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Quantitative unique continuation for operators with partially
analytic coefficients. Application to approximate control for
waves.

Camille Laurent*and Matthieu Léautaud®

June 13, 2015

Abstract. In this article, we first prove quantitative estimates associated to the unique continuation
theorems for operators with partially analytic coefficients of Tataru [Tat95, Tat99b], Robbiano-Zuily [RZ98]
and Hormander [Hor97]. We provide local stability estimates that can be propagated, leading to global
ones.

Then, we specify the previous results to the wave operator on a Riemannian manifold M with boundary.
For this operator, we also prove Carleman estimates and local quantitative unique continuation from and
up to the boundary dM. This allows us to obtain a global stability estimate from any open set I' of M
or OM, with the optimal time and dependence on the observation.

This provides the cost of approximate controllability: for any 7' > 2sup,¢ 1, (dist(z,T")), we can drive
any data of H} x L? in time T to an e-neighborhood of zero in L? x H~! with a control located in T, at
cost e€/e.

We also obtain similar results for the Schrédinger equation.
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1 Introduction and main results

In this article, we are interested in the quantification of global unique continuation results of the following
form: given a differential operator P on an open set {2 C R", and given a small subset U of €2, having

Pu=0inQ, uly=0=u=0onQ. (1.1)

More generally, in cases where (1.1) is known to hold, we are interested in proving a quantitative version
of

Pu smallin 2, w small in U = u small in .

A more tractable problem than (1.1) is the so called local unique continuation problem: given z° € R"
and S an oriented local hypersurface containing z°, do we have the following implication:

There is a neighborhood € of #°, such that Pu = 0in Q,u|gng- = 0 = 2° ¢ supp(u). (1.2)

It turns out that proving (1.2) for a suitable class of hypersurface (with regards to the operator P) is
in general a key step in the proof of properties of the type (1.1). The first general unique continuation
result of the form (1.2) is the Holmgren Theorem, stating that, for operators with analytic coefficients,
unique continuation holds across any noncharacteristic hypersurface S. This local unique continuation
result enjoys a global version proved by John [Joh49], where uniqueness is propagated through a family of
noncharateristic hypersurfaces.

When focusing on operators with (only) smooth coefficients, the most general results was proved by
Hormander [H6r63], [H6r94, Chapter XXVIII]. Uniqueness across a hypersurface holds assuming a strict
pseudoconvexity condition (see e.g. Definition 1.6 below). This result uses as a key tools Carleman
estimates, which were introduced in [Car39] and developed at first for elliptic operators in [Cal58]. We
also refer to [Zui83] for a general presentation of these problems.

A particular motivation arises both from geoseismics [Sym83] and control theory [Lio88a, Lio88b]: in
these contexts, one is interested in recovering the data/energy of a wave from the observation on a small
part of the domain along a time interval. As well, unique continuation results for waves have been useful
tools to solve inverse problems, for instance using the boundary control method [Bel87] (see also the review
article [Bel07] and the book [KKLO01]).

More precisely, consider the wave operator P = 92 — A, on Q = (=T,T) x M, where (M,g) is
a Riemannian manifold (with or without boundary) and A, the associated (negative) Laplace-Beltrami
operator. A central question raised by the above applications is that of global unique continuation from
sets of the form (—7,T) X w, where w C M (resp. w C IM) is an observation region.

In this setting and in the context of control theory, the unique continuation property (1.1) is equivalent
to approximate controllability (from (—7,7T) x w); and an associated quantitative estimate (as proved in
the present paper) is equivalent of estimating the cost of approximate controls.



If M is analytic (and connected), the Holmgren theorem applies, which together with the argument of
John [Joh49], allows to prove unique continuation from (—7',7T) X w for any nonempty open set w as soon
as T > L(M,w), where, for E C M, we have set

L(M,E):= sup ( inf dist(zg,21)), dist(zg,z1) =

inf length(~). 1.3
z1eEM  ZoEE ~€CO([0,1];M),7(0)=x0,7(1)=x1 gth(7) (1)

Due to finite speed of propagation, it is also not hard to prove that unique continuation from (—7,T) x w
does not hold if T' < £(M,w), so that the result is sharp.

Removing the analyticity condition on M has lead to a considerable difficulty, since Hormander general
uniqueness result does not apply in this setting: time-like surfaces, as {z; = 0}, do not satisfy the
pseudoconvexity assumption for the wave operator. The local unique continuation can even fail when
adding some smooth lower order terms to the wave operator, as proved by Alinhac-Baouendi [AB79,
Ali&3, AB95].

This uniqueness problem in the C'* setting was first solved by Rauch-Taylor [RT73] and Lerner [Ler88]
in the case T = oo, and M = R? (under different assumptions at infinity). Then, a result of Rob-
biano [Rob91] shows that it holds in any domain M for T sufficiently large. Hérmander [H6r92] improved

this result down to T' > /2L L(M,w). That these two results fail to hold in time £ translates the fact
that the local uniqueness results of these two authors are not valid across any noncharacteristic surface.

The proof of local uniqueness results across any noncharacteristic surface for 97 — A, was reached by
Tataru in [Tat95], leading to the global unique continuation result in optimal time T' > £(M,w). The
result of Tataru was not restricted to the wave operator: he considered operators with coefficients that
are analytic in part of the variables, interpolating between the Holmgren theorem and the Hérmander
theorem. Technical assumptions of this article were successively removed by Robbiano-Zuily [RZ98],
Hormander [Hor97] and Tataru [Tat99b], leading to a very general local unique continuation result for
operators with partially analytic coefficients (containing as particular cases both Holmgren and Hérmander
theorems).

Concerning quantitative estimates of unique continuation, when (1.1) holds, one may expect to have
an estimate of the form

lullg < cp( llully s 1 Pullg s [Jullg ), with ¢(a,b,c¢) — 0 when (a,b) — 0 with ¢ bounded, (1.4)

where U C  C Q are nonempty, and for appropriate norms. In this context, much less seems to be known.
Two additional difficulties arise: one needs first to quantify the local unique continuation property (1.2),
and then to “propagate” the local estimates obtained towards a global one.

In the setting of the Holmgren theorem, local estimates of unique continuation of the form (1.4) were
proved by John [Joh60]: they are of Holder type, i.e. (a,b,c) = (a+b)%c' %, in the case P is elliptic, and

a+b
In the situation of the Hormander theorem, it is proved by Bahouri [Bah87] that Holder stability
always holds locally. Such local estimates were propagated, leading to global ones (in the case of elliptic
operators P of order two, even with low regularity assumptions) by Lebeau and Robbiano [Rob95, LR95].
They can also be improved to ¢(a,b,c) = a + b if boundary conditions are added [Rob95, LR95|.
The global problem for the wave operator in the analytic setting was tackled by Lebeau in [Leb92]. For
Q=Q=(-T,T)xMand U = (—T,T) x w with w C M (or more precisely I' € M), he proved that the

-1
stability estimate (1.4) with ¢(a,b,c) = ¢ (log(l + 5 )) holds for any T' > £(M,w). He also proved

1
of logarithmic type, i.e. ¢(a,b,c) =c (log(l + =< )) , in the general case.

a+b
that this inequality is optimal if there exists a ray of geometric optic that does not intersect (—7,7T) X w
(and only has transverse intersection with dM). Under this assumption the (stronger) geometric control
estimate (i.e. (1.4) with ¢(a,b,¢) = a + b) of the Bardos-Lebeau-Rauch-Taylor Theorem [RT74, BLR92]

is not satisfied. When considering the C'*° situation for this problem, the first result is due to Rob-

_1
biano [Rob95], who proved the result for T suffiently large with ¢(a,b,c) = ¢ (log(l + =< )) *. The

a+b

—(1-e)
result was improved by Phung [Phul0] to ¢(a,b,c) = ¢ (log(l + aJCrb)) (still in large time). In his



unpublished lecture notes [Tat99a], Tataru proposes a strategy to obtain estimates of the form (1.4) with

—(1-¢)
Ve =c (log( 1+ aib)) in the general context of the uniqueness theorem for operators with partially

analytic coefficients.

In this article, we develop a systematic approach both to quantify the local uniqueness Theorem
of Tataru, Robbiano-Zuily and Hérmander, and to propagate the quantitative local uniqueness results

+b
difficulties of producing quantitative and global estimates. Then, we specify the previous results to the wave
operator on M. For this operator, we also prove appropriate Carleman estimates and local quantitative
unique continuation results from and up to the boundary M. This allows us to obtain a global stability
estimate from any open set of M or dM, with the optimal time (T > £(M,w)) and dependence on the
observation. This generalizes the result of Lebeau [Leb92] to non-analytic manifolds, and provides the cost
of approximate controllability. We also treat the case of the Schrédinger operator.

towards a global one (with optimal dependence ¢ = ¢ <log(1 + )) ). When doing so, we face both

In the present introduction, we first discuss the case of the wave and Schrédinger equations: in this
particular setting, the results are simpler to state and more precise. Moreover, in this context, we are able
to deal with the boundary value problem as well. Second, we state the general quantitative uniqueness
result for operators with partially analytic coefficients in the setting of Tataru [Tat95, Tat99b], Robbiano-
Zuily [RZ98] and Hoérmander [H6r97] (used in the proof for the wave equation).

1.1 The wave and Schrédinger equations

In this section, we describe the motivating applications of our main result, i.e. to the wave equation.
In this very particular setting, we are also able to tackle the boundary value problem. We also state an
analogous result for the Schrodinger equation.

Theorem 1.1 (Quantitative unique continuation for waves). Let M be a compact Riemannian manifold
with (or without) boundary. For any nonempty open subset w of M and any T > 2L(M,w), there exist
C, k, o > 0 such that for any (ug,u1) € Hi (M) x L*(M) and associated solution u of

Pu—Agu=0 in [0,T] x M,
Upm = 0 m [O,T] X 8/\/1, (15)
(u, Opu)jp—o = (uo,u1) in M,

we have, for any p > uo,

" 1
[[(wo, 1)l 2y pr—r < Ce™ ”u”L?((O,T);Hl(w)) + ; [ (wo, wn)ll pa g2 -

If OM # () and T is a non empty open subset of OM, for any T > 2L(M,T'), there exist C, k, pg > 0 such
that for any (ug,u1) € HY (M) x L*(M) and associated solution u of (1.5), we have

1
10, i)l 2 -1 < O™ 0l 20,1y + 7 I t0 wn)ll e -

Theorem 1.1 remains valid if A, is perturbated by lower order terms that are analytic in time. In
the special case where they are time independent, the constants in the previous estimates may be chosen
uniformly with respect to these perturbations (in the appropiate norms). We refer to Theorem 6.1 for a
precise statement. This result can also be formulated in the following way, closer to the formulation (1.4)
(see Lemma, A.3). We ouly give the boundary observation case.

Corollary 1.2. Assume OM # () and T is a non empty open subset of OM. Then, for any T > 2L(M,T),
there exists C > 0 such that for any (ug,u1) € Hi(M) x L*(M) and associated solution u of (1.5), we
have

[[(uo; wr) [l oy 2
(0, u)lecrr < O (Dol csz 47’

10uull L2 o, 7 x 1y



”(uOvul)”Hle2

H(uo,ul)HszH,l'

(w0, u) [l g1 w2 < Ce“M 1Ovull oo riury »  with A=

In the previous estimate, A has to be considered as the typical frequency of the initial data. So, the
estimate states a cost of observability of the order of an exponential of the typical frequency.

As proved by Lebeau [Leb92] in the analytic case, this exponential dependence is sharp in the general
case.

As a consequence of the previous Theorem, we can obtain some approximate controllability results as
follows. For the sake of brevity, we only state the case of a boundary control.

Theorem 1.3 (Cost of boundary approximate control). For any T > 2L(M,T), there exist C,c > 0 such
that for any € > 0 and any (ug,u1) € HY (M) x L?*(M), there exists g € L*((0,T) x ') with

lgll 220,y xT) < Ce® [ (wos w)ll g Aty x L2 (rn) >
such that the solution of

(02 —A)u=0 in (0,T) x M,
uom = lrg in (0,T) x OM,
(u, Osu)|4=0 = (uo, u1), in M,

satisfies H(u,atu)|t=THL2(M)XH_1(M) < e [(uo, w)ll gy vy < L2 (v -

That this result is a consequence of Theorem 1.1 is proved in [Rob95, Proof of Theorem 2, Section 3].
The solution of the nonhomogeneous boundary value problem are defined in the sense of transposition, see

[Lio88a].

We also obtain similar results for the Schrodinger equation. We only state here the counterpart of
Theorem 1.1 in this setting.

Theorem 1.4. Let M be a compact Riemannian manifold with (or without) boundary. For any nonempty
open subset w of M and any T > 0, there exist C, K, g > 0 such that for any ug € H>N H} and associated
solution u of

10w+ Agu=0 in (0,T) x M,
Uom = 0 mn (O,T) X 8./\/1, (16)
u(0) = ug in M,

we have, for any p > uo,
< Cet !
luoll 2 < Ce™ |ull o —r )11 (w)) T 0 [[uol| g7 -

If OM # 0 and T is a non empty open subset of OM, then for any T > 0, there exist C, k,ug > 0 such
that for any ug € H?> N H} and associated solution u of (1.6), we have

R 1
[uollp2 < Ce™ [|Ovull po(—p 1)<y + 0 [[uoll g7 -

As well, this result still holds with some lower order perturbations, analytic in ¢, see Theorem 6.5 for
a more precise statement.

Note that some related results have already been proven in the internal case by Phung [Phu01] with
e replaced by erh’,

1.2 Quantitative unique continuation for operators with partially analytic co-
efficients

Let us now turn to the general stability result and present the class of partial differential operators we
deal with. We consider domains Q C R™ = R" x R™, where n, + n, = n. We denote by x = (x4, )



the global variables and £ = (&,, &) the associated dual variables. The variables z, will denote the set of
variables in which the considered operator is analytic.

