terminate. When both X and Y have terminated, Z terminates because it no longer has live processes providing input.

[X :: Z!stop()  In process X,
As the author of CSP points out, therefore, if the repetitive guarded command in the definition of Z were required to be fair, this program would have unbounded nondeterminism: it would be guaranteed to halt but there would be no bound on the final value of n. In actual fact, the repetitive guarded commands of CSP are not required to be fair, and so the program may not halt [START_REF] Hoare | Communicating sequential processes CACM[END_REF]]. This fact may be confirmed by a tedious calculation using the semantics of CSP [START_REF] Francez | Semantics of nondeterminism, concurrency, and communication[END_REF] or simply by noting that the semantics of CSP is based upon a conventional power domain and thus does not give rise to unbounded nondeterminism. But Hoare knew that trouble was brewing because for several years, proponents of the Actor Model had been beating the drum for unbounded nondeterminism. To address this problem, he suggested that implementations of CSP should be as close as possible to unbounded nondeterminism! But his suggestion was difficult to achieve because of the nature of communication in CSP using nondeterministic select statements (from nondeterministic state machines, e.g., [Dijkstra 1976]), which in the above program which takes the form [X?stop() → ... [] Y?go() → ...] The structure of CSP is fundamentally at odds with guarantee of service.

Using the above semantics for CSP, it was impossible to formally prove that a server actually provides service to multiple clients (as had been done previously in the Actor Model). That's why the semantics of CSP were reversed from bounded non-determinism [Hoare CSP 1978] to unbounded non-determinism [CSP:1985]. However, bounded non-determinism was but a symptom of deeper underlying issues with nondeterministic transitions in communicating sequential processes (see [Knabe 1992]).

Smalltalk-80

Smalltalk-72 progressed to Smalltalk-80[Alan Kay, Dan Ingalls, Adele Goldberg, Ted Kaehler, Diana Merry, Scott Wallace, Peter Deutsch], which introduced the code browser designed and implemented by Larry Tessler 54 as an important innovation.

For example, the following diagram depicts a code-browser window:

In ActorScript, the above program fragment could be expressed as follows using strong types: Message passing model in Smalltalk-80 is closely tied to a particular machine model and programming language syntax that do not lend themselves to concurrency. Also, although the system is bootstrapped on itself, the behavior of language constructs are defined (like Lisp) by an interpreter instead of their response to eval messages. Furthermore, Smalltak-80, only has subclassing from a single superclass 55 and lacks formal interfaces for specifying types used in messages to communicate with other systems.

π-Calculus Actors

Robin Milner's initial published work on concurrency [START_REF] Milner | A Mathematical Model of Computing Agents Proceedings of Bristol Logic Colloquium[END_REF]] was notable in that it was not overtly based on sequential processes, although computation still required sequential execution (see below). His work differed from the previously developed Actor Model in the following ways:  There are a fixed number of processes as opposed to the Actor Model which allows the number of Actors to vary dynamically  The only quantities that can be passed in messages are integers and strings as opposed to the Actor Model which allows the addresses of Actors to be passed in messages  The processes have a fixed topology as opposed to the Actor Model which allows varying topology  Communication is synchronous as opposed to the Actor Model in which an unbounded time can elapse between sending and receiving a message.  Unlike the Actor Model, there is no reception ordering and consequently there is only bounded nondeterminism. However, with bounded nondeterminism it is impossible to prove that a server guarantees service to its clients, i.e., a client might starve.

Building on the Actor Model, [START_REF] Milner | Elements of interaction: Turing award lecture CACM[END_REF] removed some of these restrictions in his work on the π-calculus: Now, the pure lambda-calculus is built with just two kinds of thing: terms and variables. Can we achieve the same economy for a process calculus? Carl Hewitt, with his Actors model, responded to this challenge long ago; he declared that a value, an operator on values, and a process should all be the same kind of thing: an Actor. This goal impressed me, because it implies the homogeneity and completeness of expression ... So, in the spirit of Hewitt, our first step is to demand that all things denoted by terms or accessed by names--values, registers, operators, processes, objects--are all of the same kind of thing….

However, some fundamental differences remain between the Actor

Model and the π-calculus:  The Actor Model is founded on physics whereas the π-calculus is founded on algebra.  Semantics of the Actor Model is based on message orderings in the Computational Representation Theorem. Semantics of the π-calculus is based on structural congruence in various kinds of bi-simulations and equivalences. 56 Process calculi (e.g. [START_REF] Milner | Elements of interaction: Turing award lecture CACM[END_REF]Cardelli and Gordon 1998]) are closely related to the Actor Model. There are similarities between the two approaches, but also many important differences (philosophical, mathematical and engineering):

 There is only one Actor Model (although it has numerous formal systems for design, analysis, verification, modeling, etc.) in contrast with a variety of species of process calculi.  The Actor Model was inspired by the laws of physics and depends on them for its fundamental axioms in contrast with the process calculi being inspired by algebra [START_REF] Milner | Elements of interaction: Turing award lecture CACM[END_REF]].  Unlike the Actor Model, the sender is an intrinsic component of process calculi because they are defined in terms of reductions (as in the λcalculus).  Processes in the process calculi communicate by sending messages either through channels (synchronous or asynchronous), or via ambients (which can also be used to model channel-like communications [Cardelli and Gordon 1998]). In contrast, Actors communicate by sending messages to the addresses of other Actors (this style of communication can also be used to model channel-like communications using a two-phase commit protocol [Knabe 1992]).

There remains a Great Divide between process calculi and the Actor Model:  Process calculi: algebraic equivalence, bi-simulation [START_REF] Park | Concurrency and Automata on Infinite Sequences[END_REF]], etc.

 Actor Model: futures [START_REF] Baker | The Incremental Garbage Collection of Processes Proceeding of the Symposium on Artificial Intelligence Programming Languages[END_REF], Swiss cheese, garbage collection, etc.

J-Machine

The J-Machine was developed by Bill Dally et al. at MIT providing architectural support suitable for Actors.

This included the following:  Asynchronous messaging  A uniform space of Actor addresses to which messages could be sent concurrently regardless of whether the recipient Actor was local or nonlocal  A form of Actor pipelining Concurrent Smalltalk (which can be modeled using Actors) was developed to program the J Machine.

"Fog Cutter" Actors [START_REF] Karmani | Actors. Encyclopedia of Parallel Computing[END_REF] Process a message from the Mailbox using the Thread, then reset the Thread stack thereby completing the message-passing turn Fog Cutter Actors are special cases in that the following restrictions hold: ii  Each Fog Cutter Actor has a 'mailbox'. But if everything that interacts is an Actor, then a mailbox must be an Actor and so in turn needs a mailbox which in turn … [Hewitt, Bishop, and Steiger 1973]. Of course, mailboxes having mailboxes is an infinite regress that has been humorously characterized by Erik Meijer as "down the rabbit hole." [Hewitt, Meijer, and Szyperski 2012]  A Fog Cutter Actor 'terminates' when every Actor that it has created is 'idle' and there is no way to send it a message. In practice, it is preferable to use garbage collection for Actors that are inaccessible. [START_REF] Baker | The Incremental Garbage Collection of Processes Proceeding of the Symposium on Artificial Intelligence Programming Languages[END_REF]]  Each Fog Cutter Actor executes a 'loop' using its own sequential 'thread' that begins with receiving a message followed by possibly creating more Actors, sending messages, updating its local state, and then looping back for the next message to complete a 'turn'. In practice, it is preferable to provide "Swiss cheese" by which an Actor can concurrently process multiple messages without the limitation of a sequential thread loop. [Hewitt andAtkinson 1977, 1979;[START_REF] Atkinson | Automatic Verification of Serializers[END_REF][START_REF] Hewitt | Formalizing common sense for scalable inconsistencyrobust information integration using Direct Logic TM and the Actor Model Inconsistency Robust[END_REF]]  A Fog Cutter Actor has a well-defined local 'autonomous' 'state' that can be updated 58 while processing a message. However, because of indeterminacy an Actor may not be in a well-defined local independent state. For example, Actors might be entangled 59 with each other so that their actions are correlated. Also, large distributed Actors (e.g. www.dod.gov) do not have a well-defined state. It is usually preferable for an Actor not to change its local information while it is processing a message and instead specify how it will process the next message received (as in ActorScript [START_REF] Hewitt | Formalizing common sense for scalable inconsistencyrobust information integration using Direct Logic TM and the Actor Model Inconsistency Robust[END_REF]).

i so dubbed by Kristen Nygaard (private communication).

ii "Fog Cutter" is in italics. In practice, the most common and effective way to explain Actors has been operationally using a suitable Actor programming language (e.g., ActorScript [Hewitt 2012]) that specifies how Actors can be implemented along with an English explanation of the axioms for Actors (e.g., as presented in this paper).

