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This article is dedicated to Alonzo Church and Dana Scott. 

 

Introduction 

The Actor Model is a mathematical theory that treats “Actors” as the universal 

conceptual primitives of digital computation.  

 

Hypothesis:i All physically possible digital computation can be directly 

modeled using Actors. 

 

The model has been used both as a framework for a theoretical understanding 

of concurrency, and as the theoretical basis for several practical 

implementations of concurrent systems. Actors are direct and efficient: 

 Digital computation can be efficiently implemented without loss of 

processing, communication, or storage efficiency 

 Digital computation can be directly modeled without requiring 

extraneous elements, e.g., channels or registers.  

The advent of massive concurrency through client-cloud computing and many-

core computer architectures has galvanized interest in the Actor Model.   
 

Message passing using types is the foundation of system communication: 

 Messages are the unit of communication 

 A message can be sent to an address, which has a Typeii  

 

  

                                                           
i This hypothesis is an update to [Church 1936] that all physically computable 

functions can be implemented using the lambda calculus. It is a consequence of 

the Actor Model that there are some computations that cannot be implemented in 

the lambda calculus. 
ii Each type is an Actor. However, it may be the case that a type will work some 

places and not others. For example, to be used in message passing, the type of an 

address may require access to particular hardware. Also, types can provide 

security, e.g., by using encryption. 



 

 

When an Actor receives a message, it can concurrently:1 
 send messages to (unforgeable) addresses of Actors that it has; 
 create new Actors; i 
 designate how to handle the next message it receives. 

 

The Actor Model can be used as a framework for modeling, understanding, and 

reasoning about, a wide range of concurrent systems. For example: 
 Electronic mail (e-mail) can be modeled as an Actor system. Mail 

accounts are modeled as Actors and email addresses as Actor addresses. 
 Web Services can be modeled with endpoints modeled as Actor 

addresses. 
 Objects with locks (e.g. as in Java and C#) can be modeled as Actors. 
 Functional and Logic programs can be implemented using Actors. 

 

Actor technology will see significant application for coordinating all kinds of 

digital information for individuals, groups, and organizations so their 

information usefully links together.  

 

Information coordination needs to make use of the following information 

system principles: 
 

 Persistence. Information is collected and indexed. 
 Concurrency: Work proceeds interactively and concurrently, 

overlapping in time. 
 Quasi-commutativity: Information can be used regardless of whether it 

initiates new work or become relevant to ongoing work. 
 Sponsorship: Sponsors provide resources for computation, i.e., 

processing, storage, and communications.  
 Pluralism: Information is heterogeneous, overlapping and often 

inconsistent. There is no central arbiter of truth.  
 Provenance: The provenance of information is carefully tracked and 

recorded. 
 

The Actor Model is intended to provide a foundation for inconsistency robust 

information coordination. Inconsistencyii robustness is information system 

performance2 in the face of continual pervasive inconsistencies.iii  

Inconsistency robustness is both an observed phenomenon and a desired 

feature. 
 

                                                           
i with new addresses 

ii An inference system is inconsistent when it is possible to derive both a proposition 

and its negation. 

        A contradiction is manifest when both a proposition and its negation are asserted 

even if by different parties, e.g., New York Times said “Snowden is a 

whistleblower.”, but NSA said “Snowden is not a whistleblower.” 
iii a shift from the previously dominant paradigms of inconsistency denial and 

inconsistency elimination, i.e., to sweep inconsistencies under the rug. 



 

 

The Actor Model is a mathematical theory of computation that treats “Actors” 

as the universal conceptual primitives of concurrent digital computation 

[Hewitt, Bishop, and Steiger 1973; Hewitt 1977]. The model has been used both 

as a framework for a theoretical understanding of concurrency, and as the 

theoretical basis for several practical implementations of concurrent systems. 

Unlike previous models of computation, the Actor Model was inspired by 

physical laws. It was also influenced by programming languages such as, the 

lambda calculusi, Lisp [McCarthy et. al. 1962], Simula-67 [Dahl and Nygaard 

1967] and Smalltalk-72 [Kay 1975], as well as ideas for Petri Nets [Petri 1962], 

capabilities systems [Dennis and van Horn 1966] and packet switching [Baran 

1964]. The advent of massive concurrency through client-cloud computing and 

many-core computer architectures has galvanized interest in the Actor Model 

[Hewitt 2009b]. 

It is important to distinguish the following: 

• modeling arbitrary computational systems using Actors.ii It is difficult 

to find physical computational systems (regardless of how 

idiosyncratic) that cannot be modeled using Actors. 

• securely implementing practical computational applications using 

Actors remains an active area of research and development. 

Decoupling the sender from the communications it sends was a fundamental 

advance of the Actor Model enabling asynchronous communication and control 

structures as patterns of passing messages [Hewitt 1977]. 

An Actor can only communicate with another Actor to which it has an address. 

Addresses can be implemented in a variety of ways: 

 direct physical attachment 

 memory or disk addresses 

 network addresses 

 email addresses 

The Actor Model is characterized by inherent concurrency of computation 

within and among Actors, dynamic creation of Actors, inclusion of Actor 

addresses in messages, and interaction only through direct asynchronous 

message passing with no restriction on message reception order. 

                                                           
i In general Actor systems can be exponentially faster than the parallel lambda 

calculus. 
ii An Actor can be implemented directly in hardware. 



 

 

The Actor Model differs from its predecessors and most current models of 

computation in that the Actor Model assumes the following: 

 Concurrent execution in processing a message. 

 The following are not required by an Actor: a thread, a mailbox, a 

message queue, its own operating system process, etc.i 

 Message passing has the same overhead as looping and procedure 

calling. 

 Primitive Actors can be implemented in hardware.ii 

The Actor Model can be used as a framework for modeling, understanding, and 

reasoning about, a wide range of concurrent systems. 

 

For example: 

 Electronic mail (e-mail) can be modeled as an Actor system. Mail 

accounts are modeled as Actors and email addresses as Actor 

addresses. 

 Web Services can be modeled with SOAP endpoints modeled as Actor 

addresses. 

 Objects with locks (e.g. as in Java and C#) can be modeled as Actors. 

Direct communication and asynchrony 

The Actor Model is based on one-way asynchronous communication.  Once a 

message has been sent, it is the responsibility of the receiver.3 

 

Messages in the Actor Model are decoupled from the sender and are delivered 

by the system on a best efforts basis.4 This was a sharp break with previous 

approaches to models of concurrent computation in which message sending is 

tightly coupled with the sender and sending a message synchronously transfers 

it someplace, e.g., to a buffer, queue, mailbox, channel, broker, server, etc. or 

to the “ether” or “environment” where it temporarily resides. The lack of 

synchronicity caused a great deal of misunderstanding at the time of the 

development of the Actor Model and is still a controversial issue. 

 

Because message passing is taken as fundamental in the Actor Model, there 

cannot be any required overhead, e.g., any requirement to use buffers, pipes, 

queues, classes, channels, etc. Prior to the Actor Model, concurrency was 

defined in low level machine terms. 

 

                                                           
i For example, if an Actor were required to have a mailbox then, the mailbox would 

be an Actor that is required to have its own mailbox…  

ii In some cases, this involves (clocked) one-way messages so message guarantees 

and exception processing can be different from typical application Actors. 



 

 

It certainly is the case that implementations of the Actor Model typically make 

use of these hardware capabilities. However, there is no reason that the model 

could not be implemented directly in hardware without exposing any hardware 

threads, locks, queues, cores, channels, tasks, etc. Also, there is no necessary 

relationship between the number of Actors and the number threads, cores, 

locks, tasks, queues, etc. that might be in use. Implementations of the Actor 

Model are free to make use of threads, locks, tasks, queues, coherent memory, 

transactional memory, cores, etc. in any way that is compatible with the laws 

for Actors [Baker and Hewitt 1977]. 

 

As opposed to the previous approach based on composing sequential processes, 

the Actor Model was developed as an inherently concurrent model. In the Actor 

Model sequential ordering is a special case that derived from concurrent 

computation. Also, the Actor Model is based on communication rather that a 

global state space as in Turing Machines, CSP [Hoare 1978], Java [Sun 1995, 

2004], C++11 [ISO 2011], X86 [AMD 2011], etc. The Actor Model does not 

take classical sequential processes as primitive and is not built on 

communicating sequential processes. 

A natural development of the Actor Model was to allow Actor addresses in 

messages. A computation might need to send a message to a recipient from 

which it would later receive a response. The way to do this is to send a 

communication which has the message along with the address of another Actor 

called the customer along with the message. The recipient could then cause a 

response message to be sent to the customer. 

Indeterminacy and Quasi-commutativity 

The Actor Model supports indeterminacy because the reception order of 

messages can affect future behavior. 

 

Operations are said to be quasi-commutative to the extent that it doesn’t matter 

in which order they occur. To the extent possible, quasi-commutativity is used 

to reduce indeterminacy. 
 

Locality and Security 

Locality and security are important characteristics of the Actor Model[Baker 

and Hewitt 1977].5  
 

  



 

 

Locality and security mean that in processing a message: an Actor can send 

messages only to addresses for which it has information by the following 

means: 

1. that it receives in the message 

2. that it already had before it received the message  

3. that it creates while processing the message. 

In the Actor Model, there is no hypothesis of simultaneous change in multiple 

locations. In this way it differs from some other models of concurrency, e.g., 

the Petri net model in which tokens are simultaneously removed from multiple 

locations and placed in other locations. 

 

That there be no single point of failure can be an important aspect of 

security. 

 

The security of Actor systems can be protected in the following ways: 

Strong personal authentication, e.g., using (3D) continuous interactive 

bio-authentication instead of passwords 

Strong, ubiquitous public key authentication so that it can be 

verified to whom a public key corresponds. Often this 

authentication can be performed by local bank offices, etc. 

that publish online multi-national directories of public keys in 

a network of mistrust. Individual citizens can have their own 

directories of public keys that are used to automatically and 

invisibly securely communicate with others. 

    Many citizens will have more than one authenticated public key, 

which can be authenticated with various levels of security. 

Public keys for IoT ownership so that an IoT device has both: 

o a public key of its owner, which is installed when ownership is 

transferred 

o its own unique public/private key pair, which is created 

internally when acquired by the first owner. 

An owner can communicate securely with a device by encrypting 

information using the device's public key. (For efficiency reasons, 

most communication will actually be performed using symmetric 

keys encrypted/signed by public keys.) A device takes instructions 

only from its owner and is allowed to communicate with the external 

world only through the information coordination system of its owner. 

The nonprofit Standard IoT Foundation is working to develop 

standards based on the Actor Model of computation that provide for 

interoperation among existing and emerging consortium and 

proprietary corporate IoT standards.  



 

 

Hardware architecture security to help cope with the complexity of 

software systems that can never be made highly secure without 

hardware assistance including the following: 

o RAM-processor package encryption (i.e. all traffic between a 

processor package and RAM is encrypted using a uniquely 

generated key when a package is powered up and which is 

invisible to all software) to protect an app (i.e. a user application, 

which is technically a process) from the following: 

 operating systems and hypervisors 

 other apps 

 other equipment, e.g., baseband processors, disk controllers, 

and USB controllers. 

o Hardware Actors that communicate only using message passing 

to protect security registers 

o Every-word-tagged architecture to protect an Actor in an app 

from other Actors by using a tag on each word of memory that 

controls how the memory can be used. Each Actor is protected 

from reading and/or writing by other Actors in its process. Actors 

can interact only by sending  a message to the unforgeable address 

of another Actor. Existing software (e.g., operating systems, 

browsers, mail systems) will need to be upgraded to use tags. 
 

A delicate point in the Actor Model is the ability to synthesize the address of 

an Actor. In some cases security can be used to prevent the synthesis of 

addresses in practice using the following: 

 every-word-tagged memory 

 signing and encryption of messages 

 

Robustness in Runtime Failures 

Runtime failures are always a possibility in Actor systems and are dealt with 

by runtime infrastructures. Message acknowledgement, reception, and 

responsei cannot be guaranteed although best efforts are made. Consequences 

are cleaned up on a best-effort basis. 

 

  

                                                           
i a response is either a returned value or a thrown exception  



 

 

Robustness is based on the following principle:6 

If an Actor is sent a request, then the continuation must be one of the 

following two mutually exclusive possibilities: 

1. to process the responsei resulting from the recipient receiving the request 

2. to throw a Messagingii exceptioniii 

 

Just sitting there forever after a request has been sent is a silent failure, which 

is unacceptable. So, in due course, the infrastructure must throw a Messaging 

exception as governed by the policies in placeiv if a response (return value or 

exception) to the request has not been received. 
 

Ideally, if the continuation of sending a request is to throw a Messaging 

exception, then the sender of a response to the request also receives a 

Messaging exception saying that the response could not be processed. 
 

If desired, things can arranged so that Messaging exceptions are very special 

and can be distinguished from all other exceptions. 
 

Scalability and Modularity 
ActorScript™ is a general purpose programming language for implementing 

iAdaptiveTM concurrency that manages resources and demand. It is 

differentiated from previous languages by the following: 

 Universality 

o Ability to directly specify what Actors can do 

o Specify interface between hardware and software 

o Everything in the language is accomplished using message passing 

including the very definition of ActorScript itself. 

o Functional, Imperative, Logic, and Concurrent programming are 

integrated.  Concurrency can be dynamically adapted to resources 

available and current load. 

o Programs do not expose low-level implementation mechanisms such as 

threads, tasks, channels, coherent memory, location transparency, 

throttling, load balancing, locks, cores, etc. Messages can be directly 

communicated without requiring indirection through brokers, channels, 

class hierarchies, mailboxes, pipes, ports, queues etc. Variable races are 

eliminated. 

                                                           
i conceptually processed by a customer Actor sent in the request 
ii A Messaging exception can have information concerning the lack of response  

iii even though the recipient may have received the request and sent a response that has 

not yet been received by the customer of the request. Requestors need to be able to 

interact with infrastructures concerning policies to be applied concerning when to 

generate Messaging exceptions. 

iv For example, several standard deviations have passed in the expected time to 

receive a response. 



 

 

o Binary XML and JSON are data types. 

o Application binary interfaces are afforded so that no program symbol 

need be looked up at runtime.  

 Safety and security 

o Programs are extension invariant, i.e., extending a program does not 

change its meaning. 

o Applications cannot directly harm each other. 

 Performance 

o Impose no overhead on implementation of Actor systems 

o Message passing has essentially same overhead as procedure calling and 

looping. 

o Execution dynamically adjusted for system load and capacity (e.g. 

cores) 

o Locality because execution is not bound by a sequential global memory 

model 

o Inherent concurrency because execution is not bound by communicating 

sequential processes 

o Minimize latency along critical paths 
 

ActorScript attempts to achieve the highest level of performance, scalability, 

and expressibility with a minimum of conceptual primitives. 
 

Scalable information Coordination 
Technology now at hand can coordinate all kinds of digital information for 

individuals, groups, and organizations so their information usefully links 

together. This coordination can include calendars and to-do lists, 

communications (including email, SMS, Twitter, Facebook), presence 

information (including who else is in the neighborhood), physical (including 

GPS recordings), psychological (including facial expression, heart rate, voice 

stress) and social (including family, friends, team mates, and colleagues), maps 

(including firms, points of interest, traffic, parking, and weather), events 

(including alerts and status), documents (including presentations, spreadsheets, 

proposals, job applications, health records, photos, videos, gift lists, memos, 

purchasing, contracts, articles), contacts (including social graphs and 

reputation), purchasing information (including store purchases, web purchases, 

GPS and phone records, and buying and travel habits), government information 

(including licenses, taxes, and rulings), and search results (including rankings 

and ratings). 
 

