
HAL Id: hal-01163534
https://hal.science/hal-01163534v4

Submitted on 24 Apr 2016 (v4), last revised 11 Aug 2017 (v7)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Actor Model of Computation for Scalable Robust
Information Systems

Carl Hewitt

To cite this version:
Carl Hewitt. Actor Model of Computation for Scalable Robust Information Systems. Inconsistency
Robustness, 2015, 978-1-84890-159-9. �hal-01163534v4�

https://hal.science/hal-01163534v4
https://hal.archives-ouvertes.fr

Actor Model of Computation
for

Scalable Robust Information Systems

One computer is no computer in IoT

Carl Hewitt

This article is dedicated to Alonzo Church and Dana Scott.

Introduction

The Actor Model is a mathematical theory that treats “Actors” as the universal

conceptual primitives of digital computation.

Hypothesis:i All physically possible digital computation can be directly

modeled using Actors.

The model has been used both as a framework for a theoretical understanding

of concurrency, and as the theoretical basis for several practical

implementations of concurrent systems. Actors are direct and efficient:

 Digital computation can be efficiently implemented without loss of

processing, communication, or storage efficiency

 Digital computation can be directly modeled without requiring

extraneous elements, e.g., channels or registers.

The advent of massive concurrency through client-cloud computing and many-

core computer architectures has galvanized interest in the Actor Model.

Message passing using types is the foundation of system communication:

 Messages are the unit of communication

 A message can be sent to an address, which has a Typeii

i This hypothesis is an update to [Church 1936] that all physically computable

functions can be implemented using the lambda calculus. It is a consequence of

the Actor Model that there are some computations that cannot be implemented in

the lambda calculus.
ii Each type is an Actor. However, it may be the case that a type will work some

places and not others. For example, to be used in message passing, the type of an

address may require access to particular hardware. Also, types can provide

security, e.g., by using encryption.

When an Actor receives a message, it can concurrently:1
 send messages to (unforgeable) addresses of Actors that it has;
 create new Actors; i
 designate how to handle the next message it receives.

The Actor Model can be used as a framework for modeling, understanding, and

reasoning about, a wide range of concurrent systems. For example:
 Electronic mail (e-mail) can be modeled as an Actor system. Mail

accounts are modeled as Actors and email addresses as Actor addresses.
 Web Services can be modeled with endpoints modeled as Actor

addresses.
 Objects with locks (e.g. as in Java and C#) can be modeled as Actors.
 Functional and Logic programs can be implemented using Actors.

Actor technology will see significant application for coordinating all kinds of

digital information for individuals, groups, and organizations so their

information usefully links together.

Information coordination needs to make use of the following information

system principles:

 Persistence. Information is collected and indexed.
 Concurrency: Work proceeds interactively and concurrently,

overlapping in time.
 Quasi-commutativity: Information can be used regardless of whether it

initiates new work or become relevant to ongoing work.
 Sponsorship: Sponsors provide resources for computation, i.e.,

processing, storage, and communications.
 Pluralism: Information is heterogeneous, overlapping and often

inconsistent. There is no central arbiter of truth.
 Provenance: The provenance of information is carefully tracked and

recorded.

The Actor Model is intended to provide a foundation for inconsistency robust

information coordination. Inconsistencyii robustness is information system

performance2 in the face of continual pervasive inconsistencies.iii

Inconsistency robustness is both an observed phenomenon and a desired

feature.

i with new addresses

ii An inference system is inconsistent when it is possible to derive both a proposition

and its negation.

 A contradiction is manifest when both a proposition and its negation are asserted

even if by different parties, e.g., New York Times said “Snowden is a

whistleblower.”, but NSA said “Snowden is not a whistleblower.”
iii a shift from the previously dominant paradigms of inconsistency denial and

inconsistency elimination, i.e., to sweep inconsistencies under the rug.

The Actor Model is a mathematical theory of computation that treats “Actors”

as the universal conceptual primitives of concurrent digital computation

[Hewitt, Bishop, and Steiger 1973; Hewitt 1977]. The model has been used both

as a framework for a theoretical understanding of concurrency, and as the

theoretical basis for several practical implementations of concurrent systems.

Unlike previous models of computation, the Actor Model was inspired by

physical laws. It was also influenced by programming languages such as, the

lambda calculusi, Lisp [McCarthy et. al. 1962], Simula-67 [Dahl and Nygaard

1967] and Smalltalk-72 [Kay 1975], as well as ideas for Petri Nets [Petri 1962],

capabilities systems [Dennis and van Horn 1966] and packet switching [Baran

1964]. The advent of massive concurrency through client-cloud computing and

many-core computer architectures has galvanized interest in the Actor Model

[Hewitt 2009b].

It is important to distinguish the following:

• modeling arbitrary computational systems using Actors.ii It is difficult

to find physical computational systems (regardless of how

idiosyncratic) that cannot be modeled using Actors.

• securely implementing practical computational applications using

Actors remains an active area of research and development.

Decoupling the sender from the communications it sends was a fundamental

advance of the Actor Model enabling asynchronous communication and control

structures as patterns of passing messages [Hewitt 1977].

An Actor can only communicate with another Actor to which it has an address.

Addresses can be implemented in a variety of ways:

 direct physical attachment

 memory or disk addresses

 network addresses

 email addresses

The Actor Model is characterized by inherent concurrency of computation

within and among Actors, dynamic creation of Actors, inclusion of Actor

addresses in messages, and interaction only through direct asynchronous

message passing with no restriction on message reception order.

i In general Actor systems can be exponentially faster than the parallel lambda

calculus.
ii An Actor can be implemented directly in hardware.

The Actor Model differs from its predecessors and most current models of

computation in that the Actor Model assumes the following:

 Concurrent execution in processing a message.

 The following are not required by an Actor: a thread, a mailbox, a

message queue, its own operating system process, etc.i

 Message passing has the same overhead as looping and procedure

calling.

 Primitive Actors can be implemented in hardware.ii

The Actor Model can be used as a framework for modeling, understanding, and

reasoning about, a wide range of concurrent systems.

For example:

 Electronic mail (e-mail) can be modeled as an Actor system. Mail

accounts are modeled as Actors and email addresses as Actor

addresses.

 Web Services can be modeled with SOAP endpoints modeled as Actor

addresses.

 Objects with locks (e.g. as in Java and C#) can be modeled as Actors.

Direct communication and asynchrony

The Actor Model is based on one-way asynchronous communication. Once a

message has been sent, it is the responsibility of the receiver.3

Messages in the Actor Model are decoupled from the sender and are delivered

by the system on a best efforts basis.4 This was a sharp break with previous

approaches to models of concurrent computation in which message sending is

tightly coupled with the sender and sending a message synchronously transfers

it someplace, e.g., to a buffer, queue, mailbox, channel, broker, server, etc. or

to the “ether” or “environment” where it temporarily resides. The lack of

synchronicity caused a great deal of misunderstanding at the time of the

development of the Actor Model and is still a controversial issue.

Because message passing is taken as fundamental in the Actor Model, there

cannot be any required overhead, e.g., any requirement to use buffers, pipes,

queues, classes, channels, etc. Prior to the Actor Model, concurrency was

defined in low level machine terms.

i For example, if an Actor were required to have a mailbox then, the mailbox would

be an Actor that is required to have its own mailbox…

ii In some cases, this involves (clocked) one-way messages so message guarantees

and exception processing can be different from typical application Actors.

It certainly is the case that implementations of the Actor Model typically make

use of these hardware capabilities. However, there is no reason that the model

could not be implemented directly in hardware without exposing any hardware

threads, locks, queues, cores, channels, tasks, etc. Also, there is no necessary

relationship between the number of Actors and the number threads, cores,

locks, tasks, queues, etc. that might be in use. Implementations of the Actor

Model are free to make use of threads, locks, tasks, queues, coherent memory,

transactional memory, cores, etc. in any way that is compatible with the laws

for Actors [Baker and Hewitt 1977].

As opposed to the previous approach based on composing sequential processes,

the Actor Model was developed as an inherently concurrent model. In the Actor

Model sequential ordering is a special case that derived from concurrent

computation. Also, the Actor Model is based on communication rather that a

global state space as in Turing Machines, CSP [Hoare 1978], Java [Sun 1995,

2004], C++11 [ISO 2011], X86 [AMD 2011], etc. The Actor Model does not

take classical sequential processes as primitive and is not built on

communicating sequential processes.

A natural development of the Actor Model was to allow Actor addresses in

messages. A computation might need to send a message to a recipient from

which it would later receive a response. The way to do this is to send a

communication which has the message along with the address of another Actor

called the customer along with the message. The recipient could then cause a

response message to be sent to the customer.

Indeterminacy and Quasi-commutativity

The Actor Model supports indeterminacy because the reception order of

messages can affect future behavior.

Operations are said to be quasi-commutative to the extent that it doesn’t matter

in which order they occur. To the extent possible, quasi-commutativity is used

to reduce indeterminacy.

Locality and Security

Locality and security are important characteristics of the Actor Model[Baker

and Hewitt 1977].5

Locality and security mean that in processing a message: an Actor can send

messages only to addresses for which it has information by the following

means:

1. that it receives in the message

2. that it already had before it received the message

3. that it creates while processing the message.

In the Actor Model, there is no hypothesis of simultaneous change in multiple

locations. In this way it differs from some other models of concurrency, e.g.,

the Petri net model in which tokens are simultaneously removed from multiple

locations and placed in other locations.

That there be no single point of failure can be an important aspect of

security.

The security of Actor systems can be protected in the following ways:

Strong personal authentication, e.g., using (3D) continuous interactive

bio-authentication instead of passwords

Strong, ubiquitous public key authentication so that it can be

verified to whom a public key corresponds. Often this

authentication can be performed by local bank offices, etc.

that publish online multi-national directories of public keys in

a network of mistrust. Individual citizens can have their own

directories of public keys that are used to automatically and

invisibly securely communicate with others.

 Many citizens will have more than one authenticated public key,

which can be authenticated with various levels of security.

Public keys for IoT ownership so that an IoT device has both:

o a public key of its owner, which is installed when ownership is

transferred

o its own unique public/private key pair, which is created

internally when acquired by the first owner.

An owner can communicate securely with a device by encrypting

information using the device's public key. (For efficiency reasons,

most communication will actually be performed using symmetric

keys encrypted/signed by public keys.) A device takes instructions

only from its owner and is allowed to communicate with the external

world only through the information coordination system of its owner.

The nonprofit Standard IoT Foundation is working to develop

standards based on the Actor Model of computation that provide for

interoperation among existing and emerging consortium and

proprietary corporate IoT standards.

Hardware architecture security to help cope with the complexity of

software systems that can never be made highly secure without

hardware assistance including the following:

o RAM-processor package encryption (i.e. all traffic between a

processor package and RAM is encrypted using a uniquely

generated key when a package is powered up and which is

invisible to all software) to protect an app (i.e. a user application,

which is technically a process) from the following:

 operating systems and hypervisors

 other apps

 other equipment, e.g., baseband processors, disk controllers,

and USB controllers.

o Hardware Actors that communicate only using message passing

to protect security registers

o Every-word-tagged architecture to protect an Actor in an app

from other Actors by using a tag on each word of memory that

controls how the memory can be used. Each Actor is protected

from reading and/or writing by other Actors in its process. Actors

can interact only by sending a message to the unforgeable address

of another Actor. Existing software (e.g., operating systems,

browsers, mail systems) will need to be upgraded to use tags.

A delicate point in the Actor Model is the ability to synthesize the address of

an Actor. In some cases security can be used to prevent the synthesis of

addresses in practice using the following:

 every-word-tagged memory

 signing and encryption of messages

Robustness in Runtime Failures

Runtime failures are always a possibility in Actor systems and are dealt with

by runtime infrastructures. Message acknowledgement, reception, and

responsei cannot be guaranteed although best efforts are made. Consequences

are cleaned up on a best-effort basis.

i a response is either a returned value or a thrown exception

Robustness is based on the following principle:6

If an Actor is sent a request, then the continuation must be one of the

following two mutually exclusive possibilities:

1. to process the responsei resulting from the recipient receiving the request

2. to throw a Messagingii exceptioniii

Just sitting there forever after a request has been sent is a silent failure, which

is unacceptable. So, in due course, the infrastructure must throw a Messaging

exception as governed by the policies in placeiv if a response (return value or

exception) to the request has not been received.

Ideally, if the continuation of sending a request is to throw a Messaging

exception, then the sender of a response to the request also receives a

Messaging exception saying that the response could not be processed.

If desired, things can arranged so that Messaging exceptions are very special

and can be distinguished from all other exceptions.

Scalability and Modularity
ActorScript™ is a general purpose programming language for implementing

iAdaptiveTM concurrency that manages resources and demand. It is

differentiated from previous languages by the following:

 Universality

o Ability to directly specify what Actors can do

o Specify interface between hardware and software

o Everything in the language is accomplished using message passing

including the very definition of ActorScript itself.

o Functional, Imperative, Logic, and Concurrent programming are

integrated. Concurrency can be dynamically adapted to resources

available and current load.

o Programs do not expose low-level implementation mechanisms such as

threads, tasks, channels, coherent memory, location transparency,

throttling, load balancing, locks, cores, etc. Messages can be directly

communicated without requiring indirection through brokers, channels,

class hierarchies, mailboxes, pipes, ports, queues etc. Variable races are

eliminated.

i conceptually processed by a customer Actor sent in the request
ii A Messaging exception can have information concerning the lack of response

iii even though the recipient may have received the request and sent a response that has

not yet been received by the customer of the request. Requestors need to be able to

interact with infrastructures concerning policies to be applied concerning when to

generate Messaging exceptions.

iv For example, several standard deviations have passed in the expected time to

receive a response.

o Binary XML and JSON are data types.

o Application binary interfaces are afforded so that no program symbol

need be looked up at runtime.

 Safety and security

o Programs are extension invariant, i.e., extending a program does not

change its meaning.

o Applications cannot directly harm each other.

 Performance

o Impose no overhead on implementation of Actor systems

o Message passing has essentially same overhead as procedure calling and

looping.

o Execution dynamically adjusted for system load and capacity (e.g.

cores)

o Locality because execution is not bound by a sequential global memory

model

o Inherent concurrency because execution is not bound by communicating

sequential processes

o Minimize latency along critical paths

ActorScript attempts to achieve the highest level of performance, scalability,

and expressibility with a minimum of conceptual primitives.

Scalable information Coordination
Technology now at hand can coordinate all kinds of digital information for

individuals, groups, and organizations so their information usefully links

together. This coordination can include calendars and to-do lists,

communications (including email, SMS, Twitter, Facebook), presence

information (including who else is in the neighborhood), physical (including

GPS recordings), psychological (including facial expression, heart rate, voice

stress) and social (including family, friends, team mates, and colleagues), maps

(including firms, points of interest, traffic, parking, and weather), events

(including alerts and status), documents (including presentations, spreadsheets,

proposals, job applications, health records, photos, videos, gift lists, memos,

purchasing, contracts, articles), contacts (including social graphs and

reputation), purchasing information (including store purchases, web purchases,

GPS and phone records, and buying and travel habits), government information

(including licenses, taxes, and rulings), and search results (including rankings

and ratings).

Connections

Information coordination works by making connections including examples

like the following:

 A statistical connection between “being in a traffic jam” and “driving in

downtown Trenton between 5PM and 6PM on a weekday.”

 A terminological connection between “MSR” and “Microsoft Research.”

 A causal connection between “joining a group” and “being a member of

the group.”

 A syntactic connection between “a pin dropped” and “a dropped pin.”

 A biological connection between “a dolphin” and “a mammal”.

 A demographic connection between “undocumented residents of

California” and “7% of the population of California.”

 A geographical connection between “Leeds” and “England.”

 A temporal connection between “turning on a computer” and “joining an

on-line discussion.”

By making these connections iInfoTM information coordination offers

tremendous value for individuals, families, groups, and organizations in making

more effective use of information technology.

Information Coordination Principles

In practice, coordinated information is invariably inconsistent.7 Therefore iInfo

must be able to make connections even in the face of inconsistency.8 The

business of iInfo is not to make difficult decisions like deciding the ultimate

truth or probability of propositions. Instead it provides means for processing

information and carefully recording its provenance including arguments

(including arguments about arguments) for and against propositions.

Information coordination needs to make use of the following principles:
 Persistence. Information is collected and indexed and no original

information is lost.
 Concurrency: Work proceeds interactively and concurrently,

overlapping in time.
 Quasi-commutativity: Information can be used regardless of whether it

initiates new work or become relevant to ongoing work.
 Sponsorship: Sponsors provide resources for computation, i.e.,

processing, storage, and communications.
 Pluralism: Information is heterogeneous, overlapping and often

inconsistent. There is no central arbiter of truth
 Provenance: The provenance of information is carefully tracked and

recorded

Interaction creates Reality9

a philosophical shift in which knowledge is no longer treated

primarily as referential, as a set of statements about reality, but

as a practice that interferes with other practices. It therefore

participates in reality.

 Annemarie Mol [2002]

Relational physics takes the following view [Laudisa and Rovelli 2008]:i

• Relational physics discards the notions of absolute state of a system

and absolute properties and values of its physical quantities.

• State and physical quantities refer always to the interaction, or the

relation, among multiple systems.

• Nevertheless, relational physics is a complete description of reality.

According to this view, Interaction creates reality. Information systems

participate in this reality and thus are both consequence and cause.

Actor systems can be organized in higher level structures to facilitate
operations.

Organizational Programming using iOrgs
The Actor Model supports Organizational Programming that is based on

authority and accountability in iOrgs [Hewitt 2008a] with the goal of becoming

an effective readily understood approach for addressing scalability issues in

Software Engineering. The paradigm takes its inspiration from human

organizations. iOrgs provide a framework for addressing issues of hierarchy,

authority, accountability, scalability, and robustness using methods that are

analogous to human organizations. Because humans are very familiar with the

principles, methods, and practices of human organizations, they can transfer

this knowledge and experience to iOrgs. iOrgs achieve scalability using

methods and principles similar to those used in human organizations. For

example an iOrg can have sub-organizations specialized by areas such as sales,

production, and so forth. Authority is delegated down the organizational

structure and when necessary issues are escalated upward. Authority requires

accountability for its use including record keeping and periodic reports.

Management is in large part the art of reconciling authority and accountability.

i According to [Rovelli 1996]: Quantum mechanics is a theory about the physical

description of physical systems relative to other systems, and this is a complete

description of the world.

 [Feynman 1965] offered the following advice: Do not keep saying to yourself,

if you can possibly avoid it, “But how can it be like that?" because you will go

“down the drain," into a blind alley from which nobody has yet escaped.

Authority Accountability

Organizational Programming for iOrgs

iOrgs are structured around organizational commitment defined as information

pledged constituting an alliance to go forward. For example, iOrgs can use

contracts to formalize their mutual commitments to fulfill specified obligations

to each other.

Executive

Sales

Accounting Engineering
info

in
fo

Hierarchical parallelism

Heterarchical concurrency

Scalability of iOrgs

Yet, manifestations of information pledged will often be inconsistent. Any

given agreement might be internally inconsistent, or two agreements in force at

one time could contradict each other.

Executive

Sales

Accounting Engineering
info

inf
o

Inconsistency by Design for iOrgs

Issues that arise from such inconsistencies can be negotiated among iOrgs. For

example the Sales department might have a different view than the Accounting

department as to when a transaction should be booked.