We recall that, given a bounded domain 2 C R® = R x R™ a smooth function f : ) — R is analytic
with respect to z, if, for any point z° = (22,29) € Q, f is equal to its partial Taylor expansion at x0
with respect to the variable z, in a neighborhood of 2° in €. Such a function extends as a holomorphic

function in the variable z, in B(z,¢) +iB(0,¢) x B(x),¢) for some £ > 0.
The folowing definition is due to Tataru [Tat99b, Definition 2.2].

Definition 1.5 (analytically principally normal operator). Let P be a partial differential operator on an
open set Q@ C R™ x R™ of order m € N* with smooth coefficients and principal symbol p(z, xp, &a, &b)-
We say that P is an analytically principally normal operator in {£, = 0} inside Q if the coefficients of
P are real-analytic in the variable z, and for any z° € Q there exist Q, C R", Q, C R™, such that
20 € Qg x Y, Qg x Qy C Q and there exists a complex neighborhood Q(E of Q, in C™ and a constant
C > 0 such that for all z,, 2, € QF and all (13,&,) € Q x R™, & # 0, we have

‘{p(zav '7Ov ')ap(zaa *y Oa )} (xbyfb” + ‘{p(zaa ) Oa ')7p(2aa ) 07 )} (xlﬂgb)’ < C‘p(zaaxb70a§b)||§b|m_lv (17)

|azap(2aaxb707§b>‘ < C|p(za7xb70>§b)" (1'8)

Note that in this definition, the Poisson brackets are taken only with respect to the (x3,&,) variables.
Yet, the combination of the two conditions (1.7) and (1.8) implies that such operators are in particular
principally normal in {£, = 0} in the usual sense (see [RZ98], [H6r97] or [Tat99b, Definition 2.1]), that is

Hp,p} (xzuzba O7£b)| § C|p($aaxb707£b)||£b‘mil7 (19)

where this time, {p, p} is computed with respect to all the variables.

Two interesting cases of operators P being analytically principally normal in {§, = 0}, considered
in [RZ98] and [Hor97], are operators with analytic coefficients in xz, satisfying one of the following two
assumptions:

(E) transversal ellipticity: p(xq,p,0,&) > c|&|™ for (x4, xp) € Q, &, € R™;

(H) principal normality and invariance with respect to the null bicharacteristic flow in {£, = 0}:
‘{pap} (xa7xb70u€b)| < C‘p(ma7xbuO7§b)||§b|7n_1 and 8xap(xaamb70a§b) =0.

We now formulate the definition of strongly pseudoconvex surfaces for an operator P, see [H6r94, Defini-
tion 28.3.1], [Tat99b, Definitions 2.3 and 2.4] and [Tat99a, Section 1.2].

Definition 1.6 (Strongly pseudoconvex oriented surface). Let @ C R™, T be a closed conic subset of T*€2,
and let P be principally normal in T inside Q (in the sense of (1.9)) with principal symbol p. Let S be a
C? oriented hypersurface of 2 and z° € SN Q. We say that S is strongly pseudoconvex in I' at z° for P
if there exists ¢ € C?(2;R) such that S = {¢ = 0}, Ve (a®) # 0, satisfying:

Re (B, {p,0}} (2°,€) >0, if p(2°,&) = {p,6}(2°,) = 0 and € € Tpo, & # 0; (1.10)
%{ﬁ¢7p¢}(xo,§) >0, 1fp¢($o,£) = {p¢7¢}(x07£) =0 and 5 € 'yo, 7> 0, (111)

where py(z,&) = p(z,{ + itV ).

Note that this is a property of the oriented surface S solely, and not of the defining function ¢
(see [Hor94], beginning of Section 28.3). If I' = T*Q, it is the usual condition of the Hérmander Theorem
(see [Hor94, Section 28.3]), that is, under which uniqueness holds for P at z° across the hypersurface S,
i.e. from ¢ > 0to ¢ < 0.

Below, this condition will always be used for I" = {¢, = 0}. In this case, and using the homogeneity of
p in &, Assumption (1.11) may be rephrased as:

P, €~ V), p(r, 6+ iV} 0,0,6) >0, i p(Q) = (1.0} =0, &ER™,



where ¢ = (29,iV,0(2°),& + iVpp(2?)). An important feature of this definition is that it is invariant by
changes of coordinates.

Note also that in the case I' = {£, = 0}, the condition (1.10) is the limit as 7 — 0 of (1.11) on
the subset {p¢(x0, &) = {pg, o}(2°,&) = O} N To, thanks to the principal normality assumption (1.9), see
Remark 3.5 below.

Before stating our main result, let us discuss some cases of operators of particular interest.

Remark 1.7 (Hormander case). If n, = 0, there is no analytic variable. In this case, Definition 1.5
coincides with the definition of principally normal operators [H6r94, Chapter XXVIII] and Definition 1.6
with I' = T that of strictly pseudoconvex functions. The unique continuation result under consideration
is the classical Hormander theorem [Hér94, Chapter XX VIII].

Remark 1.8 (Holmgren case). If n, = n, that is the operator is analytic in all the variables, we have
g = 2,8 =&, and hence I' = Q x {{, = 0} = Q x {£ = 0}. In this situation, conditions (1.7), (1.8) are
empty since all the terms vanish.

Next, concerning the conditions on the surface {¢ = 0}, notice that (1.10) is also empty since T'yo N
{€ #£0} = 0. For (1.11), if £ € T'o, that is £ = 0, we have py(2°, &) = p(2°,i7VP) = (iT)"p(2°, V¢): any
noncharacteristic surface is a strongly pseudoconvex oriented surface.

Note that, in the case n, = n, the results presented here hold under the condition:

p(a®, V() = {p,6}(2°, V4 (2?)) = 0 = %{25(9675 —iVe),p(x, & +iVe)}(a,0) > 0,

which is weaker than the noncharactericity condition p(z°, Vg (2?)) # 0 of the Holmgren theorem.

Remark 1.9 (Wave type and Schrédinger type operators). Let us now consider the case of operators P
of principal symbol of the form ps(z,§) = Q. (£), where @, is a smooth family of real quadratic forms,
such that Q. (0, &) is definite on R™>. This is the case of the wave operator or Schrodinger type operators.
First, condition (E) is fulfilled thanks to the positiveness of Q.(0,&,). Then, Assumption (1.10) holds
(uniformly with respect to = € Q) according to the definiteness of Q. ((0,&)). It is indeed empty since
p2(z,(0,&)) does not vanish for & # 0. Moreover, we have {py, }(x,€) = 2Q. (&, V), where Q, is the
polar form of @, and

{p2, 0}(2, £ +1Ve) = 2Q, (£, V) + 2iQ, (V).

As a consequence, Im{ps, ¢}(x,& +iVep) = 2Q.(V¢) so that (1.11) is also empty (and thus satisfied) for
any noncharacteristic hypersurface.

In conclusion, for real quadratic forms which are definite on R™ at £, = 0, any noncharacteristic
hypersurface is strongly pseudoconvex in the sense of Definition 1.6. In the case n, = 1, this includes the
following operators of particular interest:

e P=D2 -5 :Lj:ll a;j(x)D,; D,; (wave operator) with p = 2 -3 :Lj:ll aij(m)fgfg;
a = ] =
e P=D, -5 fj;ll ;j()D,; D,; (Schrédinger operator) with p = —3 ?;:11 i (z)El €l
: ] :

where the quadratic form with coefficients «; ; is positive definite.

We are now prepared to formulate our main Theorem in the general framework. We first describe the
geometric context and then state the Theorem.

Geometric setting: (see Figure 1) We first fix two splittings of R” as R"” = R” ' x R, and
R™ = R} x R}?, possibly in two different basis. We let D be a bounded open subset of R™ ! with smooth

boundary and G = G(2',¢) € C*(D x [0,1 + 7)), for some 1 > 0, such that
e For all ¢ € (0,1], we have {2/ € R""!,G(2',¢) > 0} = D;
e for all 2’ € D, the function ¢ — G(2’,¢) is strictly increasing;

e for all € € (0,1], we have {2/ € R"™!, G(2’,¢) = 0} = D.



We set G(2,0) =0, So = D x {0} and, for ¢ € (0, 1],

S. ={(2,2,) € R",z,, > 0 and G(2',¢) = x,} = (D x R) N {(2',z,) € R",G(2',¢) =z, };
K={zeR"0<uz, <G, 1)}

Tn
T

Figure 1: Geometric setting of Theorem 1.10

Theorem 1.10. In the above geometric setting, we moreover let 2 be a neighborhood of K, and P be a
differential operator of order m, analytically principally normal operator on Q in {&, = 0}.
Assume also that, for any ¢ € [0,1 + n), the oriented surfaces Sc = {¢p. =0} with ¢.(2',x,) =
G(2',e) — x, are strictly pseudoconvex in {&, = 0} for P on the whole S, in the sense of Definition 1.6.
Then, for any open neighborhood & C 2 of Sy, there exists a neighborhood U of K, and constants
K, C, po > 0 such that for all u > pp and u € CP(R™), we have

o C
||U||L2(U) < Ce™ (||UHH;”*1(@) + HPUHL2(Q)) + W ||U||Hm71(9)7

where we have denoted Hu||H;n,_1(@) =2 181<m—1 HDbBu’

L*@)
If n, = n (Holmgren case), we get also for some ¢ € C§°(®) and for any s € R, the existence of
K, C, po > 0 such that for all u > po and v € CP(R™), we have

e C
[ull L2y < Ce™ (HSOUHH*S(]R") + ||PU||L2(Q)) + 1 [[ull grm—1 () -

If ng, = 0 (Hormander case), there is ¢, k,C, po > 0 such that for all u > po and v € C5°(R™), we have

gm0y < O™ (Il ey + 1Pull (g ) + €€ g

Note that in the first two cases, we obtain a result of the type (1.4) with a logarithmic function ¢,
whereas in the framework of the Hérmander theorem, we obtain the stronger Holder-type dependence:
S 1-s
lull g1y < C (||u||Hm*1(w) + ||PU||L2(Q)) [ull 1@
for some ¢ € (0,1).

The formulation of the above result using a foliation by hypersurfaces is inspired by that of [Joh49,
Theorem p. 224] in the context of the Holmgren theorem. The statement describing the hypersurfaces by
graph could look rigid. We will give later in Theorem 4.11 a slight variant where the partial analyticity
and the foliation by graphs can be described in different coordinates (i.e. the linear change of coordinates
between the two different splittings R™ = R, b x R, and R® = R™ x R™ may be replaced by a
diffeomorphism). We chose not to present this more general result here for the sake of the exposition.
Most of global Theorems for the wave and Schrodinger equations on a manifold are proved in that setting,
after some suitable change of coordinates.



1.3 1Idea of the proof

As already mentioned, unique continuation theorems (e.g. the Hormander theorem) are often proved
with Carleman estimates. Such inequalities are already quantitative, and hence furnish a good starting
point towards local quantitative unique continuation results. This strategy has already been followed
in [Rob95, LR95] in the case of elliptic operators, see also [Bah87]. Starting from the Carleman inequality,
the idea is to apply the estimates to some function x(z)u where y is a well chosen cutoff function. The
exponential weight ™% () (where 1) is an appropriate weight function) in the Carleman estimate naturally
leads to some inequality of the form

lully, < e (lully, + [1Pully, ) + e Jully, (1.12)

uniformly for 4 > po and for some small open sets Vi C Vo C V3 depending on the local geometry.
Optimizing in u (see [Rob95] or [LRL12, Lemma 5.2]) this can then be written as an interpolation estimate

9 1-6
lully, < (lully, + 1Pully, )" llully,

for some ¢ € (0,1). The interest of these interpolation estimates is that they can be easily iterated, leading
to some global ones. It ends up with some Holder type dependence, i.e. (1.4) with ¢ = (a + b)%c'=%. We
refer for instance to the survey article [LRL12] for a description of these estimates in the elliptic case, with
application to spectral estimates and control results for the heat equation.

Yet, in the context of the unique continuation theorem for partially analytic operators, the Carleman es-
timates proved in [Tat95, RZ98, H6r97, Tat99b] contain a "microlocal" weight of the form e~ 37 Dal’emv (@)
As for usual Carleman estimates, the term e™¥(®) (loosely speaking) gives some strength to the set where
Y is positive, but the additional term e~ 3 Pal* localizes in the low frequencies in the variable x,. In
this context, the proof of unique continuation proceeds with a (qualitative) complex analytic argument
(maximum principle). This additional argument in the proof of unique continuation also requires to be
quantified. As in [Rob95], this procedure naturally leads to local logarithmic (instead of Holder) stability
estimates. The main issue one then has to face when quantifying unique continuation is that such esti-
mate cannot be iterated (or would yield dependence estimates of the type (1.4) with a function ¢ being a
composition of as many log as steps needed in the iteration).

One idea to overcome this difficulty, proposed by Tataru in his unpublished notes [Tat99a], was to
propagate some low frequency estimates of the form

<e T, Vr<ep®
Hm—l

[ (o = e = () o2

L2

and for all u supported in {¢ < ¢(z¢)}, for some apropriate compactly supported cutoff functions o and
m(§) in the Gevrey class 1/a, a < 1, and for some r < R. This kind of estimates can be propagated and

a-+b
The loss 1 — € in the power of log is due to the use of functions Gevrey « with compact support. The
optimal case @ = 1 would correspond to analytic functions. Yet, analytic functions cannot have compact
support, which is a key ingredient in the usual application of Carleman estimates.
Let us now explain our strategy to solve this problem.

—(1-¢)
led to some global stability estimates of the form (1.4) with ¢. = ¢ (log(l + £ )) .