Erlang Actors

Erlang Actors [START_REF] Armstrong | Erlang[END_REF]] are broadly similar to Fog Cutter Actors: 1. Each Erlang Actor does not share memory addresses with other Erlang Actors.

2. An Erlang Actor can retrieve a message from its mailbox by selectively removing a message matching a particular pattern.

Erlang made important contributions by emphasizing the importance of the following:

• referential transparency • failure handling However, Erlang Actors have the following issues:

 Messaging in Erlang is not robust because a sent message will be dropped without warning if there is no Actor for the address. ii  Erlang imposes high overhead in sending messages between Actors. For example, it imposes coordination overhead that messages sent between two Erlang Actors are delivered in the order they are sent.  Implementations of Erlang do not make efficient use of many-core coherent architectures because messages between Erlang Actors must be blobs. iii  Instead of using exception handling, until recently Erlang relied on process failure iv propagating between processes and their spawned processes.  Instead of using garbage collection to recover storage and processing of unreachable Actors, each Erlang Actor must perform an internal termination or be killed externally. 60  Erlang does not have parameterized types, Actor aspects, interfaces or type discriminations.

i See section on Swiss cheese in this article.

ii Such silent failures are a bane of robust software engineering.

iii A blob is a data structure that cannot contain pointers. iv based on an arbitrary time-out

Erlang Actors have been used in high-performance applications. For example, Ericsson uses Erlang in 3G mobile networks worldwide [START_REF] Ekeroth | General Packet Radio Service (GPRS) Support Notes Ericsson Review[END_REF].

Squeak

Squeak [START_REF] Ingalls | Back to the Future: the story of Squeak, a practical Smalltalk written in itself ACM Digital Library[END_REF]] is a dialect of Smalltalk-80 with added mechanisms of islands, asynchronous messaging, players and costumes, language extensions, projects, and tile scripting. Its underlying object system is class-based, but the user interface is programmed as though it is prototype-based.

Orleans Actors

Orleans [START_REF] Bykov | Orleans: A Framework for Cloud Computing Microsoft[END_REF][START_REF] Bernstein | Orleans: Distributed Virtual Actors for Programmability and Scalability Microsoft[END_REF] is a distributed implementation of Actors that transparently sends messages between Actors on different computers enabling greater scalability and reliability of practical applications.

Orleans is based on single-threaded Actor message invocations. An Actor processes a message using a thread from a thread pool. When the message has been processed, the thread can be returned to the thread pool. 61 That an Orleans Actor does not share memory with other Actors is enforced by doing a deep copy of messages if required. A globally unique identifier 62 is created for each Orleans Actor with a consequence that there is extra storage overhead that can be significant for a very small Orleans Actor. 63 A globally unique identifier can be used to send a message, which will, if necessary, create an activation 64 of an Orleans Actor in the memory of a process. 65 Orleans has the following issues:

 Orleans allows the use of strings and long integers as globally unique identifiers in order to provide for perpetual Actors whose storage can only be collected using potentially unsafe means, which can result in a dangling globally unique identifier.  A system design choice was made in Orleans not to use automated storage reclamation technology (garbage collection) to keep track of whether an Orleans Actor could have been forgotten by all applications and thus become inaccessible. Consequently, Orleans can have the following inefficiencies: o A short-lived Orleans Actor that has become inaccessible does not have its storage in the process quickly recycled resulting in a larger working set and decreased locality of reference. 66 o A long-lived Orleans Actor that has become inaccessible does not ever have its storage recycled 67 resulting in larger memory requirements. 68 However, collection of the storage of long-lived Actors is not so important in some applications because long-term memory has become relatively inexpensive.

An Orleans Actor ties up a thread while it is taking a turn to process a message regardless of the amount of time required, e.g., time to make a system call. In this way, Orleans avoids timing races in the value of a variable of an Actor. 69 A consequence of being single-threaded can be reduced performance of Orleans Actors as follows:

 lack of parallelism in processing a message  lack of concurrency between processing a message and executing waiting method calls invoked by processing the message. 70  thread-switching overhead between sending and receiving a message to an Orleans Actor in the same process 71 A waiting method call can be resolved using the await 72 construct as follows: await anActor.aMethodName(...) 73 For example: var anActor = aFactory.GetActor(aGloballyUniqueIdentifier); try {...aUse(await anActor.aMethodName(...))... anotherUse(await anActor.anotherMethodName(...))...} catch ...; 74 When reentrancy 75 is enabled, the method calls for aMethodName and anotherMethodName above are executed after the current message-processing turn:  If completed successfully, the value of a waiting method call is supplied in a new turn at the point of method invocation, e.g., the value of the method call for aMethodName of is supplied to aUse.  If a waiting method call throws an exception, it is given to the exception handler in a new turn. Orleans uses C# compiler "stack ripping" to use behind-the-scenes sequential turns to execute waiting method calls.

A message sent to an Orleans Actor must return a promise 76 Actor 77 , which is a version of a future Actor. A promise Actor for a method call anActor.aMethodName(...) can be created using the following code: 78 try {return Task.FromResult(await anActor.aMethodName(...));} catch (Exception anException) {return Task.FromException(anException);} 79

Note that a promise is not an Orleans Actor because it does not have a globally unique identifier. 80 One of the motivations for the requirement that Orleans Actors must return promises when sent messages is to enable the await construct to hide promises so that clients of Orleans Actors do not have to deal with the return type Task<T> of each Orleans Actor method call for some application type T.

Orleans is an important step in furthering a goal of the Actor Model that application programmers need not be so concerned with low-level system details. 81 For example, in moving to the current version, Orleans reinforces the current trend of not exposing customer Actors 82 to application programmers. 83 As a research project, Orleans had to make some complicated tradeoffs to implement more reliable distributed Actors. Implementing Actor systems that are both robust and performant is an extremely challenging research project that has taken place over many decades. More research remains to be done. However, Orleans has already been used in some high-performance applications including multi-player computer games, e.g., Halo [START_REF] Bykov | Building Real-Time Services for Halo Microsoft Research[END_REF][START_REF] Stenberg | Building Halo 4, a Video Game, Using Actor Model[END_REF]].

JavaScript Actors

JavaScript Actors are broadly similar to Fog Cutter Actors. 84 A promise 85 in JavaScript is a kind of future. JavaScript 86 will include asynchronous procedures as well as an await 87 construct that can be used to resolve promise Actors.

An asynchronous procedure always i returns a promise. For example, the following procedure computes a promise for the sum of two promises:

async function PromiseForSumOfPromises(aPromise, anotherPromise) {return (await aPromise) + await anotherPromise)};

A promise for an expression can be created by the procedure CreatePromise 88 , which takes a thunk 89 for the expression as its argument. For example, suppose we have the following: ii async function PromiseForSumOfTwoSlowCalls() {const promise1 := CreatePromise(() => aSlowActor.do(10, 20)); const promise2 := CreatePromise(() => aSlowActor.do(30, 40)); return await PromiseForSumOfPromises(promise1, promise2) };

In an asynchronous procedure, await PromiseForSumOfTwoSlowCalls() is equivalent to the following in ActorScript: [10,20]) + •Future aSlowActor∎do [30,40] i The use of asynchronous procedures can be contagious because a procedures using the return value of an asynchronous procedure needs to be asynchronous to use await.

(•Future aSlowActor∎do
ii The code is written in this way to emphasize that an asynchronous procedure always returns a promise.