A fundamental goal of Inconsistency Robustness is to effectively reason

about large amounts of information at high degrees of abstraction:

 Inconsistency

 Robustness
I
n

f
o

r
m

a
t
i
o

n

Large

Small

Low
High

 Classical Logic

First-order Logic

Correlations

Classical logic is safe only for theories for which there is strong evidence

of consistency.

Actor Addresses and Implementations

Actor addresses have types. For example the type Account has the following

interface description:

Account

availableBalance[]↦Euro

deposit[Euro]↦Void

withdraw[Euro]↦Void

Message Passing

availableBalance[]

deposit[anAmount]
myBalance := myBalance + anAmount

myBalance

initially: myBalance=startingBalance

withdraw[anAmount] amount > myBalance
also

myBalance := myBalance - anAmount

(amount > myBalance)

Overdrawn[]

SimpleAccount[StartingBalance]

Computational Representation Theorem
The Computational Representation Theorem [Clinger 1981; Hewitt 2006]10
characterizes computation for systems which are closed in the sense that they
do not receive communications from outside:

The denotation DenoteS of a closed system S represents all the possible
behaviors of S as

 DenoteS = limit
i→∞

ProgressionS
i

where ProgressionS takes a set of partial behaviors to their next stage,
i.e., Progression S

i⇾i Progression S
i+1

In this way, S can be mathematically characterized in terms of all its possible

behaviors (including those involving unbounded nondeterminism).ii

The denotations form the basis of constructively checking programs against
all their possible executions,iii

A consequence of the Computational Representation Theorem is that there are

uncountably many different Actors.

For example, Real∎[] can output any real number between 0 and 1 where

 Real∎[] ≡ [(0 either 1), ⩛Postpone Real∎[]]
such that

• (0 either 1) is the nondeterministic choice of 0 or 1

• [first, ⩛rest] is the list that begins with first and whose remainder is rest

• Postpone expression delays execution of expression until the value is

needed.

The upshot is that concurrent systems can be axiomatized using

mathematical logiciv but in general cannot be implemented. Thus, the

following practical problem arose:

How can practical programming languages be rigorously defined since

the proposal [Scott and Strachey 1971, Milne and Strachey 1976] to

define them in terms lambda calculus failed because the lambda calculus

cannot implement concurrency?11

A proposed answer to this question is the semantics of ActorScript [Hewitt

2010].

Using Implementations versus Interface Extension
Programming languages like ActorScript [Hewitt 2010] take the approach of

extending behavior in contrast to the approach of specializing behavior:

i read as “can evolve to”

ii There are no messages in transit in DenoteS

iii a restricted form of Model Checking in which the properties checked are limited to

those that can be expressed in Linear-time Temporal Logic has been studied

[Clarke, Emerson, Sifakis, etc. ACM 2007 Turing Award]
iv including the lambda calculus

 Using implementations: An implement type can make use of other

implementations. However, an implementation cannot be subtyped

because it is branded to guarantee its behavior that might be violated by

subtypes. Consequently, Actors automatically vacuously have the

substitution property [Liskov 1987, Liskov and Wing 2001] for

implementations.

 Interface extension: A type interface can be extended to have additional

message signatures from the type interface that it extends. In general, a

system cannot guarantee properties of implementations of an interface

type. Consequently, the substitution property may not hold even for Actors

that implement the same interface.

Language constructs versus Library APIs

Library Application Programming Interfaces (APIs) are an alternative way to

introduce concurrency.

For example,

 A limited version of futures[Baker and Hewitt 1977] have been introduced

in C++11 [ISO 2011].

 Message Passing Interface (MPI) [Gropp et. al. 1998] provides some ability

to pass messages.

 Grand Central Divide provides for queuing tasks.

There are a number of library APIs for Actor-like systems.

In general, appropriately defined language constructs provide greater power,

flexibility, and performance than library APIs.12

Reasoning about Actor Systems

The principle of Actor induction is:

1. Suppose that an Actor x has property P when it is created

2. Further suppose that if x has property P when it receives a message,

then it has property P when it receives the next message.

3. Then x always has the property P.

In his doctoral dissertation, Aki Yonezawa developed further techniques for

proving properties of Actor systems including those that make use of migration.

Russ Atkinson developed techniques for proving properties of Actors that are

guardians of shared resources. Gerry Barber's 1981 doctoral dissertation

concerned reasoning about change in knowledgeable office systems.

Other models of concurrency

The Actor Model does not have the following restrictions of other models of

concurrency:13

 Single threadedness: There are no restrictions on the use of threads in

implementations.

 Message delivery order: There no restrictions on message delivery order.

 Independence of sender: The semantics of a message in the Actor Model

is independent of the sender.

 Lack of garbage collection (automated storage reclamation): The Actor

Model can be used in the following systems:

 CLR and extensions (Microsoft and Xamarin)

 JVM (Oracle and IBM)

 LLVM (Apple)

 Dalvik (Google)

In due course, we will need to extend the above systems with a tagged

extension of the X86 and ARM architectures. Many-core architecture has

made a tagged extension necessary in order to provide the following:

 concurrent, nonstop, no-pause automated storage reclamation

(garbage collection) and relocation to improve performance,

 prevention of memory corruption that otherwise results from

programming languages like C and C++ using thousands of threads

in a process,

 nonstop migration of Actors (while they are in operation) within a

computer and between distributed computers.

Swiss Cheese

Swiss cheese [Hewitt and Atkinson 1977, 1979; Atkinson 1980]14 is a

programming language construct for scheduling concurrent access to shared

resources with the following goals:

 Generality: Ability to conveniently program any scheduling policy

 Performance: Support maximum performance in implementation, e.g.,

the ability to avoid repeatedly recalculating conditions for proceeding.

 Understandability: Invariants of an Actor should hold at all observable

execution points.

Concurrency control for readers and writers in a shared resource is a classic

problem that illustrates limitations of Fog Cutter Actors. The fundamental

constraint is that multiple writers are not allowed to operate concurrently and

a writer is not allowed operate concurrently with a reader.

Cheese diagram for ReadersWriter implementations:i

i The interface for the readers/writer guardian is the same as the interface for the shared

resource: Interface ReadersWriter with read[Query]↦ QueryAnswer,

 write[Update]↦ Void｡

readersQ

theResource∎read[aQuery]

writersQ

theResource∎write[anUpdate]

 ¬writing
also

 numberReading := numberReading+1

numberReading=0
also

writing := True

numberReading := numberReading-1

writing := False

theResource∎read[aQuery]

theResource∎write[anUpdate]

initially: writing=False, numberReading=0

invariant: writing ⇒ numberReading=0

read[aQuery]

write[anUpdate]

Note:

1. At most one activity is allowed to execute in the cheese.i

2. The cheese has holes.ii

3. A variable can change only when in a continuous section of cheese.iii

Invariants hold at cheese boundaries, i.e., an invariant must hold when the

cheese is entered. Consequently, it doesn’t matter what actions other Actors

may be concurrently performing.

Futures

Futures [Baker and Hewitt 1977] are Actors that provide parallel execution by

providing a proxy Actor for an expression while it is being computed.

i Cheese is yellow in the diagram
ii A hole is grey in the diagram
iii Of course, other external Actors can change.

The procedure below can computer the size of a list concurrently with creating

the list making use of FutureList, which is a list that is either the empty list or

whose list of elements after the first is a future.

Size∎[aFutureList:FutureListString]:Integer ≡

 ⦾aFutureList � // resolve the beginning of aFutureList
 [] ⦂ 0

 [first, ⩛rest] ⦂
 // first is a string and rest is a future of the remainder
 first∎length[] + Size∎[rest]▮

Future work

As was the case with the lambda calculus and functional programming,i it has

taken decades since they were invented [Hewitt, Bishop, and Steiger 1973] to

understand the scientific and engineering of Actor Systems and it is still very

much a work in progress.

Actors are becoming the default model of computation. C#, Java, JavaScript,

Objective C, and SystemVerilog are all headed in the direction of the Actor

Model and ActorScript is a natural extension of these languages. Since it is very

close to practice, many programmers just naturally assume the Actor Model.

The following major developments in computer technology are pushing the

Actor Model forward because Actor Systems are highly scalable:

 Many-core computer architectures

 Client-cloud computing

In fact, the Actor Model and ActorScript can be seen as codifying what are

becoming some best programming practices for many-core and client-cloud

computing.

Conclusion

The Actor Model is a mathematical theory that treats “Actors” as the universal

conceptual primitives of concurrent digital computation. The model has been

used both as a framework for a theoretical understanding of concurrency, and

as the theoretical basis for several practical implementations of concurrent

systems. Unlike previous models of computation, the Actor Model was inspired

by physical laws. It was also influenced by the programming languages Lisp,

Simula 67 and Smalltalk-72, as well as ideas for Petri Nets, capabilities systems

and packet switching. The advent of massive concurrency through client-cloud

computing and many-core computer architectures has galvanized interest in the

Actor Model.

i For example, it took over four decades to develop the eval message-passing model

of the lambda calculus [Hewitt, Bishop, and Steiger 1973, Hewitt 2011] building

on the Lisp procedural model.

When an Actor receives a message, it can concurrently:

 Send messages to (unforgeable) addresses of Actors that it has.

 Create new Actors.i

 Designate how to handle the next message received.

There is no assumed order to the above actions and they could be carried out

concurrently. In addition two messages sent concurrently can be received in

either order. Decoupling the sender from communication it sends was a

fundamental advance of the Actor Model enabling asynchronous

communication and control structures as patterns of passing messages.

Preferred methods for characterizing the Actor Model are as follows:

 Axiomatically stating laws that apply to all Actor systems [Baker and

Hewitt 1977]

 Denotationally using the Computational Representation Theorem to

characterize Actor computations [Clinger 1981; Hewitt 2006].

 Operationally using a suitable Actor programming language, e.g.,

ActorScript [Hewitt 2012] that specifies how Actors can be

implemented.

The Actor Model can be used as a framework for modeling, understanding, and

reasoning about, a wide range of concurrent systems.

For example:

 Electronic mail (e-mail) can be modeled as an Actor system. Accounts

are modeled as Actors and email addresses as Actor addresses.

 Web Services can be modeled with endpoints modeled as Actor

addresses.

 Objects with locks (e.g. as in Java and C#) can be modeled as Actors.

 The Actor Model can be a computational foundation for Inconsistency

Robustness

The Actor Model supports Organizational Programming that is based on

authority and accountability in iOrgs [Hewitt 2008a] with the goal of becoming

an effective readily understood approach for addressing scalability issues in

Software Engineering. The paradigm takes its inspiration from human

organizations. iOrgs provide a framework for addressing issues of hierarchy,

authority, accountability, scalability, and robustness using methods that are

analogous to human organizations. Because humans are very familiar with the

principles, methods, and practices of human organizations, they can transfer

this knowledge and experience to iOrgs. iOrgs achieve scalability by mirroring

human organizational structure. For example an iOrg can have sub-

organizations specialized by areas such as sales, production, and so forth.

Authority is delegated down the organizational structure and when necessary

i with new addresses

issues are escalated upward. Authority requires accountability for its use

including record keeping and periodic reports. Management is in large part the

art of reconciling authority and accountability.

Actor technology will see significant application for coordinating all kinds of

digital information for individuals, groups, and organizations so their

information usefully links together.

Information coordination needs to make use of the following information

system principles:

 Persistence. Information is collected and indexed.

 Concurrency: Work proceeds interactively and concurrently,

overlapping in time.

 Quasi-commutativity: Information can be used regardless of whether it

initiates new work or become relevant to ongoing work.

 Sponsorship: Sponsors provide resources for computation, i.e.,

processing, storage, and communications.

 Pluralism: Information is heterogeneous, overlapping and often

inconsistent.

 Provenance: The provenance of information is carefully tracked and

recorded

The Actor Model is intended to provide a foundation for inconsistency robust

information coordination.

Acknowledgements

Important contributions to the semantics of Actors have been made by: Gul

Agha, Beppe Attardi, Henry Baker, Will Clinger, Irene Greif, Carl Manning,

Ian Mason, Ugo Montanari, Maria Simi, Scott Smith, Carolyn Talcott, Prasanna

Thati, and Aki Yonezawa.

Important contributions to the implementation of Actors have been made by:

Gul Agha, Bill Athas, Russ Atkinson, Beppe Attardi, Henry Baker, Gerry

Barber, Peter Bishop, Nanette Boden, Jean-Pierre Briot, Bill Dally, Blaine

Garst, Peter de Jong, Jessie Dedecker, Ken Kahn, Rajesh Karmani, Henry

Lieberman, Carl Manning, Mark S. Miller, Tom Reinhardt, Chuck Seitz, Amin

Shali, Richard Steiger, Dan Theriault, Mario Tokoro, Darrell Woelk, and Carlos

Varela.

Research on the Actor Model has been carried out at Caltech Computer Science,

Kyoto University Tokoro Laboratory, MCC, MIT Artificial Intelligence

Laboratory, SRI, Stanford University, University of Illinois at Urbana-

Champaign Open Systems Laboratory, Pierre and Marie Curie University

(University of Paris 6), University of Pisa, University of Tokyo Yonezawa

Laboratory and elsewhere.

Conversations over the years with Dennis Allison, Bruce Anderson, Arvind,

Bob Balzer, Bruce Baumgart, Gordon Bell, Dan Bobrow, Rod Burstall, Luca

Cardelli, Vint Cerf, Keith Clark, Douglas Crockford, Jack Dennis, Peter

Deutsch, Edsger Dijkstra, Scott Fahlman, Dan Friedman, Ole-Johan Dahl,

Julian Davies, Patrick Dussud, Doug Englebart, Bob Filman, Kazuhiro Fuchi,

Cordell Green, Jim Gray, Pat Hayes, Anders Hejlsberg, Pat Helland, John

Hennessy, Tony Hoare, Mike Huhns, Dan Ingalls, Anita Jones, Bob Kahn,

Gilles Kahn, Alan Karp, Alan Kay, Bob Kowalski, Monica Lam, Butler

Lampson, Leslie Lamport, Peter Landin, Vic Lesser, Jerry Lettvin, Lick

Licklider, Barbara Liskov, John McCarthy, Drew McDermott, Dave McQueen,

Erik Meijer, Robin Milner, Marvin Minsky, Fanya S. Montalvo, Ike Nassi, Alan

Newell, Kristen Nygaard, Seymour Papert, David Patterson, Carl Petri, Gordon

Plotkin, Vaughan Pratt, John Reynolds, Jeff Rulifson, Earl Sacerdoti, Vijay

Saraswat, Munindar Singh, Dana Scott, Ehud Shapiro, Burton Smith, Guy

Steele, Gerry Sussman, Chuck Thacker, Kazunori Ueda, Dave Unger, Richard

Waldinger, Peter Wegner, Richard Weyhrauch, Jeannette Wing, Terry

Winograd, Glynn Winskel, David Wise, Bill Wulf, etc. greatly contributed to

the development of the ideas in this article.

The members of the Silicon Valley Friday AM group made valuable

suggestions for improving this paper. Blaine Garst found numerous bugs and

made valuable comments including information on the historical development

of interfaces. Patrick Beard found bugs and suggested improvements in

presentation. Discussions with Dennis Allison, Eugene Miya, Vaughan Pratt

and others were helpful in improving this article. As reviewers for

Inconsistency Robustness 2011, Blaine Garst, Mike Huhns and Patrick Suppes

made valuable suggestions for improvement. Discussions with Dale

Schumacher helped clarify issues with Fog Cutter Actors and also helped debug

the axiomatization of runtime failures in the Actor Model. Phil Bernstein,

Sergey Bykov, and Gabi Kliot provide valuable comments on the section on

Orleans Actors. Terry Hayes, Chris Hibbert, Daira Hopwood, Ken Kahn, Alan

Karp, William Leslie, and Mark S. Miller and made helpful suggestions for the

sections on capability, Orleans, and JavaScript Actors. Dan Ingalls made

helpful suggestions on the sections on Smalltalk and elsewhere.

The Actor Model is intended to provide a foundation for scalable inconsistency-

robust information coordination in privacy-friendly client-cloud computing

[Hewitt 2009b].

Bibliography
Hal Abelson and Gerry Sussman Structure and Interpretation of Computer

Programs 1984.

Gul Agha. Actors: A Model of Concurrent Computation in Distributed Systems

Doctoral Dissertation. 1986.

Gul Agha, Ian Mason, Scott Smith, and Carolyn Talcott. “A foundation for

Actor computation.” Journal of Functional Programming. 1997.

Mikael Amborn. Facet-Oriented Program Design. LiTH-IDA-EX–04/047–

SE Linkőpings Universitet. 2004.

AMD AMD64 Architecture Programmer's Manual October 12, 3011

Joe Armstrong History of Erlang HOPL III. 2007.

Joe Armstrong. Erlang. CACM. September 2010.

William Athas and Charles Seitz Multicomputers: message-passing concurrent

computers IEEE Computer August 1988.

William Athas and Nanette Boden Cantor: An Actor Programming System for

Scientific Computing in Proceedings of the NSF Workshop on Object-Based

Concurrent Programming. 1988. Special Issue of SIGPLAN Notices.

Russ Atkinson. Automatic Verification of Serializers MIT Doctoral

Dissertation. June, 1980.

Henry Baker. Actor Systems for Real-Time Computation MIT EECS Doctoral

Dissertation. January 1978.

Henry Baker and Carl Hewitt The Incremental Garbage Collection of

Processes Proceeding of the Symposium on Artificial Intelligence

Programming Languages. SIGPLAN Notices 12, August 1977.

Paul Baran. On Distributed Communications Networks IEEE Transactions on

Communications Systems. March 1964.

Gerry Barber. Reasoning about Change in Knowledgeable Office Systems MIT

EECS Doctoral Dissertation. August 1981.

John Barton. Language Features November 12, 2014.

https://github.com/google/traceur-compiler/wiki/LanguageFeatures

Robert Bemer How to consider a computer Data Control Section, Automatic

Control Magazine. March 1957.

Robert Bemer. The status of automatic programming for scientific

computation Proc. 4th Annual Computer Applications Symposium. Armour

Research Foundation. October 1057. (Panel discussion, pp. 118-126).

Philip A. Bernstein, Sergey Bykov, Alan Geller, Gabriel Kliot, and Jorgen

Thelin, Orleans: Distributed Virtual Actors for Programmability and

Scalability Microsoft MSR-TR-2014-41. March 24, 2014.

Harold Boley. A Tight, Practical Integration of Relations and Functions

Springer. 1999.

Sergey Bykov, Alan Geller, Gabriel Kliot, James Larus, Ravi Pandya, and

Jorgen Thelin. Orleans: A Framework for Cloud Computing Microsoft MSR-

TR-2010-159. November 30, 2010

Sergey Bykov. Building Real-Time Services for Halo Microsoft Research. June

26, 2013.

Peter Bishop Very Large Address Space Modularly Extensible Computer

Systems MIT EECS Doctoral Dissertation. June 1977.

Andreas Blass, Yuri Gurevich, Dean Rosenzweig, and Benjamin Rossman

(2007a) Interactive small-step algorithms I: Axiomatization Logical Methods

in Computer Science. 2007.