Connections 

Information coordination works by making connections including examples 

like the following: 

 A statistical connection between “being in a traffic jam” and “driving in 

downtown Trenton between 5PM and 6PM on a weekday.” 

 A terminological connection between “MSR” and “Microsoft Research.” 



 

 

 A causal connection between “joining a group” and “being a member of 

the group.” 

 A syntactic connection between “a pin dropped” and “a dropped pin.” 

 A biological connection between “a dolphin” and “a mammal”. 

 A demographic connection between “undocumented residents of 

California” and “7% of the population of California.” 

 A geographical connection between “Leeds” and “England.” 

 A temporal connection between “turning on a computer” and “joining an 

on-line discussion.” 

By making these connections iInfoTM information coordination offers 

tremendous value for individuals, families, groups, and organizations in making 

more effective use of information technology. 
 

Information Coordination Principles 

In practice, coordinated information is invariably inconsistent.7 Therefore iInfo 

must be able to make connections even in the face of inconsistency.8 The 

business of iInfo is not to make difficult decisions like deciding the ultimate 

truth or probability of propositions. Instead it provides means for processing 

information and carefully recording its provenance including arguments 

(including arguments about arguments) for and against propositions. 
 

Information coordination needs to make use of the following principles: 
 Persistence. Information is collected and indexed and no original 

information is lost. 
 Concurrency: Work proceeds interactively and concurrently, 

overlapping in time. 
 Quasi-commutativity: Information can be used regardless of whether it 

initiates new work or become relevant to ongoing work. 
 Sponsorship: Sponsors provide resources for computation, i.e., 

processing, storage, and communications.  
 Pluralism: Information is heterogeneous, overlapping and often 

inconsistent. There is no central arbiter of truth  
 Provenance: The provenance of information is carefully tracked and 

recorded 
 

Interaction creates Reality9 

a philosophical shift in which knowledge is no longer treated 

primarily as referential, as a set of statements about reality, but 

as a practice that interferes with other practices. It therefore 

participates in reality. 

  Annemarie Mol [2002] 
 



 

 

Relational physics takes the following view [Laudisa and Rovelli 2008]:i 

• Relational physics discards the notions of absolute state of a system 

and absolute properties and values of its physical quantities. 

• State and physical quantities refer always to the interaction, or the 

relation, among multiple systems.  

• Nevertheless, relational physics is a complete description of reality. 

According to this view, Interaction creates reality. Information systems 

participate in this reality and thus are both consequence and cause.  
 

Actor systems can be organized in higher level structures to facilitate 
operations. 
 

Organizational Programming using iOrgs 
The Actor Model supports Organizational Programming that is based on 

authority and accountability in iOrgs [Hewitt 2008a] with the goal of becoming 

an effective readily understood approach for addressing scalability issues in 

Software Engineering. The paradigm takes its inspiration from human 

organizations. iOrgs provide a framework for addressing issues of hierarchy, 

authority, accountability, scalability, and robustness using methods that are 

analogous to human organizations. Because humans are very familiar with the 

principles, methods, and practices of human organizations, they can transfer 

this knowledge and experience to iOrgs. iOrgs achieve scalability using 

methods and principles similar to those used in human organizations. For 

example an iOrg can have sub-organizations specialized by areas such as sales, 

production, and so forth. Authority is delegated down the organizational 

structure and when necessary issues are escalated upward. Authority requires 

accountability for its use including record keeping and periodic reports. 

Management is in large part the art of reconciling authority and accountability. 

                                                           
i According to [Rovelli 1996]:  Quantum mechanics is a theory about the physical 

description of physical systems relative to other systems, and this is a complete 

description of the world. 

         [Feynman 1965] offered the following advice:  Do not keep saying to yourself, 

if you can possibly avoid it, “But how can it be like that?" because you will go 

“down the drain," into a blind alley from which nobody has yet escaped. 
 



 

 

Authority Accountability

 
Organizational Programming for iOrgs 

 

iOrgs are structured around organizational commitment defined as information 

pledged constituting an alliance to go forward. For example, iOrgs can use 

contracts to formalize their mutual commitments to fulfill specified obligations 

to each other.  
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Scalability of iOrgs 

 

Yet, manifestations of information pledged will often be inconsistent. Any 

given agreement might be internally inconsistent, or two agreements in force at 

one time could contradict each other. 
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Inconsistency by Design for iOrgs 

 

Issues that arise from such inconsistencies can be negotiated among iOrgs. For 

example the Sales department might have a different view than the Accounting 

department as to when a transaction should be booked. 

 

A fundamental goal of Inconsistency Robustness is to effectively reason 

about large amounts of information at high degrees of abstraction: 
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Classical logic is safe only for theories for which there is strong evidence 

of consistency. 
 

 

Actor Addresses and Implementations 

Actor addresses have types. For example the type Account has the following 

interface description: 



 

 

Account

availableBalance[ ]↦Euro 
                                                 
deposit[Euro]↦Void

withdraw[Euro]↦Void

 
Message Passing 

 

             

availableBalance[ ]

deposit[anAmount]
myBalance := myBalance + anAmount 

myBalance

initially: myBalance=startingBalance

withdraw[anAmount] amount > myBalance 
also

myBalance := myBalance - anAmount 

(amount > myBalance) 

Overdrawn[ ]

SimpleAccount[StartingBalance]

 

 

  



 

 

Computational Representation Theorem 
The Computational Representation Theorem [Clinger 1981; Hewitt 2006]10 
characterizes computation for systems which are closed in the sense that they 
do not receive communications from outside:  

The denotation DenoteS of a closed system S represents all the possible 
behaviors of S as  

  DenoteS = limit
i→∞

ProgressionS
i
 

where ProgressionS  takes a set of partial behaviors to their next stage, 
i.e., Progression S

i⇾i Progression S
i+1 

In this way, S can be mathematically characterized in terms of all its possible 

behaviors (including those involving unbounded nondeterminism).ii 
 

The denotations form the basis of constructively checking programs against 
all their possible executions,iii  

A consequence of the Computational Representation Theorem is that there are 

uncountably many different Actors.  

 

For example, Real∎[ ] can output any real number between 0 and 1 where 

    Real∎[ ] ≡ [(0 either 1), ⩛Postpone Real∎[ ]] 
such that  

• (0 either 1) is the nondeterministic choice of 0 or 1 

• [first, ⩛rest] is the list that begins with first and whose remainder is rest 

• Postpone expression delays execution of expression until the value is 

needed. 
 

The upshot is that concurrent systems can be axiomatized using 

mathematical logiciv but in general cannot be implemented. Thus, the 

following practical problem arose: 

How can practical programming languages be rigorously defined since 

the proposal [Scott and Strachey 1971, Milne and Strachey 1976] to 

define them in terms lambda calculus failed because the lambda calculus 

cannot implement concurrency?11 
 

A proposed answer to this question is the semantics of ActorScript [Hewitt 

2010]. 
 

Using Implementations versus Interface Extension  
Programming languages like ActorScript [Hewitt 2010] take the approach of 

extending behavior in contrast to the approach of specializing behavior: 

                                                           
i read as “can evolve to” 

ii There are no messages in transit in DenoteS 

iii a restricted form of Model Checking in which the properties checked are limited to 

those that can be expressed in Linear-time Temporal Logic has been studied 

[Clarke, Emerson, Sifakis, etc. ACM 2007 Turing Award]  
iv including the lambda calculus 



 

 

 Using implementations: An implement type can make use of other 

implementations.  However, an implementation cannot be subtyped 

because it is branded to guarantee its behavior that might be violated by 

subtypes.  Consequently, Actors automatically vacuously have the 

substitution property [Liskov 1987, Liskov and Wing 2001] for 

implementations. 

 Interface extension: A type interface can be extended to have additional 

message signatures from the type interface that it extends. In general, a 

system cannot guarantee properties of implementations of an interface 

type. Consequently, the substitution property may not hold even for Actors 

that implement the same interface. 

 

Language constructs versus Library APIs 

Library Application Programming Interfaces (APIs) are an alternative way to 

introduce concurrency.  

For example, 

 A limited version of futures[Baker and Hewitt 1977] have been introduced 

in C++11 [ISO 2011].  

 Message Passing Interface (MPI) [Gropp et. al. 1998] provides some ability 

to pass messages.  

 Grand Central Divide provides for queuing tasks. 
 

There are a number of library APIs for Actor-like systems. 
 

In general, appropriately defined language constructs provide greater power, 

flexibility, and performance than library APIs.12  

 

Reasoning about Actor Systems 

The principle of Actor induction is: 

1. Suppose that an Actor x has property P when it is created 

2. Further suppose that if x has property P when it receives a message, 

then it has property P when it receives the next message. 

3. Then x always has the property P. 
 

In his doctoral dissertation, Aki Yonezawa developed further techniques for 

proving properties of Actor systems including those that make use of migration. 

Russ Atkinson developed techniques for proving properties of Actors that are 

guardians of shared resources. Gerry Barber's 1981 doctoral dissertation 

concerned reasoning about change in knowledgeable office systems. 

 

Other models of concurrency 

The Actor Model does not have the following restrictions of other models of 

concurrency:13 

 Single threadedness: There are no restrictions on the use of threads in 

implementations. 



 

 

 Message delivery order: There no restrictions on message delivery order. 

 Independence of sender:  The semantics of a message in the Actor Model 

is independent of the sender. 

 Lack of garbage collection (automated storage reclamation): The Actor 

Model can be used in the following systems: 

 CLR and extensions (Microsoft and Xamarin)  

 JVM (Oracle and IBM) 

 LLVM (Apple)  

 Dalvik (Google)  

In due course, we will need to extend the above systems with a tagged 

extension of the X86 and ARM architectures. Many-core architecture has 

made a tagged extension necessary in order to provide the following: 

 concurrent, nonstop, no-pause automated storage reclamation 

(garbage collection) and relocation to improve performance, 

 prevention of memory corruption that otherwise results from 

programming languages like C and C++ using thousands of threads 

in a process, 

 nonstop migration of Actors (while they are in operation) within a 

computer and between distributed computers. 
 

Swiss Cheese 

Swiss cheese [Hewitt and Atkinson 1977, 1979; Atkinson 1980]14 is a 

programming language construct for scheduling concurrent access to shared 

resources with the following goals: 

 Generality:  Ability to conveniently program any scheduling policy 

 Performance:  Support maximum performance in implementation, e.g., 

the ability to avoid repeatedly recalculating conditions for proceeding. 

 Understandability:  Invariants of an Actor should hold at all observable 

execution points. 

 

Concurrency control for readers and writers in a shared resource is a classic 

problem that illustrates limitations of Fog Cutter Actors. The fundamental 

constraint is that multiple writers are not allowed to operate concurrently and 

a writer is not allowed operate concurrently with a reader.  
 
Cheese diagram for ReadersWriter implementations:i 
 

                                                           
i The interface for the readers/writer guardian is the same as the interface for the shared 

resource: Interface ReadersWriter with read[Query]↦ QueryAnswer, 

                                                                          write[Update]↦ Void｡ 



 

 

             

readersQ

theResource∎read[aQuery] 

writersQ

theResource∎write[anUpdate] 

 ¬writing 
also

 numberReading := numberReading+1 

numberReading=0
also 

writing := True

numberReading := numberReading-1 

writing := False

theResource∎read[aQuery] 

theResource∎write[anUpdate] 

initially: writing=False, numberReading=0

invariant: writing ⇒  numberReading=0

read[aQuery]

write[anUpdate]

 
 
 

Note: 

1. At most one activity is allowed to execute in the cheese.i 

2. The cheese has holes.ii  

3. A variable can change only when in a continuous section of cheese.iii 
 

Invariants hold at cheese boundaries, i.e., an invariant must hold when the 

cheese is entered. Consequently, it doesn’t matter what actions other Actors 

may be concurrently performing. 
 

Futures 

Futures [Baker and Hewitt 1977] are Actors that provide parallel execution by 

providing a proxy Actor for an expression while it is being computed.   

 

  

                                                           
i Cheese is yellow in the diagram 
ii A hole is grey in the diagram 
iii Of course, other external Actors can change. 



 

 

The procedure below can computer the size of a list concurrently with creating 

the list making use of FutureList, which is a list that is either the empty list or 

whose list of elements after the first is a future. 

 

Size∎[aFutureList:FutureListString]:Integer ≡ 

  ⦾aFutureList �        // resolve the beginning of aFutureList 
       [ ] ⦂ 0 

       [first, ⩛rest] ⦂   
                                //  first is a string and rest is a future of the remainder 
            first∎length[ ] + Size∎[rest]▮ 

 
 

Future work 

As was the case with the lambda calculus and functional programming,i it has 

taken decades since they were invented [Hewitt, Bishop, and Steiger 1973] to 

understand the scientific and engineering of Actor Systems and it is still very 

much a work in progress.  
 

Actors are becoming the default model of computation. C#, Java, JavaScript, 

Objective C, and SystemVerilog are all headed in the direction of the Actor 

Model and ActorScript is a natural extension of these languages. Since it is very 

close to practice, many programmers just naturally assume the Actor Model. 
 

The following major developments in computer technology are pushing the 

Actor Model forward because Actor Systems are highly scalable: 

 Many-core computer architectures 

 Client-cloud computing 

In fact, the Actor Model and ActorScript can be seen as codifying what are 

becoming some best programming practices for many-core and client-cloud 

computing. 
 

Conclusion 

The Actor Model is a mathematical theory that treats “Actors” as the universal 

conceptual primitives of concurrent digital computation. The model has been 

used both as a framework for a theoretical understanding of concurrency, and 

as the theoretical basis for several practical implementations of concurrent 

systems. Unlike previous models of computation, the Actor Model was inspired 

by physical laws. It was also influenced by the programming languages Lisp, 

Simula 67 and Smalltalk-72, as well as ideas for Petri Nets, capabilities systems 

and packet switching. The advent of massive concurrency through client-cloud 

computing and many-core computer architectures has galvanized interest in the 

Actor Model. 

                                                           
i For example, it took over four decades to develop the eval message-passing model 

of the lambda calculus [Hewitt, Bishop, and Steiger 1973, Hewitt 2011] building 

on the Lisp procedural model. 



 

 

 

When an Actor receives a message, it can concurrently: 

 Send messages to (unforgeable) addresses of Actors that it has. 

 Create new Actors.i 

 Designate how to handle the next message received. 
 

There is no assumed order to the above actions and they could be carried out 

concurrently. In addition two messages sent concurrently can be received in 

either order. Decoupling the sender from communication it sends was a 

fundamental advance of the Actor Model enabling asynchronous 

communication and control structures as patterns of passing messages. 
 

Preferred methods for characterizing the Actor Model are as follows: 

 Axiomatically stating laws that apply to all Actor systems [Baker and 

Hewitt 1977] 

 Denotationally using the Computational Representation Theorem to 

characterize Actor computations [Clinger 1981; Hewitt 2006]. 

 Operationally using a suitable Actor programming language, e.g., 

ActorScript [Hewitt 2012] that specifies how Actors can be 

implemented. 

 

The Actor Model can be used as a framework for modeling, understanding, and 

reasoning about, a wide range of concurrent systems.  