To implement parallelism, JavaScript has workers. 90 Although multiple workers can reside in a process, they do not share memory addresses and consequently cannot efficiently communicate using many-core coherency. A worker communicates with other workers using blobs i in order to guarantee memory separation. Each worker acts as a single-threaded, non-preemptive time-sharing system for processing messages for Actors that reside in its memory. 91 However, JavaScript workers have the following efficiency issues: 92 1. There is no parallelism in processing messages for different Actors on a worker and the processing of a message by a slowly executing Actor cannot be preempted thereby bringing all ii other work on the worker to a standstill. iii 2. An Actor on a worker can directly send a message to an Actor on another worker only if the recipient has been transferred to the worker on which the sender resides. 93 An Actor can also indirectly send a blobbed message using a MessageChannel.

3. A very difficult efficiency issue is to decide how many Actors to put on each worker and which Actors to put on which worker.

JavaScript workers limit much of the modularity and efficiency available in coherent many-core processor architectures. Inherent inefficiencies and architectural deficiencies in JavaScript workers and HTML5 standards handicap iv browsers in their competition with apps.

Capabilities Systems

Capabilities were proposed in order to provide protection in operating systems [START_REF] Dennis | Programming Semantics for Multiprogrammed Computations CACM[END_REF] by placing authority to take certain actions in special lists stored in protected memory of the operating system. Capabilities originated as part of the MIT Multics Project whereas Actors originated at the AI Lab, which developed Lisp machines with a tagged-memory architecture (instead of special lists stored in the operating system) that could be used to implement secure Actor addresses. Lisp machines were not commercially successful because the developing companies were under-capitalized and i A blob is a data structure that cannot contain pointers. In the past, a more limited meaning called BLOB has been used as an acronym for Binary Large Object. In the Actor Model, an address (which is typed) can be used to send a message to an Actor. The model does not specify the physical representation of an address. So an address might be a (tagged) pointer. However, such pointers are not allowed in blobs. ii including any queued promises iii Issues of non-preemption motivated the invention of time-slicing [START_REF] Bemer | How to consider a computer Data Control Section[END_REF]] by which tasks are switched at the expiration of a timer. iv due mainly to the legacy requirement not to break the Web. W3C and ECMA have done excellent work ameliorating the worst problems.

lacked an adequate software foundation. Unfortunately, tagged-memory architectures fell out of fashion subsequently causing enormous security problems in our current cyber systems. 94 One of the motivations for developing the Actor Model in 1972 was that capabilities were awkward to use because their addresses were allocated in private memory of operating systems. Using tagged memory on Lisp Machines was a preferred implementation for Actors as opposed to using segmented memory on Multics. Also, the terms "capability" and "capabilities system" lacked axiomatizations and denotational semantics.

According to [Saltzer and Schroeder 1975]: In a computer system, a capability is an unforgeable ticket, which when presented can be taken as incontestable proof that the presenter is authorized to have access to the object named in the ticket.

In contrast: An Actor address is defined to be a shareable i digital token 95 that together with a type ii provides the ability to send a message iii to the address. iv

The following are some differences between Actor addresses and the Saltzer/Schroeder definition of capability:

• An address need not be unforgeable although it is typically unguessable v . • Unlike a capability vi , an Actor address per se does not authorize anything. However, an Actor address together with a type enables a message to be sent to the address. vii • A message sent to an address does not have to be honored. However, it is generally good practice for an Actor to respond with an exception if it dishonors a message.

i subject to type constraints ii which is an Actor iii which is an Actor iv For example in the following, HTTPS["google.com"] is an Actor address that can be used as follows to send a get message to Google: HTTPS["google.com"] ∎get[] v For example, an Actor address 4 of type Integer is plainly not unguessable. vi In a capability, designation and permissions are inextricably bound together. vii The message might not actually be received for a variety of potential reasons. For example, because it is not properly received by an app for the intended recipient, because it is not properly received by a computer the for intended recipient, etc. It is good practice to throw an exception if a response is not received within some "reasonable" time.

According to [START_REF] Levy | Capability-Based[END_REF]]: "Conceptually, a capability is a token, ticket, or key that gives the possessor permission to access an entity or object in a computer system. A capability is implemented as a data structure that contains two items of information: a unique object identifier and access rights." The above notion of capability can be modeled as a very specialized proxy Actor that filters messages.

Historically, capabilities have been handicapped by vagueness, overspecialization, awkwardness, not being integrated with types, being singlecomputer centric, and for not incorporating inconsistency-robust logic programs which have persisted in various ways: 96  Vagueness: The [Saltzer and Schroeder 1975] definition above of a capability suffers from vagueness in specifying exactly what constitutes "access" to an object. In the Actor Model, a capability is often modeled as an Actor Address. An Actor type is needed for an address in order to perform marshalling, equivalence testing, and message sending and receiving.  Over-specialization: Definitions of capabilities have been overspecialized. For example, the [START_REF] Levy | Capability-Based[END_REF]] definition above of a capability suffers from the limitation of being over-specialized in that it specifies a particular data structure with two items. i  Awkwardness: Capability systems have often been awkward to use. For example, it is awkward to program in a system that requires permissions to be kept in lists maintained in operating systems memory. ii  Single-computer centric: Historically, capability systems have been single-computer centric. Keeping permissions in lists maintained in the operating system memory of a computer is an example. 97  Not integrated with types: Capabilities were not integrated with type systems. In the Actor Model, in order to use an Actor address to send a message, it is necessary to have a type for that address.  Not incorporating inconsistency-robust logic programs: 98 Capabilities have not incorporated semantics of message passing using inconsistencyrobust logic programs.

i More recently, over-specialization has become an aspect of being single-computer centric (see below). ii More recently, awkwardness has become an aspect of being single-computer centric.

Capabilities were further developed in [START_REF] Organick | A Programmer's View of the Intel 432 System[END_REF][START_REF] Levy | Heroes of the Computer[END_REF][START_REF] Chander | A State-Transition Model of Trust Management and Access Control[END_REF][START_REF] Shapiro | Coyotos Microkernel Specification EROS Group[END_REF][START_REF] Woodruff | The CHERI capability model: Revisiting RISC in an age of risk International Symposium on Computer Architecture (ISCA)[END_REF][START_REF] Robert | CHERI: A Hybrid Capability-System Architecture for Scalable Software Compartmentalization IEEE Symposium on Security and Privacy[END_REF]. Unfortunately, capabilities have continued to be awkward to use because their addresses were allocated in private memory of operating systems. [Kwon, et. al. 2014] is a tagged capability architecture that includes a special register to hold capabilities for addresses. Capabilities systems can be considered to be approaches to security making use specified principles [START_REF] Miller | Robust Composition: Towards a Unified Approach to Access Control and Concurrency Control Doctoral Dissertation[END_REF]] that must include the locality laws of the Actor Model [START_REF] Baker | The Incremental Garbage Collection of Processes Proceeding of the Symposium on Artificial Intelligence Programming Languages[END_REF].

The vision that motivated creation and development of the Actor Model is now coming into fruition in the Internet of Things with the following aspects [START_REF] Hewitt | ActorScript™ extension of C# ® , Java ®, and Objective C ® :, iAdaptive TM concurrency for antiCloud TM -privacy and security in Inconsistency Robustness[END_REF][START_REF] Hewitt | All Writs is a Trojan Horse[END_REF]:

 Systems must function robustly even though at any time a computer can become temporarily or permanently unavailable.  Systems must function as robustly as possible even though connections between computers can be intermittent.

A citizen will share a great deal of sensitive personal information among their insulin pump, bedroom TV, cell phone, home router, and potentially even a brain implant (new DARPA project). 99 Consequently, security of sensitive information heavily relies on encryption.

One of the fundamental principles is to use unguessable addresses for Actors on remote computers. 100 In general, having an unguessable address and its type provides the computer that receives the unguessable address an opportunity to send a message to the address. 101 The only ways that an Actor can acquire an unguessable address is to be given the information to compute it from a combination of the following: 1. Using addresses provided by creating other Actors 2. Using addresses received in messages

In practice, the information to compute an unguessable address must have come from the creator of the Actor for the unguessable address. 102 Consequently, using unguessable Actor addresses provides significant security in helping confine sensitive personal information in the IoT devices owned by a citizen.