Andreas Blass, Yuri Gurevich, Dean Rosenzweig, and Benjamin Rossman

(2007b) Interactive small-step algorithms II: Abstract state machines and the

characterization theorem. Logical Methods in Computer Science. 2007.

https://github.com/google/traceur-compiler/wiki/LanguageFeatures

W. Earl Boebert. On the inability of an unmodified capability machine to

enforce the *-property. 7th DOD/NBS Computer Security Conference.

September 24-26, 1984.

Per Brinch Hansen Monitors and Concurrent Pascal: A Personal History

CACM 1996.

Stephen Brookes, Tony Hoare, and Bill Roscoe. A theory of communicating

sequential processes JACM. July 1984.

Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah

Mendelsohn, Henrik Nielsen, Satish Thatte, Dave Winer. Simple Object

Access Protocol (SOAP) 1.1 World Wide Web Consortium Note. May 2000.

Jean-Pierre Briot. Acttalk: A framework for object-oriented concurrent

programming-design and experience 2nd France-Japan workshop. 1999.

Jean-Pierre Briot. From objects to Actors: Study of a limited symbiosis in

Smalltalk-80 Rapport de Recherche 88-58, RXF-LITP. Paris, France.

September 1988.

Luca Cardelli, James Donahue, Lucille Glassman, Mick Jordan, Bill Kalsow,

Greg Nelson. Modula-3 report (revised) DEC Systems Research Center

Research Report 52. November 1989.

Luca Cardelli and Andrew Gordon Mobile Ambients FoSSaCS’98.

Arnaud Carayol, Daniel Hirschkoff, and Davide Sangiorgi. On the

representation of McCarthy's amb in the π-calculus “Theoretical Computer

Science” February 2005.

Ajay Chander, Drew Dean, John Mitchell. A State-Transition Model of Trust

Management and Access Control. Proceedings of the Fourteenth IEEE

Computer Security Foundations Workshop, Cape Breton, Nova Scotia, June

2001.

Bernadette Charron-Bost, Friedemann Mattern, and Gerard Tel. Synchronous,

Asynchronous, and Causally Ordered Communication Distributed

Computing. 1995.

Alonzo Church “A Set of postulates for the foundation of logic (1&2)” Annals

of Mathematics. Vol. 33, 1932. Vol. 34, 1933.

Alonzo Church. An unsolvable problem of elementary number theory American

Journal of Mathematics. 58. 1936.

Alonzo Church The Calculi of Lambda-Conversion Princeton University Press.

1941.

Will Clinger. Foundations of Actor Semantics MIT Mathematics Doctoral

Dissertation. June 1981.

Tyler Close. Web-key: Mashing with Permission WWW’08.

Melvin Conway. Design of a separable transition-diagram compiler CACM.

1963.

Eric Crahen. Facet: A pattern for dynamic interfaces. CSE Dept. SUNY at

Buffalo. July 22, 2002.

Ole-Johan Dahl and Kristen Nygaard. “Class and subclass declarations” IFIP

TC2 Conference on Simulation Programming Languages. May 1967.

Ole-Johan Dahl and Tony Hoare. Hierarchical Program Structures in

“Structured Programming” Prentice Hall. 1972.

William Dally and Wills, D. Universal mechanisms for concurrency PARLE

‘89.

William Dally, et al. The Message-Driven Processor: A Multicomputer

Processing Node with Efficient Mechanisms IEEE Micro. April 1992.

Jack Dennis and Earl Van Horn. Programming Semantics for

Multiprogrammed Computations CACM. March 1966.

ECMA. C# Language Specification June 2006.

ECMA ECMAScript Language Specification 6th Edition Draft December 6,

2014.

Jed Donnelley. A Distributed Capability Computing System Proceedings of the

Third International Conference on Computer Communication. August, 1976.

Lars Ekeroth and Per-Martin Hedstrὂm. General Packet Radio Service (GPRS)

Support Notes Ericsson Review No. 3. 2000.

Arthur Fine The Shaky Game: Einstein Realism and the Quantum Theory

University of Chicago Press, Chicago, 1986.

Nissim Francez, Tony Hoare, Daniel Lehmann, and Willem-Paul de Roever.

Semantics of nondeterminism, concurrency, and communication Journal of

Computer and System Sciences. December 1979.

Christopher Fuchs Quantum mechanics as quantum information (and only a

little more) in A. Khrenikov (ed.) Quantum Theory: Reconstruction of

Foundations (Växjo: Växjo University Press, 2002).

Blaine Garst. Origin of Interfaces Email to Carl Hewitt on October 2, 2009.

Elihu M. Gerson. Prematurity and Social Worlds in Prematurity in Scientific

Discovery. University of California Press. 2002.

Andreas Glausch and Wolfgang Reisig. Distributed Abstract State Machines

and Their Expressive Power Informatik Berichete 196. Humboldt University

of Berlin. January 2006.

Adele Goldberg and Alan Kay (ed.) Smalltalk-72 Instruction Manual SSL 76-

6. Xerox PARC. March 1976.

Dina Goldin and Peter Wegner. The Interactive Nature of Computing: Refuting

the Strong Church-Turing Thesis Minds and Machines March 2008.

Irene Greif and Carl Hewitt. Actor Semantics of PLANNER-73 Conference

Record of ACM Symposium on Principles of Programming Languages.

January 1975.

Irene Greif. Semantics of Communicating Parallel Professes MIT EECS

Doctoral Dissertation. August 1975.

Werner Heisenberg. Physics and Beyond: Encounters and Conversations

translated by A. J. Pomerans (Harper & Row, New York, 1971), pp. 63– 64.

Carl Hewitt, Peter Bishop and Richard Steiger. A Universal Modular Actor

Formalism for Artificial Intelligence IJCAI’73.

Carl Hewitt, et al. Actor Induction and Meta-evaluation Conference Record of

ACM Symposium on Principles of Programming Languages, January 1974.

Carl Hewitt, The Apiary Network Architecture for Knowledgeable Systems

Proceedings of Lisp Conference. 1980.

Carl Hewitt and Henry Lieberman. Design Issues in Parallel Architecture for

Artificial Intelligence MIT AI memo 750. Nov. 1983.

Carl Hewitt, Tom Reinhardt, Gul Agha, and Giuseppe Attardi Linguistic

Support of Receptionists for Shared Resources MIT AI Memo 781. Sept.

1984.

Carl Hewitt, et al. Behavioral Semantics of Nonrecursive Control Structure

Proceedings of Colloque sur la Programmation, April 1974.

Carl Hewitt. How to Use What You Know IJCAI. September, 1975.

Carl Hewitt. Viewing Control Structures as Patterns of Passing Messages AI

Memo 410. December 1976. Journal of Artificial Intelligence. June 1977.

Carl Hewitt and Henry Baker Laws for Communicating Parallel Processes

IFIP-77, August 1977.

Carl Hewitt and Russ Atkinson. Specification and Proof Techniques for

Serializers IEEE Journal on Software Engineering. January 1979.

Carl Hewitt, Beppe Attardi, and Henry Lieberman. Delegation in Message

Passing Proceedings of First International Conference on Distributed

Systems Huntsville, AL. October 1979.

Carl Hewitt and Gul Agha. Guarded Horn clause languages: are they deductive

and Logical? in Artificial Intelligence at MIT, Vol. 2. MIT Press 1991.

Carl Hewitt and Jeff Inman. DAI Betwixt and Between: From "Intelligent

Agents" to Open Systems Science IEEE Transactions on Systems, Man, and

Cybernetics. Nov./Dec. 1991.

Carl Hewitt and Peter de Jong. Analyzing the Roles of Descriptions and Actions

in Open Systems Proceedings of the National Conference on Artificial

Intelligence. August 1983.

Carl Hewitt. (2006). “What is Commitment? Physical, Organizational, and

Social” COIN@AAMAS’06. (Revised in Springer Verlag Lecture Notes in

Artificial Intelligence. Edited by Javier Vázquez-Salceda and Pablo Noriega.

2007) April 2006.

Carl Hewitt (2007a). “Organizational Computing Requires Unstratified

Paraconsistency and Reflection” COIN@AAMAS. 2007.

Carl Hewitt (2008a) Norms and Commitment for iOrgsTM Information Systems:

Direct LogicTM and Participatory Argument Checking ArXiv 0906.2756.

Carl Hewitt (2008b) “Large-scale Organizational Computing requires

Unstratified Reflection and Strong Paraconsistency” Coordination,

Organizations, Institutions, and Norms in Agent Systems III Jaime Sichman,

Pablo Noriega, Julian Padget and Sascha Ossowski (ed.). Springer-Verlag.

http://organizational.carlhewitt.info/

Carl Hewitt (2008c) Middle History of Logic Programming: Resolution,

Planner, Edinburgh Logic for Computable Functions, Prolog and the

Japanese Fifth Generation Project ArXiv 0904.3036.

Carl Hewitt (2008e). ORGs for Scalable, Robust, Privacy-Friendly Client

Cloud Computing IEEE Internet Computing September/October 2008.

http://arxiv.org/abs/0906.2756
http://arxiv.org/abs/0906.2756
http://arxiv.org/abs/0904.3036
http://arxiv.org/abs/0904.3036
http://arxiv.org/abs/0904.3036

Carl Hewitt (2008f) Formalizing common sense for scalable inconsistency-

robust information integration using Direct LogicTM and the Actor Model

Inconsistency Robust 2011.

Carl Hewitt (2009a) Perfect Disruption: The Paradigm Shift from Mental

Agents to ORGs IEEE Internet Computing. Jan/Feb 2009.

Carl Hewitt (2009b) A historical perspective on developing foundations for

client-cloud computing: iConsultTM & iEntertainTM Apps using iInfoTM

Information Integration for iOrgsTM Information Systems (Revised version of

“Development of Logic Programming: What went wrong, What was done

about it, and What it might mean for the future” AAAI Workshop on What

Went Wrong. AAAI-08.) ArXiv 0901.4934.

Carl Hewitt (2009c) Middle History of Logic Programming: Resolution,

Planner, Prolog and the Japanese Fifth Generation Project ArXiv 0904.3036

Carl Hewitt (2010a) ActorScript™ extension of C#®, Java®, and Objective C®:,

iAdaptiveTM concurrency for antiCloudTM-privacy and security in
Inconsistency Robustness. College Publications. 2015.

Carl Hewitt, Erik Meijer, and Clemens Szyperski “The Actor Model

(everything you wanted to know, but were afraid to ask)”

http://channel9.msdn.com/Shows/Going+Deep/Hewitt-Meijer-and-

Szyperski-The-Actor-Model-everything-you-wanted-to-know-but-were-

afraid-to-ask Microsoft Channel 9. April 9, 2012.

Carl Hewitt. “Health Information Systems Technologies”

http://ee380.stanford.edu/cgi-bin/videologger.php?target=120606-ee380-

300.asx Slides for this video: http://HIST.carlhewitt.info Stanford CS

Colloquium. June 6, 2012.

Carl Hewitt. What is computation? Actor Model versus Turing's Model in “A

Computable Universe: Understanding Computation & Exploring Nature as

Computation”. edited by Hector Zenil. World Scientific Publishing.

Company. 2012 . PDF at http://what-is-computation.carlhewitt.info
Carl Hewitt. Security without IoT Mandatory Backdoors: Using Distributed

Encrypted Public Recording to Catch & Prosecute Criminals. HAL Archives.

2015/2016. https://hal.archives-ouvertes.fr/hal-01152495

Tony Hoare Quick sort Computer Journal 5 (1) 1962.

Tony Hoare Monitors: An Operating System Structuring Concept CACM.

October 1974.

Tony Hoare. Communicating sequential processes CACM. August 1978.

Tony Hoare. Communicating Sequential Processes Prentice Hall. 1985.

Waldemer Horwat, Andrew Chien, and William Dally. Experience with CST:

Programming and Implementation PLDI. 1989.

Daniel Ingalls. Design Principles Behind Smalltalk. Byte. August 1981.

Daniel Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. Back

to the Future: the story of Squeak, a practical Smalltalk written in itself

ACM Digital Library. 1997.

Peter Ingerman, Thunks: A Way of Compiling Procedure Statements with Some

Comments on Procedure Declarations. CACM 4 (1). 1961.

http://arxiv.org/abs/0812.4852
http://arxiv.org/abs/0812.4852
http://arxiv.org/abs/0901.4934
http://arxiv.org/abs/0901.4934
http://arxiv.org/abs/0901.4934
http://arxiv.org/abs/0904.3036
http://arxiv.org/abs/0904.3036
http://channel9.msdn.com/Shows/Going+Deep/Hewitt-Meijer-and-Szyperski-The-Actor-Model-everything-you-wanted-to-know-but-were-afraid-to-ask
http://channel9.msdn.com/Shows/Going+Deep/Hewitt-Meijer-and-Szyperski-The-Actor-Model-everything-you-wanted-to-know-but-were-afraid-to-ask
http://channel9.msdn.com/Shows/Going+Deep/Hewitt-Meijer-and-Szyperski-The-Actor-Model-everything-you-wanted-to-know-but-were-afraid-to-ask
http://channel9.msdn.com/Shows/Going+Deep/Hewitt-Meijer-and-Szyperski-The-Actor-Model-everything-you-wanted-to-know-but-were-afraid-to-ask
http://channel9.msdn.com/Shows/Going+Deep/Hewitt-Meijer-and-Szyperski-The-Actor-Model-everything-you-wanted-to-know-but-were-afraid-to-ask
http://www.stanford.edu/class/ee380/Abstracts/110112.html
http://ee380.stanford.edu/cgi-bin/videologger.php?target=120606-ee380-300.asx
http://ee380.stanford.edu/cgi-bin/videologger.php?target=120606-ee380-300.asx
http://ee380.stanford.edu/cgi-bin/videologger.php?target=120606-ee380-300.asx
http://hist.carlhewitt.info/
http://what-is-computation.carlhewitt.info/
https://hal.archives-ouvertes.fr/hal-01152495

Intel. Intel Memory Protection Extensions (Intel MPX) support in the GCC

compiler GCC Wiki. November 24, 2014.

ISO. ISO/IEC 14882:2011(E) Programming Languages -- C++, Third Edition

August, 2011.

Max Jammer The EPR Problem in Its Historical Development in Symposium

on the Foundations of Modern Physics: 50 years of the Einstein-Podolsky-

Rosen Gedankenexperiment, edited by P. Lahti and P. Mittelstaedt. World

Scientific. Singapore. 1985.

Stanisław Jaśkowski On the Rules of Suppositions in Formal Logic Studia

Logica 1, 1934. (reprinted in: Polish logic 1920-1939, Oxford University

Press, 1967.)

Simon Peyton Jones, Andrew Gordon, Sigbjorn Finne. Concurrent Haskell,

POPL’96.

Ken Kahn. A Computational Theory of Animation MIT EECS Doctoral

Dissertation. August 1979.

Matthias Kaiser and Jens Lemcke Towards a Framework for Policy-Oriented

Enterprise Management AAAI 2008.

Alan Karp, Rajiv Gupta, Guillermo Rozas, and Arindam Banerji. Using

Split Capabilities for Access Control IEEE Software. January, 2003.
Alan Karp and Jun Li. Solving the Transitive Access Problem for the Services

Oriented Architecture HPL-2008-204R1. HP Laboratories 2008.

Alan Karp and Jun Li. Access Control for the Services Oriented Architecture

ACM Workshop on Secure Web Services. November 2007

Rajesh Karmani and Gul Agha. Actors. Encyclopedia of Parallel Computing

2011.

Alan Kay. “Personal Computing” in Meeting on 20 Years of Computing Science

Instituto di Elaborazione della Informazione, Pisa, Italy. 1975.

http://www.mprove.de/diplom/gui/Kay75.pdf

Alan Kay. Alan Kay on Messaging Squeak email list. October 10, 1998.

Frederick Knabe A Distributed Protocol for Channel-Based Communication

with Choice PARLE’92.

Jorgen Knudsen and Ole Madsen. Teaching Object-Oriented Programming is

more than teaching Object-Oriented Programming Languages ECOOP'88.

Springer. 1988.

Bill Kornfeld and Carl Hewitt. The Scientific Community Metaphor IEEE

Transactions on Systems, Man, and Cybernetics. January 1981.

Bill Kornfeld. Parallelism in Problem Solving MIT EECS Doctoral

Dissertation. August 1981.

Robert Kowalski. A proof procedure using connection graphs JACM. October

1975.

Robert Kowalski Algorithm = Logic + Control CACM. July 1979.

Robert Kowalski. Response to questionnaire Special Issue on Knowledge

Representation. SIGART Newsletter. February 1980.

Robert Kowalski (1988a) The Early Years of Logic Programming CACM.

January 1988.

Robert Kowalski (1988b) Logic-based Open Systems Representation and

Reasoning. Stuttgart Conference Workshop on Discourse Representation,

Dialogue tableaux and Logic Programming. 1988.

Stein Krogdahl. The birth of Simula HiNC 1 Conference. Trondheim. June

2003.
Albert Kwon, Udit Dhawan, Jonathan Smith, Tom. Knight, Jr., and André

DeHon, “Low-fat pointers: Compact encoding and efficient gate-level
implementation of fat pointers for spatial safety and capability-based
security,” in 20th ACM Conference on Computer and Communications
Security, November 2013.

Butler Lampson. Protection. In Proceedings of the 5th Annual Princeton
Conference on Information Sciences and Systems. Princeton University,
1971.

Leslie Lamport Time, Clocks, and Orderings of Events in a Distributed System

CACM. 1978.

Leslie Lamport How to make a multiprocessor computer that correctly executes

multiprocess programs IEEE Transactions on Computers. 1979.

Peter Landin. A Generalization of Jumps and Labels UNIVAC Systems

Programming Research Report. August 1965. (Reprinted in Higher Order

and Symbolic Computation. 1998)

Peter Landin A correspondence between ALGOL 60 and Church’s lambda

notation CACM. August 1965.

Edward Lee and Stephen Neuendorffer (June 2004). Classes and Subclasses in

Actor-Oriented Design. Conference on Formal Methods and Models for

Codesign (MEMOCODE).

Henry Levy. Capability-Based Computer Systems Digital Press. 1985.

Steven Levy Hackers: Heroes of the Computer Revolution Doubleday. 1984.

Henry Lieberman. An Object-Oriented Simulator for the Apiary Conference of

the American Association for Artificial Intelligence, Washington, D. C.,

August 1983

Henry Lieberman. Thinking About Lots of Things at Once without Getting

Confused: Parallelism in Act 1 MIT AI memo 626. May 1981.

Henry Lieberman. A Preview of Act 1 MIT AI memo 625. June 1981.

Henry Lieberman and Carl Hewitt. A real Time Garbage Collector Based on

the Lifetimes of Objects CACM June 1983.

Barbara Liskov Data abstraction and hierarchy Keynote address.

OOPSLA’87.

Barbara Liskov and Liuba Shrira Promises: Linguistic Support for Efficient

Asynchronous Procedure Calls SIGPLAN’88.

Barbara Liskov and Jeannette Wing. Behavioral subtyping using invariants and

constraints in “Formal methods for distributed processing: a survey of object-

oriented approaches” Cambridge University Press. 2001.

Carl Manning. Traveler: the Actor observatory ECOOP 1987. Also appears in

Lecture Notes in Computer Science, vol. 276.

Carl Manning,. Acore: The Design of a Core Actor Language and its Compile

Master’s Thesis. MIT EECS. May 1987.