For example: 

 Electronic mail (e-mail) can be modeled as an Actor system. Accounts 

are modeled as Actors and email addresses as Actor addresses. 

 Web Services can be modeled with endpoints modeled as Actor 

addresses. 

 Objects with locks (e.g. as in Java and C#) can be modeled as Actors. 

 The Actor Model can be a computational foundation for Inconsistency 

Robustness 
 

The Actor Model supports Organizational Programming that is based on 

authority and accountability in iOrgs [Hewitt 2008a] with the goal of becoming 

an effective readily understood approach for addressing scalability issues in 

Software Engineering. The paradigm takes its inspiration from human 

organizations. iOrgs provide a framework for addressing issues of hierarchy, 

authority, accountability, scalability, and robustness using methods that are 

analogous to human organizations. Because humans are very familiar with the 

principles, methods, and practices of human organizations, they can transfer 

this knowledge and experience to iOrgs. iOrgs achieve scalability by mirroring 

human organizational structure. For example an iOrg can have sub-

organizations specialized by areas such as sales, production, and so forth. 

Authority is delegated down the organizational structure and when necessary 

                                                           
i with new addresses 



 

 

issues are escalated upward. Authority requires accountability for its use 

including record keeping and periodic reports. Management is in large part the 

art of reconciling authority and accountability. 
 

Actor technology will see significant application for coordinating all kinds of 

digital information for individuals, groups, and organizations so their 

information usefully links together.  
 

Information coordination needs to make use of the following information 

system principles: 

 Persistence. Information is collected and indexed. 

 Concurrency: Work proceeds interactively and concurrently, 

overlapping in time. 

 Quasi-commutativity: Information can be used regardless of whether it 

initiates new work or become relevant to ongoing work. 

 Sponsorship: Sponsors provide resources for computation, i.e., 

processing, storage, and communications.  

 Pluralism: Information is heterogeneous, overlapping and often 

inconsistent.  

 Provenance: The provenance of information is carefully tracked and 

recorded 
 

The Actor Model is intended to provide a foundation for inconsistency robust 

information coordination. 
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Appendix 1. Historical background15 

The Actor Model builds on previous models of nondeterministic computation. 

Several models of nondeterministic computation were developed including the 

following: 
 

Concurrency versus Turing’s Model 

Turing’s model of computation was intensely psychological.16 [Sieg 2008] 

formalized it as follows: 

 Boundedness: A computer can immediately recognize only a bounded 

number of configurations. 

 Locality: A computer can change only immediately recognizable 

configurations. 

In the above, computation is conceived as being carried out in a single place by 

a device that proceeds from one well-defined state to the next. 
 

Computations are represented differently in Turing Machines and Actors: 

1. Turing Machine: a computation can be represented as a global state that 

determines all information about the computation.17 It can be 

nondeterministic as to which will be the next global state.  

2. Actors: a computation can be represented as a configuration. 

Information about a configuration can be indeterminate.i  
 

Lambda calculus 

The Lambda calculus was originally developed as part of a system for the 

foundations of logic [Church 1932-33]. However, the system was soon shown 

to be inconsistent.  Subsequently, Church removed logical propositions from 

the system leaving a purely procedural lambda calculus [Church 1941].18 
 

However, the semantics of the lambda calculus were expressed using string 

substitution in which the values of parameters were substituted into the body of 

an invoked lambda expression. The substitution model is unsuitable for 

concurrency because it does not allow the capability of sharing of changing 

resources.  
 

That Actors which behave like mathematical functions exactly correspond with 

those definable in the lambda calculus provides an intuitive justification for the 

rules of the lambda calculus: 

 Lambda identifiers: each identifier is bound to the address of an Actor. 

The rules for free and bound identifiers correspond to the Actor rules 

for addresses. 

 Beta reduction:  each beta reduction corresponds to an Actor receiving 

a message. Instead of performing substitution, an Actor receives 

addresses of its arguments. 

                                                           
i For example, there can be messages in transit that will be delivered at some 

indefinite time. 
 



 

 

 

Inspired by the lambda calculus, the interpreter for the programming language 

Lisp [McCarthy et. al. 1962] made use of a data structure called an environment 

so that the values of parameters did not have to be substituted into the body of 

an invoked lambda expression.19 

 

Note that in the definition in ActorScript [Hewitt 2011] of the lambda calculus 

below: 

o All operations are local. 

o The definition is modular in that each lambda calculus programming 

language construct is an Actor. 

o The definition is easily extensible since it is easy to add additional 

programming language constructs. 

o The definition is easily operationalized into efficient concurrent 

implementations. 

o The definition easily fits into more general concurrent computational 

frameworks for many-core and distributed computation 

 

The lambda calculus can be implemented in ActorScript as follows: 

 

Actor IdentifieraType[aString:String]   
    implements ExpressionaType using   
        eval[e:Environment]:aType →  e∎lookup[⍠IdentifieraType] 
                                                                 // lookup this identifier in anEnvironment     
 
Actor ProcedureCallaType, AnotherType  

                 [operator:([aType]↦ anotherType), operand:aType]   
   implements ExpressionanotherType using   
       eval[e:Environment]:anotherType → 
                 (operator.eval[e])∎[operand∎eval[e]] 
  



 

 

Actor LambdaaType, anotherType   
                [id:IdentifieraType, body:anotherType]  

   implements Expression[aType]↦ anotherType using   
      eval[e:Environment]:anotherType →   
          [anArgument:aType]→ body∎eval[e ∎bind[id, anArgument]]                      
                                        // create a new environment with anIdentifier bound to 

                                          // anArgument in anEnvironment  
 

In many practical applications, the parallel lambda calculus (i.e. using 

purely functional programming) can be exponentially slower than 

concurrent computation using Actors.i  

Petri nets  

Prior to the development of the Actor Model, Petri nets20 were widely used to 

model nondeterministic computation. However, they were widely 

acknowledged to have an important limitation: they modeled control flow but 

not data flow. Consequently they were not readily composable thereby limiting 

their modularity.  

 

Hewitt pointed out another difficulty with Petri nets:  

Simultaneous action, i.e., the atomic step of computation in Petri nets is a 

transition in which tokens simultaneously disappear from the input places of 

a transition and appear in the output places. The physical basis of using a 

primitive computational entity with this kind of simultaneity seemed 

questionable to him.  

Despite these apparent difficulties, Petri nets continue to be a popular approach 

to modeling nondeterminism, and are still the subject of active research. 

 

Simula 
Simula 1 [Nygaard 1962] pioneered nondeterministic discrete event simulation 

using a global clock: 

In this early version of Simula a system was modeled by a (fixed) number of 

“stations”, each with a queue of “customers”. The stations were the active 

parts, and each was controlled by a program that could “input” a customer 

from the station’s queue, update variables (global, local in station, and local 

in customer), and transfer the customer to the queue of another station. 

Stations could discard customers by not transferring them to another queue, 

and could generate new customers. They could also wait a given period (in 

simulated time) before starting the next action. Custom types were declared 

as data records, without any actions (or procedures) of their own. [Krogdahl 

2003] 

                                                           
i For example, implementations using Actors of Direct Logic can be exponentially 

faster than implementations in the parallel lambda calculus. 



 

 

Thus at each time step, the program of the next station to be simulated would 

update the variables. 
 

Kristen Nygaard and Ole-Johan Dahl developed the idea (first described in an 

IFIP workshop in 1967) of organizing objects into “classes” with “subclasses” 

that could inherit methods for performing operations from their super classes. 

In this way, Simula 67 considerably improved the modularity of 

nondeterministic discrete event simulations. 
 

According to [Krogdahl 2003]: 

Objects could act as processes that can execute in “quasi-parallel” that is 

in fact a form of nondeterministic sequential execution in which a 

simulation is organized as “independent” processes. Classes in Simula 67 

have their own procedures that start when an object is generated. However, 

unlike Algol procedures, objects may choose to temporarily stop their 

execution and transfer the control to another process. If the control is later 

given back to the object, it will resume execution where the control last left 

off. A process will always retain the execution control until it explicitly 

gives it away. When the execution of an object reaches the end of its 

statements, it will become “terminated”, and can no longer be resumed 

(but local data and local procedures can still be accessed from outside the 

object). 
 

The quasi-parallel sequencing is essential for the simulation mechanism. 

Roughly speaking, it works as follows: When a process has finished the 

actions to be performed at a certain point in simulated time, it decides when 

(again in simulated time) it wants the control back, and stores this in a local 

“next-event-time” variable. It then gives the control to a central “time-

manager”, which finds the process that is to execute next (the one with the 

smallest next-event-time), updates the global time variable accordingly, 

and gives the control to that process. 
 

The idea of this mechanism was to invite the programmer of a simulation 

program to model the underlying system by a set of processes, each 

describing some natural sequence of events in that system (e.g. the 

sequence of events experienced by one car in a traffic simulation). 
 

Note that a process may transfer control to another process even if it is 

currently inside one or more procedure calls. Thus, each quasi-parallel 

process will have its own stack of procedure calls, and if it is not executing, 

its “reactivation point” will reside in the innermost of these calls. Quasi-

parallel sequencing is analogous to the notion of co-routines [Conway 

1963]. 
 

Note that Simula operated on the global state of a simulation and not just on the 

local variables of simulated objects.21 Also Simula-67 lacked formal interfaces 

and instead relied on inheritance in a hierarchy of objects thereby placing 

limitations to the ability to define and invoke behavior not directly inherited. 



 

 

 

Types in Simula are the names of implementations called “classes” in contrast 

with ActorScript in which types are interfaces that do not name their 

implementation. Also, although Simula had nondeterminism, it did not have 

concurrency.22 
 

Planner 
The two major paradigms for constructing semantic software systems were 

procedural and logical. The procedural paradigm was epitomized by using Lisp 

[McCarthy et al. 1962; Minsky, et al. 1968] recursive procedures operating on 

list structures. The logical paradigm was epitomized by uniform resolution 

theorem provers [Robinson 1965]. 
 

Planner [Hewitt 1969] was a kind of hybrid between the procedural and logical 

paradigms.23 An implication of the form (P implies Q) was procedurally 

interpreted as follows:24 
 When asserted  P, Assert  Q 
 When goal  Q, SetGoal  P 
 When asserted (not  Q), Assert (not  P) 
 When goal (not  P), SetGoal (not  Q) 

 

Planner was the first programming language based on the pattern-directed 

invocation of procedural plans from assertions and goals. It represented a 

rejection of the resolution uniform proof procedure paradigm. 
 

Smalltalk-72  
Planner, Simula 67, Smalltalk-72 [Kay 1975; Ingalls 1983] and packet-

switched networks had previously used message passing.  However, they were 

too complicated to use as the foundation for a mathematical theory of 

computation. Also they did not address fundamental issues of concurrency. 
 

Alan Kay was influenced by message passing in the pattern-directed invocation 

of Planner in developing Smalltalk-71. Hewitt was intrigued by Smalltalk-71 

but was put off by the complexity of communication that included invocations 

with many fields including global, sender, receiver, reply-style, status, reply, 

operator, etc. 
 

In November 1972, Kay visited MIT and presented a lecture on some of his 

ideas for Smalltalk-72 building on the Logo work of Seymour Papert and the 

“little person” metaphor of computation used for teaching children to program. 

Smalltalk-72 made important advances in graphical user interfaces. 
 

However, the message passing of Smalltalk-72 was quite complex [Kay 1975]. 

Code in the language was viewed by the interpreter as simply a stream of 

tokens. According to [Ingalls 1983]:25 
The first (token) encountered (in a program) was looked up in the dynamic context, 

to determine the receiver of the subsequent message. The name lookup began with 

the class dictionary of the current activation. Failing there, it moved to the sender 



 

 

of that activation and so on up the sender chain. When a binding was finally found 

for the token, its value became the receiver of a new message, and the interpreter 

activated the code for that object's class.26 
 

Thus the message passing model in Smalltalk-72 was closely tied to a particular 

machine model and programming language syntax that did not lend itself to 

concurrency. Also, although the system was bootstrapped on itself, the 

language constructs were not formally defined as objects that respond to eval  
messages as in the definition of ActorScript [Hewitt 2010a]. 

 

Actors  
The invention of digital computers caused a decisive paradigm shift when the 

notion of an interrupt was invented so that input that is received asynchronously 

from outside could be incorporated in an ongoing computation. At first 

concurrency was conceived using low level machine implementation concepts 

like threads, locks, coherent memory, channels, cores, queues, etc. 
 

The Actor Model [Hewitt, Bishop, and Steiger 1973; etc.] was based on 

message passing that was different from previous models of computation 

because the sender of a message is not intrinsic to the semantics of a 

communication.27   
 

In contrast to previous global state model, computation in the Actor Model is 

conceived as distributed in space where computational devices called Actors 

communicate asynchronously using addresses of Actors and the entire 

computation is not in any well-defined state.28  

 

  



 

 

Axioms of locality including Organizational and Operational hold as follows: 

 Organization:  The local storage of an Actor can include addresses only 
1. that were provided when it was created 

2. that have been received in messages 

3. that are for Actors created here 

 Operation:  In response to a message received, an Actor can 

1. create more Actors 

2. send messagesi to addresses in the following: 

 the message it has just received 

 its local storage 

3. designate how to process the next message received 
 

In concrete terms for Actor systems, typically we cannot observe the details by 

which the order in which an Actor processes messages has been determined. 

Attempting to do so affects the results. Instead of observing the internals of 

arbitration processes of Actor computations, we await outcomes.29 

Indeterminacy in arbiters produces indeterminacy in Actors.ii 
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After the above circuit is started, it can remain in a meta-stable state for an 

unbounded period of time before it finally asserts either Output1 or Output2. So 

there is an inconsistency between the nondeterministic state model of 

computation and the circuit model of arbiters.31 
 

The internal processes of arbiters are not public processes. Attempting to 

observe them affects their outcomes. Instead of observing the internals of 

arbitration processes, we necessarily await outcomes. Indeterminacy in arbiters 

produces indeterminacy in Actors. The reason that we await outcomes is that 

we have no realistic alternative. 
 

                                                           
i Likewise the messages sent can contain addresses only 

1. that were provided when the Actor was created 

2. that have been received in messages 

3. that are for Actors created here 
ii The dashed lines are used only to disambiguate crossing wires. 
 



 

 

The Actor Model integrated the following: 

 the lambda calculus 

 interrupts 

 blocking method invocation 

 imperative programming using locks 

 capabilities systems 

 co-routines 

 packet networks 

 email systems 

 Petri nets 

 Smalltalk-72 

 Simula-67 

  pattern-directed invocation (from Planner) 
 

In 1975, Irene Greif published the first operational model of Actors in her 

dissertation.  Two years after Greif published her operational model, Carl 

Hewitt and Henry Baker published the Laws for Actors [Baker and Hewitt 

1977]. 
 