The intent of a [Saltzer and Schroeder 1975] capability is to guarantee authorization to have access, whereas the intent of an Actor address is to provide an opportunity to send messages. An Actor address together with a type enables attempted sending a message to the address. However, having an Actor address together with a type doesn't guarantee anything about the ability to "use" any Actor. In IoT, a variety of circumstances (including failure to decrypt) might prevent a message from being by its intended recipient and even if a message is received, a recipient might refuse to honor the message. For example, there may be no capability (bits) that can be specified ahead of time that mean that a withdrawal request to an account will be successful even if the account has funds to cover the withdrawal. When the account receives the withdrawal request it may require further evidence (perhaps from other parties).

Furthermore, an Actor address has functionality beyond that of a [Saltzer and Schroeder 1975] capability. For example, a type might use an Actor address in upcasting, downcasting, or casting to an interface of an Actor as in ActorScript (see below).

The following definition of "capability" for the Internet of Things aims for both precision and practicality: 103 A capability is defined to be an unguessable 104 , shareable digital designation that indivisibly combines permission and ability to perform operations on an object 105 implemented on some system that has certain security properties, e.g., those specified in the Actor Model for unguessable addresses. 106 The following is an important difference between Capabilities and Actors:  Capabilities are prescriptive specifying system properties which must hold.  Actors are for modeling and implementation. Any digital computation can be directly modeled using Actors. ActorScript can directly efficiently implement any Actor system. 107 Of course, good engineering principles and practices should be strongly encouraged.

The interface type Account can be defined as follows:

Interface

One-way Messaging

The following is an implementation of an arithmetic logic unit that implements jumpGreater and addJumpPositive one-way messages: Object can be used to create JavaScript Objects. Also, Function can be used to bind the reserved identifier This. For example, consider the following ActorScript for creating a JavaScript object aRectangle (with length 3 and width 4) and then computing its area 12:

(aRectangle i ← Object {"length": 3, "width": 4]}, aFunction ← Function []→ This⟦"length"⟧  This⟦"width"⟧, Rectangle⟦"area"⟧ ≔ aFunction aRectangle⟦"area"⟧∎[])▮

The setTimeout JavaScript object can be invoked with a callback as follows that logs the string "later" after a time out of 1000: Native types can also be used from Java. For example, if s:String⨀Java, then s∎substring [3,5] iii is the substring of s from the 3 rd to the 5 th characters inclusive.

Java types can be referenced using Refer iv , e.g.:

Refer The history of the Actor Model raises the question of whether it was premature.

Original definition of prematurity

As originally defined by [START_REF] Stent | Prematurity and Uniqueness in Scientific Discovery Scientific American[END_REF], "A discovery is premature if its implications cannot be connected by a series of simple logical steps to contemporary canonical or generally accepted knowledge." [Lövy 2002] glossed the phrase "series of simple logical steps" in Stent's definition as referring to the "target community's ways of asking relevant questions, of producing experimental results, and of examining new evidence." [Ghiselin 2002] argued that if a "minority of scientists accept a discovery, or even pay serious attention to it, then the discovery is not altogether premature in the Stentian sense." In accord with Ghiselin's argument, the Actor Model was not premature. Indeed it enjoyed initial popularity and underwent steady development.

However, Stent in his original article also referred to a development as premature such that when it occurred contemporaries did not adopt it by consensus. This is what happened with the Actor Model partly for the following reasons:

 For over 30 years after the first publication of the Actor Model, widely deployed computer architectures developed in the direction of making a single sequential thread of execution run faster.  For over 25 years after the first publication, there was no agreed standard by which software could communicate high level data structures across organizational boundaries.

Before its time?

According to [START_REF] Gerson | Prematurity and Social Worlds in Prematurity in Scientific Discovery[END_REF], phenomena that lead people to talk about discoveries being before their time can be analyzed as follows:

We can see the phenomenon of 'before its time' as composed of two separate steps. The first takes place when a new discovery does not get tied to the conventional knowledge of its day and remains unconnected in the literature. The second step occurs when new events lead to the 'rediscovery' of the unconnected results in a changed context that enables or even facilitates its connection to the conventional knowledge of the rediscovering context.

But circumstances have radically changed in the following ways:  Progress on improving the speed of a single sequential thread has stalled for some time now. Increasing speed depends on effectively using many-core architectures.  Better ways have been implemented that Actors can use to communicate messages between computers.  Actors have been increasingly adopted by industry.

Consequently, by the criteria of Gerson, the Actor Model might be described by some as before time.

According to [START_REF] Zuckerman | Postmature Scientific Discovery? Nature[END_REF], premature discoveries are those that were made but neglected. [START_REF] Gerson | Prematurity and Social Worlds in Prematurity in Scientific Discovery[END_REF]] argued, But histories and sociological studies repeatedly show that we do not have a discovery until the scientific community accepts it as such and stops debating about it. Until then the proposed solution is in an intermediate state." By his argument, the Actor Model is a discovery but since its practical importance is not yet accepted by consensus, its practical importance is not yet a discovery. 4 The receiver might be on another computer and in any the system can make use of threads, locks, location transparency, throttling, load distribution, persistence, automated storage reclamation, queues, cores, channels, ports, etc. as it sees fit.

Messages in the Actor model are generalizations of packets in Internet computing in that they need not be received in the order sent. Not implementing the order of delivery, allows packet switching to buffer packets, use multiple paths to send packets, resend damaged packets, and to provide other optimizations. For example, Actors are allowed to pipeline the processing of messages. What this means is that in the course of processing a message m1, an Actor can designate how to process the next message, and then in fact begin processing another message m2 before it has finished processing m1. Just because an Actor is allowed to pipeline the processing of messages does not mean that it must pipeline the processing. Whether a message is pipelined is an engineering tradeoff. 5 The amount of effort expended depends on circumstances. 6 These laws can be enforced by a proposed extension of the X86 architecture that will support the following operating environments:  CLR and extensions (Microsoft)  JVM (Oracle, IBM, SAP)  Dalvik (Google) Many-core architecture has made the above extension necessary in order to provide the following:

 concurrent nonstop automated storage reclamation (garbage collection) and relocation to improve performance,  prevention of memory corruption that otherwise results from programming languages like C and C++ using thousands of threads in a process,  nonstop migration of Tutes (while they are in operation) within a computer and between distributed computers 7 e.g., surgery, hormones, genes, anatomy, dress, pronouns, psychology, etc. 8 The following is a interface for a customer that is used in request/response message passing for return type aType: Interface CustomeraType with return[aType] ↦ ⊝ ¶ throw[Exception] ↦ ⊝▮ 9 It is not possible to guarantee the consistency of information because consistency testing is recursively undecidable even in logics much weaker than first order logic. Because of this difficulty, it is impractical to test whether information is consistent. 10 Consequently Describer makes use of direct inference in Direct Logic to reason more safely about inconsistent information because it omits the rules of classical logic that enable every proposition to be inferred from a single inconsistency.

11 This section shares history with [Hewitt 2008f].

12 cf. denotational semantics of the λ-calculus [Scott 1976] 13 One solution is to develop a concurrent variant of the Lisp meta definition [START_REF] Mccarthy | Lisp 1.5 Programmer's Manual MIT Computation[END_REF] that was inspired by Turing's Universal Machine [Turing 1936]. If exp is a Lisp expression and env is an environment that assigns values to identifiers, then the procedure Eval with arguments exp and env evaluates exp using env. In the concurrent variant, eval[env] is a message that can be sent to exp to cause exp to be evaluated. Using such messages, modular meta definitions can be concisely expressed in the Actor model for universal concurrent programming languages (e.g. ActorScript [Hewitt 2010a]). 14 However, they come with additional commitment. Inappropriate language constructs are difficult to leave behind. 15 E.g. processes in Erlang [START_REF] Armstrong | History of Erlang HOPL III[END_REF]] and vats in the objectcapability model [START_REF] Miller | Robust Composition: Towards a Unified Approach to Access Control and Concurrency Control Doctoral Dissertation[END_REF]]. 16 Swiss cheese was called serializers in the literature. 17 The programming language ML violates the Strong Typing requirement of having well-founded types because it has type Any which is called Universal-Type. 18 The programming language ML violates the Strong Typing requirements for well-founded casting because it allows casting an Actor of any type to Universal-Type. 19 In part, this section extends some material that was submitted to Wikipedia and [Hewitt 2008f]. 20 Turing [1936] model [Blass, Gurevich, Rosenzweig, andRossman 2007a, 2007b;[START_REF] Glausch | Distributed Abstract State Machines and Their Expressive Power Informatik Berichete 196[END_REF]].