Satoshi Matsuoka and Aki Yonezawa. Analysis of Inheritance Anomaly in

Object-Oriented Concurrent Programming Languages Research Directions

in Concurrent Object-Oriented Programming MIT Press. 1993.

John McCarthy Programs with common sense Symposium on Mechanization

of Thought Processes. National Physical Laboratory, UK. Teddington,

England. 1958.

John McCarthy. A Basis for a Mathematical Theory of Computation Western

Joint Computer Conference. 1961.

John McCarthy, Paul Abrahams, Daniel Edwards, Timothy Hart, and Michael

Levin. Lisp 1.5 Programmer’s Manual MIT Computation Center and

Research Laboratory of Electronics. 1962.

John McCarthy. Situations, actions and causal laws Technical Report Memo 2,

Stanford University Artificial Intelligence Laboratory. 1963.

John McCarthy and Patrick Hayes. Some Philosophical Problems from the

Standpoint of Artificial Intelligence Machine Intelligence 4. Edinburgh

University Press. 1969.

Erik Meijer and Gavin Bierman. A co-Relational Model of Data for Large

Shared Data Banks ACM Queue. March 2011.

Microsoft. Asynchronous Programming with Async and Await MSDN. 2013.

Giuseppe Milicia and Vladimiro Sassone. The Inheritance Anomaly: Ten Years

After SAC. Nicosia, Cyprus. March 2004.

Mark S. Miller, Eric Dean Tribble, and Jonathan Shapiro. Concurrency Among

Strangers: Programming in E as Plan Coordination Proceedings of the

International Symposium on Trustworthy Global Computing. Springer. 2005.

Mark S. Miller, Ka-Ping Yee, and Jonathan Shapiro. Capability Myths

Demolished Submitted to Usenix Security 2003.

Mark S. Miller and Jonathan Shapiro Paradigm Regained: Abstraction

Mechanisms for Access Control ASIAN'03. 2003.

Mark S. Miller Robust Composition: Towards a Unified Approach to Access

Control and Concurrency Control Doctoral Dissertation. John Hopkins.

2006.

Mark S. Miller et. al. Bringing Object-orientation to Security Programming.

YouTube. November 3, 2011.

George Milne and Robin Milner. “Concurrent processes and their syntax”

JACM. April, 1979.

Robert Milne and Christopher Strachey. A Theory of Programming Language

Semantics Chapman and Hall. 1976.

Robin Milner Processes: A Mathematical Model of Computing Agents

Proceedings of Bristol Logic Colloquium. 1973.

Robin Milner Elements of interaction: Turing award lecture CACM. January

1993.

Marvin Minsky (ed.) Semantic Information Processing MIT Press. 1968.

Ugo Montanari and Carolyn Talcott. Can Actors and Pi-Agents Live Together?

Electronic Notes in Theoretical Computer Science. 1998.

Eugenio Moggi Computational lambda-calculus and monads IEEE

Symposium on Logic in Computer Science. Asilomar, California, June 1989.

Allen Newell and Herbert Simon. The Logic Theory Machine: A Complex

Information Processing System. Rand Technical Report P-868. June 15, 1956

Kristen Nygaard. SIMULA: An Extension of ALGOL to the Description of

Discrete-Event Networks IFIP’62. Kristen Nygaard. Basic Concepts in

Object Oriented Programming Special Edition on Object-Oriented

Programming Languages. SIGPLAN Notices. Vol. 21. November 1986.

David Park. Concurrency and Automata on Infinite Sequences Lecture Notes

in Computer Science, Vol. 104. Springer. 1980.
Elliot Organick. A Programmer’s View of the Intel 432 System McGraw-Hill,

1983.
Carl Petri. Kommunikation mit Automate Ph. D. Thesis. University of Bonn.

1962.

Simon Peyton Jones, Alastair Reid, Fergus Henderson, Tony Hoare, and Simon

Marlow. A semantics for imprecise exceptions Conference on Programming

Language Design and Implementation. 1999.

Gordon Plotkin. A powerdomain construction SIAM Journal of Computing.

September 1976.

George Polya (1957) Mathematical Discovery: On Understanding, Learning

and Teaching Problem Solving Combined Edition Wiley. 1981.

Karl Popper (1935, 1963) Conjectures and Refutations: The Growth of

Scientific Knowledge Routledge. 2002.

Claudius Ptolemaeus, Editor. System Design, Modeling, and Simulation: Using

Ptolemy II LuLu. http://ptolemy.org/systems. 2014.

Susan Rajunas. The KeyKOS/KeySAFE System Design. Technical Report

SEC009-01. Key Logic, Inc. March 1989.

John Reppy, Claudio Russo, and Yingqi Xiao Parallel Concurrent ML

ICFP’09.

John Reynolds. Definitional interpreters for higher order programming

languages ACM Conference Proceedings. 1972.

John Reynolds. The Discoveries of Continuations Lisp and Symbolic

Computation 6 (3-4). 1993.

Bill Roscoe. The Theory and Practice of Concurrency Prentice-Hall. Revised

2005.

Alex Russell. A design for Futures/Promises in DOM. W3C. March 7, 2013.

Dale Schumacher. Implementing Actors in Kernel February 16, 2012.

 http://www.dalnefre.com/wp/2012/02/implementing-actors-in-kernel/

Dana Scott and Christopher Strachey. Toward a mathematical semantics for

computer languages Oxford Programming Research Group Technical

Monograph. PRG-6. 1971

Dana Scott Data Types as Lattices. SIAM Journal on computing. 1976.

Charles Seitz. The Cosmic Cube CACM. Jan. 1985.

Peter Sewell, et. al. x86-TSO: A Rigorous and Usable Programmer’s Model for

x86 Microprocessors CACM. July 2010.

Jonathan Shapiro and Jonathan Adams. Coyotos Microkernel Specification

EROS Group. September 10, 2007.

SIGPLAN. Special Edition on Object-Oriented Programming Languages

SIGPLAN Notices. Vol. 21. November 1986.

Michael Smyth. Power domains. Computer and System Sciences. 1978.

Alfred Spiessens. Patterns of Safe Collaboration. Doctoral Thesis. Université

catholique de Louvain. February 2007.

Guy Steele Jr. Lambda: The Ultimate Declarative MIT AI Memo 379.

November 1976.

Lynn Stein, Henry Lieberman, and David Ungar. A Shared View of Sharing:

The Treaty of Orlando Object-oriented concepts, databases, and applications.

ACM. 1989

Jan Stenberg. Building Halo 4, a Video Game, Using Actor Model. InfoQ.

March 7, 2015.

Gunther Stent. Prematurity and Uniqueness in Scientific Discovery Scientific

American. December, 1972.

Sun Java Specification Request 133 2004

Gerry Sussman and Guy Steele Scheme: An Interpreter for Extended Lambda

Calculus AI Memo 349. December, 1975.

Daniel Theriault. A Primer for the Act-1 Language MIT AI memo 672. 1982.

Daniel Theriault. Issues in the Design and Implementation of Act 2 MIT AI

technical report 728. June 1983.

Hayo Thielecke An Introduction to Landin’s “A Generalization of Jumps and

Labels” Higher-Order and Symbolic Computation. 1998.

Dave Thomas and Brian Barry. Using Active Objects for Structuring Service

Oriented Architectures: Anthropomorphic Programming with Actors Journal

of Object Technology. July-August 2004.

Bill Tulloh and Mark S. Miller. Institutions as Abstraction Boundaries Humane

Economics: Essays in Honor of Don Lavoie. Elgar Publishing. 2006.

Vaughan Vernon. Reactive Messaging Patterns with the Actor Model. Pearson

Education. 2016.

Ulf Wiger. 1000 Year-old Design Patterns QCon. Apr 21, 2011.

Jonathan Woodruff, Robert N. M. Watson, David Chisnall, Simon W. Moore,

Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neumann, Robert

Norton, and Michael Roe. The CHERI capability model: Revisiting RISC in

an age of risk International Symposium on Computer Architecture (ISCA).

June 2014.

Robert N. M. Watson, Jonathan Woodruff, Peter G. Neumann, Simon W.

Moore, Jonathan Anderson, David Chisnall, Nirav Dave, Brooks Davis,

Khilan Gudka, Ben Laurie, Steven J. Murdoch, Robert Norton, Michael Roe,

Stacey Son, and Munraj Vadera. CHERI: A Hybrid Capability-System

Architecture for Scalable Software Compartmentalization IEEE Symposium

on Security and Privacy. May 2015

Darrell Woelk. Developing InfoSleuth Agents Using Rosette: An Actor Based

Language Proceedings of the CIKM '95 Workshop on Intelligent Information

Agents. 1995.

World Wide Web Consortium. HTML5: A vocabulary and associated APIs for

HTML and XHTML Editor's Draft. August 22, 2012.

Akinori Yonezawa, Ed. ABCL: An Object-Oriented Concurrent System MIT

Press. 1990.

Akinori Yonezawa Specification and Verification Techniques for Parallel

Programs Based on Message Passing Semantics MIT EECS Doctoral

Dissertation. December 1977.

Takeshi Yoshino. Intent to Implement: DOM Futures. W3C. May 23, 2013

Hadasa Zuckerman and Joshua Lederberg. Postmature Scientific Discovery?

Nature. December, 1986.

Appendix 1. Historical background15

The Actor Model builds on previous models of nondeterministic computation.

Several models of nondeterministic computation were developed including the

following:

Concurrency versus Turing’s Model

Turing’s model of computation was intensely psychological.16 [Sieg 2008]

formalized it as follows:

 Boundedness: A computer can immediately recognize only a bounded

number of configurations.

 Locality: A computer can change only immediately recognizable

configurations.

In the above, computation is conceived as being carried out in a single place by

a device that proceeds from one well-defined state to the next.

Computations are represented differently in Turing Machines and Actors:

1. Turing Machine: a computation can be represented as a global state that

determines all information about the computation.17 It can be

nondeterministic as to which will be the next global state.

2. Actors: a computation can be represented as a configuration.

Information about a configuration can be indeterminate.i

Lambda calculus

The Lambda calculus was originally developed as part of a system for the

foundations of logic [Church 1932-33]. However, the system was soon shown

to be inconsistent. Subsequently, Church removed logical propositions from

the system leaving a purely procedural lambda calculus [Church 1941].18

However, the semantics of the lambda calculus were expressed using string

substitution in which the values of parameters were substituted into the body of

an invoked lambda expression. The substitution model is unsuitable for

concurrency because it does not allow the capability of sharing of changing

resources.

That Actors which behave like mathematical functions exactly correspond with

those definable in the lambda calculus provides an intuitive justification for the

rules of the lambda calculus:

 Lambda identifiers: each identifier is bound to the address of an Actor.

The rules for free and bound identifiers correspond to the Actor rules

for addresses.

 Beta reduction: each beta reduction corresponds to an Actor receiving

a message. Instead of performing substitution, an Actor receives

addresses of its arguments.

i For example, there can be messages in transit that will be delivered at some

indefinite time.

Inspired by the lambda calculus, the interpreter for the programming language

Lisp [McCarthy et. al. 1962] made use of a data structure called an environment

so that the values of parameters did not have to be substituted into the body of

an invoked lambda expression.19

Note that in the definition in ActorScript [Hewitt 2011] of the lambda calculus

below:

o All operations are local.

o The definition is modular in that each lambda calculus programming

language construct is an Actor.

o The definition is easily extensible since it is easy to add additional

programming language constructs.

o The definition is easily operationalized into efficient concurrent

implementations.

o The definition easily fits into more general concurrent computational

frameworks for many-core and distributed computation

The lambda calculus can be implemented in ActorScript as follows:

Actor IdentifieraType[aString:String]
 implements ExpressionaType using
 eval[e:Environment]:aType → e∎lookup[⍠IdentifieraType]
 // lookup this identifier in anEnvironment

Actor ProcedureCallaType, AnotherType

 [operator:([aType]↦ anotherType), operand:aType]
 implements ExpressionanotherType using
 eval[e:Environment]:anotherType →
 (operator.eval[e])∎[operand∎eval[e]]

Actor LambdaaType, anotherType
 [id:IdentifieraType, body:anotherType]

 implements Expression[aType]↦ anotherType using
 eval[e:Environment]:anotherType →
 [anArgument:aType]→ body∎eval[e ∎bind[id, anArgument]]
 // create a new environment with anIdentifier bound to

 // anArgument in anEnvironment

In many practical applications, the parallel lambda calculus (i.e. using

purely functional programming) can be exponentially slower than

concurrent computation using Actors.i

Petri nets

Prior to the development of the Actor Model, Petri nets20 were widely used to

model nondeterministic computation. However, they were widely

acknowledged to have an important limitation: they modeled control flow but

not data flow. Consequently they were not readily composable thereby limiting

their modularity.

Hewitt pointed out another difficulty with Petri nets:

Simultaneous action, i.e., the atomic step of computation in Petri nets is a

transition in which tokens simultaneously disappear from the input places of

a transition and appear in the output places. The physical basis of using a

primitive computational entity with this kind of simultaneity seemed

questionable to him.

Despite these apparent difficulties, Petri nets continue to be a popular approach

to modeling nondeterminism, and are still the subject of active research.

Simula
Simula 1 [Nygaard 1962] pioneered nondeterministic discrete event simulation

using a global clock:

In this early version of Simula a system was modeled by a (fixed) number of

“stations”, each with a queue of “customers”. The stations were the active

parts, and each was controlled by a program that could “input” a customer

from the station’s queue, update variables (global, local in station, and local

in customer), and transfer the customer to the queue of another station.

Stations could discard customers by not transferring them to another queue,

and could generate new customers. They could also wait a given period (in

simulated time) before starting the next action. Custom types were declared

as data records, without any actions (or procedures) of their own. [Krogdahl

2003]

i For example, implementations using Actors of Direct Logic can be exponentially

faster than implementations in the parallel lambda calculus.

Thus at each time step, the program of the next station to be simulated would

update the variables.

Kristen Nygaard and Ole-Johan Dahl developed the idea (first described in an

IFIP workshop in 1967) of organizing objects into “classes” with “subclasses”

that could inherit methods for performing operations from their super classes.

In this way, Simula 67 considerably improved the modularity of

nondeterministic discrete event simulations.

According to [Krogdahl 2003]:

Objects could act as processes that can execute in “quasi-parallel” that is

in fact a form of nondeterministic sequential execution in which a

simulation is organized as “independent” processes. Classes in Simula 67

have their own procedures that start when an object is generated. However,

unlike Algol procedures, objects may choose to temporarily stop their

execution and transfer the control to another process. If the control is later

given back to the object, it will resume execution where the control last left

off. A process will always retain the execution control until it explicitly

gives it away. When the execution of an object reaches the end of its

statements, it will become “terminated”, and can no longer be resumed

(but local data and local procedures can still be accessed from outside the

object).

The quasi-parallel sequencing is essential for the simulation mechanism.

Roughly speaking, it works as follows: When a process has finished the

actions to be performed at a certain point in simulated time, it decides when

(again in simulated time) it wants the control back, and stores this in a local

“next-event-time” variable. It then gives the control to a central “time-

manager”, which finds the process that is to execute next (the one with the

smallest next-event-time), updates the global time variable accordingly,

and gives the control to that process.

The idea of this mechanism was to invite the programmer of a simulation

program to model the underlying system by a set of processes, each

describing some natural sequence of events in that system (e.g. the

sequence of events experienced by one car in a traffic simulation).

Note that a process may transfer control to another process even if it is

currently inside one or more procedure calls. Thus, each quasi-parallel

process will have its own stack of procedure calls, and if it is not executing,

its “reactivation point” will reside in the innermost of these calls. Quasi-

parallel sequencing is analogous to the notion of co-routines [Conway

1963].

Note that Simula operated on the global state of a simulation and not just on the

local variables of simulated objects.21 Also Simula-67 lacked formal interfaces

and instead relied on inheritance in a hierarchy of objects thereby placing

limitations to the ability to define and invoke behavior not directly inherited.

Types in Simula are the names of implementations called “classes” in contrast

with ActorScript in which types are interfaces that do not name their

implementation. Also, although Simula had nondeterminism, it did not have

concurrency.22

Planner
The two major paradigms for constructing semantic software systems were

procedural and logical. The procedural paradigm was epitomized by using Lisp

[McCarthy et al. 1962; Minsky, et al. 1968] recursive procedures operating on

list structures. The logical paradigm was epitomized by uniform resolution

theorem provers [Robinson 1965].

Planner [Hewitt 1969] was a kind of hybrid between the procedural and logical

paradigms.23 An implication of the form (P implies Q) was procedurally

interpreted as follows:24
 When asserted P, Assert Q
 When goal Q, SetGoal P
 When asserted (not Q), Assert (not P)
 When goal (not P), SetGoal (not Q)

Planner was the first programming language based on the pattern-directed

invocation of procedural plans from assertions and goals. It represented a

rejection of the resolution uniform proof procedure paradigm.

Smalltalk-72
Planner, Simula 67, Smalltalk-72 [Kay 1975; Ingalls 1983] and packet-

switched networks had previously used message passing. However, they were

too complicated to use as the foundation for a mathematical theory of

computation. Also they did not address fundamental issues of concurrency.

Alan Kay was influenced by message passing in the pattern-directed invocation

of Planner in developing Smalltalk-71. Hewitt was intrigued by Smalltalk-71

but was put off by the complexity of communication that included invocations

with many fields including global, sender, receiver, reply-style, status, reply,

operator, etc.

In November 1972, Kay visited MIT and presented a lecture on some of his

ideas for Smalltalk-72 building on the Logo work of Seymour Papert and the

“little person” metaphor of computation used for teaching children to program.

Smalltalk-72 made important advances in graphical user interfaces.

However, the message passing of Smalltalk-72 was quite complex [Kay 1975].

Code in the language was viewed by the interpreter as simply a stream of

tokens. According to [Ingalls 1983]:25
The first (token) encountered (in a program) was looked up in the dynamic context,

to determine the receiver of the subsequent message. The name lookup began with

the class dictionary of the current activation. Failing there, it moved to the sender

of that activation and so on up the sender chain. When a binding was finally found

for the token, its value became the receiver of a new message, and the interpreter

activated the code for that object's class.26

Thus the message passing model in Smalltalk-72 was closely tied to a particular

machine model and programming language syntax that did not lend itself to

concurrency. Also, although the system was bootstrapped on itself, the

language constructs were not formally defined as objects that respond to eval
messages as in the definition of ActorScript [Hewitt 2010a].

Actors
The invention of digital computers caused a decisive paradigm shift when the

notion of an interrupt was invented so that input that is received asynchronously

from outside could be incorporated in an ongoing computation. At first

concurrency was conceived using low level machine implementation concepts

like threads, locks, coherent memory, channels, cores, queues, etc.

The Actor Model [Hewitt, Bishop, and Steiger 1973; etc.] was based on

message passing that was different from previous models of computation

because the sender of a message is not intrinsic to the semantics of a

communication.27

In contrast to previous global state model, computation in the Actor Model is

conceived as distributed in space where computational devices called Actors

communicate asynchronously using addresses of Actors and the entire

computation is not in any well-defined state.28

Axioms of locality including Organizational and Operational hold as follows:

 Organization: The local storage of an Actor can include addresses only
1. that were provided when it was created

2. that have been received in messages

3. that are for Actors created here

 Operation: In response to a message received, an Actor can

1. create more Actors

2. send messagesi to addresses in the following:

 the message it has just received

 its local storage

3. designate how to process the next message received

In concrete terms for Actor systems, typically we cannot observe the details by

which the order in which an Actor processes messages has been determined.