1.3.1 Obtaining local information at low frequency

Part of the proof of the present paper is inspired by this idea of propagating only low frequency (in the
analytic variable z,) estimates. However, we replace the Gevrey cutoff functions by some analytic “almost”

[Dg |2

localized functions of the form x, := e~ » x where x is smooth with the expected compact support. It
turns out that the right choice of A is A = C'u where p is the frequency where we want to measure our
solution. That such functions are not compactly supported makes the commutator estimates much more
intricate and requires a careful study of the dependence with respect the regularisation parameter A, the



local frequency p and the parameter 7 in the Carleman estimate. All estimates are carried out up to an
exponentially small remainder (in terms of these parameters).

Following this procedure, the local estimates we prove (which we are in addition able to propagate) are
some generalization of (1.12), but only with regards to the low frequencies (in the analytic variable ).
In a neighborhood of a point 2, they are of the form

e (5) <ce ([me (%)
mu | 5 ) X2,uu < Ce my | — ) X1,uu
"\ B u i AW I3

uniformly for p > po. See the beginning of Section 3 for a more precise statement and remarks on this
result. Here, x1 and y2 are some cutoff in the physical space that localize respectively to the place where the
information is taken (locally in {¢ > p} for some p > 0) and to where it is propagated (a small neighborhood
of 2°). The Fourier multipliers m,, cuts off (analytically) the £, frequencies. All these cutoff functions
are used only with their analytic regularization. They never localize exactly. Using such regularized
cutoff functions and Fourier multipliers follows the spirit of analytic semiclassical analysis [Sj682] (see
also [Mar02]). However, we do not make use of that theory and rather construct by hand the appropriate
mollifiers, making the proof selfcontained in this respect.

The proof of estimates like (1.13), stated more precisely in Theorem 3.1 is the object of Section 3.
It proceeds in three steps. First, as in the usual proofs of unique continuation results, starting from the
hypersurface {¢ = 0}, one needs to construct a weight function ¢ with both properties

" ||Pu||L2(B<mo,R») e uf s (113)
H7n71

e to satisfy the assumptions required to apply the Carleman estimate (¢ should be a strictly pseudo-
convex function in the sense of Definition 2.1);

e to have level sets appropriately located with respect to those of ¢.

This corresponds to the so called “convexification process”.

Second, we apply as a black box the Carleman estimates of [Tat95, RZ98, H6r97, Tat99b] (or some
similar ones that we prove in the presence of boundary) to yu, where yx is a particular cutoff function
(localizing near the point of interest, and according to levelsets of ), containing both rough cutoffs and
mollified ones. We then need to estimate terms arising from the commutator e~ 1Dal*eTv [P, x|, that are
either well localized or have an exponentially small contribution.

Finally, we need to transfer the information given by the Carleman estimate to some estimate like (1.13)
on the low frequencies of the function. This is done through a complex analysis argument, the Carleman
parameter 7 playing the role of complex variable, as in [Tat95]. If ¢ is the complex variable, the Carleman
estimates corresponds to an estimate on ¢ = it € iRT. Combined with a priori estimates, a Phragmén-
Lindeldf type theorem allows to extend this estimate to part of the real domain, where it corresponds

to estimating Hm (?—ﬁ) XuH To obtain estimates that are uniform with respect to the frequency (and

regularization) parameter u, we also need, following [Tat99a], to use a scaling argument, replacing 7 by
T/

1.3.2 Propagating local informations to global ones

Once the local estimate are proved, we need to iterate them to obtain a global estimate. This is the object
of Section 4. At first, we define some tools that will allow later in an abstract way to propagate easily
our local estimate (1.13). Roughly speaking, (1.13) says that, for solution of Pu = 0, some information
can be transfered from the support of x; to the support of xo. We formalize that with the notion of zone
of dependence. Roughly speaking, we say that on open set Oy depends on O; if (1.13) holds for every
X1 equals to 1 on O; and any Yo supported in Oy. This part allows to make the proof of Theorem 1.10
a complete geometric one. Even if quite different in definition, it is close in spirit to the interpolation
theory developped in Lebeau [Leb92] to propagate globally the local information obtained by the Cauchy-
Kowaleski theorem. Moreover, it should adapt to some more general kind of foliation. Note that at each
step of this propagation argument, we have a loss in the the range of frequency: from an information on
frequencies < p, we obtain an information on frequencies < fSu, with § small. This is overcome by the
fact that we only have a finite number of steps in this iterative procedure.

Once this propagation result is done, we are left with some information about the low frequency of our
solution. Since we have no information about the high frequency part, the only thing to do is to use some
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trivial bound of the type

<

[ (5)

This is actually much worse than the negative exponential that we already had. But it turns out to be the
best we can do without any more information.

In section 6, we specify our general result to the case of the wave and Schrédinger equations. The main
task is to construct some noncharacteristic hypersurfaces that allow to be in the situation of Theorem
1.10. This part is quite classical and was already present for instance in [Leb92]. We recall the argument
in the present context.

< s el
L

1.3.3 Carleman estimates for the Dirichlet boundary value problem

Finally, to prove the results of Section 1.1, it remains to deal with the boundary-value problem. This
is the object of Section 5. As far as (qualitative) unique continuation is concerned, there is no need
to prove quantitative estimates up to the boundary. As a consequence, we need here to carry over the
analysis of [Tat95, RZ98, H6r97, Tat99b] at the boundary. In this context, we consider a particular class of
operators and a particular boundary condition. We assume that the operator belongs to the class described
in Remark 1.9 (hence encompassing wave and Schrodinger type operators), that is, with symbols of the
form po(x,&) = Q.(§) where Q. is a smooth family of real quadratic forms. We further assume that
the analytic variables z, are tangent to the boundary, and that the functions satisfy Dirichlet boundary
conditions. Recall that this situation is of particular interest for the wave/Schrédinger equations, for which
x, is the time variable, which is always tangent to the boundary of cylindrical domains.

The proof of the quantitative unique continuation result up to and from the boundary relies on a
Carleman estimate at the boundary for such operators. As such, it interpolates between the “boundary
elliptic Carleman estimates” of Lebeau and Robbiano [LR95], and the “partially analytic Carleman esti-
mates” of Tataru [Tat95] (see also [RZ98, H6r97]). Then, we obtain the counterpart of the local estimate
of Theorem 3.1 for this boundary value problem. All local, semiglobal and global results shall then follow
as in the boundaryless case. We only need to be careful when performing changes of variables.

We wish to thank Daniel Tataru for having allowed us to use some ideas from his unpublished lecture
notes [Tat99a], and Luc Robbiano for his comments on a preliminary version of the paper. The first author
is partially supported by the Agence Nationale de la Recherche under grant EMAQS ANR-2011-BS01-
017-0 and IPROBLEMS ANR-13-JS01-0006. The second author is partially supported by the Agence
Nationale de la Recherche under grant GERASIC ANR-13-BS01-0007-01.

When finalizing this article it came to our attention that another group, Roberta Bosi, Yaroslav Kurylev
and Matti Lassas has been working independently on issues related to this paper.

2 Preliminaries

The preliminary results presented in this section are mainly used in Section 3 for the local estimate. Some
are also used independently in Section 4 for the semiglobal estimate. They concern:

1. The Carleman estimate adapted to operators with partially analytic coefficients, as stated in [Tat95,
RZ98, Hor97, Tat99b;

2. The regularization procedure for cutoff functions and Fourier multipliers (which is a key part in the
proofs);

3. Some preliminary commutator-type estimates.

2.1 Notation

Before this, let us recall basic notation, used all along the article.

11



Above and below, dist stands for the Euclidean distance in R™, R or R™=, or the Riemannian distance
on (M,g). For K C R" (resp. R, resp. R™) we define a d neighborhood of K by

Vois(K,d) := | | B(,d),
rzeK

where balls are taken according to the distance dist. For two open set U,U’, we write U € U’ if U is
compact and U C U’.

We denote by F the Fourier transform in all variables, F, in the variables x, € R™= only. When there
is no possible confusion, we shall write & = F,(u) or & = F(u).

We set (€) = (1+]¢[?)2, and denote by ||-||, . the classical H™ norm on R™: [Juf, := || (€)™ F(u)| L2@ny-
Similarly,

lullye = |2+ D) | =172 + 1% F@,

will denote the weighted (semiclassical) H™ norm for 7 > 1. In the main part of this article, 7 will be a
large parameter. Finally, we use the notation |-|| ;. _, ¢ for the operator norm from H*(R") to H(R™).

2.2 The Carleman estimate

Before stating the Carleman estimate used in the main part of paper, we need to introduce the definition
of appropriate weight functions ).

Definition 2.1 (Strongly pseudoconvex function). Let P be a principally normal operator in Q C R™,
with principal symbol p, let 1 € C?(Q;R) and I' be a closed conic subset of T*Q. Let 2° € Q. We say
that v is strongly pseudoconvex in I' at 2° for P if:

Re {p, {p,¥}} (2°,€) >0, if p(a®,€) = 0 and € € Ty0, & # 0; (2.1)

1 .
;{T)w,pw}(xo@) >0, ifpy(x° &) =0andeTl0,7>0, (2.2)

where pw($7 f) = p(l‘, € + Zva)

Note that in the case I' = T*(Q, this property is the usual one for proving a Carleman estimate with the
weight function . It is classical that a strongly pseudoconvex surface S (in the sense of Definition 1.6) is a
level surface for some pseudoconvex function (see e.g. [H6r94, Proposition 28.3.3] or [Tat99a, Theorem 1.5]),
and that both definitions are stable with respect to small C? perturbations. In what follows a more precise
link (adapted to our needs) between these two notions shall be made in Section 3.1.

In this paper (as in [Tat95, RZ98, Hor97, Tat99b]), Definitions 1.6 and 2.1 shalls alway be used with
'=Qx{¢ =0}

For ¢, 7 > 0 we define the operator
QY u=QY (3, Dy)u = e~ Pl (e70u) (2:3)

introduced in [Tat95].

The following result is due to Tataru [Tat99b, Theorem 2]. A proof in cases (E) and (H) can be found
in [Hor97] (see in this reference Equation (5.15), and the last equation before Section 7, respectively).
Some closely related estimates are also proved in [RZ98, Proposition 4.6].

In Section 5, when studying the boundary value problem for wave equations, we include a proof of
this result in the case (H) assuming that P has a real principal part, is of order m = 2, and under the
additional assumption that the coefficients of P do not depend on x,.

Theorem 2.2. Let 2° € Q = Q, x Q, C R™ x R™ and P be a partial differential operator on Q2 of order
m. Assume that

e P is analytically principally normal operator in {&, = 0} inside Q2 (in the sense of Definition 1.5);
e 1 is a quadratic polynomial in x = (14, 1), strongly pseudoconvez in QN {&, = 0} at 2° for P (in

the sense of Definition 2.1).
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Then, there exists e >0, R >0,d >0, C >0, 79 > 0 such that B(z°,R) C Q and for any 7 > 1, we have

THQ uH (- d)uHm 1T> (2.4)

m—1,7

<o (Jlaz.rulf;

PuH +‘

for any u € C§°(B(2,R)).

Note that most Carleman estimates in [Tat95, RZ98, Hor97, Tat99b] do not contain the term

HeT(’l’_d)PuH2 in the right hand-side. Also, this result was stated in some case where pseudoconvexity
holds on all €. Yet, pseudoconvexity at one points implies the pseudoconvexity in a small neighborhood
(see [Tat99b, Lemma 2.5]), so it implies the local Carleman estimate for functions supported close to x°.

2.3 Regularization of cutoff functions and Fourier multipliers

All along the paper, we shall use several cutoff functions and need to regularize them. Here, we explain
the regularization procedure we use, give some of its basic properties, and define some (appropriately
regularized) Fourier multipliers.

2.3.1 Regularization of functions

Before describing the regularization operators, let us collect some basic facts about gaussian integrals.
Note first that we have (derive with respect to z or see e.g. [Leb72, (2.1.7) p17]), for z > 0,

“+o0 +oo 7z‘s
/ e’ ds— / ds < f e
. Vi ly Tt

As a consequence, we have the following estimates

oo s2 e r2 oo s2 r2
e tds< £\/ge*T, (s)Me”Tds < Cp(r)™(t) 2 e~ ¥ forallr>0,t>0,meN,
K 2 T
where the second estimate is obtained by iterated integration by parts. As a consequence, we also have

/ 67
zq ERMa |zo|>r

Moreover, we have for any measurable set £ C R, any z, € R™ and any ¢ > 0,

2 2 Naq
/ e~ |Ta=val dya < / e~ 11Ta—val dya = (wt) 5.
E Rma

In addition, according to (2.5), there exists C,,, > 0 such that for any closed set E C R"*, any z, ¢ F,
and any ¢ > 0, we have

< Cp, (M )T e T forall v >0,t> 0. (2.5)

n dist(24,8)2

/ et gy, < / et dy, < O, (dist(za, B)" (1) F e T
E B(zq,dist(zq,E))¢

Hence there exists C,, > 0 such that for any closed set £ C R", any x, € R", and any t > 0, we have

n dist(xq,B)2

/ e_%|za—yar‘2 dya S C’I’La <dist(l‘a,E)>na_1 <t>Tae_ t . (26)
E

We are now prepared to define the appropriate regularization process, used all along the article. We
shall use the notation fy to denote

o f)\:= e’%f for a function f € L (R);
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e or (more often used)

|Da|?

fa=e 3,
for a function f € L>°(R™), and a fortiori for f € L>°(R"=).

We hope that this use shall not be confusing for the reader. We now discuss in more detail the basic
properties of this regularization process in the second case only (the first case can be seen as the particular
situation n, = 1,n;, = 0).

This definition can be rewritten as

A "Ta 2 A HTQ N 5
f)\(xa,-Tb) = (477) (6 il *Rra f(afz:b)) (xa) = <47T) an f(yayxb) eizlxaiy”‘ dya.