22 The λ-calculus can be viewed as the earliest message passing programming language [Hewitt, Bishop, and Steiger 1973] building on previous work. For example, the λ-expression below implements a tree data structure when supplied with parameters for a leftSubTree and rightSubTree. When such a tree is given a parameter message "getLeft", it returns leftSubTree and likewise when given the message "getRight" it returns rightSubTree: λ[leftSubTree, rightSubTree] λ[message] message � "getLeft" ⦂ leftSubTree "getRight" ⦂ rightSubTree 23 Allowing assignments to variables enabled sharing of the effects of updating shared data structures but did not provide for concurrency. 24 [Petri 1962] 25 Consequently in Simula-76 there was no required locality of operations unlike the laws for locality in the Actor mode [START_REF] Baker | The Incremental Garbage Collection of Processes Proceeding of the Symposium on Artificial Intelligence Programming Languages[END_REF]]. 26 The ideas in Simula-67 became widely known by the publication of [START_REF] Dahl | Hierarchical Program Structures in "Structured Programming[END_REF] at the same time that the Actor model was being invented to formalize concurrent computation using message passing [Hewitt, Bishop, and Steiger 1973]. 27 The development of Planner was inspired by the work of Karl [START_REF] Popper | Conjectures and Refutations: The Growth of Scientific Knowledge Routledge[END_REF], 1963], Frederic Fitch [1952], George Polya [1954], Allen [START_REF] Newell | The Logic Theory Machine: A Complex Information Processing System[END_REF], John McCarthy [1958[START_REF] Mccarthy | Lisp 1.5 Programmer's Manual MIT Computation[END_REF], and Marvin Minsky [1968]. 28 This turned out later to have a surprising connection with Direct Logic. See the Two-Way Deduction Theorem below. 29 According to [START_REF] Kay | The early history of Smalltalk ACM SIGPLAN Notices[END_REF]]:

"This is a generalization of a stack frame, such as is used by the B5000, and very similar to what a good intermodule scheme would require in an operating system such as CAL-TSS-a lot of state for every transaction, but useful to think about." 30 Subsequent versions of the Smalltalk language largely followed the path of using the virtual methods of Simula-67 in the message passing structure of programs. However Smalltalk-72 made primitives such as integers, floating point numbers, etc. into objects. The authors of Simula-67 had considered making such primitives into objects but refrained largely for efficiency reasons. Java at first used the expedient of having both primitive and object versions of integers, floating point numbers, etc. The C# programming language (and later versions of Java, starting with Java 1.5) adopted the more elegant solution of using boxing and unboxing, a variant of which had been used earlier in some Lisp implementations. 31 According to the Smalltalk-72 Instruction Manual [Goldberg and Kay 1976]: There is not one global message to which all message "fetches" (use of the Smalltalk symbols eyeball,  ; colon, :; and open colon, ⦂) refer; rather, messages form a hierarchy which we explain in the following way--suppose I just received a message; I read part of it and decide I should send my friend a message; I wait until my friend reads his message (the one I sent him, not the one I received); when he finishes reading his message, I return to reading my message. I can choose to let my friend read the rest of my message, but then I cannot get the message back to read it myself (note, however, that this can be done using the Smalltalk object apply which will be discussed later). I can also choose to include permission in my message to my friend to ask me to fetch some information from my message and to give that in information to him (accomplished by including : or ⦂ in the message to the friend). However, anything my friend fetches, I can no longer have. In other words, 1) An object (let's call it the CALLER) can send a message to another object (the RECEIVER) by simply mentioning the RECEIVER's name followed by the message.

2) The action of message sending forms a stack of messages; the last message sent is put on the top. 3) Each attempt to receive information typically means looking at the message on the top of the stack.

4) The RECEIVER uses the eyeball, , the colon, :, and the open colon, ⦂, to receive information from the message at the top of the stack. 5) When the RECEIVER completes his actions, the message at the top of the stack is removed and the ability to send and receive messages returns to the CALLER. The RECEIVER may return a value to be used by the CALLER. 6) This sequence of sending and receiving messages, viewed here as a process of stacking messages, means that each message on the stack has a CALLER (message sender) and RECEIVER (message receiver). Each time the RECEIVER is finished, his message is removed from the stack and the CALLER becomes the current RECEIVER. The now current RECEIVER can continue reading any information remaining in his message. 7) Initially, the RECEIVER is the first object in the message typed by the programmer, who is the CALLER.

8) If the RECEIVER's message contains an eyeball,  ; colon, :, or open colon, ⦂, he can obtain further information from the CALLER's message. Any information successfully obtained by the RECEIVER is no longer available to the CALLER. 9) By calling on the object apply, the CALLER can give the RECEIVER the right to see all of the CALLER's remaining message. The CALLER can no longer get information that is read by the RECEIVER; he can, however, read anything that remains after the RECEIVER completes its actions.

10) There are two further special Smalltalk symbols useful in sending and receiving messages. One is the keyhole, , that lets the RECEIVER "peek" at the message. It is the same as the ⦂ except it does not remove the information from the message. The second symbol is the hash mark, #, placed in the message in order to send a reference to the next token rather than the token itself. 32 The sender is an intrinsic component of communication in the following previous models of computation:  Petri Nets: the input places of a transition are an intrinsic component of a computational step (transition).  λ-calculus: the expression being reduced is an intrinsic component of a computational step (reduction).  Simula-67: the stack of the caller is an intrinsic component of a computation step (method invocation).  Smalltalk-72: the invoking token stream is an intrinsic component of a computation step (message send). 33 An Actor can have information about other Actors that it has received in a message about what it was like when the message was sent. See section of this paper on unbounded nondeterminism in ActorScript. 34 Arbiters render meaningless the states in the Abstract State Machine (ASM) model [Blass, Gurevich, Rosenzweig, andRossman 2007a, 2007b;[START_REF] Glausch | Distributed Abstract State Machines and Their Expressive Power Informatik Berichete 196[END_REF]]. 35 The logic gates require suitable thresholds and other parameters. 36 Of course the same limitation applies to the Abstract State Machine (ASM) model [Blass, Gurevich, Rosenzweig, andRossman 2007a, 2007b;[START_REF] Glausch | Distributed Abstract State Machines and Their Expressive Power Informatik Berichete 196[END_REF]]. In the presence of arbiters, the global states in ASM are mythical. 37 Consider the following Nondeterministic Turing Machine:

Step 1 : Next do either Step 2 or Step 3.

Step 2 : Next do Step 1.

Step 3 : Halt.

It is possible that the above program does not halt. It is also possible that the above program halts. Note that above program is not equivalent to the one below in which it is not possible to halt:

Step 1 : Next do Step 1.

38 This result is very old. It was known by Dijkstra motivating his belief that it is impossible to implement unbounded nondeterminism. Also the result played a crucial role in the invention of the Actor Model in 1972. 39 This proof does not apply to extensions of Nondeterministic Turing Machines that are provided with a new primitive instruction NoLargest which is defined to write a unbounded large number on the tape. Since executing NoLargest can write an unbounded amount of tape in a single instruction, executing it can take an unbounded time during which the machine cannot read input.

Also, the NoLargest primitive is of limited practical use. Consider a Nondeterministic Turing Machine with two input-only tapes that can be read nondeterministically and one standard working tape.

It is possible for the following program to copy both of its input tapes onto its working tape:

Step 1 : Either a) copy the next input from the 1 st input tape onto the working tape and next do Step 2, or b) copy the next input from the 2 nd input tape onto the working tape and next do Step 3.

Step 2 : Next do Step 1.

Step 3 : Next do Step 1.

It is also possible that the above program does not read any input from the 1 st input tape (cf. [Knabe 1993]). Bounded nondeterminism was but a symptom of deeper underlying issues with Nondeterministic Turing Machines. 40 Consequently,  The tree has an infinite path. ⇔ The tree is infinite. ⇔ It is possible that P does not halt.