Attempting to do so affects the results. Instead of observing the internals of

arbitration processes of Actor computations, we await outcomes.29

Indeterminacy in arbiters produces indeterminacy in Actors.ii

Nand

Nor

Nand
Nor

Inverter

Inverter

Nxor

`

Output1

Input1

Input2

Output2

Arbiter Concurrency Primitive30

After the above circuit is started, it can remain in a meta-stable state for an

unbounded period of time before it finally asserts either Output1 or Output2. So

there is an inconsistency between the nondeterministic state model of

computation and the circuit model of arbiters.31

The internal processes of arbiters are not public processes. Attempting to

observe them affects their outcomes. Instead of observing the internals of

arbitration processes, we necessarily await outcomes. Indeterminacy in arbiters

produces indeterminacy in Actors. The reason that we await outcomes is that

we have no realistic alternative.

i Likewise the messages sent can contain addresses only

1. that were provided when the Actor was created

2. that have been received in messages

3. that are for Actors created here
ii The dashed lines are used only to disambiguate crossing wires.

The Actor Model integrated the following:

 the lambda calculus

 interrupts

 blocking method invocation

 imperative programming using locks

 capabilities systems

 co-routines

 packet networks

 email systems

 Petri nets

 Smalltalk-72

 Simula-67

 pattern-directed invocation (from Planner)

In 1975, Irene Greif published the first operational model of Actors in her

dissertation. Two years after Greif published her operational model, Carl

Hewitt and Henry Baker published the Laws for Actors [Baker and Hewitt

1977].

Indeterminacy in Concurrent Computation
The first models of computation (e.g. Turing machines, Post productions, the

lambda calculus, etc.) were based on mathematics and made use of a global

state to represent a computational step (later generalized in [McCarthy and

Hayes 1969] and [Dijkstra 1976]). Each computational step was from one

global state of the computation to the next global state. The global state

approach was continued in automata theory for finite state machines and push

down stack machines, including their nondeterministic versions.32 Such

nondeterministic automata have the property of bounded nondeterminism; that

is, if a machine always halts when started in its initial state, then there is a bound

on the number of states in which it halts.33

Gordon Plotkin [1976] gave an informal proof as follows:

Now the set of initial segments of execution sequences of a given

nondeterministic program P, starting from a given state, will form a tree. The

branching points will correspond to the choice points in the program. Since

there are always only finitely many alternatives at each choice point, the

branching factor of the tree is always finite.34 That is, the tree is finitary. Now

König's lemma says that if every branch of a finitary tree is finite, then so is

the tree itself. In the present case this means that if every execution sequence

of P terminates, then there are only finitely many execution sequences. So if

an output set of P is infinite, it must contain a nonterminating computation.35

The above proof is quite general and applies to the Abstract State Machine

(ASM) model [Blass, Gurevich, Rosenzweig, and Rossman 2007a, 2007b;

Glausch and Reisig 2006], which consequently are not really models of

concurrency. It also applies to the parallel lambda calculus, which includes all

the capabilities of the nondeterministic lambda calculus. Researchers (before

the Actor Model was invented) hypothesized that the parallel lambda calculus

naturally modeled all of computation and their research programme was to

reduce all computation to the parallel lambda calculus [Scott and Strachey

1971, Milne and Strachey 1976]. One of the important early discoveries in the

development of the Actor Model was that all of computation is not reducible to

the parallel lambda calculus. In fact, there are Actor computations that cannot

be implemented in the parallel lambda calculus. For example, by the semantics

of the Actor Model of computation [Clinger 1981] [Hewitt 2006], concurrently

sending the Actor below both a start message and a stop message will result

in returning an integer of unbounded size for the stop message.

Theorem. There are nondeterministic computable functions on integers that

cannot be implemented by a nondeterministic Turing machine.

Proof. The above Actor system implements a nondeterministic functioni that

cannot be implemented by a nondeterministic Turing machine.

i with graph {[]⇝0, []⇝1, []⇝2, …}

∎∎go[]

continue=True
 also

 count := count +1

continue := False

continue=False

initially: continue=True, count=0

count

go[]

stop[]

Nondeterminism is a special case of Indeterminism.

Consider the following Nondeterministic Turing Machine that starts at Step 1:
Step 1 : Either print 1 on the next square of tape or execute Step 3.
Step 2 : Execute Step 1.
Step 3 : Halt.

According to the definition of Nondeterministic Turing Machines, the above

machine might never halt.

Note that the computations performed by the above machine are structurally

different than the computations performed by the above counter Actor in the

following way:

1. The decision making of the above Nondeterministic Turing Machine is

internal (having an essentially psychological basis).

2. The decision making of the above counter Actor exhibits physical

indeterminacy.

Edsger Dijkstra further developed the nondeterministic global state approach,

which gave rise to a controversy concerning unbounded nondeterminismi.

Unbounded nondeterminism is a property of concurrency by which the amount

of delay in servicing a request can become unbounded as a result of arbitration

of contention for shared resources while providing a guarantee that the request

will be serviced. The Actor Model provides the guarantee of service. In

Dijkstra's model, although there could be an unbounded amount of time

between the execution of sequential instructions on a computer, a (parallel)

program that started out in a well-defined state could terminate in only a

bounded number of states [Dijkstra 1976]. He believed that it was impossible

to implement unbounded nondeterminism.

Computation is not subsumed by logical deduction

Kowalski claims that “computation could be subsumed by deduction”36 The

gauntlet was officially thrown in The Challenge of Open Systems [Hewitt 1985]

to which [Kowalski 1988b] replied in Logic-Based Open Systems. ii This was

followed up with [Hewitt and Agha 1988] in the context of the Japanese Fifth

Generation Project.

According to Hewitt, et. al. and contrary to Kowalski computation in general

cannot be subsumed by deduction and contrary to the quotation (above)

i A system is defined to have unbounded nondeterminism exactly when both of the

following hold:

1. When started, the system always halts.

2. For every integer n, the system can halt with an output that is greater than n.
ii [Kowalski 1979] forcefully stated:

There is only one language suitable for representing information -- whether

declarative or procedural -- and that is first-order predicate logic. There is only

one intelligent way to process information -- and that is by applying deductive

inference methods.

attributed to Hayes computation in general is not subsumed by deduction.

[Hewitt and Agha 1991] and other published work argued that mathematical

models of concurrency did not determine particular concurrent computations

because they make use of arbitration for determining the order in which

messages are processed. These orderings cannot be deduced from prior

information by mathematical logic alone. Therefore mathematical logic cannot

implement concurrent computation in open systems.

A nondeterministic system is defined to have “unbounded nondeterminism”i

exactly when both of the following hold:

1. When started, the system always halts.

2. For every integer n, it is possible for the system to halt with output that

is greater than n.

This article has discussed the following points about unbounded

nondeterminism controversy:
 A Nondeterministic Turing Machine cannot implement unbounded

nondeterminism.

 A Logic Program37 cannot implement unbounded nondeterminism.

 Semantics of unbounded nondeterminism are required to prove that a server

provides service to every client.38

 An Actor system [Hewitt, et. al. 1973] can implement servers that provide service

to every client and consequently unbounded nondeterminism.

 Dijkstra believed that unbounded nondeterminism cannot be implemented

[Dijkstra 1967; Dijkstra and van Gasteren 1986].

 The semantics of CSP [Francez, Hoare, Lehmann, and de Roever 1979] specified

bounded nondeterminism for reasons mentioned above in the article. Since Hoare

et. al. wanted to be able to prove that a server provided service to clients, the

semantics of a subsequent version of CSP were switched from bounded to

unbounded nondeterminism.

 Unbounded nondeterminism was but a symptom of deeper underlying issues with

sequential processes using nondeterministic global states as a foundation for

computation.ii

The Computational Representation Theorem [Clinger 1981, Hewitt 2006]

characterizes the semantics of Actor Systems without making use of sequential

processes.

Actor Model versus Classical Objects
The following are fundamental differences between the Actor Model and

Classical Objects[Nygaard and Dahl 1967, Nygaard 1986]:

i For example the following systems do not have unbounded nondeterminism:

• A nondeterministic system which sometimes halts and sometimes doesn’t

• A nondeterministic system that always halts with an output less than 100,000.

• An operating system that never halts.
ii See [Knabe 1992].

 Classical Objects39 are founded on “a physical model, simulating the

behavior of either a real or imaginary part of the world”40, whereas the

Actor Model is founded on the physics of computation.

 Every Classical Object41 is an instance of a Classi in a hierarchy42,

whereas an Actor can implement multiple interfaces.43

 Virtual Procedures can be used to operate on Objects, whereas

messagesii can be sent to Actors.44

Unfortunately, Objects remain ill-defined. Consequently, the term “Object” bas

been used in inconsistent ways in the literature.

Hairy Control Structure

Peter Landin introduced a powerful co-routine control structure using his J (for

Jump) operator that could perform a nonlocal goto into the middle of a

procedure invocation [Landin 1965]. In fact the J operator enabled a program

to jump back into the middle of a procedure invocation even after it had already

returned!

[Reynolds 1972] introduced control structure continuations using a construct

called escape that is a more structured versions of Landin's J operator.
Sussman and Steele called their variant of escape by the name “call with

current continuation.” General use of escape is not compatible with usual stack

disciple introducing considerable operational inefficiency. Also, using escape

can leave customers stranded. Consequently, use of escape is generally avoided

these days and exceptions45 are used instead so that clean up can be performed.

In the 1960’s at the MIT AI Lab a remarkable culture grew up around “hacking”

that concentrated on remarkable feats of programming.46 Growing out of this

tradition, Gerry Sussman and Guy Steele decided to try to understand Actors

by reducing them to machine code that they could understand and so developed

a “Lisp-like language, Scheme, based on the lambda calculus, but extended for

side effects, multiprocessing, and process synchronization.” [Sussman and

Steele 1975].47

Their reductionist approach included primitives like the following:

START!PROCESS, STOP!PROCESS, and

EVALUATE!UNINTERRUPTIBLEY.iii

i A Class is an implementation of an Actor.
ii A message can be one-way and each must be of type Message.
iii “This is the synchronization primitive. It evaluates an expression uninterruptedly; i.e.

no other process may run until the expression has returned a value.”

Of course, the above reductionist approach is unsatisfactory because it missed

a crucial aspect of the Actor Model: the reception ordering of messages.

Using the J operator, McDermott, and Sussman [1972] developed the Lisp-

based language Conniver based on “hairy control structure” that could

implement non-chronological backtracking that was more general than the

chronological backtracking in Planner. However, hairy control structure did not

work out well in practice because it was very difficult to understand and debug

procedures that could return more than once.

Pat Hayes remarked:

Their [Sussman and McDermott] solution, to give the user access to the

implementation primitives of Planner, is however, something of a retrograde

step (what are Conniver's semantics?). [Hayes 1974]

Hewitt had concluded:

One of the most important results that has emerged from the development

of Actor semantics has been the further development of techniques to

semantically analyze or synthesize control structures as patterns of passing

messages. As a result of this work, we have found that we can do without

the paraphernalia of “hairy control structure.” 48(emphasis in original)

Sussman and Steele [1975] noticed some similarities between Actor programs

and the lambda calculus. They mistakenly concluded that they had reduced

Actor programs to a “continuation-passing programming style”:

It is always possible, if we are willing to specify explicitly what to do with

the answer, to perform any calculation in this way: rather than reducing

to its value, it reduces to an application of a continuation to its value.

That is, in this continuation-passing programming style, a function

always “returns” its result by “sending” it to another function.
(emphasis in original)

However, some Actor programming language constructs are not reducible to a

continuation-passing style. For example, futures are not reducible to

continuation-passing style.

On the basis of their experience, Sussman and Steele developed the general

thesis that Actors were merely the lambda calculus in disguise. Steele [1976] in

the section “Actors ≡ Closures (mod Syntax)” disagreed with Hewitt who had

“expressed doubt as to whether these underlying continuations can themselves

be expressed as lambda expressions.” However, customers cannot be expressed

as lambda expressions because doing so would preclude being able to enforce

the requirement that a customer will process at most one response (i.e.

exception or value return). Also implementing customers as lambda

expressions can leave customers stranded.

In summary, Sussman and Steele [1975] mistakenly concluded “we discovered

that the ‘Actors' and the lambda expressions were identical in

implementation.”49 The actual situation is that the lambda calculus is capable

of expressing some kinds of sequential and parallel control structures but, in

general, not the concurrency expressed in the Actor Model.50 On the other hand,

the Actor Model is capable of expressing everything in the parallel lambda

calculus [Hewitt 2008f] and is exponentially faster for important applications

like information coordination [Hewitt 2012].

For example, futures can be adaptively created to do the kind of computation

performed by hairy structure. [Hewitt 1974] invented the same-fringe problem

as an illustration where the “fringe” of a tree is a list of all the leaf nodes of the

tree.

Fork

5Fork

43

Fork

3 Fork

4 5

Two trees with the same fringe [3 4 5]

Below is the definition of a procedure that computes a FutureList that is the

“fringe” of the leaves of tree.

Fringe∎[aTree:Tree]:FutureList ≡
 aTree � Leaf[x] ⦂ [x]
 Fork[tree1, tree2] ⦂
 [⩛Fringe∎[tree1], ⩛Postpone Fringe∎[tree2]]

The above procedure can be used to define SameFringe that determines if two

lists have the same fringe [Hewitt 1972]:

 SameFringe∎[aTree:Tree, anotherTree:Tree]:Boolean ≡
 // test if two trees have the same fringe

 Fringe∎[aTree]=Fringe∎[anotherTree]▮

Using Actors in this way obviates the need for explicit co-routine constructs,

e.g., yield in C# [ECMA 2006], JavaScript [ECMA 2014], etc.

Early Actor Programming languages

Henry Lieberman, Dan Theriault, et al. developed Act1, an Actor programming

language. Subsequently for his master’s thesis, Dan Theriault developed Act2.

These early proof of concept languages were rather inefficient and not suitable

for applications. In his doctoral dissertation, Ken Kahn developed Ani, which

he used to develop several animations. Bill Kornfeld developed the Ether

programming language for the Scientific Community Metaphor in his doctoral

dissertation. William Athas and Nanette Boden [1988] developed Cantor which

is an Actor programming language for scientific computing. Jean-Pierre Briot

[1988, 1999] developed means to extend Smalltalk 80 for Actor computations.

Darrell Woelk [1995] at MCC developed an Actor programming language for

InfoSleuth agents in Rosette.

Hewitt, Attardi, and Lieberman [1979] developed proposals for delegation in

message passing. This gave rise to the so-called inheritance anomaly

controversy in concurrent programming languages [Satoshi Matsuoka and Aki

Yonezawa 1993, Giuseppe Milicia and Vladimiro Sassone 2004]. ActorScript

[Hewitt 2010] has proposal for addressing delegation issues.

Garbage Collection

Garbage collection (the automated reclamation of unused storage) was an

important theme in the development of the Actor Model.

In his doctoral dissertation, Peter Bishop developed an algorithm for garbage

collection in distributed systems. Each system kept lists of links of pointers to

and from other systems. Cyclic structures were collected by incrementally

migrating Actors (objects) onto other systems which had their addresses until a

cyclic structure was entirely contained in a single system where the garbage

collector could recover the storage.

Henry Baker developed an algorithm for real-time garbage collection is his

doctoral dissertation. The fundamental idea was to interleave collection activity

with construction activity so that there would not have to be long pauses while

collection takes place.

Lieberman and Hewitt [1983] developed a real time garbage collection based

on the lifetimes of Actors (Objects). The fundamental idea was to allocate

Actors (objects) in generations so that only the latest generations would have to

be examined during a garbage collection.

Cosmic Cube

The Cosmic Cube was developed by Chuck Seitz et al. at Caltech providing

architectural support for Actor systems. A significant difference between the

Cosmic Cube and most other parallel processors is that this multiple instruction

multiple-data machine used message passing instead of shared variables for

communication between concurrent processes. This computational model was

reflected in the hardware structure and operating system, and also the explicit

message passing communication seen by the programmer.

Communicating Sequential Processes
Arguably, the first concurrent programs were interrupt handlers. During the

course of its normal operation, a computer needed to be able to receive

information from outside (characters from a keyboard, packets from a network,

etc.). So when the information was received, execution of the computer was

“interrupted” and special code called an interrupt handler was called to put the

information in a buffer where it could be subsequently retrieved.

In the early 1960s, interrupts began to be used to simulate the concurrent

execution of several programs on a single processor. Having concurrency with

shared memory gave rise to the problem of concurrency control. Originally, this

problem was conceived as being one of mutual exclusion on a single computer.

Edsger Dijkstra developed semaphores. In contrast, the Actor Model does not

take classical sequential processes as primitive and is not built on

communicating sequential processes.

Dijkstra was certain that unbounded nondeterminism is impossible to

implement. Hoare was convinced by Dikstra's argument. Consequently, the

semantics of CSP specified bounded nondeterminism.

Consider the following program written in CSP [Hoare 1978]:
 [X :: Z!stop() In process X, send Z a stop message

 || process X operates in parallel with process Y

 Y :: guard: boolean; guard := true;

 In process Y, initialize boolean variable guard to true and then

 *[guard→ Z!go(); Z?guard]
 while guard is true, send Z a go message and then input guard from Z
 || process Y operates in parallel with process Z
 Z :: n: integer; n:= 0; In process Z, initialize integer variable n to 0 and then

 continue: boolean; continue := true;

 initialize boolean variable continue to true and then

 *[repeatedly either

 X?stop() → continue := false;

 input a stop message from X, set continue to false and then

 Y!continue; send Y the value of continue

 [] or

 Y?go()→ n := n+1;

 input a go message from Y, increment n, and then

 Y!continue]] send Y the value of continue

According to Clinger [1981]:
this program illustrates global nondeterminism, since the
nondeterminism arises from incomplete specification of the timing of

signals between the three processes X, Y, and Z. The repetitive

guarded command in the definition of Z has two alternatives: either the
stop message is accepted from X, in which case continue is set to false,

or a go message is accepted from Y, in which case n is incremented and

Y is sent the value of continue. If Z ever accepts the stop message from

X, then X terminates. Accepting the stop causes continue to be set to

false, so after Y sends its next go message, Y will receive false as the

value of its guard and will terminate. When both X and Y have

terminated, Z terminates because it no longer has live processes

providing input.
 As the author of CSP points out, therefore, if the repetitive guarded

command in the definition of Z were required to be fair, this program

would have unbounded nondeterminism: it would be guaranteed to halt

but there would be no bound on the final value of n. In actual fact, the

repetitive guarded commands of CSP are not required to be fair, and so
the program may not halt [Hoare 1978]. This fact may be confirmed by
a tedious calculation using the semantics of CSP [Francez, Hoare,
Lehmann, and de Roever 1979] or simply by noting that the semantics
of CSP is based upon a conventional power domain and thus does not
give rise to unbounded nondeterminism.

But Hoare knew that trouble was brewing because for several years,

proponents of the Actor Model had been beating the drum for unbounded

nondeterminism. To address this problem, he suggested that

implementations of CSP should be as close as possible to unbounded

nondeterminism! But his suggestion was difficult to achieve because of the

nature of communication in CSP using nondeterministic select statements

(from nondeterministic state machines, e.g., [Dijkstra 1976]), which in the

above program which takes the form

 [X?stop() → ...