Indeterminacy in Concurrent Computation 
The first models of computation (e.g. Turing machines, Post productions, the 

lambda calculus, etc.) were based on mathematics and made use of a global 

state to represent a computational step (later generalized in [McCarthy and 

Hayes 1969] and [Dijkstra 1976]). Each computational step was from one 

global state of the computation to the next global state. The global state 

approach was continued in automata theory for finite state machines and push 

down stack machines, including their nondeterministic versions.32 Such 

nondeterministic automata have the property of bounded nondeterminism; that 

is, if a machine always halts when started in its initial state, then there is a bound 

on the number of states in which it halts.33  

 
Gordon Plotkin [1976] gave an informal proof as follows: 

Now the set of initial segments of execution sequences of a given 

nondeterministic program P, starting from a given state, will form a tree. The 

branching points will correspond to the choice points in the program.  Since 

there are always only finitely many alternatives at each choice point, the 

branching factor of the tree is always finite.34 That is, the tree is finitary. Now 

König's lemma says that if every branch of a finitary tree is finite, then so is 

the tree itself. In the present case this means that if every execution sequence 

of P terminates, then there are only finitely many execution sequences. So if 

an output set of P is infinite, it must contain a nonterminating computation.35  
 

The above proof is quite general and applies to the Abstract State Machine 

(ASM) model [Blass, Gurevich, Rosenzweig, and Rossman 2007a, 2007b; 

Glausch and Reisig 2006], which consequently are not really models of 

concurrency. It also applies to the parallel lambda calculus, which includes all 



 

 

the capabilities of the nondeterministic lambda calculus. Researchers (before 

the Actor Model was invented) hypothesized that the parallel lambda calculus 

naturally modeled all of computation and their research programme was to 

reduce all computation to the parallel lambda calculus [Scott and Strachey 

1971, Milne and Strachey 1976]. One of the important early discoveries in the 

development of the Actor Model was that all of computation is not reducible to 

the parallel lambda calculus. In fact, there are Actor computations that cannot 

be implemented in the parallel lambda calculus. For example, by the semantics 

of the Actor Model of computation [Clinger 1981] [Hewitt 2006], concurrently 

sending the Actor below both a start message and a stop message will result 

in returning an integer of unbounded size for the stop message. 

 

 

Theorem. There are nondeterministic computable functions on integers that 

cannot be implemented by a nondeterministic Turing machine. 

Proof. The above Actor system implements a nondeterministic functioni that 

cannot be implemented by a nondeterministic Turing machine. 
 

  

                                                           
i with graph {[ ]⇝0, [ ]⇝1, [ ]⇝2, …} 
 

             
∎∎go[ ] 

continue=True
 also

 count := count +1 

continue := False

continue=False

initially: continue=True, count=0

count

go[ ]

stop[ ]



 

 

Nondeterminism is a special case of Indeterminism. 

Consider the following Nondeterministic Turing Machine that starts at Step 1: 
Step 1 :  Either print 1 on the next square of tape or execute Step 3. 
Step 2 :  Execute Step 1. 
Step 3 :  Halt. 

According to the definition of Nondeterministic Turing Machines, the above 

machine might never halt.  
 

Note that the computations performed by the above machine are structurally 

different than the computations performed by the above counter Actor in the 

following way: 

1. The decision making of the above Nondeterministic Turing Machine is 

internal (having an essentially psychological basis). 

2. The decision making of the above counter Actor exhibits physical 

indeterminacy. 
 

Edsger Dijkstra further developed the nondeterministic global state approach, 

which gave rise to a controversy concerning unbounded nondeterminismi. 

Unbounded nondeterminism is a property of concurrency by which the amount 

of delay in servicing a request can become unbounded as a result of arbitration 

of contention for shared resources while providing a guarantee that the request 

will be serviced. The Actor Model provides the guarantee of service. In 

Dijkstra's model, although there could be an unbounded amount of time 

between the execution of sequential instructions on a computer, a (parallel) 

program that started out in a well-defined state could terminate in only a 

bounded number of states [Dijkstra 1976]. He believed that it was impossible 

to implement unbounded nondeterminism. 
 

Computation is not subsumed by logical deduction 

Kowalski claims that “computation could be subsumed by deduction”36  The 

gauntlet was officially thrown in The Challenge of Open Systems [Hewitt 1985] 

to which [Kowalski 1988b] replied in Logic-Based Open Systems. ii This was 

followed up with [Hewitt and Agha 1988] in the context of the Japanese Fifth 

Generation Project. 
 

According to Hewitt, et. al. and contrary to Kowalski computation in general 

cannot be subsumed by deduction and contrary to the quotation (above) 
                                                           
i A system is defined to have unbounded nondeterminism exactly when both of the 

following hold: 

1. When started, the system always halts. 

2. For every integer n, the system can halt with an output that is greater than n. 
ii [Kowalski 1979] forcefully stated: 

There is only one language suitable for representing information -- whether 

declarative or procedural -- and that is first-order predicate logic. There is only 

one intelligent way to process information -- and that is by applying deductive 

inference methods. 
 



 

 

attributed to Hayes computation in general is not subsumed by deduction. 

[Hewitt and Agha 1991] and other published work argued that mathematical 

models of concurrency did not determine particular concurrent computations 

because they make use of arbitration for determining the order in which 

messages are processed. These orderings cannot be deduced from prior 

information by mathematical logic alone. Therefore mathematical logic cannot 

implement concurrent computation in open systems. 
 

A nondeterministic system is defined to have “unbounded nondeterminism”i 

exactly when both of the following hold: 

1. When started, the system always halts. 

2. For every integer n, it is possible for the system to halt with output that 

is greater than n. 
 

This article has discussed the following points about unbounded 

nondeterminism controversy: 
 A Nondeterministic Turing Machine cannot implement unbounded 

nondeterminism. 

 A Logic Program37 cannot implement unbounded nondeterminism. 

 Semantics of unbounded nondeterminism are required to prove that a server 

provides service to every client.38 

 An Actor system [Hewitt, et. al. 1973] can implement servers that provide service 

to every client and consequently unbounded nondeterminism.  

 Dijkstra believed that unbounded nondeterminism cannot be implemented 

[Dijkstra 1967; Dijkstra and van Gasteren 1986]. 

 The semantics of CSP [Francez, Hoare, Lehmann, and de Roever 1979] specified 

bounded nondeterminism for reasons mentioned above in the article. Since Hoare 

et. al. wanted to be able to prove that a server provided service to clients, the 

semantics of a subsequent version of CSP were switched from bounded to 

unbounded nondeterminism. 

 Unbounded nondeterminism was but a symptom of deeper underlying issues with 

sequential processes using nondeterministic global states as a foundation for 

computation.ii 
 

The Computational Representation Theorem [Clinger 1981, Hewitt 2006] 

characterizes the semantics of Actor Systems without making use of sequential 

processes. 

 

Actor Model versus Classical Objects  
The following are fundamental differences between the Actor Model and 

Classical Objects[Nygaard and Dahl 1967, Nygaard 1986]: 

                                                           
i For example the following systems do not have unbounded nondeterminism:  

• A nondeterministic system which sometimes halts and sometimes doesn’t  

• A nondeterministic system that always halts with an output less than 100,000. 

• An operating system that never halts. 
ii See [Knabe 1992].  



 

 

 Classical Objects39 are founded on “a physical model, simulating the 

behavior of either a real or imaginary part of the world”40, whereas the 

Actor Model is founded on the physics of computation. 

 Every Classical Object41 is an instance of a Classi in a hierarchy42, 

whereas an Actor can implement multiple interfaces.43 

 Virtual Procedures can be used to operate on Objects, whereas 

messagesii can be sent to Actors.44 

 

Unfortunately, Objects remain ill-defined. Consequently, the term “Object” bas 

been used in inconsistent ways in the literature. 

 

Hairy Control Structure 

Peter Landin introduced a powerful co-routine control structure using his J (for 

Jump) operator that could perform a nonlocal goto into the middle of a 

procedure invocation [Landin 1965]. In fact the J operator enabled a program 

to jump back into the middle of a procedure invocation even after it had already 

returned!  
 

[Reynolds 1972] introduced control structure continuations using a construct 

called escape that is a more structured versions of Landin's J operator. 
Sussman and Steele called their variant of escape by the name “call with 

current continuation.”  General use of escape is not compatible with usual stack 

disciple introducing considerable operational inefficiency. Also, using escape 

can leave customers stranded. Consequently, use of escape is generally avoided 

these days and exceptions45 are used instead so that clean up can be performed. 

 

In the 1960’s at the MIT AI Lab a remarkable culture grew up around “hacking” 

that concentrated on remarkable feats of programming.46 Growing out of this 

tradition, Gerry Sussman and Guy Steele decided to try to understand Actors 

by reducing them to machine code that they could understand and so developed 

a “Lisp-like language, Scheme, based on the lambda calculus, but extended for 

side effects, multiprocessing, and process synchronization.” [Sussman and 

Steele 1975].47  

 

Their reductionist approach included primitives like the following: 

START!PROCESS, STOP!PROCESS, and 

EVALUATE!UNINTERRUPTIBLEY.iii  

 

                                                           
i A Class is an implementation of an Actor. 
ii A message can be one-way and each must be of type Message. 
iii “This is the synchronization primitive. It evaluates an expression uninterruptedly; i.e. 

no other process may run until the expression has returned a value.” 

 



 

 

Of course, the above reductionist approach is unsatisfactory because it missed 

a crucial aspect of the Actor Model:  the reception ordering of messages. 

 

Using the J operator, McDermott, and Sussman [1972] developed the Lisp-

based language Conniver based on “hairy control structure” that could 

implement non-chronological backtracking that was more general than the 

chronological backtracking in Planner. However, hairy control structure did not 

work out well in practice because it was very difficult to understand and debug 

procedures that could return more than once. 

 

Pat Hayes remarked: 

Their [Sussman and McDermott] solution, to give the user access to the 

implementation primitives of Planner, is however, something of a retrograde 

step (what are Conniver's semantics?). [Hayes 1974] 

 

Hewitt had concluded: 

One of the most important results that has emerged from the development 

of Actor semantics has been the further development of techniques to 

semantically analyze or synthesize control structures as patterns of passing 

messages. As a result of this work, we have found that we can do without 

the paraphernalia of “hairy control structure.” 48(emphasis in original) 
 

Sussman and Steele [1975] noticed some similarities between Actor programs 

and the lambda calculus. They mistakenly concluded that they had reduced 

Actor programs to a “continuation-passing programming style”:  

It is always possible, if we are willing to specify explicitly what to do with 

the answer, to perform any calculation in this way: rather than reducing 

to its value, it reduces to an application of a continuation to its value. 

That is, in this continuation-passing programming style, a function 

always “returns” its result by “sending” it to another function. 
(emphasis in original) 

However, some Actor programming language constructs are not reducible to a 

continuation-passing style. For example, futures are not reducible to 

continuation-passing style. 
 

On the basis of their experience, Sussman and Steele developed the general 

thesis that Actors were merely the lambda calculus in disguise. Steele [1976] in 

the section “Actors ≡ Closures (mod Syntax)” disagreed with Hewitt who had 

“expressed doubt as to whether these underlying continuations can themselves 

be expressed as lambda expressions.” However, customers cannot be expressed 

as lambda expressions because doing so would preclude being able to enforce 

the requirement that a customer will process at most one response (i.e. 

exception or value return). Also implementing customers as lambda 

expressions can leave customers stranded. 
 



 

 

In summary, Sussman and Steele [1975] mistakenly concluded “we discovered 

that the ‘Actors' and the lambda expressions were identical in 

implementation.”49 The actual situation is that the lambda  calculus is capable 

of expressing some kinds of sequential and parallel control structures but, in 

general, not the concurrency expressed in the Actor Model.50 On the other hand, 

the Actor Model is capable of expressing everything in the parallel lambda 

calculus [Hewitt 2008f] and is exponentially faster for important applications 

like information coordination [Hewitt 2012]. 
 

For example, futures can be adaptively created to do the kind of computation 

performed by hairy structure. [Hewitt 1974] invented the same-fringe problem 

as an illustration where the “fringe” of a tree is a list of all the leaf nodes of the 

tree. 
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Two trees with the same fringe [3 4 5] 
 

 

Below is the definition of a procedure that computes a FutureList that is the 

“fringe” of the leaves of tree. 

Fringe∎[aTree:Tree]:FutureList  ≡  
     aTree � Leaf[x] ⦂ [x] 
                      Fork[tree1, tree2] ⦂  
                            [⩛Fringe∎[tree1], ⩛Postpone Fringe∎[tree2]]  

 

The above procedure can be used to define SameFringe that determines if two 

lists have the same fringe [Hewitt 1972]: 

   SameFringe∎[aTree:Tree, anotherTree:Tree]:Boolean ≡      
                                                         //  test if two trees have the same fringe 

       Fringe∎[aTree]=Fringe∎[anotherTree]▮  
 

Using Actors in this way obviates the need for explicit co-routine constructs, 

e.g., yield in C# [ECMA 2006], JavaScript [ECMA 2014], etc. 

 

Early Actor Programming languages 

Henry Lieberman, Dan Theriault, et al. developed Act1, an Actor programming 

language. Subsequently for his master’s thesis, Dan Theriault developed Act2. 

These early proof of concept languages were rather inefficient and not suitable 

for applications. In his doctoral dissertation, Ken Kahn developed Ani, which 

he used to develop several animations. Bill Kornfeld developed the Ether 



 

 

programming language for the Scientific Community Metaphor in his doctoral 

dissertation. William Athas and Nanette Boden [1988] developed Cantor which 

is an Actor programming language for scientific computing. Jean-Pierre Briot 

[1988, 1999] developed means to extend Smalltalk 80 for Actor computations. 

Darrell Woelk [1995] at MCC developed an Actor programming language for 

InfoSleuth agents in Rosette. 
 

Hewitt, Attardi, and Lieberman [1979] developed proposals for delegation in 

message passing. This gave rise to the so-called inheritance anomaly 

controversy in concurrent programming languages [Satoshi Matsuoka and Aki 

Yonezawa 1993, Giuseppe Milicia and Vladimiro Sassone 2004]. ActorScript 

[Hewitt 2010] has proposal for addressing delegation issues. 

 

Garbage Collection 

Garbage collection (the automated reclamation of unused storage) was an 

important theme in the development of the Actor Model. 

 

In his doctoral dissertation, Peter Bishop developed an algorithm for garbage 

collection in distributed systems. Each system kept lists of links of pointers to 

and from other systems. Cyclic structures were collected by incrementally 

migrating Actors (objects) onto other systems which had their addresses until a 

cyclic structure was entirely contained in a single system where the garbage 

collector could recover the storage. 

 

Henry Baker developed an algorithm for real-time garbage collection is his 

doctoral dissertation. The fundamental idea was to interleave collection activity 

with construction activity so that there would not have to be long pauses while 

collection takes place.  

Lieberman and Hewitt [1983] developed a real time garbage collection based 

on the lifetimes of Actors (Objects). The fundamental idea was to allocate 

Actors (objects) in generations so that only the latest generations would have to 

be examined during a garbage collection. 

Cosmic Cube 

The Cosmic Cube was developed by Chuck Seitz et al. at Caltech providing 

architectural support for Actor systems. A significant difference between the 

Cosmic Cube and most other parallel processors is that this multiple instruction 

multiple-data machine used message passing instead of shared variables for 

communication between concurrent processes. This computational model was 

reflected in the hardware structure and operating system, and also the explicit 

message passing communication seen by the programmer. 

 



 

 

Communicating Sequential Processes 
Arguably, the first concurrent programs were interrupt handlers. During the 

course of its normal operation, a computer needed to be able to receive 

information from outside (characters from a keyboard, packets from a network, 

etc.). So when the information was received, execution of the computer was 

“interrupted” and special code called an interrupt handler was called to put the 

information in a buffer where it could be subsequently retrieved. 
 