If it is possible that P does not halt, then it is possible that that the set of outputs with which P halts is infinite.  The tree does not have an infinite path. ⇔ The tree is finite. ⇔ P always halts. If P always halts, then the tree is finite and the set of outputs with which P halts is finite. 41 [Kowalski 1988a] 42 A Logic Program is defined by the criteria that it must logically infer its computational steps. 43 A request to a shared resource might never receive service because it is possible that a nondeterministic choice will always be made to service another request instead. 44 [START_REF] Nygaard | Basic Concepts in Object Oriented Programming Special Edition on Object-Oriented Programming Languages[END_REF]] Starting with Simula-67, which was not a pure Object programming language because for efficiency reasons numbers, strings, and arrays, were not Objects in the Class hierarchy. 45 [START_REF] Knudsen | Teaching Object-Oriented Programming is more than teaching Object-Oriented Programming Languages ECOOP[END_REF] 46 According to [START_REF] Nygaard | Basic Concepts in Object Oriented Programming Special Edition on Object-Oriented Programming Languages[END_REF]] (emphases in original):

The term object-oriented programming is derived from the object concept in the Simula-67 programming language. ... Objects sharing a common structure are said to constitute a class, described in the program by a common class description. [SIGPLAN 1986, Stein, Lieberman, and[START_REF] Stein | A Shared View of Sharing: The Treaty of Orlando Object-oriented concepts, databases, and applications[END_REF]] have discussions of object-oriented programming. 47 Examples of Object programming languages include Simula-67, Smalltalk-80, Java, C++, C#, and JavaScript. Recent Object languages support other abstraction and code reuse mechanisms, such as traits, delegation, type classes, and so on, either in place of, or as well as inheritance. 48 Every interface is a type and every type is an interface. 49 [START_REF] Kay | Alan Kay on Messaging Squeak email list[END_REF]] wrote:

The big idea is "messaging" The key in making great and growable systems is much more to design how its modules communicate rather than what their internal properties and behaviors should be. Think of the internet -to live, it (a) has to allow many different kinds of ideas and realizations that are beyond any single standard and (b) to allow varying degrees of safe interoperability between these ideas. 50 missing from initial versions of Scheme 51 [START_REF] Hewitt | Viewing Control Structures as Patterns of Passing Messages AI Memo 410[END_REF][START_REF] Hewitt | Viewing Control Structures as Patterns of Passing Messages AI Memo 410[END_REF]. 52 Notable members of this community included Bill Gosper, Richard Greenblatt, Jack Holloway, Tom Knight, Stuart Nelson, Peter Samson, Richard Stallman, etc. See [START_REF] Levy | Heroes of the Computer[END_REF]]. 53 The parallel λ-calculus includes the following limitations:

 Message reception order cannot be implemented.  Actors that change cannot be implemented  The parallel λ-calculus does not have exceptions.

 The fastest implementations of Intelligent Applications in the λlambda calculus can be thousands of times slower than Actor implementations. 54 [START_REF] Kay | The early history of Smalltalk ACM SIGPLAN Notices[END_REF]] 55 like Simula-67, which its runtime model is closely related 56 Communication in the π -calculus takes the following form:

 input: u[x].P is a process that gets a message from a communication channel u before proceeding as P, binding the message received to the identifier x. In ActorScript [Hewitt 2010a], this can be modeled as follows:

(x←u∎get[] P) 56  output: ū[m].P is a process that puts a message m on communication channel u before proceeding as P. In ActorScript, this can be modeled as follows: (u∎put[x] P) 56

The above operations of the π-calculus can be implemented in Actor systems using a two-phase commit protocol [Knabe 1992;Reppy, Russo, and Xiao 2009]. The overhead of communication in the π-calculus presents difficulties to its use in practical applications.

According to [Berger 2003], Milner revealed …secretly I realized that working in verification and automatic theorem proving…wasn't getting to the heart of computation theory…it was Dana Scott's work that was getting to the heart of computation and the meaning of computation.

95 Not requiring that an Actor address is always required to be unguessable can allow for more efficient implementations. For example, suppose that amount1 and amount2 are both of type Euro. It might be that case that amount1 and amount2 are unboxed, i.e., the respective amounts are encoded in their addresses. 96 Capabilities were critiqued in [Bobert 1984;[START_REF] Rajunas | The KeyKOS/KeySAFE System Design[END_REF][START_REF] Miller | Capability Myths Demolished Submitted to Usenix Security[END_REF]] concerning the following issues:  revocability: An Actor does not have to honor the message that it receives. Using proxies for Actors also enables revocability because messages are forwarded and so a proxy can revoke.  multi-level security: Actors, per se, do not have levels of security although various security schemes can be implemented, which may require using membranes [START_REF] Donnelley | A Distributed Capability Computing System Proceedings of the Third International Conference on Computer Communication[END_REF][START_REF] Hewitt | The Apiary Network Architecture for Knowledgeable Systems[END_REF]].  delegation: Actors directly support delegation by passing addresses of Actors in messages. However, a receiver must have appropriate types in order to send messages to addresses that it has received.  confinement: Actor can use encryption to help enforce secrecy of information. For example, a computer might accept communications to Actors that it hosts only if the communication is encrypted by certain other computers. 97 [Donnelley 1975] extended a single-computer capability system across multiple computers using ports to communicate protected capabilities. However, the extension does not work well for IoT in which devices are provided by many different manufactures with different operating systems 98 This handicap is of more recent vintage that the ones above. 99 Without warning, any of the above may fail permanently and have to be replaced. While the replacement is happening, life must continue as smoothly as possible. 100 both of the following are needed to securely and efficiently implement

Actor addresses [START_REF] Hewitt | The Apiary Network Architecture for Knowledgeable Systems[END_REF][START_REF] Miller | Robust Composition: Towards a Unified Approach to Access Control and Concurrency Control Doctoral Dissertation[END_REF]]: 1. tagged pointers in an address space 2. unguessable addresses sent to other computers 101 The message might not actually be received for a variety of potential reasons. For example, because it is not properly received by an app the for intended recipient, because it is not properly received by a computer for the intended recipient, etc. It is good practice to throw an exception if a response is not received within some "reasonable" time. 102 Bits cannot be converted into an Actor address of arbitrary type, i.e., an Actor cannot convert an address of type BitString into an address of type Account. 103 The following are examples of capabilities:

 Waterken [Close 2008]: an Actor address of type WebKey  Zebra Copy [START_REF] Karp | Access Control for the Services Oriented Architecture ACM Workshop on Secure Web Services[END_REF]: an Actor address together with additional information that includes a list of allowed message types 104 In the Internet of Things, a designation of an object on a remote computer is unguessable but technically not unforgeable because it makes use of encryption for security. However, it is possible to use a capability that is technically unforgeable even though it is based on an unguessable (but forgeable) designation. However, it could be misleading to simply say that a capability is unforgeable when it is based on an unguessable designation.

105 i.e., Java, Hypertext Transfer Protocol, C++, etc. The object might reside on a computer that is remote from on the one on which the operation is being invoked. 106 The use of types in the Actor Model has some similarities and differences with Split Capabilities [START_REF] Karp | Using Split Capabilities for Access Control IEEE Software[END_REF]. In order to send a message to an Actor, both and address and a type are required. A difference is that that this division is not the same as in Split Capabilities because a type is an Actor in its own right and not restricted to being a list of access rights. For example, if anAccount is of type Account then, anAccount∎deposit[$5] is equivalent to the following: Account∎send[anAccount, deposit[$5]] 107 By default, ActorScript systems adhere to the prescriptions of capabilities and furthermore have stronger security properties as well, e.g., making using of type encryption and not allowing insecure casting. 108 The ability to extend implementation is important because it helps to avoid code duplication. 109 cf. [START_REF] Crahen | Facet: A pattern for dynamic interfaces[END_REF][START_REF] Amborn | Facet-Oriented Program Design[END_REF][START_REF] Miller | Bringing Object-orientation to Security Programming[END_REF] 110 note the absence of "∎" in the implementation subexpression 111 equivalent to the following: myBalance⨀SimpleAccount ≔ myBalance⨀SimpleAccount -anAmount 112 ignoring exceptions in this way is not a good practice 113 equivalently (HTTPS["en.wikpedia.org"])⟦ ⟧

 Systems: Future of Big Info and Analytics Processing massive amounts of information is a hallmark of the next generation of Intelligent Applications in which pervasively inconsistent information must be coherently understood. Inconsistency Robustness[Hewitt and Woods assisted by Spurr 2015; Meyer 2015] is the science and engineering of large systems with continual, pervasive inconsistencies, a shift from the previously dominant paradigms of inconsistency denial and elimination. Inconsistency robust logic is an important conceptual advance that requires that nothing "extra" can be inferred just from the presence of a contradiction. It improves on both the classical logic and machine learning responses to inconsistency, allowing computer systems to employ the kinds of common sense reasoning strategies used by people.

i

 When goal to intimidate the enemy, set subgoal to appear strong.