 []

 Y?go() → ...]

The structure of CSP is fundamentally at odds with guarantee of service.

 Using the above semantics for CSP, it was impossible to formally prove

that a server actually provides service to multiple clients (as had been done

previously in the Actor Model). That's why the semantics of CSP were

reversed from bounded non-determinism [Hoare CSP 1978] to unbounded

non-determinism [CSP:1985]. However, bounded non-determinism was but

a symptom of deeper underlying issues with nondeterministic transitions in

communicating sequential processes (see [Knabe 1992]).

Smalltalk-80

Smalltalk-72 progressed to Smalltalk-80[Alan Kay, Dan Ingalls, Adele

Goldberg, Ted Kaehler, Diana Merry, Scott Wallace, Peter Deutsch], which

introduced the code browser as an important innovation.

For example, the following diagram depicts a code-browser window:

π-Calculus Actors

Robin Milner's initial published work on concurrency [Milner 1973] was

notable in that it was not overtly based on sequential processes, although

computation still required sequential execution (see below).

His work differed from the previously developed Actor Model in the following

ways:

 There are a fixed number of processes as opposed to the Actor Model

which allows the number of Actors to vary dynamically

 The only quantities that can be passed in messages are integers and strings

as opposed to the Actor Model which allows the addresses of Actors to be

passed in messages

 The processes have a fixed topology as opposed to the Actor Model which

allows varying topology

 Communication is synchronous as opposed to the Actor Model in which

an unbounded time can elapse between sending and receiving a message.

 Unlike the Actor Model, there is no reception ordering and consequently

there is only bounded nondeterminism. However, with bounded

nondeterminism it is impossible to prove that a server guarantees service

to its clients, i.e., a client might starve.

Building on the Actor Model, Milner [1993] removed some of these restrictions

in his work on the π-calculus:

Now, the pure lambda-calculus is built with just two kinds of thing: terms

and variables. Can we achieve the same economy for a process calculus?

Carl Hewitt, with his Actors model, responded to this challenge long ago;

he declared that a value, an operator on values, and a process should all be

the same kind of thing: an Actor.

 This goal impressed me, because it implies the homogeneity and

completeness of expression ...

 So, in the spirit of Hewitt, our first step is to demand that all things

denoted by terms or accessed by names--values, registers, operators,

processes, objects--are all of the same kind of thing….

However, some fundamental differences remain between the Actor

Model and the π–calculus:

 The Actor Model is founded on physics whereas the π–calculus is founded

on algebra.

 Semantics of the Actor Model is based on message orderings in the

Computational Representation Theorem. Semantics of the π–calculus is

based on structural congruence in various kinds of bi-simulations and

equivalences.51

Communication in the π -calculus takes the following form:

 input: u[x].P is a process that gets a message from a communication

channel u before proceeding as P, binding the message received to the

identifier x. In ActorScript [Hewitt 2010a], this can be modeled as follows:

Let x←u∎get[] P52

 output: ū[m].P is a process that puts a message m on communication

channel u before proceeding as P. In ActorScript, this can be modeled as

follows: u∎put[x] P53

The above operations of the π-calculus can be implemented in Actor systems

using a two-phase commit protocol [Knabe 1992; Reppy, Russo, and Xiao

2009]. The overhead of communication in the π–calculus presents difficulties

to its use in practical applications.

Process calculi (e.g. [Milner 1993; Cardelli and Gordon 1998]) are closely

related to the Actor Model. There are similarities between the two approaches,

but also many important differences (philosophical, mathematical and

engineering):

 There is only one Actor Model (although it has numerous formal systems

for design, analysis, verification, modeling, etc.) in contrast with a variety

of species of process calculi.

 The Actor Model was inspired by the laws of physics and depends on them

for its fundamental axioms in contrast with the process calculi being

inspired by algebra [Milner 1993].

 Unlike the Actor Model, the sender is an intrinsic component of process

calculi because they are defined in terms of reductions (as in the lambda

calculus).

 Processes in the process calculi communicate by sending messages either

through channels (synchronous or asynchronous), or via ambients (which

can also be used to model channel-like communications [Cardelli and

Gordon 1998]). In contrast, Actors communicate by sending messages to

the addresses of other Actors (this style of communication can also be used

to model channel-like communications using a two-phase commit protocol

[Knabe 1992]).

There remains a Great Divide between process calculi and the Actor Model:

 Process calculi: algebraic equivalence, bi-simulation [Park 1980], etc.

 Actor Model: futures [Baker and Hewitt 1977], Swiss cheese, garbage

collection, etc.

J–Machine

The J–Machine was developed by Bill Dally et al. at MIT providing

architectural support suitable for Actors.

This included the following:

 Asynchronous messaging

 A uniform space of Actor addresses to which messages could be sent

concurrently regardless of whether the recipient Actor was local or

nonlocal

 A form of Actor pipelining

Concurrent Smalltalk (which can be modeled using Actors) was developed to

program the J Machine.

“Fog Cutter” Actors
[Karmani and Agha 2011] promoted “Fog Cutter”i Actors each of which is

required to have a mailbox, thread, state, and program diagrammed as follows:54

StateState

Mailbox

Thread

ProgramProgram

Process a message from the Mailbox using the Thread,

then reset the Thread stack thereby completing the message-passing turn

Fog Cutter Actors are special cases in that the following restrictions hold:ii

 Each Fog Cutter Actor has a ‘mailbox’. But if everything that interacts is

an Actor, then a mailbox must be an Actor and so in turn needs a mailbox

which in turn … [Hewitt, Bishop, and Steiger 1973]. Of course, mailboxes

having mailboxes is an infinite regress that has been humorously

characterized by Erik Meijer as “down the rabbit hole.” [Hewitt, Meijer,

and Szyperski 2012]

 A Fog Cutter Actor ‘terminates’ when every Actor that it has created is

‘idle’ and there is no way to send it a message. In practice, it is preferable

i so dubbed by Kristen Nygaard (private communication).
ii “Fog Cutter” is in italics.

to use garbage collection for Actors that are inaccessible. [Baker and

Hewitt 1977]

 Each Fog Cutter Actor executes a ‘loop’ using its own sequential ‘thread’

that begins with receiving a message followed by possibly creating more

Actors, sending messages, updating its local state, and then looping back

for the next message to complete a 'turn'. In practice, it is preferable to

provide “Swiss cheese” by which an Actor can concurrently process

multiple messages without the limitation of a sequential thread loop.

[Hewitt and Atkinson 1977, 1979; Atkinson 1980; Hewitt 2011]

 A Fog Cutter Actor has a well-defined local ‘autonomous’ ‘state’ that can

be updated
55 while processing a message. However, because of

indeterminacy an Actor may not be in a well-defined local independent

state. For example, Actors might be entangled56 with each other so that

their actions are correlated. Also, large distributed Actors (e.g.

www.dod.gov) do not have a well-defined state. In practice, it is preferable

for an Actor not to change its local information while it is processing a

message and instead specify to how it will process the next message

received (as in ActorScript [Hewitt 2011]).

Fog Cutter Actors have been extremely useful for exploring issues about Actors

including the following alternatives:

 Reception order of messaging instead of Mailbox

 Activation order of messaging instead of Thread

 Behavior instead of State+Program

However, Fog Cutter Actors are fundamentally lacking in generality because

they lack the holes of Swiss cheese.i

In practice, the most common and effective way to explain Actors has been

operationally using a suitable Actor programming language (e.g., ActorScript

[Hewitt 2012]) that specifies how Actors can be implemented along with an

English explanation of the axioms for Actors (e.g., as presented in this paper).

Erlang Actors

Erlang Actors [Armstrong 2010] are broadly similar to Fog Cutter Actors:

1. Each Erlang Actor not share memory addresses with other Erlang Actors.

2. An Erlang Actor can retrieve a message from its mailbox by selectively

removing a message matching a particular pattern.

Erlang made important contributions by emphasizing the importance of the

following:

• referential transparency

• failure handling

i See section on Swiss cheese in this article.

http://www.dod.gov/

However, Erlang Actors have the following issues:

 Messaging in Erlang is not robust because a sent message will be dropped

without warning if there is no Actor for the address.i

 Erlang imposes high overhead in sending messages between Actors. For

example, it imposes coordination overhead that messages sent between

two Erlang Actors are delivered in the order they are sent.

 Implementations of Erlang do not make efficient use of many-core

coherent architectures because messages between Erlang Actors must be

blobs.ii

 Instead of using exception handling, until recently Erlang relied on

process failureiii propagating between processes and their spawned

processes.

 Instead of using garbage collection to recover storage and processing of

unreachable Actors, each Erlang Actor must perform an internal

termination or be killed externally.57

 Erlang does not have parameterized types, Actor aspects, interfaces or

type discriminations.

Erlang Actors have been used in high-performance applications. For example,

Ericsson uses Erlang in 3G mobile networks worldwide [Ekeroth and Hedstrὂm

2000].

Sqeak
Squeak [Ingalls, Kaehler, Maloney, Wallace, and Kay 1997] is a dialect of

Smalltalk-80 with added mechanisms of islands, asynchronous messaging,

players and costumes, language extensions, projects, and tile scripting. Its

underlying object system is class-based, but the user interface is programmed

as though it is prototype-based.

Orleans Actors

Orleans [Bykov, Geller, Kliot, Larus, Pandya, and Thelin 2010; Bernstein,

Bykov, Geller, Kliot, and Thelin 2014] is a distributed implementation of

Actors that transparently sends messages between Actors on different

computers enabling greater scalability and reliability of practical applications.

Orleans is based on single-threaded Actor message invocations. An Actor

processes a message using a thread from a thread pool. When the message has

been processed, the thread can be returned to the thread pool.58

i Such silent failures are a bane of robust software engineering.
ii A blob is a data structure that cannot contain pointers.
iii based on an arbitrary time-out

That an Orleans Actor does not share memory with other Actors is enforced by

doing a deep copy of messages if required.

A globally unique identifier59 is created for each Orleans Actor with a

consequence that there is extra storage overhead that can be significant for a

very small Orleans Actor.60 A globally unique identifier can be used to send a

message, which will, if necessary, create an activation61 of an Orleans Actor in

the memory of a process.62

Orleans has the following issues:

 Orleans allows the use of strings and long integers as globally unique

identifiers in order to provide for perpetual Actors whose storage can only

be collected using potentially unsafe means, which can result in a dangling

globally unique identifier.

 A system design choice was made in Orleans not to use automated storage

reclamation technology (garbage collection) to keep track of whether an

Orleans Actor could have been forgotten by all applications and thus

become inaccessible. Consequently, Orleans can have the following

inefficiencies:

o A short-lived Orleans Actor that has become inaccessible does not have

its storage in the process quickly recycled resulting in a larger working

set and decreased locality of reference.63

o A long-lived Orleans Actor that has become inaccessible does not ever

have its storage recycled 64 resulting in larger memory requirements.65

However, collection of the storage of long-lived Actors is not so

important in some applications because long-term memory has

become relatively inexpensive.

An Orleans Actor ties up a thread while it is taking a turn to process a message

regardless of the amount of time required, e.g., time to make a system call. In

this way, Orleans avoids timing races in the value of a variable of an Actor.i

i ActorScript goes even further in this direction by enforcing that the value of a

variable can change only when it is leaving the cheese or before/after an internal

delegated operation.

A consequence of being single-threaded can be reduced performance of Orleans

Actors as follows:

 lack of parallelism in processing a message

 lack of concurrency between processing a message and executing waiting

method calls invoked by processing the message.66

 thread-switching overhead between sending and receiving a message to an

Orleans Actor in the same process67

A waiting method call can be resolved using the await68 construct as follows:

await anActor.aMethodName(...)i

For example:
var anActor = aFactory.GetActor(aGloballyUniqueIdentifier);
try {...aUse(await anActor.aMethodName(...))...
 anotherUse(await anActor.anotherMethodName(...))...}
 catch ...;69

When reentrancy70 is enabled, the method calls for aMethodName and

anotherMethodName above are executed after the current message-processing

turn:

 If completed successfully, the value of a waiting method call is supplied in

a new turn at the point of method invocation, e.g., the value of the method

call for aMethodName of is supplied to aUse.
 If a waiting method call throws an exception, it is given to the exception

handler in a new turn.
Orleans uses C# compiler “stack ripping” to use behind-the-scenes sequential

turns to execute waiting method calls.

A message sent to an Orleans Actor must return a promise71 Actor72, which is

a version of a future Actor. A promise Actor for a method call

anActor.aMethodName(...) can be created using the following code:ii
try {return Task.FromResult(await anActor.aMethodName(...));}
 catch (Exception anException)

 {return Task.FromException(anException);}iii

Note that a promise is not an Orleans Actor because it does not have a

globally unique identifier.iv

i ActorScript uses ⦾aFuture to resolve aFuture
ii ActorScript uses Future anExpression to create a future for anExpression
iii There is an inefficiency in the above code in that the method call returns a promise

that is taken apart and then an equivalent promise is created to be returned.
iv It would be impractical for promises to be Orleans Actors because

 they are created as the return value of every Orleans Actor method call

 the storage of inaccessible Orleans Actors is not recovered, e.g., using

garbage collection

One of the motivations for the requirement that Orleans Actors must return

promises when sent messages is to enable the await construct to hide

promises so that clients of Orleans Actors do not have to deal with the

return type Task<T> of each Orleans Actor method call for some

application type T.

Orleans is an important step in furthering a goal of the Actor Model that

application programmers need not be so concerned with low-level system

details.i For example, in moving to the current version, Orleans reinforces the

current trend of not exposing customer Actors73 to application programmers.74

As a research project, Orleans had to make some complicated tradeoffs to

implement more reliable distributed Actors. Implementing Actor systems that

are both robust and performant is an extremely challenging research project

that has taken place over many decades. More research remains to be done.

However, Orleans has already been used in some high-performance

applications including multi-player computer games, e.g., Halo[Bykov 2013,

Stenberg 2015].

JavaScript Actors

JavaScript Actors are broadly similar to Fog Cutter Actors.75

A promise76 in JavaScript is a kind of future. JavaScript77 will include

asynchronous procedures as well as an await78 construct that can be used to

resolve promise Actors.

An asynchronous procedure alwaysii returns a promise. For example, the

following procedure computes a promise for the sum of two promises:
 async function PromiseForSumOfPromises(aPromise, anotherPromise)
 {return (await aPromise) + await anotherPromise)};

i e.g. threads, throttling, load distribution, cores, persistence, automated storage

reclamation, locks, location transparency, channels, ports, etc.
ii The use of asynchronous procedures can be contagious because a procedures using

the return value of an asynchronous procedure needs to be asynchronous to use

await.

A promise for an expression can be created by the procedure CreatePromise79,

which takes a thunk80 for the expression as its argument. For example, suppose

we have the following:i
 async function PromiseForSumOfTwoSlowCalls()

 {const promise1 := CreatePromise(() => aSlowActor.do(10, 20));
 const promise2 := CreatePromise(() => aSlowActor.do(30, 40));
 return await PromiseForSumOfPromises(promise1, promise2)

 };

In an asynchronous procedure, await PromiseForSumOfTwoSlowCalls() is

equivalent to the following in ActorScript:
 (⦾Future aSlowActor∎do[10, 20]) + ⦾Future aSlowActor∎do[30,40]

To implement parallelism, JavaScript has workers.81 Although multiple

workers can reside in a process, they do not share memory addresses and

consequently cannot efficiently communicate using many-core coherency. A

worker communicates with other workers using blobsii in order to guarantee

memory separation. Each worker acts as a single-threaded, non-preemptive

time-sharing system for processing messages for Actors that reside in its

memory.82

However, JavaScript workers have the following efficiency issues:83

1. There is no parallelism in processing messages for different Actors on a

worker and the processing of a message by a slowly executing Actor

cannot be preempted thereby bringing all
iii other work on the worker to

a standstill.iv
2. An Actor on a worker can directly send a message an Actor on another

worker only if the recipient has been transferred to the worker on which

the sender resides.84 An Actor can also indirectly send a blobbed message

using a MessageChannel.

3. A very difficult efficiency issue is to decide how many Actors to put on

each worker and which Actors to put on which worker.

JavaScript workers limit much of the modularity and efficiency available in

coherent many-core processor architectures. Inherent inefficiencies and

i The code is written in this way to emphasize that an asynchronous procedure

always returns a promise.
ii A blob is a data structure that cannot contain pointers. In the past, a more limited

meaning called BLOB has been used as an acronym for Binary Large OBject. In

the Actor Model, an address (which is typed) can be used to send a message to an

Actor. The model does not specify the physical representation of an address. So

an address might be a (tagged) pointer. However, such pointers are not allowed in

blobs.
iii including any queued promises
iv Issues of non-preemption motivated the invention of time-slicing [Bemer 1957] by

which tasks are switched at the expiration of a timer.

architectural deficiencies in JavaScript workers and HTML5 standards

handicapi browsers in their competition with apps.

Capabilities Systems
Capabilities were proposed in order to provide protection in operating systems

[Dennis and van Horn 1966] by placing authority to take certain actions in

special lists stored in protected memory of the operating system. Capabilities

originated as part of the MIT Multics Project whereas Actors originated at the

AI Lab, which developed Lisp machines with a tagged-memory architecture

(instead of special lists stored in the operating system) that could be used to

implement secure Actor addresses. Lisp machines were not commercially

successful because the developing companies were under-capitalized and

lacked an adequate software foundation. Unfortunately, tagged-memory

architectures fell out of fashion subsequently causing enormous security

problems in our current cyber systems.85

One of the motivations for developing the Actor Model in 1972 was that

capabilities were awkward to use because their addresses were allocated in

private memory of operating systems. Using tagged memory on Lisp

Machines was a preferred implementation for Actors as opposed to using

segmented memory on Multics. Also, the terms “capability” and “capabilities

system” lacked axiomatizations and denotational semantics.

According to [Saltzer and Schroeder 1975]:

In a computer system, a capability is an unforgeable ticket, which when

presented can be taken as incontestable proof that the presenter is

authorized to have access to the object named in the ticket.

In contrast:

An Actor address is defined to be a shareableii digital tokeniii that together

with a typeiv provides the ability to send a messagev to the address.vi

i due mainly to the legacy requirement not to break the Web. W3C and ECMA have

done excellent work ameliorating the worst problems.
ii subject to type constraints
iii Not requiring that an Actor address is always required to be unguessable can allow

for more efficient implementations. For example, suppose that amount1 and

amount2 are both of type Euro. It might be that case that amount1 and amount2

are unboxed, i.e., the respective amounts are encoded in their addresses.
iv which is an Actor
v which is an Actor
vi For example in the following, HTTP[“google.com”] is an Actor address that can

be used as follows to send a put message (with content someString) to Google:

HTTP[“google.com”] ∎put[someString]

The following are some differences between Actor addresses and the

Saltzer/Schroeder definition of capability:

• An address need not be unforgeable although it is typically unguessablei.

• Unlike a capabilityii, an Actor address per se does not authorize

anything. However, an Actor address together with a type enables a

message to be sent to the address.iii

• A message sent to an address does not have to be honored. However, it

is generally good practice for an Actor to respond with an exception if

it dishonors a message.

According to [Levy 1985]:

“Conceptually, a capability is a token, ticket, or key that gives the

possessor permission to access an entity or object in a computer system.