In the early 1960s, interrupts began to be used to simulate the concurrent 

execution of several programs on a single processor. Having concurrency with 

shared memory gave rise to the problem of concurrency control. Originally, this 

problem was conceived as being one of mutual exclusion on a single computer. 

Edsger Dijkstra developed semaphores. In contrast, the Actor Model does not 

take classical sequential processes as primitive and is not built on 

communicating sequential processes. 

 

Dijkstra was certain that unbounded nondeterminism is impossible to 

implement. Hoare was convinced by Dikstra's argument. Consequently, the 

semantics of CSP specified bounded nondeterminism. 

  

  



 

 

Consider the following program written in CSP [Hoare 1978]: 
  [X :: Z!stop( )                                       In process X, send  Z a stop message  

     ||                                                 process  X operates in parallel with process  Y 

   Y :: guard: boolean; guard := true;                   

                          In process Y, initialize boolean variable guard to true and then 

          *[guard→ Z!go( ); Z?guard]                 
           while guard is true, send Z a go message  and then input guard from Z 
     ||                                              process  Y operates in parallel with process  Z 
   Z :: n: integer; n:= 0;    In process Z, initialize integer variable n to 0 and then 

               continue: boolean; continue := true;      

                                            initialize boolean variable continue to  true and then  

          *[                                                                repeatedly either 

                X?stop( ) → continue := false;    

                            input a stop message from  X, set continue to false and then 

                                 Y!continue;                     send  Y the value of continue 
 

                     []                                                      or 
 

               Y?go( )→ n := n+1;  

                                   input a go message from  Y, increment  n, and then 

                                Y!continue]]                        send Y the value of continue 
 

According to Clinger [1981]: 
this program illustrates global nondeterminism, since the 
nondeterminism arises from incomplete specification of the timing of 

signals between the three processes X, Y, and Z.  The repetitive 

guarded command in the definition of Z has two alternatives:  either the 
stop message is accepted from X, in which case continue is set to false, 

or a go message is accepted from Y, in which case n is incremented and 

Y is sent the value of continue. If Z ever accepts the stop message from 

X, then X terminates. Accepting the stop causes continue to be set to 

false, so after Y sends its next go message, Y will receive false as the 

value of its guard and will terminate. When both X and Y have 

terminated, Z terminates because it no longer has live processes 

providing input. 
    As the author of CSP points out, therefore, if the repetitive guarded 

command in the definition of Z were required to be fair, this program 

would have unbounded nondeterminism:  it would be guaranteed to halt 

but there would be no bound on the final value of n. In actual fact, the 

repetitive guarded commands of CSP are not required to be fair, and so 
the program may not halt [Hoare 1978]. This fact may be confirmed by 
a tedious calculation using the semantics of CSP [Francez, Hoare, 
Lehmann, and de Roever 1979] or simply by noting that the semantics 
of CSP is based upon a conventional power domain and thus does not 
give rise to unbounded nondeterminism. 

 

But Hoare knew that trouble was brewing because for several years, 

proponents of the Actor Model had been beating the drum for unbounded 

nondeterminism. To address this problem, he suggested that 



 

 

implementations of CSP should be as close as possible to unbounded 

nondeterminism! But his suggestion was difficult to achieve because of the 

nature of communication in CSP using nondeterministic select statements 

(from nondeterministic state machines, e.g., [Dijkstra 1976]), which in the 

above program which takes the form  

            [X?stop( ) → ...  

                []   

             Y?go( ) → ...]  

The structure of CSP is fundamentally at odds with guarantee of service. 

    Using the above semantics for CSP, it was impossible to formally prove 

that a server actually provides service to multiple clients (as had been done 

previously in the Actor Model). That's why the semantics of CSP were 

reversed from bounded non-determinism [Hoare CSP 1978] to unbounded 

non-determinism [CSP:1985]. However, bounded non-determinism was but 

a symptom of deeper underlying issues with nondeterministic transitions in 

communicating sequential processes (see [Knabe 1992]). 
 

 

Smalltalk-80 

Smalltalk-72 progressed to Smalltalk-80[Alan Kay, Dan Ingalls, Adele 

Goldberg, Ted Kaehler, Diana Merry, Scott Wallace, Peter Deutsch], which 

introduced the code browser as an important innovation.   

 

For example, the following diagram depicts a code-browser window: 

 

 
 



 

 

π-Calculus Actors 

Robin Milner's initial published work on concurrency [Milner 1973] was 

notable in that it was not overtly based on sequential processes, although 

computation still required sequential execution (see below).  

 

His work differed from the previously developed Actor Model in the following 

ways: 

 There are a fixed number of processes as opposed to the Actor Model 

which allows the number of Actors to vary dynamically 

 The only quantities that can be passed in messages are integers and strings 

as opposed to the Actor Model which allows the addresses of Actors to be 

passed in messages 

 The processes have a fixed topology as opposed to the Actor Model which 

allows varying topology 

 Communication is synchronous as opposed to the Actor Model in which 

an unbounded time can elapse between sending and receiving a message. 

 Unlike the Actor Model, there is no reception ordering and consequently 

there is only bounded nondeterminism. However, with bounded 

nondeterminism it is impossible to prove that a server guarantees service 

to its clients, i.e., a client might starve. 

Building on the Actor Model, Milner [1993] removed some of these restrictions 

in his work on the π-calculus: 

Now, the pure lambda-calculus is built with just two kinds of thing: terms 

and variables. Can we achieve the same economy for a process calculus? 

Carl Hewitt, with his Actors model, responded to this challenge long ago; 

he declared that a value, an operator on values, and a process should all be 

the same kind of thing: an Actor.      

    This goal impressed me, because it implies the homogeneity and 

completeness of expression ...  

    So, in the spirit of Hewitt, our first step is to demand that all things 

denoted by terms or accessed by names--values, registers, operators, 

processes, objects--are all of the same kind of thing…. 
 

However, some fundamental differences remain between the Actor 

Model and the π–calculus: 

 The Actor Model is founded on physics whereas the π–calculus is founded 

on algebra. 

 Semantics of the Actor Model is based on message orderings in the 

Computational Representation Theorem. Semantics of the π–calculus is 

based on structural congruence in various kinds of bi-simulations and 

equivalences.51 
 

  



 

 

Communication in the π -calculus takes the following form: 

 input: u[x].P is a process that gets a message from a communication 

channel u  before proceeding as P, binding the message received to the 

identifier x. In ActorScript [Hewitt 2010a], this can be modeled as follows: 

Let x←u∎get[ ] P52 

 output: ū[m].P is a process that puts a message m on communication 

channel u  before proceeding as P. In ActorScript, this can be modeled as 

follows: u∎put[x] P53 

The above operations of the π-calculus can be implemented in Actor systems 

using a two-phase commit protocol [Knabe 1992; Reppy, Russo, and Xiao 

2009]. The overhead of communication in the π–calculus presents difficulties 

to its use in practical applications. 
 

Process calculi (e.g. [Milner 1993; Cardelli and Gordon 1998]) are closely 

related to the Actor Model. There are similarities between the two approaches, 

but also many important differences (philosophical, mathematical and 

engineering): 

 There is only one Actor Model (although it has numerous formal systems 

for design, analysis, verification, modeling, etc.) in contrast with a variety 

of species of process calculi. 

 The Actor Model was inspired by the laws of physics and depends on them 

for its fundamental axioms in contrast with the process calculi being 

inspired by algebra [Milner 1993]. 

 Unlike the Actor Model, the sender is an intrinsic component of process 

calculi because they are defined in terms of reductions (as in the lambda  

calculus). 

 Processes in the process calculi communicate by sending messages either 

through channels (synchronous or asynchronous), or via ambients (which 

can also be used to model channel-like communications [Cardelli and 

Gordon 1998]). In contrast, Actors communicate by sending messages to 

the addresses of other Actors (this style of communication can also be used 

to model channel-like communications using a two-phase commit protocol 

[Knabe 1992]). 

There remains a Great Divide between process calculi and the Actor Model: 

 Process calculi: algebraic equivalence, bi-simulation [Park 1980], etc. 

 Actor Model: futures [Baker and Hewitt 1977], Swiss cheese, garbage 

collection, etc. 

 

  



 

 

J–Machine 

The J–Machine was developed by Bill Dally et al. at MIT providing 

architectural support suitable for Actors.  

This included the following: 

 Asynchronous messaging 

 A uniform space of Actor addresses to which messages could be sent 

concurrently regardless of whether the recipient Actor was local or 

nonlocal 

 A form of Actor pipelining 

Concurrent Smalltalk (which can be modeled using Actors) was developed to 

program the J Machine. 

 

“Fog Cutter” Actors  
[Karmani and Agha 2011] promoted “Fog Cutter”i Actors  each of which is 

required to have a mailbox, thread, state, and program diagrammed as follows:54 

 

StateState

Mailbox

Thread

ProgramProgram

 

Process a message from the Mailbox using the Thread, 

then reset the Thread stack thereby completing the message-passing turn 

Fog Cutter Actors are special cases in that the following restrictions hold:ii 

 Each Fog Cutter Actor has a ‘mailbox’. But if everything that interacts is 

an Actor, then a mailbox must be an Actor and so in turn needs a mailbox 

which in turn … [Hewitt, Bishop, and Steiger 1973]. Of course, mailboxes 

having mailboxes is an infinite regress that has been humorously 

characterized by Erik Meijer as “down the rabbit hole.” [Hewitt, Meijer, 

and Szyperski 2012] 

 A Fog Cutter Actor ‘terminates’ when every Actor that it has created is 

‘idle’ and there is no way to send it a message. In practice, it is preferable 

                                                           
i so dubbed by Kristen Nygaard (private communication). 
ii “Fog Cutter” is in italics. 



 

 

to use garbage collection for Actors that are inaccessible. [Baker and 

Hewitt 1977] 

 Each Fog Cutter Actor executes a ‘loop’ using its own sequential ‘thread’ 

that begins with receiving a message followed by possibly creating more 

Actors, sending messages, updating its local state, and then looping back 

for the next message to complete a 'turn'. In practice, it is preferable to 

provide “Swiss cheese” by which an Actor can concurrently process 

multiple messages without the limitation of a sequential thread loop. 

[Hewitt and Atkinson 1977, 1979; Atkinson 1980; Hewitt 2011] 

 A Fog Cutter Actor has a well-defined local ‘autonomous’ ‘state’ that can 

be updated 
55 while processing a message. However, because of 

indeterminacy an Actor may not be in a well-defined local independent 

state. For example, Actors might be entangled56 with each other so that 

their actions are correlated. Also, large distributed Actors (e.g. 

www.dod.gov) do not have a well-defined state. In practice, it is preferable 

for an Actor not to change its local information while it is processing a 

message and instead specify to how it will process the next message 

received (as in ActorScript [Hewitt 2011]). 
 

Fog Cutter Actors have been extremely useful for exploring issues about Actors 

including the following alternatives: 

 Reception order of messaging instead of Mailbox 

 Activation order of messaging instead of Thread 

 Behavior instead of State+Program 

 

However, Fog Cutter Actors are fundamentally lacking in generality because 

they lack the holes of Swiss cheese.i 

 

In practice, the most common and effective way to explain Actors has been 

operationally using a suitable Actor programming language (e.g., ActorScript 

[Hewitt 2012]) that specifies how Actors can be implemented along with an 

English explanation of the axioms for Actors (e.g., as presented in this paper). 

 

Erlang Actors 

Erlang Actors [Armstrong 2010] are broadly similar to Fog Cutter Actors: 

1. Each Erlang Actor not share memory addresses with other Erlang Actors. 

2. An Erlang Actor can retrieve a message from its mailbox by selectively 

removing a message matching a particular pattern. 
 

Erlang made important contributions by emphasizing the importance of the 

following: 

• referential transparency 

• failure handling 

                                                           
i See section on Swiss cheese in this article. 
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However, Erlang Actors have the following issues: 

 Messaging in Erlang is not robust because a sent message will be dropped 

without warning if there is no Actor for the address.i 

 Erlang imposes high overhead in sending messages between Actors. For 

example, it imposes coordination overhead that messages sent between 

two Erlang Actors are delivered in the order they are sent. 

 Implementations of Erlang do not make efficient use of many-core 

coherent architectures because messages between Erlang Actors must be 

blobs.ii 

 Instead of using exception handling, until recently Erlang relied on 

process failureiii propagating between processes and their spawned 

processes. 

 Instead of using garbage collection to recover storage and processing of 

unreachable Actors, each Erlang Actor must perform an internal 

termination or be killed externally.57 

 Erlang does not have parameterized types, Actor aspects, interfaces or 

type discriminations. 

 

Erlang Actors have been used in high-performance applications. For example, 

Ericsson uses Erlang in 3G mobile networks worldwide [Ekeroth and Hedstrὂm 

2000].  

 

Sqeak  
Squeak [Ingalls, Kaehler, Maloney, Wallace, and Kay 1997] is a dialect of 

Smalltalk-80 with added mechanisms of islands, asynchronous messaging, 

players and costumes, language extensions, projects, and tile scripting. Its 

underlying object system is class-based, but the user interface is programmed 

as though it is prototype-based.  
 

Orleans Actors 

Orleans [Bykov, Geller, Kliot, Larus, Pandya, and Thelin 2010; Bernstein, 

Bykov, Geller, Kliot, and Thelin 2014] is a distributed implementation of 

Actors that transparently sends messages between Actors on different 

computers enabling greater scalability and reliability of practical applications. 

 

Orleans is based on single-threaded Actor message invocations. An Actor 

processes a message using a thread from a thread pool. When the message has 

been processed, the thread can be returned to the thread pool.58 

 

                                                           
i Such silent failures are a bane of robust software engineering. 
ii A blob is a data structure that cannot contain pointers. 
iii based on an arbitrary time-out 



 

 

That an Orleans Actor does not share memory with other Actors is enforced by 

doing a deep copy of messages if required. 

 

A globally unique identifier59 is created for each Orleans Actor with a 

consequence that there is extra storage overhead that can be significant for a 

very small Orleans Actor.60 A globally unique identifier can be used to send a 

message, which will, if necessary, create an activation61 of an Orleans Actor in 

the memory of a process.62  

Orleans has the following issues:  

 Orleans allows the use of strings and long integers as globally unique 

identifiers in order to provide for perpetual Actors whose storage can only 

be collected using potentially unsafe means, which can result in a dangling 

globally unique identifier.  

 A system design choice was made in Orleans not to use automated storage 

reclamation technology (garbage collection) to keep track of whether an 

Orleans Actor could have been forgotten by all applications and thus 

become inaccessible.  Consequently, Orleans can have the following 

inefficiencies: 

o A short-lived Orleans Actor that has become inaccessible does not have 

its storage in the process quickly recycled resulting in a larger working 

set and decreased locality of reference.63 

o A long-lived Orleans Actor that has become inaccessible does not ever 

have its storage recycled 64 resulting in larger memory requirements.65 

However, collection of the storage of long-lived Actors is not so 

important in some applications because long-term memory has 

become relatively inexpensive. 

 

An Orleans Actor ties up a thread while it is taking a turn to process a message 

regardless of the amount of time required, e.g., time to make a system call. In 

this way, Orleans avoids timing races in the value of a variable of an Actor.i  

 

  

                                                           
i ActorScript goes even further in this direction by enforcing that the value of a 

variable can change only when it is leaving the cheese or before/after an internal 

delegated operation. 