Note that similar smoothing of functions are used systematically when working with analytic microlocal
analysis, see [Sj682] or [Mar(02]. In this context, it is related to the Fourier-Bros-Iagolnitzer transform. In
applications to unique continution, it has been used in [RT73, Ler88, Rob91, Hor92, Leb92, Rob95, Tat95,
RZ98, H6r97, Tat99b]. In particular, the operator Qfﬁ defined in (2.3) contains such a regularization (the
regularizing parameter A being linked to the Carleman large parameter 7).

We will use several times in the proofs that

L2
A gaqeey < 165 aom g | ) a2 2cam) = Lo 2.7
and
A\ g
e < (22 ) 1 sy 1 lm ey = W men- (2.8)

Notice also that we have
J20= x>0, andhence [f=>g= f\2>gx.

Moreover, the function f) may be extended as an entire function in the variable z, by

Na

A 2 A 2
f Wa, xp) e~ (2a=Ya) dYe, zq € C" xp € R™,
Rna

f/\(zaaxb) = (477

(where (2 = (,- (o = |Re(u|? — | Im (,|? +2i Re {, - Im (, is the real inner product) with the uniform bound

n

A\ ~3 Ga—va)?
BGoa)l < () Il e G| dy,
m Ya GSUPP(f(':Ib))
Am Ya€supp(f(-,z1))
< O f oo B 1ImEP

x (dist (Re(zq), supp(f(-, xp))))" et e 3 dist(Re(za)supp(f(20)))” (2.9)

where the last estimate comes from (2.6). Note that strictly speaking, if f is only in L>°(R™), supp(f(-, zp))
is not really well defined for every z;, € R™. But supp f (in the distributional sense of support) is a well
defined closed set and we can define for every z;, € R™ the closed set of R", {x, € R" |(x4,xp) € supp f }
that is supp(f (-, zp)) for continuous functions. We will not discuss more this subtlety and will continue to
write some expressions similar to (2.9). The estimate then makes sense by taking an element of the class
in L that is zero outside of supp(f) and that is bounded by || f]| ;-

For functions compactly supported in the z, variable, we have the simpler estimate

na

|2 (Zas )] < OXNF ||| e | SUDD(F (-, ) )| 3/ Tz = dist(Re(za) supp(f ()", (2.10)
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2.3.2 Fourier multipliers

Finally, we also need to introduce frequency localization functions, i.e. appropriately smoothed Fourier
multipliers. Let m(&,) be a smooth radial function (i.e. depending only on |£,|), compactly supported

(in |&,| < 1) such that m(&,) = 1 for |£,] < 3/4. We shall denote by M* the Fourier multiplier M*u =

m % u, that is

() (eo) = 72 (m () )6 ) 2
where F, denotes the Fourier transform in the variable z, only. Given A, u > 0, we shall denote by M{
the Fourier multiplier of symbol m4(&,) = my (%), ie. M{ =m, (%) or

(tf0) ) = 75 (s (£ ) Zlu ) ) (20)

with, according to the above notation for the subscript A,

Na

A 2 LAl 2
&)= () [ mle et ay,

Note that in this definition, the symbol is first regularized and then dilated. We hope the notation
(with the subscript for the regularization and the exponent for the dilation) will not be confusing for the
reader. Note also that these Fourier multipliers only act in the variable x,.

2.4 Some preliminary estimates

In this section, we state several technical lemmata of commutator type, needed to prove the main local
result Theorem 3.1. The proofs can certainly be omitted by the hurried reader. The spirit is that all the
estimates that we would expect for exact cutoff are true with their analytically regularized version, up to
some term exponentially small in term of A. So, the important fact in all the estimates is the uniformity
with respect to A and u as large parameter.

2.4.1 Some basic preliminary estimates

Lemma 2.3. 1. For any d > 0, there exist C,c > 0 such that for any f1, fo € L®(R"™) such that
dist(supp(f1),supp(fz2)) > d and all X > 0, we have

Ifinfell e < Cem M fill e I follpe s finferll e < Cem [ fill oo 1 foll e -

2. If moreover fi, fo € C°(R™) have bounded derivatives, then for all k € N, there exist C,c > 0 such
that for all X > 1, we have

Hfl,/\f2 ||Hk(]R7l)_>Hk(Rn) < CG_C)\.

3. Let f1, fo € L®(R™) such that dist(supp(f1),supp(f2)) > 0 . Then there exist C,c > 0 such that
for all A\ > 1, for all k € N, for all p > 1, we have

1f1(Da/ 1) f2(Da/ ) gy g ny < Ce™
||f17A(Da/N>f2,A(Da/N>||Hk(]Rn)_>Hk(]Rn) < Ce™ .
Proof. Let us set d = dist(supp(f1),supp(f2)) > 0. We have

_ AMya-—=zal?
Fua(@as )| < OA/2 | fy / el T
Ya €supp,,, (f1(-,7s))

Moreover, for all z;, € R™ we have

distgna (supp,, (f1(-23)), supp,, (f2(-,20))) > d,
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so that for all x = (x4, xp) € supp(f2), we have |y, — z,| > d in the above integral. As a consequence, we
obtain, for all = (x4, zp) € supp(f2),

_AMya—wq|? n _Alyal?
CXP /2| | / = gy < Ol A / 5 gy,

|Ya—Ta|>d |yal>d

IN

| fix(Za, zp)]

IN

Ce™ X fullze,

which provides the first estimate in item 1.
The second estimate is obtained by decomposing

fixfox = fiafe alvoissupp(fa),d/3) T frafe xIvois(supp(f2),d/3)

and applying the previous result to the products f1 xIveis(supp(fz),d/3) @a0d f2 xLvois(supp(f2),d/3)es Where all
the supports are disjoint as required.

Item 2 is proved by induction on k € N. For k = 0, it is precisely the first estimate of item 1. Now
assume that it holds for k—1 and write || f1x foullg= < || fixfoul gre-1 + |V (f1 x fou)| gre—2. It only remains
to estimate ||V (f1xfou)| gr-1: for this, it sufficies to write

V(fiafou) = (V)afou+ fiaV(f2)u) + fiafoV(u),

where all functions have the appropriate support properties to apply the case & — 1. This finally yields
IV (fixfou)| gr-—1 < Ce=Mu| gr—1 + Ce™*||Vu| gr—1 and concludes the proof of item 2.
The proof of item 3 only relies on the fact that for any k € N

Hfl,A(Da//i)fZ(Da/:u)HHk(]Rn)HHk(]Rn) = Hfl,k(ga//i)fé(fa/ﬂ)”[,oo = H.fl,)xf2||Looa

(and similarly for the other term) and the use of item 1. O
Similarly, we have

Lemma 2.4. Let fo € C(R"™) with all derivatives bounded, and d > 0. Then for every k € N, there exist
C,c > 0 such that for all f; € H*(R™) such that dist(supp(f1),supp(fa)) > d and all X > 0, we have

Ifrxfell e < Ce™ X [ fill g

Proof. We have

ng

AN 2 Mg
fl,/\fQ(xa,Jjb) = (4) fQ(xa,.Tb)fl (yavxb) e_i\l a ya‘z dya
™ Rma
so that
A —2lza—yal®
|f1,>\f2|(xa; mb) S o |f2(:2’,‘a, l‘b)fl (ya7$b> |e 4 |*a a dya
An |70 —ya|>d
A E —212
< Nl () (Rrzae™ 3 s [A1C ) (2a).

As a consequence, using the Young inequality, we have

A i a2
st < Wallieery () [trisae ]

p )”fl”Lz(R")a

L' (R"a
and, using (2.5), we obtain

Ifiafalle < Ce™ | fall oo o)l fill L2(Rn),
which implies the result in the case k = 0. We obtain the case k > 0 by differentiating and applying the

same result (see e.g. the proof of Lemma 2.3). O
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Lemma 2.5. Let ¢ : R™ — R be a C*° function, fi € C*(R) with bounded derivatives and fo € C§°(R™)
such that dist(supp(f1 o ©),supp(f2)) > 0 . Then, for all k € N, there exist C,c > 0 such that for all
A >0, we have

||f1,)\(/lp)f2||Hk(]Rn)_>Hk(]Rn) < Ce—CX

Proof. We prove the estimate Hfl’)\(z/J)szLm(Rn) < Ce~“* which implies the result in the case k = 0. We
obtain the case k > 0 by differentiating and applying the same result (see e.g. the proof of Lemma 2.3).

Since fo € C§°(R™), the set K := ¢(supp(f2)) = {¢(x); x € supp(f2)} is a compact set of R. Moreover,
the assumption dist(supp(f1(%)),supp(f2)) > 0 implies that dist(supp(f1), K) > 0. Indeed, otherwise, we
would have supp(f1) N ¥ (supp(f2)) # 0: taking ¢ in this intersection, there would be x € supp(f2) such
that ¢ (z) = t € supp(f1), i.e. « € supp(fi(¥)), which contradicts the assumption. Now, note that
x € supp(fa2) implies that ¢(x) € K, so that we have the pointwise estimate |fa| < || f2|lr=1x 01 on R™.
As a consequence, we have

£ A ) foll oo gy < CNAAW) LK ()] oo (gny < C INFIALK N oo gy < Ce™,
where we have used Lemma 2.3 together with dist(supp(f1), K) > 0. O

Lemma 2.6. Let f1, fo € C§°(R™) such that fi = 1 in a neighborhood of supp(f2). Then for all k € N
there exist C,c > 0 such that for all X > 0, and all u € H*(R™), we have

| fa 0%, < Cfiaull, + Ce=cA llully » for all « such that |o| < k;
[ foaull, < Cllfiaull, + Cem ull, .

Proof. Let d = dist(supp(f2),supp(l — f1)) > 0. Thanks to the first item of Lemma 2.3, we have
"fQ,A]lVois(supp(fg),d/S)CGQUHO < Ce_CA Hu”k .

Concerning the other term, we use again Lemma 2.3 applied to Lvoissupp(fs),d/3) and some 0“(1 — f1)
(using 0“(f1,0) = (0*f1)x), to obtain

[ £2 7 Tvoisupp(r)./3 0%y < [ 22 Tvoisupp(ra)./5 0% (Faw) |,
+ HfZ,A]lVois(supp(fg),d/S)aa((1 - fl,)\)u) ||0
< HfQ,A]lVois(supp(fg),d/B)aa(fl)\u)HO + Ce—(:)\ ||u||k .

Writing then

| F2. 3 Ivois(supp(f2).a/3) 0% (fraw) ||, < ClO%(frau)lly < C Il fraull,
concludes the proof of the first estimate of the Lemma.

The second inequality follows from noticing that 9% (f2,zu) is a sum of terms of the form (9° f2),0* Pu
for which we can apply the first part of the Lemma. O

Lemma 2.7. Assume my, mg € L>(R™) are bounded by 1, and satisfy dist(supp(m1 ), supp(ms)) > d > 0.
Then, there exists C > 0 such that for all f € L>°(R™; L>°(R")) satisfying Fa(f) € L°(R™; L*(R"))
and all pu, X > 0, we have

||m1,>\(Da/ﬂ)f(x)mZ,A(Da/N)Hm(mn)%Lz(Rn) < ||~Fa(f)||L;<;L1(|fa|2dH/3) +Cem H}—a(f)||Loo(Rn,,;L1(Rna))

and

||m1’)\(Da/,u)f(x)m2(Da/,u)||L2(Rn)_>L2(Rn) < ||~Fa(f)HL;<;)L1(\§a\2d,L/3) +Ce™ ||‘7:a(f)HLOC(R”b;Ll(Rna))
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Proof. We begin with the first estimate, the second one being simpler to handle. We denote m Za) =
mja(&q/p) for j = 1,2, and, to lighten the notation, set f= Fo(f) (in the proof only). We set fr
]]‘\Da|§dlt/3f (that is fL(f) = ]l\ﬁa\édu/3f(€)) and fH = ]l|Da|ZdH/3f‘ We first have

[P im0

< frtll gy < [

252 Lo (R™b; L1 (R7a)) — L;‘;Ll(Ka\Zdﬂ/S).

We work in the Fourier domain: for

Then, it remains to estimate Hm‘f,/\(Da)fL(x)mgﬂ)\(Da) Lo

u € L*(R™), we have

Fu(ml (Do) fu(@)ms (Do) (60, w8) = ol y(€a) | Fr(Gar 1) % [mh s (€)Ers) |

where * denotes the convolution in the variable £, only. Now, we set m1 = Tyoig(
Lyois(supp(m2).d/3), satisfying ||m;][z < 1 and

supp(ma),d/3) and my =

dist(supp(m1 ), supp(ms)) > d/3.
We write
i\ (€) [T (€arm) « (M2 M€ m))] = i+ Yo+ s,
with
Vo= il () [Fl6am) + (R (€6 m) )|
Vo = (1= dn,)m (&) [Fo(€asm) + (hmh \(60)i(€as a0) )|
Yo = mi (€ [To(6armn) « (1= m5)ms s (&)i6n )|

The term Y7 vanishes since mbymy y(€a)u(éa, ) is supported in & /p € Vois(supp(mz),d/3); hence,

using that supp(fr) C {|€&l/w < d/3} the convolution [E(ga,xb)* (mzmzk(é“a) (fa,xb)ﬂ is sup-
ported in &,/u € Vois(supp(ms),2d/3) which does not intersect the support (in &,/u) of mf that is
Vois(supp(my), d/3).

Concerning the term Ys, Lemma 2.3 implies H(l — ﬁL’f)m‘f,AHLw < Ce~*. This, together with the
g

Young inequality in the variable &, and the uniform boundedness ofaﬁ@’gm’;’ \» vields

= it ymt \(6) [FolEar ) = (m2m2 NAZGES]

< |l = mpmi |, |12

L2 (Rn)

L Ll Fa(u )||L2(Rna><R”b)

< Ce—c)\

‘fHLle Hu||L2(R,,L),
*p €a

The term Y3 is treated similarly and the proof is complete.