 The above diagram is for the implementation of an Actor of type SimpleAccount with variable myBalance, which behaves as follows: If an availableBalance[] message is received, then return myBalance.  If a deposit[anAmount] message is received, then increment myBalance by anAmount and return.  If a withdraw[anAmount] message is received, then if anAmount⩽myBalance then decrement myBalance by anAmount and return, else throw an Overdraft[] exception. What a Turing Machine, the λ-calculus, and Pure Logic Programs can't do

 hole is grey in the diagram iv Of course, other external Actors can change.

 Actor Rectangle[origin:Point⌸, corner:Point⌸] uses rectangleFunction[] § intersect[aRectangle:Rectangle]:Rectangle ∴ Rectangle[origin ⌸ max∎[origin, aRectangle∎⟦origin⟧], corner ⌸ min∎[corner, aRectangle∎⟦corner⟧]]

 Islets also can provide faster response and more robustness because local operations can be faster and more reliable than being required to always use communication links with potentially-overloaded remote datacenters.

	Islets need a convenient, effective, high-profitable business model, which must be
	more effective and
	efficient	than	the
	current	datacenters
	system	based	on
	consumer surveillance
	to improve advertising
	targeting. Instead, an
	Islet running on a
	consumer's equipment
	can seek out and help
	evaluate appropriate
	offers from commerce
	agents.		

Statistical Info in Big Ontology System

	If an Actor is sent a request, then the continuation must be one of the
	following two mutually exclusive possibilities:	
	1. to process the response i resulting from the recipient receiving the request an IncomesCollection has country =US has gender =Female 2. to throw a Messaging ii exception iii
	has year =2006
	has mean =$32,500 Just sitting there forever after a request has been sent is a silent failure, which
	has meanLogDeviaton =0.55 is unacceptable. So, in due course, the infrastructure must throw a Messaging
	exception as governed by the policies in place iv if a response (return value or
	exception) to the request has not been received.	is
	Ideally, if the continuation of sending a request is to throw a Messaging DataSet1 exception, then the sender of a response to the request also receives a
	Messaging exception saying that the response could not be processed.
	If desired, things can be arranged so that Messaging exceptions are
	distinguished from all other exceptions.	
	Runtime failures are always a possibility in Actor systems and are dealt with
	by runtime infrastructures. Message acknowledgement, reception, and
	response i cannot be guaranteed although best efforts are made. Consequences
	are cleaned up on a best-effort basis.	
	Robustness in runtime failures is partially based on the following principle: 8
	i a response is either a returned value or a thrown exception

-commutativity: Information can be used regardless of whether it initiates new work or becomes relevant to ongoing work.  Sponsorship: Sponsors provide resources for computation, i.e., processing, storage, and communications.  Pluralism: Information is heterogeneous, overlapping and often inconsistent. There is no central arbiter of truth  Provenance: The provenance of information is carefully tracked and recorded Interaction creates Reality 11

	Information is collected and indexed and no original information is lost.  Concurrency: Work proceeds interactively and concurrently, overlapping in time. primarily as referential, as a set of statements about reality, but as a practice that interferes with other practices. It therefore participates in reality. Annemarie Mol [2002] Relational physics takes the following view [Laudisa and Rovelli 2008]: i • Relational physics discards the notions of absolute state of a system and absolute properties and values of its physical quantities. • State and physical quantities refer always to the interaction, or the relation, among multiple systems. • Nevertheless, relational physics is a complete description of reality.  Quasia philosophical shift in which knowledge is no longer treated According to this view,

Interaction creates reality. Information

 systems participate in this reality and thus are both consequence and cause.

 Discussions with DaleSchumacher helped clarify issues with Fog Cutter Actors and also helped debug the axiomatization of runtime failures in the Actor Model. Phil Bernstein, Sergey Bykov, and Gabi Kliot provide valuable comments on the section on Orleans Actors. Terry Hayes, Chris Hibbert, Daira Hopwood, Ken Kahn, Alan Karp, William Leslie, and Mark S. Miller and made helpful suggestions for the sections on capability, Orleans, and JavaScript Actors. Dan Ingalls made helpful suggestions on the sections on Smalltalk and elsewhere. Numerous typos were caught by Tom Pittard.

Information is collected and indexed.  Concurrency: Work proceeds interactively and concurrently, overlapping in time.  Quasi-commutativity: Information can be used regardless of whether it initiates new work or become relevant to ongoing work.  Sponsorship: Sponsors provide resources for computation, i.e., processing, storage, and communications.  Pluralism: Information is heterogeneous, overlapping and often inconsistent.  Provenance: The provenance of information is carefully tracked and recorded The Actor Model is intended to provide a foundation for inconsistency robust information coordination. The members of the Silicon Valley Friday AM group made valuable suggestions for improving this paper. Blaine Garst found numerous bugs and made valuable comments including information on the historical development of interfaces. Patrick Beard found bugs and suggested improvements in presentation. Discussions with Dennis Allison, Eugene Miya, Vaughan Pratt and others were helpful in improving this article. As reviewers for Inconsistency Robustness 2011, Blaine Garst, Mike Huhns and Patrick Suppes made valuable suggestions for improvement.

pure Logic Programs can be thousands of times slower than Actor implementations. i

 of the λ-calculus below: o All operations are local. o The definition is modular in that each λ-calculus programming language construct is an Actor. o The definition is easily extensible since it is easy to add additional programming language constructs. o The definition is easily operationalized into efficient concurrent implementations. o The definition easily fits into more general concurrent computational frameworks for many-core and distributed computation The λ-calculus can be implemented in ActorScript as follows:

	In many practical applications, the parallel λ-calculus and
	Actor IdentifieraType[aString:String]
	implements ExpressionaType using
	eval[e:Environment]:aType ∴ e∎lookup[⍠IdentifieraType]
	// lookup this identifier in environment e
	Actor ProcedureCallaType, anotherType
	[operator:Expression[aType]↦ anotherType,
	operand:ExpressionaType]
	implements ExpressionanotherType using
	eval[e:Environment]:anotherType ∴
	(operator.eval[e])∎[operand∎eval[e]]
	Actor LambdaaType, anotherType
	[anIdentifier:IdentifieraType,
	body:ExpressionanotherType]
	implements Expression[aType]→anotherType using
	eval[e:Environment]:anotherType ∴
	λ [anArgument:aType]
	body∎eval[e ∎bind[anIdentifier, anArgument]]
	// eval body in a new environment
	//with anIdentifier bound to anArgument
	// as extension of environment e

 Irene Greif published the first operational model of Actors in her dissertation. Two years after Greif published her operational model, Carl Hewitt and Henry Baker published the Laws for Actors [Baker and Hewitt

	the λ-calculus
	 interrupts
	 blocking method invocation
	 imperative programming using locks
	 capabilities systems
	 co-routines
	 packet networks
	 email systems
	 Petri nets
	 Smalltalk-72
	 Simula-67
	 pattern-directed invocation (from Planner)
	In 1975,

a result of this work, we have found that we can do without the paraphernalia of "hairy control structure." 51

	Hewitt had concluded:
	One of the most important results that has emerged from the development
	of Actor semantics has been the further development of techniques to
	semantically analyze or synthesize control structures as patterns of passing
	messages. As