A capability is implemented as a data structure that contains two items

of information: a unique object identifier and access rights.”

The above notion of capability can be modeled as a very specialized proxy

Actor that filters messages.

Historically, capabilities have been handicapped by awkwardness, vagueness,

over-specialization, not being integrated with types, and for being single-

computer centric:86

 Awkwardness: It is awkward to program in a system that requires

permissions to be kept in lists maintained in operating systems

memory.

 Vagueness: The [Saltzer and Schroeder 1975] definition above of a

capability suffers from vagueness in specifying exactly what

constitutes “access” to an object.

 Over-specialization: The [Levy 1985] definition above of a

capability suffers from the additional limitation of over-specialization

in that it specifies a particular data structure with two items.

 Not integrated with types: Capabilities were not integrated with the

type systems of programming languages.

 Single-computer centric: Keeping permissions in lists maintained in

the operating system memory makes coordination with other

computers awkward.

i For example, an Actor address 4 of type Integer is plainly not unguessable.
ii In a capability, designation and permissions are inextricably bound together.
iii The message might not actually be received for a variety of potential reasons. For

example, because it is not properly received by an app for the intended recipient,

because it is not properly received by a computer the for intended recipient, etc. It is

good practice to throw an exception if a response is not received within some

“reasonable” time.

Capabilities were further developed in [Organick 1983; Levy 1984; Chander,

Dean, and Mitchell 2001; Shapiro and Adams 2007; Woodruff, et. al. 2014;

Watson, et. al. 2015]. Unfortunately, capabilities have continued to be

awkward to use because their addresses were allocated in private memory of

operating systems. [Kwon, et. al. 2014] is a tagged capability architecture that

includes a special register to hold capabilities for addresses. Capabilities

systems can be considered to be approaches to security making use of specified

principles [Miller 2006] that must include the locality laws of the Actor Model

[Baker and Hewitt 1977].

The vision that motivated creation and development of the Actor Model is now

coming into fruition in the Internet of Things with the following aspects

[Hewitt 2015/2016]:

 Systems must function robustly even though at any time a computer

can become temporarily or permanently unavailable.

 Systems must function as robustly as possible even though

connections between computers can be intermittent.

A citizen will share a great deal of sensitive personal information among their

insulin pump, bedroom TV, cell phone, home router, and potentially even a

brain implant (new DARPA project).i Consequently, security of sensitive

information heavily relies on encryption.

One of the fundamental principles is to use unguessable addresses for Actors

on remote computers.ii In general, having an unguessable address and its type

provides the computer that receives the unguessable address an opportunity to

send a message to the address.87

The only ways that an Actor can acquire an unguessable address is to be given

the information to compute it from a combination of the following:

1. Using addresses provided by creating other Actors

2. Using addresses received in messages

i Without warning, any of the above may fail permanently and have to be replaced.

While the replacement is happening, life must continue as smoothly as possible.
ii both of the following are needed to securely and efficiently implement Actor

addresses [Hewitt 1980, Miller 2006]:

1. tagged pointers in an address space

2. unguessable addresses sent to other computers

In practice, the information to compute an unguessable address must have

come from the creator of the Actor for the unguessable address.88

Consequently, using unguessable Actor addresses provides significant

security in helping confine sensitive personal information in the IoT devices

owned by a citizen.

The intent of a [Saltzer and Schroeder 1975] capability is to guarantee

authorization to have access, whereas the intent of an Actor address is to

provide an opportunity to send messages. That is, an Actor address for IoT is

not “incontestable proof of authorization to have access” because

“authorization” and/or “access” might be prevented by any of the following:

1. the address being on another computer than an intended recipient may

not decrypt using a type and consequently cannot be used for sending

a message for that type

2. a message sent using the address and a type might not be received

because message decryption might fail or authorization might fail at

an app, computer, or router boundary along the path to a potential

recipient

3. the message might be rejected at a recipient's computer because the

message does not decrypt using the type of the recipient

4. an exception might be thrown by the recipient performing security

checks disallowing access.

Furthermore, an Actor address has functionality beyond that of a [Saltzer and

Schroeder 1975] capability. For example, a type might use an Actor address in

upcasting, downcasting, or casting to an interface of an Actor as in ActorScript

(see below).

The following definition of “capability” for the Internet of Things aims for

both precision and practicality:i

A capability is defined to be an unguessableii, shareable digital designation

that indivisibly combines permission and ability to perform operations on

an objectiii implemented on some system that has certain security

properties, e.g., those specified in the Actor Model for unguessable

addresses. iv

The following difference is apparent:

 Capabilities are prescriptive specifying system properties which must

hold.

 Actors are for modeling and implementation. Any digital computation

can be directly modeled using Actors. ActorScript can directly

efficiently implement any Actor system.v Of course, good engineering

principles and practices should be strongly encouraged.

i The following are examples of capabilities:

 Waterken [Close 2008]: an Actor address of type WebKey

 Zebra Copy [Karp and Li 2007]: an Actor address together with additional

information that includes a list of allowed message types
ii In the Internet of Things, a designation of an object on a remote computer is

unguessable but technically not unforgeable because it makes use of encryption for

security. However, it is possible to use a capability that is technically unforgeable

even though it is based on an unguessable (but forgeable) designation. However, it

could be misleading to simply say that a capability is unforgeable when it is based

on an unguessable designation.
iii i.e., Java, Hypertext Transfer Protocol, C++, etc. The object might reside on a

computer that is remote from on the one on which the operation is being invoked.
iv The use of types in the Actor Model has some similarities and differences with

Split Capabilities[Karp, Gupta, Rozas, and Banerji 2003]. In order to send a

message to an Actor, both and address and a type are required. A difference is that

that this division is not the same as in Split Capabilities because a type is an Actor

in its own right and not restricted to being a list of access rights. For example, if

anAccount is of type Account then, anAccount∎deposit[$5] is equivalent to the

following:
 Account∎send[anAccount, deposit[$5]]

v By default, ActorScript systems adhere to the prescriptions of capabilities and

furthermore have stronger security properties as well, e.g., making using of type

encryption and not allowing insecure casting.

The interface type Account can be defined as follows:

Interface Account with availableBalance[]↦Euro,
 deposit[Euro]↦Void,
 withdraw[Euro]↦Void▮

The following is an implementation of Account:

Actor SimpleAccount[startingBalance:Euro]
 myBalance ≔ startingBalance｡
 // myBalance is an assignable variable initialized with startingBalance

 implements Account using

 availableBalance[]:Euro → myBalance¶
 deposit[anAmount:Euro]:Void →
 Void // return Void
 afterward myBalance ≔ myBalance+anAmount¶
 // the next message is processed with
 // myBalance reflecting the deposit

 withdraw[anAmount:Euro]:Void →
 (amount > myBalance) �
 True ⦂ Throw Overdrawn[] ⍌
 False ⦂ Void // return Void
 afterward myBalance ≔ myBalance–anAmount ⍰§▮
 // the next message is processed with updated myBalance

The above implementation of Account can be extended as follows to provide

the ability to revoke some abilities to change an account by providing

AccountSupervisor and AccountRevoker interfaces:

The above implementation of Account can be extended as follows to provide

the ability to revoke some abilities to change an account.89 For example, the
AccountSupervisor implementation below implements both the Account
and AccountRevoker interfaces as an extension of the implementation

Account:

As illustrated below, a qualified address of an Actor can be expressed using

“⍠” followed by the name of the qualifier.90

Actor AccountSupervisor[initialBalance:Euro]
 uses SimpleAccount[initialBalance]｡

 // uses Account implementation
withdrawableIsRevoked ≔ False,
depositableIsRevoked ≔ False｡

⟦revoker⟧:AccountRevoker → ⍠AccountRevoker¶

 // this Actor as AccountRevoker

⟦account⟧:Account → ⍠Account¶ // this Actor as Account

withdrawFee[anAmount:Euro] →
 Void afterward myBalance ≔ myBalance–anAmount§

 // withdraw fee even if balance goes negative

partially reimplements Account using
 // (availableBalance[]↦Euro) from SimpleAccount
 withdraw[anAmount]:Euro →

 withdrawableIsRevoked �

 True ⦂ Throw Revoked[] ⍌
 False ⦂ ⍠Account⨀SimpleAccount∎withdraw[anAmount] ⍰¶
 deposit[anAmount]:Void →
 depositableIsRevoked �

 True ⦂ Throw Revoked[] ⍌
 False ⦂ ⍠Account⨀SimpleAccount∎deposit[anAmount] ⍰§

 also implements AccountRevoker using
 revokeDepositable[]:Void →
 Void afterward depositableIsRevoked ≔ True¶
 revokeWithdrawable[]:Void →
 Void afterward withdrawableIsRevoked ≔ True§▮

For example, the following expression returns negative €3:

 Let anAccountSupervisor ← AccountSupervisor∎[€3]｡
 Let anAccount ← anAccountSupervisor∎⟦account⟧,

 aRevoker ← anAccountSupervisor∎⟦revoker⟧｡
 Prep anAccount∎withdraw[€2] // the balance is €1

 aRevoker∎revokeWithdrawable[]
 // withdrawableIsRevoked is True
 Try anAccount∎withdraw[€5] // try another withdraw
 catch� _ ⦂ Void ⍰ // ignore the thrown exception91

 // the balance remains €1
 anAccountSupervisor∎withdrawFee[€4]｡
 // €4 is withdrawn even though withdrawableIsRevoked
 // the balance is negative €3
 anAccount∎availableBalance[]▮ // the balance is negative €3

One-way Messaging
The following is an implementation of an arithmetic logic unit that

implements jumpGreater and addJumpPositive one-way messages:

Actor ArithmeticLogicUnitaType[]
 implements ALUaType using
 jumpGreater[x:aType, y:aType,
 firstGreaterAddress:Address,
 elseAddress:Address]↠
 InstructionUnit↞Execute[(x>y) �
 True ⦂ firstGreaterAddress⍌
 False ⦂ elseAddress ⍰]¶
 addJumpPositive[x:aType, y:aType, sumLocation:LocationaType,
 positiveAddress:Address, elseAddress:Address]↠

 Let z ← (x+y)｡

 sumLocation �
 aVariableLocation:VariableLocationaTypei ⦂

 Prep VariableLocation∎store[z]｡

 // continue after acknowledgement of store
 (z >0) � True ⦂ InstructionUnit↞execute[positiveAddress] ⍌
 False ⦂ InstructionUnit↞execute[elseAddress] ⍰⍌
 aTemporaryLocation:TemporaryLocationaTypeii ⦂

 aTemporaryLocation↞write[z],
 // continue concurrently with processing write
 (z >0) � True ⦂ InstructionUnit↞execute[positiveAddress] ⍌
 False ⦂ InstructionUnit↞execute[elseAddress] ⍰ ⍰§▮

i VariableLocationaType has store[aType]↦ Void▮
ii TemporaryLocationaType has write[aType] ↦ ⊝▮

Was the Actor Model premature?

The history of the Actor Model raises the question of whether it was premature.

Original definition of prematurity

As originally defined by [Stent 1972], “A discovery is premature if its

implications cannot be connected by a series of simple logical steps to

contemporary canonical or generally accepted knowledge.” [Lövy 2002]

glossed the phrase “series of simple logical steps” in Stent's definition as

referring to the “target community's ways of asking relevant questions, of

producing experimental results, and of examining new evidence.” [Ghiselin

2002] argued that if a “minority of scientists accept a discovery, or even pay

serious attention to it, then the discovery is not altogether premature in the

Stentian sense.” In accord with Ghiselin's argument, the Actor Model was not

premature. Indeed it enjoyed initial popularity and underwent steady

development.

However, Stent in his original article also referred to a development as

premature such that when it occurred contemporaries did not adopt it by

consensus. This is what happened with the Actor Model partly for the following

reasons:

 For over 30 years after the first publication of the Actor Model, widely

deployed computer architectures developed in the direction of making

a single sequential thread of execution run faster.

 For over 25 years after the first publication, there was no agreed

standard by which software could communicate high level data

structures across organizational boundaries.

Before its time?

According to [Gerson 2002], phenomena that lead people to talk about

discoveries being before their time can be analyzed as follows:

We can see the phenomenon of 'before its time' as composed of two separate

steps. The first takes place when a new discovery does not get tied to the

conventional knowledge of its day and remains unconnected in the

literature. The second step occurs when new events lead to the 'rediscovery'

of the unconnected results in a changed context that enables or even

facilitates its connection to the conventional knowledge of the

rediscovering context.

But circumstances have radically changed in the following ways:

 Progress on improving the speed of a single sequential thread has

stalled for some time now. Increasing speed depends on effectively

using many-core architectures.

 Better ways have been implemented that Actors can use to

communicate messages between computers.

 Actors have been increasingly adopted by industry.

Consequently, by the criteria of Gerson, the Actor Model might be described

by some as before its time.

According to [Zuckerman and Lederberg 1986], premature discoveries are

those that were made but neglected. [Gerson 2002] argued,

But histories and sociological studies repeatedly show that we do not have

a discovery until the scientific community accepts it as such and stops

debating about it. Until then the proposed solution is in an intermediate

state.”

By his argument, the Actor Model is a discovery but since its practical

importance is not yet accepted by consensus, its practical importance is not yet

a discovery.

Index

Actor
address, 2, 3, 5, 6, 20, 34, 39, 40
communicating sequential

processes, 49
customer, 5, 59
Erlang, 55
Fog Cutter, 54, See Fog Cutter
interface, 13
JavaScript, 22, 59
locality, 5
Orleans, 22, 56
promise, 29, 58, 59
security, 5
Swiss cheese, 17
π-Calculus, 53

Actor Message
Virtual Procedure, 45

Actor Model, 3
capabilities systems, 61

Actors
Squeak, 56
uncountably many, 15

Adams, J., 63
address

Actor, 2, 3, 5, 6, 20, 34, 39, 40
Agha, G., 43, 54
Allison, D., 22
Armstrong, J., 55
Athas, W., 48
Baker, H., 5, 16, 41
Baran, P., 3
Bernstein, P., 22, 56
Bishop, P., 3, 39, 48
blob, 56, 60
Boden, N., 48
Boley, H., 23
Briot, J., 48
Bykov, S., 22, 56
capabilities systems

Actor Model, 61
Capabilities Systems, 61
capability, 3, 19, 41, See Actor

address
Cardelli, L., 53

Chander, A., 63
cheese, 18

hole, 18
Church, A., 1, 34
Clinger, W., 50
contradiction, 2
Cosmic Cube, 48
CSP, 49

1978, 51
Dahl, O., 37, 44
Dally, W., 54
Dean, D., 63
Dennis, J., 3, 61
Deutsch, P., 51
Dijkstra, E., 41, 49
Erlang Actor, 55
Feynman, R., 11
Fog Cutter

Actor, 54
mailbox, 54
thread, 54

future, 16, 18, 46, 47, 53, 58
FutureList, 19
Garst, B., 22
Geller, A., 56
Goldberg, A., 51
Gordon, A., 53
Greif, I., 41
Hayes, P., 41
Hayes, T., 22
Hewitt, C., 3, 41, 54
Hibbert, C., 22
Hoare, CAR, 5, 50, 51
Hopwood, D., 22
Huhns, M., 22
inconsistency

denial, 2
elimination, 2

inconsistent, 2
indeterminacy, 5
Ingalls, D., 51, 56

Smalltalk-72, 38
interface

Actor, 13

J operator, 45
JavaScript

Actor, 22, 59
J–Machine, 54
Kaehler, t., 51
Kaehler, T., 56
Kahn, K., 22, 47
Karmani, R., 54
Karp, A., 22
Kay, A., 3, 51, 56

Smalltalk-71, 38
Smalltalk-72, 38

Kliot, G., 22, 56
Knabe, F., 51, 53
lambda calculus, 1
Lambda calculus, 34
Lampson, B., 63
Landin, P., 45

J operator, 45
Larus, J., 56
Leslie, W., 22
Let, 68
Levy, H., 62, 63
Lieberman, H., 47, 48
Liskov, B., 16
Lisp, 3
locality

Actor, 5
Logic

Classical, 13
Matsuoka, S., 48
McCarthy, J., 35, 38, 41
McDermott, D., 46
Meijer, E., 54
Merry, D., 51
Miller, M. S., 22, 63
Milner, R., 52, 53
Minsky, M., 38
Mitchell, J., 63
Miya, E., 22
Mol, A., 10
Nygaard, K., 36, 37, 44, 54
Object

versus Actor, 44
Object-oriented

versus Actor Model, 44
Organick, E., 63
Orleans

Actor, 22, 56
packet switching, 3
Pandya, R,, 56
Papert, S., 38
Park, D., 53
Petri Nets, 3
Planner, 38
Plotkin, G., 41
Pratt, V., 22
program control structure, 45
promise

Actor, 29, 58, 59
quasi-commutative, 5
Reynolds, J., 45
Rovelli, C., 11
Saltzer, J., 61, 62, 64
Scheme, 45
Schroeder, M., 61, 62, 64
Schumacher, D., 22
Scott, D., 1
security Actor, 5
Seitz, C., 48
Shapiro, J., 63
Simula, 36
Simula 67, 38
Simula-67, 3
Smalltalk-72, 3, 38, 51
Smalltalk-80, 51
Squeak, 56
Steele, G., 45
Steiger, R., 3, 39
Suppes, P., 22
Sussman, G., 45, 46
Swiss cheese Actor, 17
Szyperski, C., 54
Thelin, J., 56
Theriault, D., 47
Turing, A., 34
van Horn, E., 3, 61
Virtual Procedure

Actor Message, 45
Wallace, S., 51
Wing, J., 16
Woelk, D., 48
Woodruff, J., 63
Woods, J., 2
Yonezawa, A., 48
π-Calculus, 52

End Notes

1 The Actor model makes use of two fundamental orders on computational

events [Baker and Hewitt 1977; Clinger 1981, Hewitt 2006]:

1. The activation order (⇝) is a fundamental order that models one event

activating another (there is energy flow from an event to an event which

it activates). The activation order is discrete:

 ∀[e1,e2Events]→ Finite[{eEvents | e1⇝e⇝e2}]

There are two kinds of events involved in the activation order: reception

and transmission. Reception events can activate transmission events and

transmission events can activate reception events.

2. The reception order of an Actor x (
𝑥
→) models the (total) order of events

in which a message is received at x. The reception order of each x is

discrete:

∀[r1,r2ReceptionEventsx]→ Finite[{rReceptionEventsx | r1
𝑥
→r

𝑥
→ r2}]

The combined order (denoted by ↷) is defined to be the transitive closure of

the activation order and the reception orders of all Actors. So the following

question arose in the early history of the Actor model: “Is the combined

order discrete?” Discreteness of the combined order captures an important

intuition about computation because it rules out counterintuitive

computations in which an infinite number of computational events occur

between two events (à la Zeno).

 Hewitt conjectured that the discreteness of the activation order together

with the discreteness of all reception orders implies that the combined order

is discrete. Surprisingly [Clinger 1981; later generalized in Hewitt 2006]

answered the question in the negative by giving a counterexample:

Any finite set of events is consistent (the activation order and all reception

orders are discrete) and represents a potentially physically realizable

situation. But there is an infinite set of sentences that is inconsistent with

the discreteness of the combined order and does not represent a physically

realizable situation.