The second estimate of the Lemma follows the same proof and is actually simpler because the term
(1 — mb)mb is zero. O

Lemma 2.8. Assume f1, fo € L™(R"™) are bounded by 1, and satisfy dist(supp(f1),supp(fz2)) > d > 0.
Then, there exists C > 0 such that for all m € L>(R") satisfying m € L*(R") and all A > 0, we have

||f1,/\(37)m(Da)f2,/\(x)||L2(Rn)_>L2(Rn) < ||m||L1(\na\2d/3) +Ce ||m||L1(Rna)

and

||f1,>\(x)m(Da)f2(x)||L2(Rn)ﬁL2(]Rn) < ”m”Ll(\na\Zd/Z%) +Ce ||m||L1(Rna,)-
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Proof. This is essentially the same proof as the previous Lemma except that we have to be careful that
the functions f; depend on all variables, while m only depends on the variable x, € R™=. Again, we set
my = ]I‘Da‘gd/gm (that is ﬁi(na) = ]1|na\§d/37/ﬁ("7a)) and my = 1|Da|2d/3m. We first have

1fir @ (Do) for @ oy oy < I (Da)ll s oy 2 e

< ||mH||Loc(Rna) < HmH”Ll(R"a) < ||m||L1(|na|2d/3)'
Concerning the second term, and denoting iy, = F, '(myz), i.e. mp(n.) = mr(—n.), we have
fl,)\(l')mL(Da)fz)\(x)u = f1,,\($) M, *Rna (f2,)\(',xb)u(‘,$b))~

We then remark that we can finish the proof as in the previous Lemma: introducing fj = Lvois(supp(f;),d/3)s
j = 1,2, we notice that we have

supp (mL *Rne [ fo fmu] )  Vois(supp(f2), d/3) + {(a, 0), |za| < d/3} C Vois(supp(fz), 2d/3).
Moreover, Lemma 2.3 still yields

1-F, H <Ce . j=1,2
[ =), s 0

so that the proof then follows exactly that of Lemma 2.7. We obtain the second inequality similarly. [
Lemma 2.9. Let k € N and f € C°(R™). Then, there exist C,c such that, for any A\, u > 0, we have

“w _ 21 —c”—2 —cA.
HMAf’\(l My )HHk(Rn)ﬁHk(Rn) < Cemx + 0™

2
1— M2 M“H < Ce5 4 Qe
H( NDRERS HF(RM) = HF(R) c +ee

2
Proof. Note first that F, (0%, 02, f)(€a,p) = (ia)e™ = 9% Fa(f)(&a,ap). Hence, for k = 0, the result is
a direct consequence of (the first estimate in) Lemma 2.7. Note that we also use the fact that (1 —m)y =
1-— my.
For k > 1, the proof proceeds by induction, noticing that

v [(1 — MY M| = (1= MYV )M+ (1 — M) fL MV

(see e.g. the proof of Lemma 2.3). O

Lemma 2.10. Let f1 and fo € C°(R™) bounded as well as all their derivatives, with
dist(supp(f1), supp(f2)) > d > 0. Then for every k € N, there exist C,c > 0 such that for all p > 0 and
A >0, we have

_ok? _ _on? _
Hfl,)\Mﬁ\Lfé,)\||Hk(]Rn)_>Hk(]Rn) SC@ X +C€ C)\, Hfl)‘Mffé||Hk(R")—>Hk(R") SCe X +C€ CA.

Proof. We first prove both estimates for k = 0, by using Lemma 2.8 with m replaced by m;, = m) (ﬁ)
The Fourier transform of m;, is given by

_ Inal?u? "

e~ 5 1 ()

Na

1y (na) = p"* Fa(ma)(puna) = p
As a consequence, we have

a2
EBY

||mb||L1(|na|2d/3) <e ”mHLl(R"a)

and H’)’hb”Ll(Rna) < ||m||L1(R"a)’ so that
2 —cA |2 _d%u? —eX
70l L1 (1o ay3) T C€™ 7 10l 1 (gnay < Ce™ 9% + Ce™
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Lemma 2.8 then yields the sought result in the case k = 0.
Again, for k£ > 1, the result is proved by induction noticing that

V[ fiaMy fopu] = (VFO)AME faxu+ fi axME(V f2)au + fiaMy fa\Vu,
and using that the relative support properties of V f; are preserved (see e.g. the proof of Lemma 2.3). O

Lemma 2.11. Let k € N and let f € C§°(R™). Then there exist C,c > 0 such that for all p > 0, A > 0
and u € HE(R™), we have

L2
Il < [[psdaal, € (5 e (.11)

Moreover, for any f1 € C°(R™) bounded as well as all its derivatives, such that fi =1 on a neighborhood
of supp(f), for any k € N, there exist C,c > 0 such that for all p > 0, X\ > 0 and u € H*(R"™), we have

L2
Isagull, < Ol +C (e 4 full, (2.12)

Proof. We write

1M frul, < [ Mg MR

s

2
According to Lemma 2.9, we first have HMﬁff)\(l — Mi“)qu <C (e‘C“T + e_C)‘> |lull,. The first term is
simply estimated by HMffAMf“qu < HfAMf“u‘
Concerning the second part of the Lemma, we write
IAAMSull, < IAME fraully, + 1AM = fu)aull, -

For the first term, we only have to remark that || fxM} fi\ull, < C[M{ fiull, uniformly in A. Then,
using the assumption dist(supp(f),supp(l — f1)) > 0, Lemma 2.10 applies and yields

g which proves (2.11).

#2 —c
IAMEQ = fall, < C ( o A) s

which eventually proves (2.12). O

Lemma 2.12. Let k € N and f € C§°(R"). Assume supp(f) C J;c; Ui where (Us)icr is a finite family
of bounded open sets. Let b; € C§°(R™) such that bj = 1 on a neighborhood of U;. Then, for any k € N,
there exist C,c > 0 such that for all ;1 > 0, A > 0 and u € H*(R™), we have

#2 _
188 sl < O3 M aal, + € (75 )
Proof. Applying the first item of Lemma 2.11 to f, we obtain
2
I fal < [+ 0 (e e (213)

Let now (f;):cs be a smooth partition of unity of a neighborhood of supp(f) such that

Zfi =1 in a neighborhood of supp(f), supp(f;) CU; 0<f; <1.

el

Note that in particular, b; = 1 in a neighborhood of supp(f;). Using the second estimate of Lemma 2.6,
we have

HfAMf\“qu <C HZ(fZ))\ME\Mu

+Ce= (MfHqu <cy H(fi)AMf“qu +Ce M ull,.  (2.14)
k 7
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Using the second estimate in Lemma 2.11, we then obtain
2
|cgonnzzea| < c|pr@on| +c ( - A) el

which, combined with (2.13) and (2.14) concludes the proof of the Lemma. O

Lemma 2.13. There ezists C > 0 such that for all D € R and ¥ € L= (R) such that supp(X) C (—o0, D],
for all A\, 7 > 0, we have

L2
e XA (2)] < C Xl oo (m) <)\)1/2 e3I M) eDre % for all z € C;

e A | oy < C IRl ooy (W) /2 €P7ex, for all 4 € CO(R™;R).
Proof. First, according to (2.9), we have the estimate
Xa(z)| < C ||§||LOQ(R) A/2eam)P e~ 3 diSt(Re(z)’s"pp%)z, for all z € C.

Now, if Re(z) < D, we use the bound |e7#| < "7, which yields [e™*Xx(2)] < Xl L () el m(2)* D7
Next, for Re(z) > D, we have dist(Re(z),supp X) > Re(z) — D > 0, and

IN

€250 (2)] o7 Re(2) (1 (P (A2 el Im(2)[* o~ % (Re(2)—D)*

IN

¢ HS('HLOO(R) <)\>1/2 e%llm(z)|2 sup (erse—%(D_s)Q) .
s>D

Finally, we have

_A(D—s)? _ 242 _A 2
sup (GTSB 2(D—s) ) = sup (ET(D+t)6 at ) _ e'rD sup (et(’r 4t)) _ eD're ~,
s>D >0 >0

which concludes the proof of the first estimate of the lemma. The second estimate of the lemma follows
from the first estimate for z = s € R combined with

e A e ey = 16703 e s -

Lemma 2.14. There ezist C,c such that, for any e, 7, A\, u,> 0, for any k € N, we have

_elDg|? e —cA
e (1-MY) < e B 4 Ce N,
Hk(R?)— HF(R™)
. elDal? . . N .
Proof. Since the operator e~ 3 (1 — MY) is a Fourier multiplier, we are left to estimate

_5‘§a|2

SUpg cgna €7 27 (1 — m,\(%))| Recall that m € C§°(R";[0,1]) is a radial function that we identify
below with a function m = m(s) € C§°(R™"), satisfying supp(m) C [0,1) and m = 1 on [0,3/4). We
distinguish the following two cases:

e If |s| < p/2, Lemma 2.3 applied with f; = (1 —ma(s)) and fo = 1|5<1/2 implies |1|5<,/2(1 —
mx(5))] < Ce~°* uniformly with respect to \, u > 0;

E|Ss 2 £ 2
o If |s| > u/2, we simply have |1|S‘Zu/ge’%(1 — m,\(ﬁ))| <e Fr.
Combining these two estimates concludes the proof of the lemma. O
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2.4.2 Some more involved preliminary estimates

We will need the estimate of the following Lemma.

Lemma 2.15. Let 1 be a smooth real valued function on R™, which is a quadratic polynomial in the
variable x, € R™ let Ry, > 0, and 0 € C°(Bgrn (0, R,)). Let x € C§°(R) with supp(x) C (—o0, 1), and
X € C*®(R) such that X =1 on a neighborhood of (—oco, 2), supp(¥) C (—o0,2), and set x5(s) := x(s/d),
Xs(8) == X(8/0). Let f € C5°(R™) be real analytic in the variable x, in a neighborhood of Bgn. (0, R,) and
define

g=e"xsa(V)Xs(Y) for € CF(R™).

Then, there exists cg,c1 > 0 such that for all N € N and § € N" there exist C > 0 such that for all
6 >0, there is eg > 0, so that for any A > 1, 7 >0, and 0 < € < €y, we have

102, Fa(9)Ear )] < C (&)™ (4071 4 1NNt /2e07
% (6§66162)\67606|5a| + eéefcg)\ + ecl)\€2€6‘r670052)\> )

In particular, for all§ >0, N € N, 8 € N"  there is C,c,eq > 0, so that for any \,7 > 1, and 0 < € < &y,
we have

72
108, Fal9) (Ear )| < € (€a) ™ PN HAINFD 2687 (O eeléel o0 emed )

Proof of Lemma 2.15. First, we prove the result for N = 0 and 8 = 0 (the other cases shall be obtained
by differentiating g).

Let us denote by R} > 0 a real number such that supp(f) C B(0,R}) and K, C Bg (0, R)) the
projection in the variable x}, of the support of f. Kj is compact since f has compact support. The function f
being real analytic in the variable x, in a neighborhood of the compact set Bgn. (0, R, ), there exists Ry >0
such that f can be extended in an analytic way in a neighborhood of z, € Bgna (0, Ry + Rf)+iBgrna (0, Ry),
uniformly for x;, € K. Note that z, denotes the complex variable associated to x,, and we can also impose
that 0 < R, + Ry < R.

Notice also that we can extend x by 1 (hence analytically) on a neighborhood of (—oc, %)Jri]R. Moreover,
since v is quadratic in z,, there exists g9 = £¢(d) > 0 such that

(z/;(Re(za),xb) < %5 < gd, [Im(z,)| < eoRy, xp € Kb> = Re(¥(zq, 1)) < =0, (2.15)

4
(¢(Re(za),xb) = 5(5, [Im(z,)| < eoRy, xp € Kb> = Re(¢(zq,xp)) > 0. (2.16)
In particular, x(¢(zq,2)) =1 on
4 3
<¢(Re(za),xb) < 5(5 < 55, |Im(z,)| < eoRyp, ap € Kb) .
As a consequence, given x, € R™ | the function

Za = Xoa (¥ (24, 7)) X5 (Y (2as 7))

is an analytic function on a neighborhood of {z, € R" ) (z4,2) < 30} + iBrra(0,20Ry). Hence,
Za + g(2aq,xp) is holomorphic in a neighborhood of

Ay, (g0) := <{1/)(£Ea, xp) < %5} N Bgrra (0, R, + Rf)> + iBgna (0,e0Ry).