 

 

A consequence of being single-threaded can be reduced performance of Orleans 

Actors as follows: 

 lack of parallelism in processing a message 

 lack of concurrency between processing a message and executing waiting 

method calls invoked by processing the message.66 

 thread-switching overhead between sending and receiving a message to an 

Orleans Actor in the same process67 

 

A waiting method call can be resolved using the await68 construct as follows: 

await anActor.aMethodName(...)i  

For example: 
var anActor = aFactory.GetActor(aGloballyUniqueIdentifier); 
try {...aUse(await anActor.aMethodName(...))... 
       anotherUse(await anActor.anotherMethodName(...))...} 
 catch ...;69 

 

When reentrancy70 is enabled, the method calls for aMethodName and 

anotherMethodName above are executed after the current message-processing 

turn:  

 If completed successfully, the value of a waiting method call is supplied in 

a new turn at the point of method invocation, e.g., the value of the method 

call for aMethodName of is supplied to aUse.   
 If a waiting method call throws an exception, it is given to the exception 

handler in a new turn.  
Orleans uses C# compiler “stack ripping” to use behind-the-scenes sequential 

turns to execute waiting method calls. 

 

A message sent to an Orleans Actor must return a promise71 Actor72, which is 

a version of a future Actor. A promise Actor for a method call 

anActor.aMethodName(...) can be created using the following code:ii 
try {return Task.FromResult(await anActor.aMethodName(...));} 
  catch (Exception anException) 

       {return Task.FromException(anException);}iii 

Note that a promise is not an Orleans Actor because it does not have a 

globally unique identifier.iv 

                                                           
i ActorScript uses ⦾aFuture to resolve aFuture 
ii ActorScript uses Future anExpression to create a future for anExpression 
iii There is an inefficiency in the above code in that the method call returns a promise 

that is taken apart and then an equivalent promise is created to be returned. 
iv It would be impractical for promises to be Orleans Actors because 

 they are created as the return value of every Orleans Actor method call 

 the storage of inaccessible Orleans Actors is not recovered, e.g., using 

garbage collection 



 

 

One of the motivations for the requirement that Orleans Actors must return 

promises when sent messages is to enable  the await construct to hide 

promises so that clients of Orleans Actors do not have to deal with the 

return type Task<T> of each Orleans Actor method call for some 

application type T. 
 

Orleans is an important step in furthering a goal of the Actor Model that 

application programmers need not be so concerned with low-level system 

details.i  For example, in moving to the current version, Orleans reinforces the 

current trend of not exposing customer Actors73 to application programmers.74  

 

As a research project, Orleans had to make some complicated tradeoffs to 

implement more reliable distributed Actors. Implementing Actor systems that 

are both robust and performant is an extremely challenging research project 

that has taken place over many decades. More research remains to be done. 

However, Orleans has already been used in some high-performance 

applications including multi-player computer games, e.g., Halo[Bykov 2013, 

Stenberg 2015]. 

 

JavaScript Actors 

JavaScript Actors are broadly similar to Fog Cutter Actors.75 

 

A promise76 in JavaScript is a kind of future. JavaScript77 will include 

asynchronous procedures as well as an await78 construct that can be used to 

resolve promise Actors. 

 

An asynchronous procedure alwaysii returns a promise.  For example, the 

following procedure computes a promise for the sum of two promises: 
  async function PromiseForSumOfPromises(aPromise, anotherPromise) 
      {return (await aPromise) + await anotherPromise)}; 

 

  

                                                           
i e.g. threads, throttling, load distribution, cores, persistence, automated storage 

reclamation, locks, location transparency, channels, ports, etc. 
ii The use of asynchronous procedures can be contagious because a procedures using  

the return value of an asynchronous procedure needs to be asynchronous to use 

await.  



 

 

A promise for an expression can be created by the procedure CreatePromise79, 

which takes a thunk80 for the expression as its argument. For example, suppose 

we have the following:i 
  async function PromiseForSumOfTwoSlowCalls( ) 

      {const promise1 := CreatePromise(() => aSlowActor.do(10, 20)); 
        const promise2 := CreatePromise(() => aSlowActor.do(30, 40)); 
        return await PromiseForSumOfPromises(promise1, promise2) 

      }; 

In an asynchronous procedure, await PromiseForSumOfTwoSlowCalls( ) is 

equivalent to the following in ActorScript: 
    (⦾Future  aSlowActor∎do[10, 20]) + ⦾Future  aSlowActor∎do[30,40] 
 

To implement parallelism, JavaScript has workers.81 Although multiple 

workers can reside in a process, they do not share memory addresses and 

consequently cannot efficiently communicate using many-core coherency.  A 

worker  communicates with other workers using blobsii in order to guarantee 

memory separation. Each worker acts as a single-threaded, non-preemptive 

time-sharing system for processing messages for Actors that reside in its 

memory.82  

 

However, JavaScript workers have the following efficiency issues:83 

1. There is no parallelism in processing messages for different Actors on a 

worker and the processing of a message by a slowly executing Actor 

cannot be preempted thereby bringing all 
iii other work on the worker to 

a standstill.iv  
2. An Actor on a worker can directly send a message an Actor on another 

worker only if the recipient has been transferred to the worker on which 

the sender resides.84 An Actor can also indirectly send a blobbed message 

using a MessageChannel. 

3. A very difficult efficiency issue is to decide how many Actors to put on 

each worker and which Actors to put on which worker. 
 

JavaScript workers limit much of the modularity and efficiency available in 

coherent many-core processor architectures. Inherent inefficiencies and 
                                                           
i The code is written in this way to emphasize that an asynchronous procedure 

always returns a promise. 
ii A blob is a data structure that cannot contain pointers. In the past, a more limited 

meaning called BLOB has been used as an acronym for Binary Large OBject. In 

the Actor Model, an address (which is typed) can be used to send a message to an 

Actor. The model does not specify the physical representation of an address.  So 

an address might be a (tagged) pointer.  However, such pointers are not allowed in 

blobs. 
iii including any queued promises 
iv Issues of non-preemption motivated the invention of time-slicing [Bemer 1957] by 

which tasks are switched at the expiration of a timer. 



 

 

architectural deficiencies in JavaScript workers and HTML5 standards 

handicapi browsers in their competition with apps. 

 

Capabilities Systems 
Capabilities were proposed in order to provide protection in operating systems 

[Dennis and van Horn 1966] by placing authority to take certain actions in 

special lists stored in protected memory of the operating system. Capabilities 

originated as part of the MIT Multics Project whereas Actors originated at the 

AI Lab, which developed Lisp machines with a tagged-memory architecture 

(instead of special lists stored in the operating system) that could be used to 

implement secure Actor addresses. Lisp machines were not commercially 

successful because the developing companies were under-capitalized and 

lacked an adequate software foundation. Unfortunately, tagged-memory 

architectures fell out of fashion subsequently causing enormous security 

problems in our current cyber systems.85   

 
One of the motivations for developing the Actor Model in 1972 was that 

capabilities were awkward to use because their addresses were allocated in 

private memory of operating systems. Using tagged memory on Lisp 

Machines was a preferred implementation for Actors as opposed to using 

segmented memory on Multics. Also, the terms “capability” and “capabilities 

system” lacked axiomatizations and denotational semantics.  

 

According to [Saltzer and Schroeder 1975]: 

In a computer system, a capability is an unforgeable ticket, which when 

presented can be taken as incontestable proof that the presenter is 

authorized to have access to the object named in the ticket. 

 

In contrast: 

An Actor address is defined to be a shareableii digital tokeniii that together 

with a typeiv provides the ability to send a messagev to the address.vi 

 

                                                           
i due mainly to the legacy requirement not to break the Web.  W3C and ECMA  have 

done excellent work ameliorating the worst problems.  
ii subject to type constraints 
iii Not requiring that an Actor address is always required to be unguessable can allow 

for more efficient implementations. For example, suppose that amount1 and 

amount2 are both of type Euro.  It might be that case that amount1 and amount2 

are unboxed, i.e., the respective amounts are encoded in their addresses. 
iv which is an Actor 
v which is an Actor 
vi For example in the following, HTTP[“google.com”] is an Actor address that can 

be used as follows to send a put message (with content someString) to Google:  

HTTP[“google.com”] ∎put[someString] 



 

 

The following are some differences between Actor addresses and the 

Saltzer/Schroeder definition of capability: 

• An address need not be unforgeable although it is typically unguessablei. 

• Unlike a capabilityii, an Actor address per se does not authorize 

anything. However, an Actor address together with a type enables a 

message to be sent to the address.iii 

• A message sent to an address does not have to be honored.  However, it 

is generally good practice for an Actor to respond with an exception if 

it dishonors a message. 

 

According to [Levy 1985]: 

“Conceptually, a capability is a token, ticket, or key that gives the 

possessor permission to access an entity or object in a computer system. 

A capability is implemented as a data structure that contains two items 

of information: a unique object identifier and access rights.” 

The above notion of capability can be modeled as a very specialized proxy 

Actor that filters messages. 

 

Historically, capabilities have been handicapped by awkwardness, vagueness, 

over-specialization, not being integrated with types, and for being single-

computer centric:86 

 Awkwardness:  It is awkward to program in a system that requires 

permissions to be kept in lists maintained in operating systems 

memory. 

 Vagueness: The [Saltzer and Schroeder 1975] definition above of a 

capability suffers from vagueness in specifying exactly what 

constitutes “access” to an object. 

 Over-specialization: The [Levy 1985] definition above of a 

capability suffers from the additional limitation of over-specialization 

in that it specifies  a particular data structure with two items. 

 Not integrated with types: Capabilities were not integrated with the 

type systems of programming languages. 

 Single-computer centric: Keeping permissions in lists maintained in 

the operating system memory makes coordination with other 

computers awkward. 

 

  

                                                           
i For example, an Actor address 4 of type Integer is plainly not unguessable. 
ii In a capability, designation and permissions are inextricably bound together. 
iii The message might not actually be received for a variety of potential reasons. For 

example, because it is not properly received by an app for the intended recipient, 

because it is not properly received by a computer the for intended recipient, etc.  It is 

good practice to throw an exception if a response is not received within some 

“reasonable” time. 



 

 

Capabilities were further developed in [Organick 1983; Levy 1984; Chander, 

Dean, and Mitchell 2001; Shapiro and Adams 2007; Woodruff, et. al. 2014; 

Watson, et. al. 2015]. Unfortunately, capabilities have continued to be 

awkward to use because their addresses were allocated in private memory of 

operating systems. [Kwon, et. al. 2014] is a tagged capability architecture that 

includes a special register to hold capabilities for addresses. Capabilities 

systems can be considered to be approaches to security making use of specified 

principles [Miller 2006] that must include the locality laws of the Actor Model 

[Baker and Hewitt 1977]. 

 

The vision that motivated creation and development of the Actor Model is now 

coming into fruition in the Internet of Things with the following aspects 

[Hewitt 2015/2016]: 

 Systems must function robustly even though at any time a computer 

can become temporarily or permanently unavailable. 

 Systems must function as robustly as possible even though 

connections between computers can be intermittent. 

 

A citizen will share a great deal of sensitive personal information among their 

insulin pump, bedroom TV, cell phone, home router, and potentially even a 

brain implant (new DARPA project).i Consequently, security of sensitive 

information heavily relies on encryption. 

 

One of the fundamental principles is to use unguessable addresses for Actors 

on remote computers.ii  In general, having an unguessable address and its type 

provides the computer that receives the unguessable address an opportunity to 

send a message to the address.87  

 

The only ways that an Actor can acquire an unguessable address is to be given 

the information to compute it from a combination of the following: 

1. Using addresses provided by creating other Actors 

2. Using addresses received in messages 

 

  

                                                           
i Without warning, any of the above may fail permanently and have to be replaced.  

While the replacement is happening, life must continue as smoothly as possible. 
ii both of the following are needed to securely and efficiently implement Actor 

addresses [Hewitt 1980, Miller 2006]: 

1. tagged pointers in an address space 

2. unguessable addresses sent to other computers 



 

 

In practice, the information to compute an unguessable address must have 

come from the creator of the Actor for the unguessable address.88 

Consequently, using unguessable Actor addresses provides significant 

security in helping confine sensitive personal information in the IoT devices 

owned by a citizen. 

 

The intent of a [Saltzer and Schroeder 1975] capability is to guarantee 

authorization to have access, whereas the intent of an Actor address is to 

provide an opportunity to send messages.  That is, an Actor address for IoT is 

not “incontestable proof of authorization to have access” because 

“authorization” and/or “access” might be prevented by any of the following: 

1. the address being on another computer than an intended recipient may 

not decrypt using a type and consequently cannot be used for sending 

a message for that type 

2. a message sent using the address and a type might not be received 

because message decryption might fail or authorization might fail at 

an app, computer, or router boundary along the path to a potential 

recipient 

3. the message might be rejected at a recipient's computer because the 

message does not decrypt using the type of the recipient 

4. an exception might be thrown by the recipient performing security 

checks disallowing access. 

 

Furthermore, an Actor address has functionality beyond that of a [Saltzer and 

Schroeder 1975] capability. For example, a type might use an Actor address in 

upcasting, downcasting, or casting to an interface of an Actor as in ActorScript 

(see below). 

 

  



 

 

The following definition of “capability” for the Internet of Things aims for 

both precision and practicality:i 

A capability is defined to be an unguessableii, shareable digital designation 

that indivisibly combines permission and ability to perform operations on 

an objectiii implemented on some system that has certain security 

properties, e.g., those specified in the Actor Model for unguessable 

addresses. iv 

 

The following difference is apparent: 

 Capabilities are prescriptive specifying system properties which must 

hold. 

 Actors are for modeling and implementation.  Any digital computation 

can be directly modeled using Actors.  ActorScript can directly 

efficiently implement any Actor system.v Of course, good engineering 

principles and practices should be strongly encouraged. 

 

  

                                                           
i The following are examples of capabilities: 

 Waterken [Close 2008]: an Actor address of type WebKey 

 Zebra Copy  [Karp and Li 2007]: an Actor address together with additional 

information that includes a list of allowed message types 
ii In the Internet of Things, a designation of an object on a remote computer is 

unguessable but technically not unforgeable because it makes use of encryption for 

security. However, it is possible to use a capability that is technically unforgeable 

even though it is based on an unguessable (but forgeable) designation. However, it 

could be misleading to simply say that a capability is unforgeable when it is based 

on an unguessable designation.  
iii i.e., Java, Hypertext Transfer Protocol, C++, etc. The object might reside on a 

computer that is remote from on the one on which the operation is being invoked. 
iv  The use of types in the Actor Model has some similarities and differences with 

Split Capabilities[Karp, Gupta, Rozas, and Banerji 2003]. In order to send a 

message to an Actor, both and address and a type are required. A difference is that 

that this division is not the same as in Split Capabilities because a type is an Actor 

in its own right and not restricted to being a list of access rights. For example, if 

anAccount is of type Account then, anAccount∎deposit[$5] is equivalent to the 

following: 
      Account∎send[anAccount, deposit[$5]] 

v By default, ActorScript systems adhere to the prescriptions of capabilities and 

furthermore have stronger security properties as well, e.g., making using of type 

encryption and not allowing insecure casting. 