(emphasis in original)

 send Z a stop message || process X operates in parallel with process Y Y :: guard: boolean; guard := true;  In process Y, initialize boolean variable guard to true and then *[guard→ Z!go(); Z?guard]  while guard is true, send Z a go message and then input guard from Z || process Y operates in parallel with process Z Z :: n: integer; n:= 0;  In process Z, initialize integer variable n to 0 and then

continue: boolean; continue := true;  initialize boolean variable continue to true and then *[ repeatedly either X?stop() → continue := false; input a stop message from X, set continue to false and then  Y!continue; send Y the value of continue []  or Y?go()→ n := n+1; input go message from Y, increment n, then Y!continue]] send Y the value of continue

 promoted "Fog Cutter" i Actors each of which is required to have a mailbox, thread, state, and program diagrammed as follows: 57

	Thread
	State State
	Program Program
	Mailbox

 However, Fog Cutter Actors are fundamentally lacking in generality because they lack the holes of Swiss cheese. i

	Fog Cutter Actors have been extremely useful for exploring issues about Actors
	including the following alternatives:

 Reception order of messaging instead of Mailbox  Activation order of messaging instead of Thread  Behavior instead of State+Program

Was the Actor Model premature?

 aRectangle is of type Object`JavaScript ii i.e. the following JavaScript types are not included in JSON: Date, Error, Regular Expression, and Function. iii substring is a method of the String type in Java iv Refer is called Import in Java

	java.math.BigInteger▮
	Refer java.lang.Number▮
	After the above, BigInteger∎new["123"]∎instanceof[Number]▮ is equivalent
	to True▮.

i

i For example, there can be messages in transit that will be delivered at some indefinite time.

i For example, implementations using Actors of Direct Logic can be thousands of times faster than implementations in the parallel λ-calculus.

Acknowledgements

Important contributions to the semantics of Actors have been made by: Gul Agha, Beppe Attardi, Henry Baker, Will Clinger, Irene Greif, Carl Manning, Ian Mason, Ugo Montanari, Maria Simi, Scott Smith, Carolyn Talcott, Prasanna Thati, and Aki Yonezawa.

Important contributions to the implementation of Actors have been made by: Gul Agha, Bill Athas, Russ Atkinson, Beppe Attardi, Henry Baker, Gerry Barber, Peter Bishop, Nanette Boden, Jean-Pierre Briot, Bill Dally, Blaine Garst, Peter de Jong, Jessie Dedecker, Ken Kahn, Rajesh Karmani, Henry Lieberman, Carl Manning, Mark S. Miller, Tom Reinhardt, Chuck Seitz, Amin Shali, Richard Steiger, Dan Theriault, Mario Tokoro, Darrell Woelk, and Carlos Varela.

Appendix 1. Historical background 19 The Actor Model builds on previous models of nondeterministic computation. Several models of nondeterministic computation were developed including the following:

Concurrency versus Turing's Model

Turing's model of computation was intensely psychological. 20 [Sieg 2008] formalized it as follows:

 Boundedness: A computer can immediately recognize only a bounded number of configurations.  Locality: A computer can change only immediately recognizable configurations. In the above, computation is conceived as being carried out in a single place by a device that proceeds from one well-defined state to the next.

Computations are represented differently in Turing Machines and Actors:

1. Turing Machine: a computation can be represented as a global state that determines all information about the computation. 21 It can be nondeterministic as to which will be the next global state. 2. Actors: a computation can be represented as a configuration.

Information about a configuration can be indeterminate. i

λ-calculus

The λ-calculus was originally developed as part of a system for the foundations of logic [Church 1932-33]. However, the system was soon shown to be inconsistent. Subsequently, Church removed logical propositions from the system leaving a purely procedural λ-calculus [Church 1941]. 22 The above implementation of SimpleAccount can be extended as follows to provide the ability to revoke some abilities to change an account. 108 For example, the AccountSupervisor implementation below implements both the Account and AccountRevoker interfaces as an extension of the implementation Account:

As illustrated below, a facet of an Actor can be expressed using "⍠" followed by the name of the interface for the facet. End Notes 1 According to E.O. Wilson: "A colony of ants is more than just an aggregate of insects that are living together. One ant is no ant." [START_REF] Suzuki | The Thrill of Seeing Ants for What They are The David Suzuki Reader[END_REF] 2 The Actor model makes use of two fundamental orders on computational events [START_REF] Baker | The Incremental Garbage Collection of Processes Proceeding of the Symposium on Artificial Intelligence Programming Languages[END_REF][START_REF] Clinger | Foundations of Actor Semantics MIT Mathematics Doctoral Dissertation[END_REF][START_REF] Hewitt | What is Commitment? Physical, Organizational, and Social" COIN@AAMAS'06[END_REF]]:

1. The activation order (⇝) is a fundamental order that models one event activating another (there is energy flow from an event to an event which it activates). The activation order is discrete:

There are two kinds of events involved in the activation order: reception and transmission. Reception events can activate transmission events and transmission events can activate reception events.

2. The reception order of an Actor x (𝑥 →) models the (total) order of events in which a message is received at x. The reception order of each x is discrete:

The combined order (denoted by ↷) is defined to be the transitive closure of the activation order and the reception orders of all Actors. So the following question arose in the early history of the Actor model: "Is the combined order discrete?" Discreteness of the combined order captures an important intuition about computation because it rules out counterintuitive computations in which an infinite number of computational events occur between two events (à la Zeno).

Hewitt conjectured that the discreteness of the activation order together with the discreteness of all reception orders implies that the combined order is discrete. Surprisingly [START_REF] Clinger | Foundations of Actor Semantics MIT Mathematics Doctoral Dissertation[END_REF]later generalized in Hewitt 2006] answered the question in the negative by giving a counterexample: Any finite set of events is consistent (the activation order and all reception orders are discrete) and represents a potentially physically realizable situation. But there is an infinite set of sentences that is inconsistent with the discreteness of the combined order and does not represent a physically realizable situation.

The resolution of the problem is to take discreteness of the combined order as an axiom of the Actor model: 2 ∀[e1,e2Events]→ Finite[{eEvents | e1↷e↷e2}] Properties of concurrent computations can be proved using the above orderings [e.g. Bost, Mattern, and Tel 1995;[START_REF] Lamport Time | Orderings of Events in a Distributed System CACM[END_REF][START_REF] Lamport | How to make a multiprocessor computer that correctly executes multiprocess programs[END_REF].

The above laws for Actor systems should be derivable from the laws of physics. 3 for better or worse However, Milner continued his research on bi-simulation between systems and did not directly address the problem of developing mathematical denotations for general computations as in the Actor Model. 57 e.g. as in Erlang [START_REF] Armstrong | Erlang[END_REF]]. 58 e.g. using assignment commands 59 a concept from (quantum) physics 60 However, data structures within an Erlang Actor are garbage collected. 61 which can be optimized by reusing the thread if another message is waiting 62 a globally unique identifier can be a 128-bit guid, long integer, or a string. 63 Also, a reference for an Orleans Actor can be created from a C# anObjectAddress using aFactory.CreateObjectReference(anObjectAddress) 64 There can be optimizations for determinate message passing, i.e., the same message always responds with the same result. 65 Because of the ability to instantiate an Actor from its globally unique identifier, Orleans Actors are called "virtual" in their documentation. By analogy with virtual memory, the term "virtual" applied to an Orleans Actor would seem to imply that it would have to return to where it left. However, this terminology is misleading because an Actor can potentially migrate elsewhere and never come back. Better terminology would be to say that an Orleans Actor is "perpetual." 66 unless it is deleted by potentially unsafe means, which can result in a dangling globally unique identifier. 67 after it has been unused for a while, its storage can be moved elsewhere outside the process in which it currently resides 68 unless it is deleted by potentially unsafe means, which can result in a dangling globally unique identifier. 69 ActorScript goes even further in this direction by enforcing that the value of a variable can change only when it is leaving the cheese or before/after an internal delegated operation. 70 However, after the message is finished processing, sometimes waiting method calls it invoked can be processed concurrently if they are independent. 71 provided that the Actor is not contended 72 [Liskov and Shira 1988;[START_REF] Miller | Concurrency Among Strangers: Programming in E as Plan Coordination Proceedings of the International Symposium on Trustworthy Global Computing[END_REF] 77 Orleans uses Task<aType> for the type of a promise which corresponds to the type FutureaType in ActorScript. 78 ActorScript uses Future anExpression to create a future for anExpression