The plan of the proof is first to estimate ¢ in the complex domain, and then bound its Fourier transform
using a complex deformation. We use the analyticity inside of A, (¢0) and the smallness elsewhere on the
real domain.
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Step 1: uniform estimates on the function g. We estimate separately foy and e™¥xs.(¥)Xs(1),
and then deduce estimates for g.
According to the basic estimate (2.10) for o, we have, uniformly for xz;, € R™

[(fox)(za,zp)| < C)\na/2e%| Im ZQ\ZE,% dist(Re zq,supp U(-,Ih))27 Zaq € Brna (0, Ry + Rf) + iBgrna (0, Rf),

where the constant C' depends only on || f|[z= (on the previous complex domain), ||o||z= and R.
In particular, we have for any € € [0, 1],

((fox)(za,zp)] < CA™/2e3<°Fi 2, € Brua(0, Ry + Ry) 4 iBpna (0,6Ry), p € R™. (2.17)
We now notice that
dist(zq,supp o (-, xp)) > dist((xa, xs), B(0, Ro)) > |za| — Rs, for |z,| > R, + Ry. (2.18)

As a first consequence, we have dist(zq,suppo(-,2p)) > Ry if |z4| = Rs + Ry, so that for any
¢ € [0,1], we obtain, uniformly for x;, € R™

(Fox)(za, )] < CA™/2e3EFiem T < O\ne/2e 5 (- DERE, (2.19)
[Tm(za)| < Ry, |Re(za)| = Ro + Ry

Using now the estimate (2.10) for o on the real domain together with the boundedness of f and (2.18),
we obtain, uniformly for z;, € R™

(for)@aym)| < CAmal2e=3 dist(aasuppolcan))’

< OAelPemizel=Ro)® g e R |2, > R, + Ry. (2.20)

We now estimate the term e™¥xs 1 (1)Xs(¢) in parts of the complex domain.
First, on the real domain, we have

4
€7 XA (5)R5(5)] < o (s)Rs(s)| < ONBATE A5 > 54,
after having used (2.6), where ¢ is a numerical constant. As a consequence, we obtain

|7V @aT0) 5\ (1(Ta )Xo (1 (20, 20))| < CA2eXTe DA if (g, 23) >

4
30 (2.21)

Next, for z € C, using Lemma 2.13, there is C' > 0 such that for all § € R and all A > 1, 7 > 0, we have

72
le™xsa(2)] < CAY2e3m2) 075 for all 2 € C. (2.22)
Using that v is a quadratic polynomial in the variable z,, with real coefficients, we have
[Tm((za, 20))| < C|Re(za)[| Im(2a)| + C(Kp)[Im(za)], (20, 23) € C"* X Ko,

where we have used the fact that K, is compact. As a consequence, there is a constant Cy = Cy(¢, Ry, Ry, Kp) >
0 such that

[ Tm (¢ (zq, xp))| < eCo, for z, € Brra (0, Ry + Rf) + i Bgna (0, €Rf), Ty € Kp.

Hence, using (2.22), we obtain, for all € € (0, &¢)

0(2)52

7_2
eV G0y 5\ (Y(20, ) X5 (V(2a, 1)) < CAV2ATT9Te™ | @ € Ky, 24 € Ay, (€).  (2.23)

According to (2.9), we also have

oa(z)] < CAbed I =3 disi(Re() supp(xo)’ < CpBAIMEP=e®A on Re(z) >

o,

= Ot
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where ¢ is a numerical constant. Using (2.16), this yields
c2e? 4
[Xs.A (Y (20, 2p))| < CAze T A N g e Ky zq € A, (€), ¥ (Re(zq), 2p) = §(5,
and, with (2.15), this implies
B\ 360 oA
eV x5 A (1 (2, 20))Xs (170, 7)) | < CAVZe ™5 A0,
4
xp € Kp, 24 € Az, (2), Y (Re(zq), 2p) = 55. (2.24)

Let us finally gather all estimates obtained on the function g. Multiplying (2.23) with (2.17) and (2.19),
there is a constant Cy > 0 independent on A, p, 7, d, € such that, for any € € (0,¢9),

L2
l9(za, )] < CAMat D200 075 g e Ky 2, € Ay, (€), (2.25)

2

R 2 T
|g(zaa$b)‘ < O)‘(na+1)/26)\(7Tf+C16 )eéTeTv xy € Ky, 24 € Axb(g)a | Re(za)| = R, + Ry. (2'26)

Next, multiplying (2.24) and (2.17) we also have
4
19(2a,20)] < CAMatD/2eC1AE0T—c0®N g e B, 2 Ay (2), h(Re(2a), 7p) = g0 (227)
Combining (2.20) with (2.22), and rewriting (2.21), we also have on the real domain

72
lg(za, zp)] < CAMatD/2e07 o5 g3 (17al=Ro)* - e R |zq| > Ry + Ry, xp € R™,  (2.28)

4
lg(xa,zp)] < C’)\%GQ‘ST(JC‘FA, Zq € R™ 2, € R™ 4)(2q, 2p) > 55. (2.29)

Step 2: estimating the Fourier transform using a deformation of contour in the complex
domain. We now want to estimate J,(g)(&s, ) uniformly with respect to x;,. We split the integral as

fa(g)(gawxb) = / eiiwa{ag(xavxb)dxa - IO + Il + I27
R7a

with I; = I;(&,, xp) defined by

102:/ , 11::/ , IQZ:/
‘xa‘SRa‘i‘Rfvw(mavxb)S%‘s |xa|SRa+Rfvw(xaawb)>%6 |$a|>Ra+Rf

Using (2.28), we obtain, for all 6,7 > 0 and A > 1,

] < CAretD/2007 5 e~ 3 (lwal=Ro)? g
‘xalzRU""Rf
2 +oo A2 72 R%
< C)\(”“Jrl)/Qe‘STeT/ (54 Ry)"e tem 75 < ONet /207X o=, (2.30)
s=Ry

Using (2.29), we obtain, for all ,7 > 0 and A > 1,
1] < CAzeXTe ™A, (2.31)

We now want to estimate the integral Io(&,,zp): we write z, = xlé—"" + 2!, for 1 = x4 - % and z/,

such that z/, - £, = 0 and make the orthogonal change of coordinates to (x1,z)) (preserving the ball
Brna (0, R, + Ry)). This yields

—iw1|€al

Io(&as ) g(z1, 2))da! dxy

(&
~/ana (0,Ro+Ry)N{9(-,xp)>46}

/ /
/ Ifa,7mb(xa)dxa?
B]R”a -1 (07Ro+Rf)
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with  Zg, o, (2)) = e~ gy 2! Yy,

a
/le 2<(Ro+Ry)2—|at, 12,4 (21,00, 2)< 56
so that

[Io(€ar )| < C sup |Ze, 2 (25,)]-
x! €Bgng—1(0,Rs+Ry)

Hence, it only remains to estimate |Z¢, ,, (/)| uniformly. Now, g being analytic in a neighborhood of
A, (g0), and given any 2/, € Bgna-1(0, Ry + Ry), the function z; — e~%l%lg(z;, 2/) is holomorphic in a
neighborhood of the set

[Re(21)|* < (Ro + Ryp)? = [aol?, v(Re(21),25,23) < 56, [Im(21)] < Ry,

W

for € € (0,ep).
Now, we have

4
{z1 €R, |x1|2 < (Ro + Rf)2 - |‘T;|27 w(‘rlvx:z’xb) < 56} = U [allcvaz]v
keJ

where J = J(x!,xp) has 0,1 or 2 elements since 1 is quadratic. Moreover, we have
4 - 4
either  |a}|? +|2,|* = (R, + Ry)?, or (al,zl,xp) = 55 (2.32)
for k € J and i = 1, 2, together with

Te, 0, (75) = Z/ e~ el g(ay, 2l )duy.
ke’ lok.ai]

To estimate Z¢, 4, (x},), we now make a change of contour in the complex variable z; as follows:

/[ ) eiixllgalg(arl,m:l)dxl =1I;,+Ir+1Ir, withlI, = / 67i21|£“|g(21,1‘:1)d21, for x=L,T,R,
a0l «

and
v, = [a,lc, a,lC —ieRy),
yr = o} —ieRy,af — iRy,
YR = [O‘i - i&Rf, ai]a

are three oriented segments in C (see Figure 2). We have

Im(zl)
ag 0 aj, -
Re(21)
YL YR
YT
Ol,lC — i€Rf Ozi — iERf

Figure 2: Oriented contours
1| < / eIl |g(zy, al)|dz1, for = L, T, R.
Yx
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On ~; and 4g, using (2.32) and Im(z;) < 0, we can use either estimate (2.26) or (2.27) and obtain,
uniformly in 2/, &, xp, 6,7 >0, A > 1, and € € (0,£((9))
RZ

3 2
|+ [Ir| < CeAnat)/2Cr1Ae <e‘”e’\4fefA + 63576652’\) .

On ~r, we have (z1,z),) € Ay, (¢) and Im(z1) = —eRy, and thus using (2.25), we obtain, uniformly in
2t €ay Tp, 0,7 >0, A > 1, and € € (0,£0(9)),

2
[ 7| < CAetD)/200" 07 5 o —eRgltal

Combining the estimates on I, Ir, IT now proves that there is C' > 0 such that for any £, € R" x, € R™,

§,7>0,A>1, and e < min(go(9), 25&),

2 2 sz 2 3 2
|IO‘ < C)\(na+1)/265-re% (601)\5 efeRf|§a| —|—e*T>‘ +C>\(na+l)/2€cl)\a 6567—6706 )\,

which, in view of Estimate (2.30) and (2.31), implies the result for N = 0 and a = 0.

To obtain the result for N € N and 3 € N, we notice that the functions g, 5 = 05 8§bg can be written
as a finite sum of terms that have the same form as the one of the assumption of the theorem with some
different f, b and ys (with the same support and analyticity properties) and with powers of 7 65" for
|o’| 48] < ||+ |B|- The constants in the exponentials do not depend on «, 8 since they are functions of
¥, Ry, Ry, K, only. Noting that (i&,)*95 Fa(g)(€a, 2s) = Fa(0S,05 g)(€a, ) finally concludes the proof
of the lemma. O

As a consequence of the previous result, we now have the following lemma.

Lemma 2.16. Under the assumptions of Lemma 2.15, we have the following. For all k € N, 6 > 0, there
exist N € N, C,co,eq9 > 0, such that for any A\, u, 7 > 1 and 0 < € < g9, we have

)’Mf/Qg(l B Mf\‘)‘ < CTN)\(naJ,l)/zeaTe% (eCser—coau n eéTe—cox)

HF(Rm)—H*(R")

2
H < CTN)\(na+1)/266TeTT (eCEZ)\e—COEH/ + e&'re—co)\) )
HF(R)— H* (R™)

H(l—Mf)ng/2

The estimates of this lemma will only be used under the weaker form: for all ¢, > 0, k£ € N, there
exist cp, C, N > 0 such that for any 7, x> 1 and ¢~ ' < X < cu, we have

/2 22 957 —c
HMﬁ‘ 91~ Mf)HHk(Rn)%Hk(Rn) < Orlexereneon, (2.33)

with the same estimate for the second term. It is obtained by taking e sufficiently small in the regime
clu<A<cp.

Proof. The two estimates are proved the same way, so we only prove the first one. First, Lemma 2.7 yields

n/2 B
HM’\ g(1 - M*)Hm(mn)am(mn)

< Z Hggafbfa(g)HL;‘;LI(Ka\zdu/Q%) + e Hggafbfa(g)||L°°(]R"b;L1(]R"a)) - (2.34)
lal+|BI<k

Next, Lemma 2.15 with a N € N large enough so that <§a>7(N+k) is integrable on R™« yields

HMfmg(l _ Mf\L)H < O N+E\(at1)/2, 67 5 (eclgz,\efcogu n 65767COA> ’

HE(Rn)—HF(R)

which concludes the proof of the Lemma. O
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3 The local estimate

The aim of this section is to prove the local quantitative uniqueness result, (analytically) localized in
frequency in the analytic variables.
In the following, we shall denote by

or(z) == o(R7 Yz — 2°) with ¢ € C*°(R) such that

o =1 in a neighborhood of | — o0, 1], and o = 0 in a neighborhood of [2, +o0]. (3.1)

Our main local theorem is the following. See Figure 3 for the geometry of the theorem. An important
feature of this local result is that it can be iterated and hence propagated.

Theorem 3.1. Let 2° € Q C R™ x R™ and P be a partial differential operator on Q of order m. Assume
that

e P is analytically principally normal operator in {£, = 0} inside Q2 (in the sense of Definition 1.5);

o there is a function ¢ defined in a neighborhood of x° such that ¢(z°) = 0, and {¢ = 0} is a C?
strongly pseudoconvex oriented surface in the sense of Definition 1.6.

Then, there exists Ry > 0 such that for any R € (0, Ry), there exist r, p, 7o > 0, for any 9 € C§°(R™) such
that 9(z) = 1 on a neighborhood of {¢ > 2p} N B(z",3R), for all ¢,k > 0 there exist C,x’, By > 0 such
that for all B < By, we have

”MgILUT,C1Nu"7n—1 S Cet (HMéLlﬂﬁclp‘uHm—l + ||Pu||L2(B(IO»4R))) + Ce_"c,“ Hu”m*l ’

for all p > %0 and u € C§°(R™).

Note that this local result contains in particular the unique continuation result for operators with
partially analytic coefficients [Tat95, RZ98, Hor97, Tat99b] (which it is aimed to quantify). The lat-
ter is proved by letting 4 — +oo in the estimate (and controlling some error terms), yielding: Pu =
0 on B(2°,4R)), u =0 on supp(¥d) = u=0on {0 = 1}.

This theorem allows to systematically quantify this local unique continuation result under partial
analyticity conditions (in a way that can be iterated/propagated). As such, it also allows in particular
to systematically quantify both the Hérmander and the Holmgren theorems (again, in a way that can be
iterated /propagated). Let us briefly comment on these two extreme situations: n, = 0 (Hérmander case)
and n, = n (Holmgren case).

Remark 3.2. If n, = 0, this inequality takes the form:

1
<C——0 (||19u||m_1 + HPUHLQ(B@MR))) +Cellull,,_,, foralle<e,

lorull,—y < R/

and hence

1
1-6
ol oy < C (I0lly + 1Pl 2(pao.amy) ) Nl s, for some 8 >0,

which is an interpolation inequality of Lebeau-Robbiano type [LR95] (see also [Rob95]), and, as such,
propagates well. Here it quantifies the general situation of the Hérmander theorem (see also [Bah87]).

If n, = n, we here describe a systematic way to quantify the Holmgren Theorem, which propagates
well. See also [Joh60] for a local result and [Leb92] for a global result for waves.

Remark 3.3. The previous inequality can be written in the following way:
For all (D, p,u) € RT x [, +00) X H™ 1(R"), satisfying

‘}M5u001uu|’m_l <e "D

1Pull 2 (p(20 4ry) < € ™D,
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Figure 3: Geometry of the local uniqueness result.
Tlue striped region is the observation region (i.e. where ¢ = 1). The red striped region is the observed
region (i.e. where o, = 1).

we have )
[ME vl < Ce™™ (D + Jull,,_y) -

This could certainly be written in the framework of propagation of (semiclassical, partially analytic)
microsupport with respect to the variable z,, see [Sjo82] or [Mar02, Section 3.2]. If n, = n, it seems related
to microlocal proofs of Holmgren theorem and the propagation of the analytic wavefront set (see [Sjo82]).