 

 

The interface type Account  can be defined as follows: 

Interface Account  with availableBalance[ ]↦Euro,  
                                                 deposit[Euro]↦Void, 
                                                 withdraw[Euro]↦Void▮  

 

The following is an implementation of Account: 
 

Actor SimpleAccount[startingBalance:Euro] 
    myBalance ≔ startingBalance｡ 
        // myBalance is an assignable variable initialized with startingBalance 

     implements Account using 

        availableBalance[ ]:Euro → myBalance¶ 
        deposit[anAmount:Euro]:Void →  
              Void                                                                                         // return Void 
                    afterward  myBalance ≔ myBalance+anAmount¶    
                                             // the next  message is processed with 
                                                           //  myBalance reflecting the deposit 

          withdraw[anAmount:Euro]:Void → 
              (amount > myBalance) �  
                   True ⦂ Throw Overdrawn[ ] ⍌ 
                   False ⦂ Void                                                                  //  return Void 
                                     afterward  myBalance ≔ myBalance–anAmount ⍰§▮ 
                                  //  the next  message is processed with updated myBalance  
 



 

 

The above implementation of Account can be extended as follows to provide 

the ability to revoke some abilities to change an account by providing 

AccountSupervisor and AccountRevoker interfaces: 

 

The above implementation of Account can be extended as follows to provide 

the ability to revoke some abilities to change an account.89 For example, the 
AccountSupervisor implementation below implements both the Account 
and AccountRevoker interfaces as an extension of the implementation 

Account: 
 

As illustrated below, a qualified address of an Actor can be expressed using 

“⍠” followed by the name of the qualifier.90  

 

Actor AccountSupervisor[initialBalance:Euro]  
                                 uses SimpleAccount[initialBalance]｡  

                                                           //  uses Account implementation  
withdrawableIsRevoked ≔ False, 
depositableIsRevoked ≔ False｡ 

⟦revoker⟧:AccountRevoker → ⍠AccountRevoker¶ 

                                                                                   //  this Actor as AccountRevoker 
 

⟦account⟧:Account → ⍠Account¶                   //  this Actor as Account 
 

withdrawFee[anAmount:Euro] →  
                        Void afterward myBalance ≔ myBalance–anAmount§ 

                                  //  withdraw fee even if balance goes negative  

partially reimplements Account using 
        //  (availableBalance[ ]↦Euro) from SimpleAccount 
        withdraw[anAmount]:Euro → 

         withdrawableIsRevoked � 

                    True ⦂ Throw Revoked[ ] ⍌ 
               False ⦂ ⍠Account⨀SimpleAccount∎withdraw[anAmount] ⍰¶ 
     deposit[anAmount]:Void → 
           depositableIsRevoked � 

                      True ⦂ Throw Revoked[ ] ⍌ 
                      False ⦂ ⍠Account⨀SimpleAccount∎deposit[anAmount] ⍰§ 

      also implements AccountRevoker using 
    revokeDepositable[ ]:Void →  
          Void afterward depositableIsRevoked ≔ True¶    
    revokeWithdrawable[ ]:Void →  
          Void afterward withdrawableIsRevoked ≔ True§▮ 

  



 

 

For example, the following expression returns negative €3: 

   Let  anAccountSupervisor ← AccountSupervisor∎[€3]｡ 
      Let  anAccount ← anAccountSupervisor∎⟦account⟧, 

             aRevoker ← anAccountSupervisor∎⟦revoker⟧｡ 
           Prep anAccount∎withdraw[€2]                           //  the balance is €1 
 

                      aRevoker∎revokeWithdrawable[ ] 
                                                                  //  withdrawableIsRevoked is True         
                      Try anAccount∎withdraw[€5]           //  try another withdraw 
                           catch�  _  ⦂ Void ⍰               //  ignore the thrown exception91 

                                                                                         //  the balance remains €1 
                       anAccountSupervisor∎withdrawFee[€4]｡ 
                                 //  €4 is withdrawn even though  withdrawableIsRevoked 
                                                                               //  the balance is negative €3 
               anAccount∎availableBalance[ ]▮  //  the balance is negative €3 
 
One-way Messaging 
The following is an implementation of an arithmetic logic unit that 

implements jumpGreater and addJumpPositive one-way messages: 
 

Actor ArithmeticLogicUnitaType[ ]  
    implements ALUaType using 
        jumpGreater[x:aType, y:aType,  
                                  firstGreaterAddress:Address, 
                                  elseAddress:Address]↠  
                 InstructionUnit↞Execute[(x>y) �  
                                                                         True ⦂ firstGreaterAddress⍌   
                                                                         False ⦂ elseAddress ⍰]¶ 
         addJumpPositive[x:aType, y:aType, sumLocation:LocationaType,  
                                           positiveAddress:Address, elseAddress:Address]↠  

            Let z ← (x+y)｡ 

               sumLocation � 
                   aVariableLocation:VariableLocationaTypei ⦂ 

                        Prep VariableLocation∎store[z]｡                                    

                                                         // continue after acknowledgement of store 
                             (z >0) � True ⦂ InstructionUnit↞execute[positiveAddress] ⍌   
                                                False ⦂ InstructionUnit↞execute[elseAddress] ⍰⍌ 
                    aTemporaryLocation:TemporaryLocationaTypeii ⦂ 

                        aTemporaryLocation↞write[z],                                          
                                                    // continue concurrently with processing write 
                         (z >0) � True ⦂ InstructionUnit↞execute[positiveAddress] ⍌ 
                                             False ⦂ InstructionUnit↞execute[elseAddress] ⍰ ⍰§▮  

 
                                                           
i VariableLocationaType has store[aType]↦ Void▮ 
ii TemporaryLocationaType has write[aType] ↦ ⊝▮ 
 



 

 

Was the Actor Model premature? 

The history of the Actor Model raises the question of whether it was premature. 

Original definition of prematurity 

As originally defined by [Stent 1972], “A discovery is premature if its 

implications cannot be connected by a series of simple logical steps to 

contemporary canonical or generally accepted knowledge.” [Lövy 2002] 

glossed the phrase “series of simple logical steps” in Stent's definition as 

referring to the “target community's ways of asking relevant questions, of 

producing experimental results, and of examining new evidence.” [Ghiselin 

2002] argued that if a “minority of scientists accept a discovery, or even pay 

serious attention to it, then the discovery is not altogether premature in the 

Stentian sense.” In accord with Ghiselin's argument, the Actor Model was not 

premature. Indeed it enjoyed initial popularity and underwent steady 

development. 

However, Stent in his original article also referred to a development as 

premature such that when it occurred contemporaries did not adopt it by 

consensus. This is what happened with the Actor Model partly for the following 

reasons: 

 For over 30 years after the first publication of the Actor Model, widely 

deployed computer architectures developed in the direction of making 

a single sequential thread of execution run faster. 

 For over 25 years after the first publication, there was no agreed 

standard by which software could communicate high level data 

structures across organizational boundaries. 

Before its time? 

According to [Gerson 2002], phenomena that lead people to talk about 

discoveries being before their time can be analyzed as follows: 

We can see the phenomenon of 'before its time' as composed of two separate 

steps. The first takes place when a new discovery does not get tied to the 

conventional knowledge of its day and remains unconnected in the 

literature. The second step occurs when new events lead to the 'rediscovery' 

of the unconnected results in a changed context that enables or even 

facilitates its connection to the conventional knowledge of the 

rediscovering context. 

 

  



 

 

But circumstances have radically changed in the following ways: 

 Progress on improving the speed of a single sequential thread has 

stalled for some time now.  Increasing speed depends on effectively 

using many-core architectures. 

 Better ways have been implemented that Actors can use to 

communicate messages between computers. 

 Actors have been increasingly adopted by industry. 

 

Consequently, by the criteria of Gerson, the Actor Model might be described 

by some as before its time. 

 

According to [Zuckerman and Lederberg 1986], premature discoveries are 

those that were made but neglected. [Gerson 2002] argued,  

But histories and sociological studies repeatedly show that we do not have 

a discovery until the scientific community accepts it as such and stops 

debating about it. Until then the proposed solution is in an intermediate 

state.” 

By his argument, the Actor Model is a discovery but since its practical 

importance is not yet accepted by consensus, its practical importance is not yet 

a discovery. 
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End Notes 
 

 

1 The Actor model makes use of two fundamental orders on computational 

events [Baker and Hewitt 1977; Clinger 1981, Hewitt 2006]: 

1.  The activation order (⇝) is a fundamental order that models one event 

activating another (there is energy flow from an event to an event which 

it activates).  The activation order is discrete: 

       ∀[e1,e2Events]→ Finite[{eEvents | e1⇝e⇝e2}] 

There are two kinds of events involved in the activation order: reception 

and transmission. Reception events can activate transmission events and 

transmission events can activate reception events. 

2.  The reception order of an Actor x (
𝑥
→) models the (total) order of events 

in which a message is received at x. The reception order of each x is 

discrete:  

∀[r1,r2ReceptionEventsx]→ Finite[{rReceptionEventsx | r1 
𝑥
→r 

𝑥
→ r2}] 

The combined order (denoted by ↷) is defined to be the transitive closure of 

the activation order and the reception orders of all Actors.  So the following 

question arose in the early history of the Actor model:  “Is the combined 

order discrete?”  Discreteness of the combined order captures an important 

intuition about computation because it rules out counterintuitive 

computations in which an infinite number of computational events occur 

between two events (à la Zeno). 

    Hewitt conjectured that the discreteness of the activation order together 

with the discreteness of all reception orders implies that the combined order 

is discrete.  Surprisingly [Clinger 1981; later generalized in Hewitt 2006] 

answered the question in the negative by giving a counterexample: 

Any finite set of events is consistent (the activation order and all reception 

orders are discrete) and represents a potentially physically realizable 

situation.  But there is an infinite set of sentences that is inconsistent with 

the discreteness of the combined order and does not represent a physically 

realizable situation. 

     The resolution of the problem is to take discreteness of the combined 

order as an axiom of the Actor model:1   

  ∀[e1,e2Events]→ Finite[{eEvents | e1↷e↷e2}] 
Properties of concurrent computations can be proved using the above 

orderings [e.g. Bost, Mattern, and Tel 1995; Lamport 1978, 1979]. 
2 better or worse 

 
3 The receiver might be on another computer and in any the system can make 

use of threads, locks, location transparency, throttling, load distribution, 
 

                                                           



 

 

                                                                                                                                         

persistence, automated storage reclamation, queues, cores, channels, ports, 

etc. as it sees fit.  

        Messages in the Actor model are generalizations of packets in Internet 

computing in that they need not be received in the order sent. Not 

implementing the order of delivery, allows packet switching to buffer 

packets, use multiple paths to send packets, resend damaged packets, and to 

provide other optimizations. 

    For example, Actors are allowed to pipeline the processing of messages. 

What this means is that in the course of processing a message m1, an Actor 

can designate how to process the next message, and then in fact begin 

processing another message m2 before it has finished processing m1. Just 

because an Actor is allowed to pipeline the processing of messages does not 

mean that it must pipeline the processing. Whether a message is pipelined is 

an engineering tradeoff. 
4 The amount of effort expended depends on circumstances. 
5 These laws can be enforced by a proposed extension of the X86 

architecture that will support the following operating environments: 

 CLR and extensions (Microsoft)  

 JVM (Oracle, IBM, SAP)  

 Dalvik  (Google) 

    Many-core architecture has made the above extension necessary in order 

to provide the following: 

 concurrent nonstop automated storage reclamation (garbage collection) 

and relocation to improve performance, 

 prevention of memory corruption that otherwise results from 

programming languages like C and C++ using thousands of threads in 

a process, 

 nonstop migration of iOrgs (while they are in operation) within a 

computer and between distributed computers 

6 The following is a interface for a customer that is used in request/response 

message passing for return type aType: 

Interface CustomeraType with 

    return[aType] ↦ ⊝, 
    throw[Exception] ↦ ⊝▮ 

7 It is not possible to guarantee the consistency of information because 

consistency testing is recursively undecidable even in logics much weaker 

than first order logic. Because of this difficulty, it is impractical to test 

whether information is consistent. 
8 Consequently iInfo makes use of direct inference in Direct Logic to reason 

more safely about inconsistent information because it omits the rules of 

classical logic that enable every proposition to be inferred from a single 

inconsistency. 
9 This section shares history with [Hewitt 2008f]. 
10 cf. denotational semantics of the lambda calculus [Scott 1976] 
 



 

 

                                                                                                                                         
11 One solution is to develop a concurrent variant of the Lisp meta definition 

[McCarthy, Abrahams, Edwards, Hart, and Levin 1962] that was inspired by 

Turing's Universal Machine [Turing 1936]. If exp is a Lisp expression and 

env is an environment that assigns values to identifiers, then the procedure 

Eval with arguments exp and env evaluates exp using env. In the concurrent 

variant, eval[env] is a message that can be sent to exp to cause exp to be 

evaluated. Using such messages, modular meta definitions can be concisely 

expressed in the Actor model for universal concurrent programming 

languages (e.g. ActorScript [Hewitt 2010a]). 
12 However, they come with additional commitment. Inappropriate language 

constructs are difficult to leave behind. 
13 E.g. processes in Erlang [Armstrong 2007] and vats in the object-

capability model[Miller 2006]. 
14 Swiss cheese was called serializers in the literature.  
15

 In part, this section extends some material that was submitted to Wikipedia 

and [Hewitt 2008f]. 
16 Turing [1936] stated: 

the behavior of the computer at any moment is determined by the 

symbols which he [the computer] is observing, and his ‘state of 

mind’ at that moment” and “there is a bound B to the number of 

symbols or squares which the computer can observe at one moment. 

If he wishes to observe more, he must use successive observations.” 

    Gödel’s conception of computation was formally the same as Turing but 

more reductionist in motivation: 

There is a major difference between the historical contexts in which 

Turing and Gödel worked. Turing tackled the Entscheidungsproblem 

[computational decidability of provability] as an interesting 

mathematical problem worth solving; he was hardly aware of the fierce 

foundational debates. Gödel on the other hand, was passionately 

interested in the foundations of mathematics. Though not a student of 

Hilbert, his work was nonetheless deeply entrenched in the framework of 

Hilbert’s finitistic program, whose main goal was to provide a meta-

theoretic finitary proof of the consistency of a formal system “containing 

a certain amount of finitary number theory.” [Shagrir 2006] 
17 An example of the global state model is the Abstract State Machine (ASM) 

model [Blass, Gurevich, Rosenzweig, and Rossman 2007a, 2007b; Glausch 

and Reisig 2006]. 

 

 

 

 

 

 
 



 

 

                                                                                                                                         
18 The lambda  calculus can be viewed as the earliest message passing 

programming language [Hewitt, Bishop, and Steiger 1973] building on 

previous work. 