 The resolution of the problem is to take discreteness of the combined

order as an axiom of the Actor model:1

 ∀[e1,e2Events]→ Finite[{eEvents | e1↷e↷e2}]
Properties of concurrent computations can be proved using the above

orderings [e.g. Bost, Mattern, and Tel 1995; Lamport 1978, 1979].
2 better or worse

3 The receiver might be on another computer and in any the system can make

use of threads, locks, location transparency, throttling, load distribution,

persistence, automated storage reclamation, queues, cores, channels, ports,

etc. as it sees fit.

 Messages in the Actor model are generalizations of packets in Internet

computing in that they need not be received in the order sent. Not

implementing the order of delivery, allows packet switching to buffer

packets, use multiple paths to send packets, resend damaged packets, and to

provide other optimizations.

 For example, Actors are allowed to pipeline the processing of messages.

What this means is that in the course of processing a message m1, an Actor

can designate how to process the next message, and then in fact begin

processing another message m2 before it has finished processing m1. Just

because an Actor is allowed to pipeline the processing of messages does not

mean that it must pipeline the processing. Whether a message is pipelined is

an engineering tradeoff.
4 The amount of effort expended depends on circumstances.
5 These laws can be enforced by a proposed extension of the X86

architecture that will support the following operating environments:

 CLR and extensions (Microsoft)

 JVM (Oracle, IBM, SAP)

 Dalvik (Google)

 Many-core architecture has made the above extension necessary in order

to provide the following:

 concurrent nonstop automated storage reclamation (garbage collection)

and relocation to improve performance,

 prevention of memory corruption that otherwise results from

programming languages like C and C++ using thousands of threads in

a process,

 nonstop migration of iOrgs (while they are in operation) within a

computer and between distributed computers

6 The following is a interface for a customer that is used in request/response

message passing for return type aType:

Interface CustomeraType with

 return[aType] ↦ ⊝,
 throw[Exception] ↦ ⊝▮

7 It is not possible to guarantee the consistency of information because

consistency testing is recursively undecidable even in logics much weaker

than first order logic. Because of this difficulty, it is impractical to test

whether information is consistent.
8 Consequently iInfo makes use of direct inference in Direct Logic to reason

more safely about inconsistent information because it omits the rules of

classical logic that enable every proposition to be inferred from a single

inconsistency.
9 This section shares history with [Hewitt 2008f].
10 cf. denotational semantics of the lambda calculus [Scott 1976]

11 One solution is to develop a concurrent variant of the Lisp meta definition

[McCarthy, Abrahams, Edwards, Hart, and Levin 1962] that was inspired by

Turing's Universal Machine [Turing 1936]. If exp is a Lisp expression and

env is an environment that assigns values to identifiers, then the procedure

Eval with arguments exp and env evaluates exp using env. In the concurrent

variant, eval[env] is a message that can be sent to exp to cause exp to be

evaluated. Using such messages, modular meta definitions can be concisely

expressed in the Actor model for universal concurrent programming

languages (e.g. ActorScript [Hewitt 2010a]).
12 However, they come with additional commitment. Inappropriate language

constructs are difficult to leave behind.
13 E.g. processes in Erlang [Armstrong 2007] and vats in the object-

capability model[Miller 2006].
14 Swiss cheese was called serializers in the literature.
15

 In part, this section extends some material that was submitted to Wikipedia

and [Hewitt 2008f].
16 Turing [1936] stated:

the behavior of the computer at any moment is determined by the

symbols which he [the computer] is observing, and his ‘state of

mind’ at that moment” and “there is a bound B to the number of

symbols or squares which the computer can observe at one moment.

If he wishes to observe more, he must use successive observations.”

 Gödel’s conception of computation was formally the same as Turing but

more reductionist in motivation:

There is a major difference between the historical contexts in which

Turing and Gödel worked. Turing tackled the Entscheidungsproblem

[computational decidability of provability] as an interesting

mathematical problem worth solving; he was hardly aware of the fierce

foundational debates. Gödel on the other hand, was passionately

interested in the foundations of mathematics. Though not a student of

Hilbert, his work was nonetheless deeply entrenched in the framework of

Hilbert’s finitistic program, whose main goal was to provide a meta-

theoretic finitary proof of the consistency of a formal system “containing

a certain amount of finitary number theory.” [Shagrir 2006]
17 An example of the global state model is the Abstract State Machine (ASM)

model [Blass, Gurevich, Rosenzweig, and Rossman 2007a, 2007b; Glausch

and Reisig 2006].

18 The lambda calculus can be viewed as the earliest message passing

programming language [Hewitt, Bishop, and Steiger 1973] building on

previous work.

 For example, the lambda expression below implements a tree data

structure when supplied with parameters for a leftSubTree and

rightSubTree. When such a tree is given a parameter message “getLeft”, it

returns leftSubTree and likewise when given the message “getRight" it

returns rightSubTree:

λ[leftSubTree, rightSubTree]
 λ[message] message � “getLeft” ⦂ leftSubTree

 “getRight” ⦂ rightSubTree

19 Allowing assignments to variables enabled sharing of the effects of updating

shared data structures but did not provide for concurrency.
20 [Petri 1962]
21 Consequently in Simula-76 there was no required locality of operations

unlike the laws for locality in the Actor mode [Baker and Hewitt 1977].
22 The ideas in Simula became widely known by the publication of [Dahl and

Hoare 1972] at the same time that the Actor model was being invented to

formalize concurrent computation using message passing [Hewitt, Bishop,

and Steiger 1973].
23 The development of Planner was inspired by the work of Karl Popper [1935,

1963], Frederic Fitch [1952], George Polya [1954], Allen Newell and

Herbert Simon [1956], John McCarthy [1958, et. al. 1962], and Marvin

Minsky [1968].
24 This turned out later to have a surprising connection with Direct Logic. See

the Two-Way Deduction Theorem below.
25 Subsequent versions of the Smalltalk language largely followed the path of

using the virtual methods of Simula in the message passing structure of

 programs. However Smalltalk-72 made primitives such as integers, floating

point numbers, etc. into objects. The authors of Simula had considered

making such primitives into objects but refrained largely for efficiency

reasons. Java at first used the expedient of having both primitive and object

versions of integers, floating point numbers, etc. The C# programming

language (and later versions of Java, starting with Java 1.5) adopted the more

elegant solution of using boxing and unboxing, a variant of which had been

used earlier in some Lisp implementations.

26 According to the Smalltalk-72 Instruction Manual [Goldberg and Kay

1976]:

There is not one global message to which all message “fetches” (use of

the Smalltalk symbols eyeball, ; colon, :; and open colon, ⦂) refer;

rather, messages form a hierarchy which we explain in the following

way-- suppose I just received a message; I read part of it and decide I

should send my friend a message; I wait until my friend reads his message

(the one I sent him, not the one I received); when he finishes reading his

message, I return to reading my message. I can choose to let my friend

read the rest of my message, but then I cannot get the message back to

read it myself (note, however, that this can be done using the Smalltalk

object apply which will be discussed later). I can

also choose to include permission in my message to my friend to ask me

to fetch some information from my message and to give that in

information to him (accomplished by including : or ⦂ in the message to

the friend). However, anything my friend fetches, I can no longer have.

In other words,

1) An object (let's call it the CALLER) can send a message to another

object (the RECEIVER) by simply mentioning the RECEIVER's

name followed by the message.

2) The action of message sending forms a stack of messages; the last

message sent is put on the top.

3) Each attempt to receive information typically means looking at the

message on the top of the stack.

4) The RECEIVER uses the eyeball, , the colon, :, and the open

colon, ⦂, to receive information from the message at the top of the

stack.

5) When the RECEIVER completes his actions, the message at the

top of the stack is removed and the ability to send and receive

messages returns to the CALLER. The RECEIVER may return a

value to be used by the CALLER.

6) This sequence of sending and receiving messages, viewed here as

a process of stacking messages, means that each message on the

stack has a CALLER (message sender) and RECEIVER (message

receiver). Each time the RECEIVER is finished, his message is

removed from the stack and the CALLER becomes the current

RECEIVER. The now current RECEIVER can continue reading

any information remaining in his message.

7) Initially, the RECEIVER is the first object in the message typed by

the programmer, who is the CALLER.

8) If the RECEIVER's message contains an eyeball, ; colon, :, or

open colon, ⦂, he can obtain further information from the

CALLER's message. Any information successfully obtained by

the RECEIVER is no longer available to the CALLER.

9) By calling on the object apply, the CALLER can give the

RECEIVER the right to see all of the CALLER's remaining

message. The CALLER can no longer get information that is read

by the RECEIVER; he can, however, read anything that remains

after the RECEIVER completes its actions.

10) There are two further special Smalltalk symbols useful in sending

and receiving messages. One is the keyhole, , that lets the

RECEIVER “peek” at the message. It is the same as the ⦂ except

it does not remove the information from the message. The second

symbol is the hash mark, #, placed in the message in order to send

a reference to the next token rather than the token itself.
27 The sender is an intrinsic component of communication in the following

previous models of computation:

 Petri Nets: the input places of a transition are an intrinsic component of

a computational step (transition).

 Lambda Calculus: the expression being reduced is an intrinsic

component of a computational step (reduction).

 Simula: the stack of the caller is an intrinsic component of a

computation step (method invocation).

 Smalltalk 72: the invoking token stream is an intrinsic component of a

computation step (message send).
28 An Actor can have information about other Actors that it has received in a

message about what it was like when the message was sent. See section of

this paper on unbounded nondeterminism in ActorScript.
29 Arbiters render meaningless the states in the Abstract State Machine (ASM)

model [Blass, Gurevich, Rosenzweig, and Rossman 2007a, 2007b; Glausch

and Reisig 2006].
30 The logic gates require suitable thresholds and other parameters.
31 Of course the same limitation applies to the Abstract State Machine (ASM)

model [Blass, Gurevich, Rosenzweig, and Rossman 2007a, 2007b; Glausch

and Reisig 2006]. In the presence of arbiters, the global states in ASM are

mythical.
32 Consider the following Nondeterministic Turing Machine:

Step 1 : Next do either Step 2 or Step 3.
Step 2 : Next do Step 1.
Step 3 : Halt.

It is possible that the above program does not halt. It is also possible that the

above program halts. Note that above program is not equivalent to the one

below in which it is not possible to halt:

Step 1 : Next do Step 1.
33 This result is very old. It was known by Dijkstra motivating his belief that it

is impossible to implement unbounded nondeterminism. Also the result

played a crucial role in the invention of the Actor Model in 1972.

34 This proof does not apply to extensions of Nondeterministic Turing

Machines that are provided with a new primitive instruction NoLargest

which is defined to write a unbounded large number on the tape. Since

 executing NoLargest can write an unbounded amount of tape in a single

instruction, executing it can take an unbounded time during which the

machine cannot read input.

 Also, the NoLargest primitive is of limited practical use. Consider a

Nondeterministic Turing Machine with two input-only tapes that can be read

nondeterministically and one standard working tape.

 It is possible for the following program to copy both of its input tapes onto

its working tape:

Step 1 : Either
a) copy the next input from the 1st input tape onto the working

tape and next do Step 2,
 or

b) copy the next input from the 2nd input tape onto the
working tape and next do Step 3.

Step 2 : Next do Step 1.
Step 3 : Next do Step 1.

It is also possible that the above program does not read any input from the

1st input tape (cf. [Knabe 1993]). Bounded nondeterminism was but a

symptom of deeper underlying issues with Nondeterministic Turing

Machines.
35 Consequently,

 The tree has an infinite path. ⇔ The tree is infinite. ⇔ It is possible

that P does not halt.

 If it is possible that P does not halt, then it is possible that that the

set of outputs with which P halts is infinite.

 The tree does not have an infinite path. ⇔ The tree is finite. ⇔ P

always halts.

If P always halts, then the tree is finite and the set of outputs with which

P halts is finite.
36 [Kowalski 1988a]
37 A Logic Program is defined by the criteria that it must logically infer its

computational steps.
38 A request to a shared resource might never receive service because it is

possible that a nondeterministic choice will always be made to service

another request instead.
39 [Nygaard 1986] Starting with Simula-67, which was not a pure Object

programming language because for efficiency reasons numbers, strings, and

arrays, were not Objects in the Class hierarchy.
40 [Knudsen and Madsen 1988]

41 According to [Nygaard 1986] (emphases in original):

The term object-oriented programming is derived from the object

concept in the Simula-67 programming language. ... Objects sharing a

common structure are said to constitute a class, described in the program

by a common class description.

[SIGPLAN 1986, Stein, Lieberman, and Ungar 1989] have discussions of

object-oriented programming.
42 Examples of Object programming languages include Simula-67, Smalltalk-

80, Java, C++, C#, and future versions of JavaScript. Recent Object

languages support other abstraction and code reuse mechanisms, such as

traits, delegation, type classes, and so on, either in place of, or as well as

inheritance.
43 Every interface is a type and every type is an interface.
44 [Kay 1998] wrote:

The big idea is “messaging” The key in making great and growable

systems is much more to design how its modules communicate rather than

what their internal properties and behaviors should be. Think of the

internet - to live, it (a) has to allow many different kinds of ideas and

realizations that are beyond any single standard and (b) to allow varying

degrees of safe interoperability between these ideas.
45 missing from initial versions of Scheme
46 Notable members of this community included Bill Gosper, Richard

Greenblatt, Jack Holloway, Tom Knight, Stuart Nelson, Peter Samson,

Richard Stallman, etc. See [Levy 1984].
47 According to [Steele and Gabriel 1994]:

Hewitt had noted that the actor model could capture the salient

aspects of the lambda calculus; Scheme demonstrated that the

lambda calculus captured nearly all salient aspects (excepting only

side effects and synchronization) of the actor model.

Unfortunately, the above comment misses an important point: Actors that

can be implemented in the parallel lambda calculus are special case Actors

that have bounded nondeterminism and cannot change. In general, Actors

that can be implemented in the parallel lambda calculus are exponentially

slower than general Actor systems.
48 [Hewitt 1976, 1977].
49

 This misconception was partially acknowledged in some of their subsequent

work.
50 The parallel lambda calculus includes the following limitations:

 Message reception order cannot be implemented.

 Actors that change cannot be implemented

 The parallel lambda calculus does not have exceptions.

 In general, the parallel lambda calculus is exponentially slower than

general Actor systems.

51 According to [Berger 2003], Milner revealed

…secretly I realized that working in verification and automatic theorem

proving…wasn’t getting to the heart of computation theory…it was

Dana Scott’s work that was getting to the heart of computation and the

meaning of computation.

However, Milner continued his research on bi-simulation between systems

and did not directly address the problem of developing mathematical

denotations for general computations as in the Actor Model.
52 Note that there is a limitation on concurrency because u∎get[] must complete

before P starts.
53 As above, there is a limitation on concurrency because u∎put[x] must

complete before P starts.
54 e.g. as in Erlang [Armstrong 2010].
55 e.g. using assignment commands
56 a concept from (quantum) physics
57 However, data structures within an Erlang Actor are garbage collected.
58 which can be optimized by reusing the thread if another message is waiting
59 a globally unique identifier can be a 128-bit guid, long integer, or a string.
60 Also, a reference for an Orleans Actor can be created from a C#

anObjectAddress using

aFactory.CreateObjectReference(anObjectAddress).
61 There can be optimizations for determinate message passing, i.e., the same

message always responds with the same result.
62 Because of the ability to instantiate an Actor from its globally unique

identifier, Orleans Actors are called “virtual” in their documentation. By

analogy with virtual memory, the term “virtual” applied to an Orleans Actor

would seem to imply that it would have to return to where it left. However,

this terminology is misleading because an Actor can potentially migrate

elsewhere and never come back.

 Better terminology would be to say that an Orleans Actor is “perpetual.”
63 unless it is deleted by potentially unsafe means, which can result in a

dangling globally unique identifier.
64 after it has been unused for a while, its storage can be moved elsewhere

outside the process in which it currently resides
65 unless it is deleted by potentially unsafe means, which can result in a

dangling globally unique identifier.
66 However, after the message is finished processing, sometimes waiting

method calls it invoked can be processed concurrently if they are

independent.
67 provided that the Actor is not contended
68 [Microsoft 2013]

69 In ActorScript the program is:

 Try ...aUse(□anActor.aMethodName(...))...

 anotherUse(□anActor.anotherMethodName(...))...
 catch ...
70 reentrancy allows execution of waiting method calls to be freely interleaved
71 [Liskov and Shira 1988; Miller, Tribble, and Shapiro 2005]
72 Orleans uses Task<aType> for the type of a promise which corresponds to

the type FutureaType in ActorScript.
73 for requests, e.g., method calls. Customers are sometimes called

continuations in the literature although continuations often cannot handle

exceptions.
74 However, Orleans does still surfaces continuations using lower level

primitives.
75 [ECMA 2014]
76 Promise Actors were sometimes called “futures” in the beginning [Russell

2013, Yoshino 2013].
77 [Barton 2014]
78 somewhat analogous the await construct in C# [Microsoft 2013]
79 function CreatePromise(thunkForExpression)

 {return Promise.resolve(true)

 .then((aValueToDiscard) =>

 thunkForExpression())};
80 A thunk is an intermediary procedure for assistance in carrying out a task

[Church 1941, Ingerman, 1961].
81 which are a kind of iOrg
82 Of course, at a different level of abstraction, workers can also be modeled

as Actors that communicate with other workers.
83 roughly in order of decreasing importance
84 JavaScript has transferable Actors, which are limited to being of type

ArrayBuffer, CanvasProxy, and MessagePort. According to [World

Wide Web Consortium 2012]:

To transfer a transferable Actor to a another worker, a worker must run

the steps defined for the type of Actor in question. The steps will

return a new Actor of the same type, and will permanently neuter the

original Actor. (This is an irreversible and non-idempotent operation;

once an Actor has been transferred, it cannot be transferred, or indeed

used, again.)
84 due mainly to the legacy requirement not to break the Web. Under

difficult circumstances, W3C and ECMA have worked to clean-up and

make extensions without breaking the Web.
85 In order to address these security problems, tagged-memory architectures

need to be created as extensions of current ARM and Intel architectures.

86 Capabilities were critiqued in [Bobert 1984; Rajunas 1989; Miller, Yee and

Shapiro 2003] concerning the following issues:

 revocability: An Actor does not have to honor the message that it

receives. Using proxies for Actors also enables revocability because

messages are forwarded and so a proxy can revoke.

 multi-level security: Actors, per se, do not have levels of security

although various security schemes can be implemented, which may

require using membranes [Donnelley 1976, Hewitt 1980].

 delegation: Actors directly support delegation by passing addresses

of Actors in messages. However, a receiver must have appropriate

types in order to send messages to addresses that it has received.

 confinement: Actor can use encryption to help enforcement

confinement of information. For example, a computer might accept

communications to Actors that it hosts only if the communication is

encrypted by certain other computers.
87 The message might not actually be received for a variety of potential reasons.

For example, because it is not properly received by an app the for intended

recipient, because it is not properly received by a computer for the intended

recipient, etc. It is good practice to throw an exception if a response is not

received within some “reasonable” time.
88 Bits cannot be converted into an Actor address of arbitrary type, i.e., an

Actor cannot convert an address of type BitString into an address of type

Account.
89 The ability to extend implementation is important because it helps to avoid

code duplication.
90 cf. [Crahen 2002, Amborn 2004, Miller, et. al. 2011]
91 ignoring exceptions in this way is not a good practice