The proof of Theorem 3.1 is divided in three steps, given in Sections 3.1, 3.2, and 3.3 respectively.

3.1 Step 1: Geometric setting

The following lemma is a refined version of [RZ98, Lemma 4.1 p514] or [Hor97, Lemmata 4.3 and 4.4].
Its proof essentially follows that of [RZ98, Lemma 4.1]. We state the geometric part for some balls not
necessary euclidian. This will be useful in the case of boundary where some change of variable are used.

Lemma 3.4. Let P be analytically principally normal in Q C R™, of order m and principal symbol p. Let
¢ € C2GR) and S = {¢ = 0} be a C? oriented hypersurface of Q. Let 2° € SN Q with Vé(x¥) # 0.
Assume that S is strongly pseudoconvex in Q x {£, = 0} at 2° for P (in the sense of Definition 1.6). Then,
there exists A > 0 such that the function

U(w) = (@ — 1) - Vo(a®) + Al(x — 2°) - Voo + 26"(a%) (@ — %, —2°) — | — 2P
satisfies

1. q/}(IO) =0, qu/j(:co) = vacgb(xo) ;
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2. 1 is strongly pseudoconvez in QN {&, =0} at 2° for P (in the sense of Definition 2.1).

3. Let N be a distance function locally equivalent to the euclidian distance. There exists Ry > 0, such

that for any R € (0, Ry), there exists 9 > 0 and for any 0 < n < ng, any n1,m2 > 0 there exist
p,r > 0 such that we have

({¢ <ptn{y > —n}nBy(a’ R)) C By(a%, &), (3.2)
({v=m}n By R)) € {6> o}, (3.3)
By (% 71) C {~m2 <9 <2} (3.4)

Conditions (3.2)-(3.3)-(3.4) are illustrated on Figure 4.

(6=0) {6 =0p}

Figure 4: Local geometry of the level sets of the convexified function ¢ (in the case N =euclidean distance)

Proof. The first item directly follows from the definition of ¢ as a second order perturbation of the Taylor
expansion of ¢ at x°. The proof of the pseudoconvexity in Item 2 is very similar to [RZ98, Lemma 4.1]

or [H6r97, Lemma 7.4]. We sketch it for sake of completeness.
Let us compute Re {p, {p,¥}}: we have

_ _ *p (9]3 " aﬁ dp d%p 8]5
Since Vi(2°) = V(2°), we have

2 2

Op

Re (P, {p,¥}} (2”,€) = Re {D, {p, ¢}} (2°,€) + 24 ‘chb(xo) G

(x07£) - Z (95 (‘Toaﬁ)

z‘ap

29



In this identity, all terms are homogeneous of order 2m — 2 in the variable &, so it is enough to prove
the estimate for ¢ € S"~! Hence, applying Lemma A.1 below on the compact set K = {£ € S"71. ¢, =
0,p(x°,€) = 0}, together with the first part of the pseudoconvexity assumption yields for A large enough

Re {p, {p,¥}} (2%,€) >0, if p(«°,&) = 0 and & = 0,&, # 0. (3.5)

For the second estimate, we compute

Ypepebee) = 1 <§§ (0.6~ V) .+ i7V0) + il | P, € — ir ) 5(:1: e+irvo) )
— (gi( & — 17'V¢) o€ (m,f +itV) —itdl, [gg (x,& — ZTV¢) o€ (x £+ ZTV¢):|>

= CT,¢,1<377£) + CT,¢,2(-7;’§)7
with
dp

dp

2 0.0) = 0 OG0 ) Crpalin) = 2065 | (0,0 5

Cron(a.6) = 1 (20005 .05 (2. 0)]
(

23
where we have denoted ( = {+iT7V¢(z). But, we notice that for fixed (z, ) (and when ¢ varies), C- 4,
only depends on V¢(x), while C; 4 2(z,€) is linear in ¢, (), once V¢(2?) is fixed. So, since 1/1( 0
Vip(2°) = Vo(a°), and ¢, (2°) = ¢, (2°) +2A'V(2°)V$(a®) — 3 Id we have Cr 5,1 (2°,€) = Cr gy

i.e.

dp

1
PP H,) = Crpal,6) + 47| V,000) - 20,0 — ] (36)

In identity (3.6), all terms are homogeneous of order 2m — 1 in the variables (7, &), so it is enough to prove
the estimate for (7,£) € S™, 7 > 0. We now want this to be positive on the set {(,¢) € S*,7 > 0,§, =

Oap¢>(m0)€) = 0} = {(T7 g) S Sn77- > Oaga = Oap¢(‘r07§) = O}
For this, notice first that %%{ﬁ(t),p(b}’T:O = 2Re{p, {p, ¢}}. Hence, we can write

By psk = 3 (B0} + 27 Re 5, (.61} + O, 7 0%, (37)
with O(72) uniform on (7,£) € S™.

Moreover, by Taylor formula, we have py = p +iTV¢ - g—g + 0O(72) = p+ it {p,¢} + O(7?), with
O(7?) uniform on (7,€) € S™. Hence, on the compact set {(1,£) € S",& = 0,ps(z°,&) = 0}, we
have p = —iT {p,¢} + O(7%). But since P is analytically principally normal, (1.9) holds and we have
{P,p} = O(p) on the compact set {(7,&) € S, &, = 0}.

In particular, on the set {(7,£) € S", &, = 0,ps(2°,£) = 0,7 # 0}, we have a constant C so that
L{p.p}| < C(|{p,#} | + |7]). Getting back to (3.7), it gives, on this set, the inequality

o {Pape) ~ 2Re 75,01} < O .0} |+ 17, 39

Moreover, the first pseudoconvexity assumption (1.10) and Lemma A.1 below provide Cy,Cs > 0 such
that, on the set {¢, = 0} N {|¢]* = 1}, we have

2Re (B, {p.0}} + Cu (* + | {p.6}?) = Co.

This is also true by homogeneity for || close to 1 with a different constant. Hence, in the set {(7,¢) €
S", & = 0,py(2Y,€) = 0,7 # 0}, there exist constants C,C > 0 such that |{p, ¢} | < e and |7| < e imply

L Bapet 2 o € (P 4 10,0} 1 1 (0,0} |+ 1) 2 € - Ce

where we have used |p| < C|7| < Ce on this set.
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Therefore, there exists €, > 0 such that in {(7,£) € S, &, = 0,ps(2°,€) = 0,7 # 0}, we have

1
Hpoil<e, Il <e= —{Pspe} = Cs.

We now extend %{ﬁ@pq;} to the compact set K. = {(1,€) € S",&, = 0,ps(2°,€) = 0,0 < 7 < ¢}, by

giving any positive value when 7 = 0. We are in position to apply Lemma A.2 with g = %{@;,pqs} (its
2
extension), f = |{p, ¢} |? and h = g—‘g(xo,c)‘ : This yields ;={p,, py}(2°,&) > C on K..

The case 7 > ¢ is easier since %{ﬁqﬁ, P} is continuous. We apply directly Lemma A.1 using the second
pseudoconvexity assumption (1.11).

So, at this stage, we have proved, that there exist C so that for A large enough, ={p, py}(z°,&) > C
on {(,£) € S", & = 0,p4(2°,£) = 0,0 < 7}. Since, py (2%, &) = pg(2°,€), this yields

1
;{f)w,pw}(xo,f) >0, ifpy(2,¢)=0and & =0,7>0. (3.9)
Combining (3.5) and (3.9) implies that 1) is a strongly pseudoconvex function in QN {¢, = 0} at 2° for P.

Let us now prove the geometrical part of the lemma, i.e. Item 3. From now on, the parameter A is
fixed. To simplify the notation, we set 2° = 0 and assume that 0 < p < 1.

Let Cy a positive constant so that &N (z,0) < [z| < CyN(z,0).

Let us first prove (3.2). We have

el = —p(@) + 2 Vo(0) + Alw - TO(0)? + 56" (O)(w, ),

which implies
1 1
Sl <n+a-Ve0) + Al - Vo(0))* + 56"(0)(x, 2),
on the set {¢) > —n}. Moreover, the Taylor expansion of ¢ yields z-V¢(0)+1¢"(0)(z, z) = ¢(2)+ f(x) ,with

|f(2)| < e(|z])|z|?, where € : Rt — RT is increasing and e(s) — 07 as s — 0. Forz € {¢p > —n}n{¢ < p},
we thus obtain

%\xﬁ <+ p+ Az Ve(0))? + e(|z])|z* < 20+ Az - V$(0))? + e(f])]2]*. (3.10)

Moreover, for x € {1p > —n}, the definition of ¢ gives

7 Vo(0) = () — Al - Vo(0)* — 36"(0)(a, ) + la

> —n — (AC§ + Co/2 4 0) |z,
for Cyp = max(|Ve(0)],|¢”(0)]). Also, for = € {¢ < p}, we have
z-Ve(0) < ¢(x) + Co/2lz|*> < p+ Co/2lx* < n+ Co/2lal.
Combining the last two inequalities, we obtain for z € {¢ < p} N {¢ > —n},
|- V§(0)| < 0+ (ACG + Co/2) |l
and hence
- VOO < 1 +20(ACE + Co/2)laf* + (ACE + Co/2)%al*.

Coming back to (3.10), this yields for z € {¢ < p} N {y > —n}

1
Z|:z:|2 <2+ An? + 2An(ACE + Co/2)|x|* + A(ACE + Co/2)%|z|* + e(|z|)|z|?.

31



For z € {¢ < p}n{¢¥ > —n} N By (0, R), this yields

1

ZW < 20+ An® + 2An(ACE + Co/2)|z|> + A(AC + Co/2)*(CnR)?|z|* + e(Cn R)|z|*.
Taking R < Rg with Ry = Ro(A, Cp) sufficiently small such that

A(AGE + Co/2(CxRY + e(CnR) < 17

and n < no sufficiently small such that

1
2 S
2An(ACE + Co/2) < 1A

we have by absorption

|2|* < 2A(2n + An?).
This gives N(z,0) < % as soon as 1 < 1o for ng = no(A4, Co, R) sufficiently small. This concludes the proof
of (3.2) for the chosen constants and as long as 0 < p < 7.

Let us now prove (3.3). Note that performing exactly the same computation as before with p =71 =0
and the same R, we obtain

{¢ <0tn{y >0} nBy(0,R) ={0}. (3.11)

Assumme that the compact set {1) > n;} N By (0, R) is nonempty, otherwise (3.3) is trivial. The minimum
of ¢ on that set is reached for some point z,,. We have necessary ¢(z,,) > 0, otherwise, (3.11) implies
T, = 0, which is impossible since n; > 0 and 1(0) = 0. So, in particular, x € {1 > 1, } N By (0, R) implies
¢(z) > ¢(xm) > 0. This is (3.3) with some apropriate 0 < p < min(¢(zm),n).

Finally, Assertion (3.4) is just a matter of continuity. Since ¢ (0) = 0, there exists r > 0 such that
N(z,0) < r implies |[¢(z)| < na. O

Remark 3.5. Note that the estimate (3.8) implies in particular that 2Re {p, {p, ¢} } is the limit as 7 — 0

of {P4,ps} on the subset {(7,£) € S™,& = 0,py(2°,€) = {pg, d} (2°,£) = 0,7 # 0}. However, this is
not used directly in the above proof.

Now, thanks to Lemma 3.4 and the Carleman estimate of Theorem 2.2, we have the following result.

Corollary 3.6. Let z° € O = Q, x Q, C R x R™ and P be a partial differential operator on 2 of order
m. Assume that

e P is analytically principally normal operator in {£, = 0} inside 2 (in the sense of Definition 1.5);

e there is a function ¢ defined in a neighborhood of 2° such that ¢(z°) = 0, and {¢ = 0} is a C?
strongly pseudoconvex oriented surface in the sense of Definition 1.6.

Then, there exists a quadratic polynomial ¢ : Q — R, there exists Ry > 0 such that B(x°,4Ry) C Q and
for any R € (0, Ry], there exist ,6, p,r,d, 79,C > 0, such that § < % and

1. The Carleman estimate

9 9 2 2
THQ;eTuHm“gc(¢|Q;eTpu||O+ R e I ) (3.12)
holds for all T > 79 and all u € C§°(B(2°,4R));
2. we have
(B(x0,5R/2) \ B(z°, R/2)N{-96 <4 < 25}) € {¢ > 2p} N B(2°,3R), (3.13)
{6/4 <+ <26} N B(z°,5R/2) € {¢ > 2p} N B(z",3R), (3.14)
B(z% 2r) € {-d/2 <4 < §/2} N B(2% R). (3.15)
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Proof. First, Lemma 3.4 furnishes the function v for some A (large enough in its proof) and Ry > 0. Once
1 is fixed, Theorem 2.2 yields the Carleman estimate (3.12) for some constants R,d, 79,e,C. Then, we
take any R < min(R/4, Ry/3) and § < min(g,70/9). Finally, applying the conclusion of Lemma 3.4 with
n =90, m = 0/4, ne = 6/2 implies (3.13)-(3.14)-(3.15), with eventually some different constants, which
concludes the proof of the corollary. O

3.2 Step 2: Using the Carleman estimate

From now on, we let Q,2°, P and ¢ be fixed as in Corollary 3.6. The function 1, and constants R,
R := Rq (that we fix now) and §, p,r are provided accordingly by Corollary 3.6, as well as the constants
d, 70, C of the Carleman estimate (3.12). We shall moreover assume that there exists C > 0 such that

1

Eu < A < Cpu. (3.16)
Actually, at the end of the proof, we will take A\ = ¢y, but we believe that to keep the notation A\ makes
the presentation more readable by making a difference between p which is the frequency and A which is
the regularization parameter. All the constants appearing in the following may depend upon the above
ones.