         For example, the lambda expression below implements a tree data 

structure when supplied with parameters for a leftSubTree and 

rightSubTree. When such a tree is given a parameter message “getLeft”, it 

returns leftSubTree and likewise when given the message “getRight" it 

returns rightSubTree: 

λ[leftSubTree, rightSubTree] 
   λ[message]  message � “getLeft” ⦂ leftSubTree 

                                                  “getRight” ⦂ rightSubTree 

19 Allowing assignments to variables enabled sharing of the effects of updating 

shared data structures but did not provide for concurrency. 
20 [Petri 1962] 
21 Consequently in Simula-76 there was no required locality of operations 

unlike the laws for locality in the Actor mode [Baker and Hewitt 1977]. 
22 The ideas in Simula became widely known by the publication of [Dahl and 

Hoare 1972] at the same time that the Actor model was being invented to 

formalize concurrent computation using message passing [Hewitt, Bishop, 

and Steiger 1973]. 
23 The development of Planner was inspired by the work of Karl Popper [1935, 

1963], Frederic Fitch [1952], George Polya [1954], Allen Newell and 

Herbert Simon [1956], John McCarthy [1958, et. al. 1962], and Marvin 

Minsky [1968]. 
24 This turned out later to have a surprising connection with Direct Logic. See 

the Two-Way Deduction Theorem below. 
25 Subsequent versions of the Smalltalk language largely followed the path of 

using the virtual methods of Simula in the message passing structure of 

   programs. However Smalltalk-72 made primitives such as integers, floating 

point numbers, etc. into objects. The authors of Simula had considered 

making such primitives into objects but refrained largely for efficiency 

reasons. Java at first used the expedient of having both primitive and object 

versions of integers, floating point numbers, etc. The C# programming 

language (and later versions of Java, starting with Java 1.5) adopted the more 

elegant solution of using boxing and unboxing, a variant of which had been 

used earlier in some Lisp implementations. 

 

 

 

 

 

 

 
 



 

 

                                                                                                                                         
26 According to the Smalltalk-72 Instruction Manual [Goldberg and Kay 

1976]: 

There is not one global message to which all message “fetches” (use of 

the Smalltalk symbols eyeball,  ; colon, :; and open colon, ⦂) refer; 

rather, messages form a hierarchy which we explain in the following 

way-- suppose I just received a message; I read part of it and decide I 

should send my friend a message; I wait until my friend reads his message 

(the one I sent him, not the one I received); when he finishes reading his 

message, I return to reading my message. I can choose to let my friend 

read the rest of my message, but then I cannot get the message back to 

read it myself (note, however, that this can be done using the Smalltalk 

object apply which will be discussed later). I can 

also choose to include permission in my message to my friend to ask me 

to fetch some information from my message and to give that in 

information to him (accomplished by including : or ⦂ in the message to 

the friend). However, anything my friend fetches, I can no longer have. 

In other words, 

1) An object (let's call it the CALLER) can send a message to another 

object (the RECEIVER) by simply mentioning the RECEIVER's 

name followed by the message. 

2) The action of message sending forms a stack of messages; the last 

message sent is put on the top.  

3) Each attempt to receive information typically means looking at the 

message on the top of the stack. 

4) The RECEIVER uses the eyeball, , the colon, :, and the open 

colon, ⦂, to receive information from the message at the top of the 

stack. 

5) When the RECEIVER completes his actions, the message at the 

top of the stack is removed and the ability to send and receive 

messages returns to the CALLER. The RECEIVER may return a 

value to be used by the CALLER. 

6) This sequence of sending and receiving messages, viewed here as 

a process of stacking messages, means that each message on the 

stack has a CALLER (message sender) and RECEIVER (message 

receiver). Each time the RECEIVER is finished, his message is 

removed from the stack and the CALLER becomes the current 

RECEIVER. The now current RECEIVER can continue reading 

any information remaining in his message. 

7) Initially, the RECEIVER is the first object in the message typed by 

the programmer, who is the CALLER. 

8) If the RECEIVER's message contains an eyeball,  ; colon, :, or 

open colon, ⦂, he can obtain further information from the 

CALLER's message. Any information successfully obtained by 

the RECEIVER is no longer available to the CALLER. 
 



 

 

                                                                                                                                         

9) By calling on the object apply, the CALLER can give the 

RECEIVER the right to see all of the CALLER's remaining 

message. The CALLER can no longer get information that is read 

by the RECEIVER; he can, however, read anything that remains 

after the RECEIVER completes its actions. 

10)  There are two further special Smalltalk symbols useful in sending 

and receiving messages. One is the keyhole, , that lets the 

RECEIVER “peek” at the message. It is the same as the ⦂ except 

it does not remove the information from the message. The second 

symbol is the hash mark, #, placed in the message in order to send 

a reference to the next token rather than the token itself.  
27 The sender is an intrinsic component of communication in the following 

previous models of computation: 

 Petri Nets:  the input places of a transition are an intrinsic component of 

a computational step (transition). 

 Lambda Calculus: the expression being reduced is an intrinsic 

component of a computational step (reduction). 

 Simula:  the stack of the caller is an intrinsic component of a 

computation step (method invocation). 

 Smalltalk 72: the invoking token stream is an intrinsic component of a 

computation step (message send). 
28 An Actor can have information about other Actors that it has received in a 

message about what it was like when the message was sent. See section of 

this paper on unbounded nondeterminism in ActorScript. 
29 Arbiters render meaningless the states in the Abstract State Machine (ASM) 

model [Blass, Gurevich, Rosenzweig, and Rossman 2007a, 2007b; Glausch 

and Reisig 2006]. 
30 The logic gates require suitable thresholds and other parameters. 
31 Of course the same limitation applies to the Abstract State Machine (ASM) 

model [Blass, Gurevich, Rosenzweig, and Rossman 2007a, 2007b; Glausch 

and Reisig 2006]. In the presence of arbiters, the global states in ASM are 

mythical. 
32 Consider the following Nondeterministic Turing Machine: 

Step 1 :  Next do either Step 2 or Step 3. 
Step 2 :  Next do Step 1. 
Step 3 :  Halt. 

It is possible that the above program does not halt. It is also possible that the 

above program halts. Note that above program is not equivalent to the one 

below in which it is not possible to halt: 

Step 1 :  Next do Step 1. 
33 This result is very old. It was known by Dijkstra motivating his belief that it 

is impossible to implement unbounded nondeterminism. Also the result 

played a crucial role in the invention of the Actor Model in 1972. 
 



 

 

                                                                                                                                         
34 This proof does not apply to extensions of Nondeterministic Turing 

Machines that are provided with a new primitive instruction NoLargest 

which is defined to write a unbounded large number on the tape. Since 

   executing NoLargest can write an unbounded amount of tape in a single 

instruction, executing it can take an unbounded time during which the 

machine cannot read input. 

    Also, the NoLargest primitive is of limited practical use. Consider a 

Nondeterministic Turing Machine with two input-only tapes that can be read 

nondeterministically and one standard working tape.  

 

    It is possible for the following program to copy both of its input tapes onto 

its working tape: 

Step 1 :  Either  
a) copy the next input from the 1st input tape onto the working 

tape and next do Step 2,  
   or 

b) copy the next input from the 2nd input tape onto the 
working tape and next do Step 3. 

Step 2 : Next do Step 1. 
Step 3 : Next do Step 1. 

It is also possible that the above program does not read any input from the 

1st input tape (cf. [Knabe 1993]). Bounded nondeterminism was but a 

symptom of deeper underlying issues with Nondeterministic Turing 

Machines. 
35 Consequently, 

 The tree has an infinite path. ⇔ The tree is infinite. ⇔ It is possible 

that P does not halt.  

    If it is possible that P does not halt, then it is possible that that the 

set of outputs with which P halts is infinite. 

 The tree does not have an infinite path. ⇔ The tree is finite. ⇔ P 

always halts. 

If P always halts, then the tree is finite and the set of outputs with which 

P halts is finite. 
36 [Kowalski 1988a] 
37 A Logic Program is defined by the criteria that it must logically infer its 

computational steps. 
38 A request to a shared resource might never receive service because it is 

possible that a nondeterministic choice will  always be made to service 

another request instead. 
39 [Nygaard 1986] Starting with Simula-67, which was not a pure Object 

programming language because for efficiency reasons numbers, strings, and 

arrays, were not Objects in the Class hierarchy. 
40 [Knudsen and Madsen 1988] 

 
 

 



 

 

                                                                                                                                         
41 According to [Nygaard 1986] (emphases in original): 

The term object-oriented programming is derived from the object 

concept in the Simula-67 programming language. ... Objects sharing a 

common structure are said to constitute a class, described in the program 

by a common class description. 

[SIGPLAN 1986, Stein, Lieberman, and Ungar 1989] have discussions of 

object-oriented programming. 
42 Examples of Object programming languages include Simula-67, Smalltalk-

80, Java, C++, C#, and future versions of JavaScript. Recent Object 

languages support other abstraction and code reuse mechanisms, such as 

traits, delegation, type classes, and so on, either in place of, or as well as 

inheritance. 
43 Every interface is a type and every type is an interface. 
44 [Kay 1998] wrote: 

The big idea is “messaging” .... The key in making great and growable 

systems is much more to design how its modules communicate rather than 

what their internal properties and  behaviors should be. Think of the 

internet - to live, it (a) has to allow many different kinds of ideas and 

realizations that are beyond any single standard and (b) to allow varying 

degrees of safe interoperability between these ideas. 
45 missing from initial versions of Scheme 
46 Notable members of this community included Bill Gosper, Richard 

Greenblatt, Jack Holloway, Tom Knight, Stuart Nelson, Peter Samson, 

Richard Stallman, etc. See [Levy 1984]. 
47 According to [Steele and Gabriel 1994]: 

Hewitt had noted that the actor model could capture the salient 

aspects of the lambda calculus; Scheme demonstrated that the 

lambda calculus captured nearly all salient aspects (excepting only 

side effects and synchronization) of the actor model. 

Unfortunately, the above comment misses an important point:  Actors that 

can be implemented in the parallel lambda calculus are special case Actors 

that have bounded nondeterminism and cannot change.  In general, Actors 

that can be implemented in the parallel lambda calculus are exponentially 

slower than general Actor systems. 
48 [Hewitt 1976, 1977]. 
49

 This misconception was partially acknowledged in some of their subsequent 

work. 
50 The parallel lambda calculus includes the following limitations: 

 Message reception order cannot be implemented. 

 Actors that change cannot be implemented 

 The parallel lambda calculus does not have exceptions. 

 In general, the parallel lambda calculus is exponentially slower than 

general Actor systems. 

 
 



 

 

                                                                                                                                         
51 According to [Berger 2003], Milner revealed 

…secretly I realized that working in verification and automatic theorem 

proving…wasn’t getting to the heart of computation theory…it was 

Dana Scott’s work that was getting to the heart of computation and the 

meaning of computation. 

However, Milner continued his research on bi-simulation between systems 

and did not directly address the problem of developing mathematical 

denotations for general computations as in the Actor Model. 
52 Note that there is a limitation on concurrency because u∎get[ ] must complete 

before P starts. 
53 As above, there is a limitation on concurrency because u∎put[x] must 

complete before P starts. 
54 e.g. as in Erlang [Armstrong 2010]. 
55 e.g. using assignment commands 
56 a concept from (quantum) physics 
57 However, data structures within an Erlang Actor are garbage collected. 
58 which can be optimized by reusing the thread if another message is waiting 
59 a globally unique identifier can be a 128-bit guid, long integer, or a string. 
60 Also, a reference for an Orleans Actor can be created from a C# 

anObjectAddress using 

aFactory.CreateObjectReference(anObjectAddress). 
61 There can be optimizations for determinate message passing, i.e., the same 

message always responds with the same result. 
62 Because of the ability to instantiate an Actor from its globally unique 

identifier, Orleans Actors are called “virtual” in their documentation. By 

analogy with virtual memory, the term “virtual” applied to an Orleans Actor 

would seem to imply that it would have to return to where it left. However, 

this terminology is misleading because an Actor can potentially migrate 

elsewhere and never come back.   

         Better terminology would be to say that an Orleans Actor is “perpetual.” 
63 unless it is deleted by potentially unsafe means, which can result in a 

dangling globally unique identifier. 
64 after it has been unused for a while, its storage can be moved elsewhere 

outside the process in which it currently resides 
65 unless it is deleted by potentially unsafe means, which can result in a 

dangling globally unique identifier. 
66 However, after the message is finished processing, sometimes waiting 

method calls it invoked can be processed concurrently if they are 

independent. 
67 provided that the Actor is not contended 
68 [Microsoft 2013] 

 

 

 

 
 



 

 

                                                                                                                                         
69 In ActorScript the program is: 

      Try ...aUse(□anActor.aMethodName(...))... 

        anotherUse(□anActor.anotherMethodName(...))... 
     catch ... 
70 reentrancy allows execution of waiting method calls to be freely interleaved 
71 [Liskov and Shira 1988; Miller, Tribble, and Shapiro 2005] 
72 Orleans uses Task<aType> for the type of a promise which corresponds to 

the type FutureaType in ActorScript. 
73 for requests, e.g., method calls. Customers are sometimes called 

continuations in the literature although continuations often cannot handle 

exceptions.  
74 However, Orleans does still surfaces continuations using lower level 

primitives. 
75 [ECMA 2014] 
76 Promise Actors were sometimes called “futures” in the beginning [Russell 

2013, Yoshino 2013]. 
77 [Barton 2014] 
78 somewhat analogous the await construct in C# [Microsoft 2013] 
79 function CreatePromise(thunkForExpression) 

        {return Promise.resolve(true) 

                                .then((aValueToDiscard) => 

                                             thunkForExpression())}; 
80 A thunk is an intermediary procedure for assistance in carrying out a task 

[Church 1941, Ingerman, 1961]. 
81 which are a kind of iOrg 
82 Of course, at a different level of abstraction, workers can also be modeled 

as Actors that communicate with other workers. 
83 roughly in order of decreasing importance 
84 JavaScript has transferable Actors, which are limited to being of type 

ArrayBuffer, CanvasProxy, and MessagePort. According to [World 

Wide Web Consortium 2012]: 

To transfer a transferable Actor to a another worker, a worker must run 

the steps defined for the type of Actor in question. The steps will 

return a new Actor of the same type, and will permanently neuter the 

original Actor. (This is an irreversible and non-idempotent operation; 

once an Actor has been transferred, it cannot be transferred, or indeed 

used, again.) 
84 due mainly to the legacy requirement not to break the Web.  Under 

difficult circumstances, W3C and ECMA have worked to clean-up and 

make extensions without breaking the Web.   
85 In order to address these security problems, tagged-memory architectures 

need to be created as extensions of current ARM and Intel architectures. 

 
 

 



 

 

                                                                                                                                         
86 Capabilities were critiqued in [Bobert 1984; Rajunas 1989; Miller, Yee and 

Shapiro 2003] concerning the following issues: 

 revocability: An Actor does not have to honor the message that it 

receives. Using proxies for Actors also enables revocability  because 

messages are forwarded and so a proxy can revoke. 

 multi-level security:  Actors, per se, do not have levels of security 

although various security schemes can be implemented, which may 

require using membranes [Donnelley 1976, Hewitt 1980]. 

 delegation:  Actors directly support delegation by passing addresses 

of Actors in messages. However, a receiver must have appropriate 

types in order to send messages to addresses that it has received. 

 confinement: Actor can use encryption to help enforcement 

confinement of information.  For example, a computer might accept 

communications to Actors that it hosts only if the communication is 

encrypted by certain other computers. 
87 The message might not actually be received for a variety of potential reasons. 

For example, because it is not properly received by an app the for intended 

recipient, because it is not properly received by a computer for the intended 

recipient, etc.  It is good practice to throw an exception if a response is not 

received within some “reasonable” time. 
88 Bits cannot be converted into an Actor address of arbitrary type, i.e., an 

Actor cannot convert an address of type BitString into an address of type 

Account. 
89 The ability to extend implementation is important because it helps to avoid 

code duplication. 
90 cf. [Crahen 2002, Amborn 2004, Miller, et. al. 2011] 
91 ignoring exceptions in this way is not a good practice 