Before going further, we need to introduce some cutoff functions that will be used all along the proof.
We first let x(s) be a smooth function supported in (—8,1) such that x(s) =1 for s € [-7,1/2] and set

xs(s) == x(s/6). (3.17)

Hence, xs(s) is a smooth function supported in (—84,0) such that xs(s) = 1 for s € [-76,0/2]. We also
define ) so that ¥ = 1 on (—o00,3/2) and supported in s < 2, and denote as well y5(s) := x(s/6). We
finally recall that the functions or and oap are defined in (3.1).

In this part of the proof, we want to apply the Carleman estimate (3.12) (with weight ¢ and constants
d, 79, C given by Corollary 3.6) to the functions coror aXs(¥)xsx(¢)u (for any u € C§°(R™)), which is
indeed compactly supported in B(z",4R) (according to the definition of oo as in (3.1)). We first need to
estimate the following term

Q¥ . Po2rorAXs ()xsa(®)ul],

that will appear in the right handside of the inequality. Using supp(xs) C (—o0,d) with Lemma 2.13,
together with (3.16), we first have

HQ?,TPUzRUR,A%(I//)XM(1/))UHO < ‘|Q;Z}77—C72RU'R,>\%6(w)X(S,)\(w)PuHO
+ QY [o2r0 R AXs (V) X5 A (%), Plul|,
< Cﬂl/zecr‘é‘f& 1Pull (z0,4r)

+ Q¥ o2k R XS () X650 (1), Plu - (3.18)

The main task now consists in estimating the term containing the commutator, that we put in the following
Lemma.

Lemma 3.7. With the previous notations and assumptions, for any ¥ € C5°(R™) such that 9(z) =1 on a
neighborhood of {¢p > 2p} N B(x°,3R), there exist C > 0, ¢ > 0 and N > 0 such that we have the estimate

QY [o2arorAXs(¥)X5.A(¥), Plul|, < Ce*"

M2 19,\uH
A
m—1

ep? . 22
+Cut?rN <6_85T +e I 4 e_”*e‘ST) e e |ull,, (3.19)

for any v € CP(R™), u > 1, X such that (3.16) holds and T > 1.
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Proof. The operator P can be written P = Z‘algmpa(x)ao‘, with p, smooth and analytic in z, in a
neighborhood of B(2?,4R) C Q. By the Leibniz rule, we have

Pa(2)0% (02rORAXS (V) X5 A (V) )
= pa () > Clan9™ (x5.2(1))0% (02r) 0" (0 R 1) 0™ (X5 (1)) 0™ u.

artazstastagtas=a

The commutator [X5(¢)xs x(¥)02r0R A, P] consists in all terms in the sum where at least one of the «; is
non zero, for i = 1, 2, 3 or 4. Hence, we can split it in a sum of differential operators of order m — 1 as

[P, 02ror A Xs(V) X6, (¥)] = B1 + Bz + B + B,
where
1. Bj contains the terms with a7 # 0 and as = a4 = 0;
2. Bs contains some terms with as # 0;
3. Bj contains the terms with ag # 0 and a1 = as = a4 = 0;
4. B, contains some terms with ay # 0.

Note that some terms could belong to several categories, and that all terms are supported in {¢ <
26} N B(z%,4R). More precisely, we have

1. Bj consists in terms where there is at least one derivative on x4 (%) and none on o2p and Xs5(¢).
According to the definition of x and (3.17), there are only two possibilities for the localization of a
derivative of x;. Since we have x; , = +(X")s,x, then 971 (x5 (1)) with ay # 0 can be decomposed

in two categories of terms: we shall use the notation xj , for those terms supported in [—86, —70]
and X;_)\ for those supported in [0/2,d]. Hence, the term Bj is a sum of generic terms of the form

By = by (2)0" = fo2rd’(ar ) x5 (¥)Xs(1)D7,

where |8, |v] < m—1, f € C§°(R™) is analytic in x, in B(z°,4R), and x§ is a derivative of x5 (with
the above convention for the superscript ). The function f actually contains some terms coming
from p, and some derivatives of ¥. Notice that in the absence of regularization (i.e. the subscript
A), By would be supported in

(16/2<w<ayn B 2m) C ({0> 20} N (¥ <6} N BE",2R)),

and B_ in {-85 < < —76} N B(z°,2R).

2. By consists in terms where there is at least one derivative on oor. Hence, Bs is a sum of generic
terms of the form

By = ba ()07 = b3° (gp,2) (x")s1 ()07,

where k, | 8|, |y| < m—1, the function b is smooth supported in B(z°,4R)\ B(z°,2R) and b contains
derivatives of oog, some terms of p,(x), and potentially some derivatives of ¢ or Xs(%).

3. Bj consists in terms where there is at least one derivative on og  and none on x5 (%), Xs(¥) and
oor- Hence, B3 is a sum of generic terms of the form

Bs = b3(2)0" = fo2r0” (0r )Xo A (¥)Xs(1)07,

where f is smooth in (z,, ), analytic in z, in a neighborhood of B(x0,4R),v |8l > 1 and |5],|y] <
m— 1. Notice also that in the absence of regularization (i.e. the subscript A), Bs would be supported
in

({—85 < ¢ < 6} N B(z,2R) \B(xO,R)> c ({¢ > 20} N Y <8} N B(xO,QR)).
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4. By consists in terms where there is at least one derivative on Xs(1). Hence, By is a sum of generic
terms of the form

By = by(2)07 = 5% (o) (x*)s 1 (1)

where k, |3, |y| < m — 1 and the function b is smooth supported in B(z°,4R) N {¢ € [35/2,26]} and
b contains derivatives of oag, some terms from p, (), and some derivatives of ¥ or Xs(1)).

Now, proving an estimate of the last term in (3.18) consists in estimating successively the associated
expressions with the generic terms By, Bs, Bs, By; the final estimate then follows as the LHS of (3.19)
is bounded by a finite sum of such terms.

Estimating B_. Starting with B_, we have, using Lemma 2.13 applied to x;,

2

}|QgTB_u||O < ||e”/’B_uHO < 05/\1/267767—6’; lull,,—1 < Cul/Qe*mTec w ],y - (3.20)

Estimating B,. Concerning Bs, we use Lemma 2.13 applied to x((;k) and Lemma 2.3 applied to b and

0%(or) where supp(b) Nsupp(cr) = 0. This yields
.2 R
|Q¥ , Baul|, < ||e™ Baul|, < CsA2eTe X e |lul,,_y < Cu'/?eTe W e |Ju),,,_; . (3.21)

Estimating By. For By, we use e < e®7 and |[(x")sa(1)] < Ce™* on {¢ € [36/2,25]} thanks to
Lemma 2.3 applied to x*) and 1(35/2,25)- This yields

HQ;”’TBMLHO < HeTwB4uHO < CseXme A lull,,—; < Ce20Te—cH llull,_y - (3.22)

First estimates on B, and Bjs. Concerning B,, with x = + or x = 3, we have

1Q%, Buull, = e ¥ B < |le== % MEe B + [l (1 - M)V B
0 0 0
< e B, + 0 (% 4o ) Bl
L2
S —

en2
HMfeTwB*uHO + C\Y/? <e_8“7 + e_c”> el |,y
where the second inequality comes from the application of Lemma 2.14 and the third from Lemma 2.13.
Next, concerning the term with ||M/’\‘e”"B*uHO, we have B, = b,0" where x is either + or 3. So, we
can estimate

)

|Mger B, < ||Mfern. - 23eu| +||age b oyl

where
m—12

L2
HMfewa*(l _ Miu)awuH < 07N 207 —cn |
0

according to Lemma 2.16 applied in the specific case of (2.33). Note that we use that foor = f in a
neighborhood of B(x°,2R) D supp(or), and foar is therefore analytic on a neighborhood of this set.
Next we have

o, < |

e”/’b*Mfl‘&”uH )
0

Combining the four above estimates, we now have

2

51,2
QY. Bul, < ’ e”bb*Mf“a“’uH + Cpt/? N <68l7 + e‘”e”‘) S e |ul|
: 0

(3.23)

m—1"*

Now, to estimate the first term of the RHS, we will distinguish whether x = + or 3, using the geometry of
the "almost" location of each b,.
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Estimating B, . We have to treat terms of the form
By =07 = foaxg, (¥)Xs(¥)0",

where b = 8%(oR), |8| < m — 1, is supported in B(z°,2R) and f € C§°(R™). We decompose R™ as

R" = 0O,UO0,UQ3, with

01 = {¥¢[6/4,20]} N B(a® 5R/2),
O, = B(z",5R/2)¢,

O35 = {y€l5/4,28]} nB(2°,5R/2).

On Oy, since xj is supported in [0/2, §] and using Lemma 2.3 with fo = 1(5,/4 25, we have ‘X;r,/\ (1/})‘ <e A,

Moreover, we have e™¥ < €297 on the support of Ys. Hence, we obtain

M| < el < O

On Oy, using Lemma 2.3 with fo = 1o, and f; = b and then Lemma 2.13, we get
7_2

2 — 2 - c
e‘rwb_i_M)\Na’YuHLz(OQ) < C/\1/26 c)\eé-re - ”u”m—l < C,U,l/2€ 6“6676 m ”u”m_1

Using (3.14), we can find a smooth cutoff function ¥ such that 1§~= 1 on a neighborhood of O3 and
supported in {¢ > 2p} N B(2°,3R). So, for ) large enough, we have 95 > 1/2 on O3. Moreover, we have
le™¥| < e*7 on Oz, and thus, we obtain

6267’ < 06257

L2(03) —

IN

e’”’”b.,.Mi”@”u’

b+M§”87u’

Mf“@”u’

L2(03) L2(0s)

< 06257
L2(03)

06267

IN

15,\M§“87u

ﬁAMEMaWUHL?‘ .

Let 15 € C§° such that 1;; = 1 on a neighborhood of supp(z?) and supported in {¢ > 2p} N B(2°, 3R).
This is possible since suppd C {¢ > 2p} N B(z%,3R). In particular, since J =1 on {¢ >2p} N B(z",3R)

by the assumption, we have 1 = 1 in a neighborhood of supp 9. Then, according to Lemma 2.6 and the

properties of ¥, we have

Q%Miﬂ(?”’u < 1§>\M§“u + e |ul|
L2 m—1

m—12
and then

H&AMA?HUH < HM/%“z?,\u” A Ce

m—1 m—1>

according to Lemma 2.11.
Combining the previous estimates with (3.23), we have obtained

Q¢ B, < ce

EL2 T2
Mol ot ( +> CF e ull,y (329)

Estimating Bs;. We now treat terms of the form

Bs = 030" = faxsn ()% (1),

where b = 9°(o), with |8 > 1, is supported in B(z°,2R) \ B(z°,R) and f € C§°(R™). We decompose
R"™ as

R" = OyUO0,UO05  with

1= {vé¢[-9520n{|lz—2° €[R/2,5R/2]}},
Oy = {lz—a°¢[R/2,5R/2]},

05 = {¢e[-96,25n{|z—2° € [R/2,5R/2]}}.
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On O} Nsupp(Xs(1)), we have e™ | x5 ()| < e~ *e?7™ as a consequence of Lemma 2.3 with fo = 11_95,26)¢>
since s is supported in [—86, d]. We thus obtain

On Os, using Lemma 2.3 with fo = 1o, and f; = b and using the support of Y;5(¢), we get

Using (3.13), we can find a function 9 such that o = 1 on a neighborhood of O3 and supported in
{¢ > 2p} N B(z°,3R). So, for A large enough, we have 9, > 1/2 on Of. Moreover, we have |e™¥| < €207
on Of. This yields

< Ce e |lull,,_; < Ce™"e* ||ul|,,_, -

e”bbgM)Q\”a”uH
L2(01)

< Cefc)\€267- ||“H

< Ce= M 26T )
. R

m—1 —

ewbgMi”@"’u‘

6257’ < 06257

L2(0%)

IN

e’”’z’bgMi”aVu’

bgMi”(')Vu’

M/\Q‘L@Vu‘

L2(0%) L2(0g)

06257

IN

@AMf”a‘*u

L2(04)

We can then finish the estimates for B3 as for B to get, combining the above estimates with (3.23),

Q¢ Bsull, < Ce*T (3.25)

_en? _ 2
Mf“ﬁw” +CoptPeN (e 5 +e'e C“) e e |Jul|
m—1

m—1

Combining (3.20), (3.21), (3.24) and (3.25), this concludes the estimate of the commutator (3.19) and
the proof of Lemma 3.7. O

Remark 3.8. In the special case of terms p,(z)0%, that is some coeflicients independent on z,, we can
have some better estimates uniform in the size of p,

QY [o2roRAXs(¥)X6.A (1), Pa()0Nul| ) = [|Pal®s) QY [02roRAXS(¥) X5 (1), 0%Tul],
< pall e (| QL [02ro RAXS (V) X654 (1), 0°Tul], -

Also, for a = 0, that is for a potential V(z;), we have [ooror A Xs.A(¥)Xs(¥), V] = 0, so this term does
not give any contribution.

This will be useful in particular for getting estimates uniform to lower order perturbation.

Moreover, if p, is only analytic in z, and bounded in x;, all estimates of the commutator remain valid.
Indeed, we only use Lemma 2.16 for £ = 0 which remains true in that setting.

A

Now, we are ready to apply the Carleman estimate (3.12) to obtain the estimate of the following lemma.

Lemma 3.9. With the previous notations and assumptions, for any ¥ € C§°(R") such that 9(z) =1 on
a neighborhood of {¢ > 2p} N B(2°,3R), there exist g > 0, C > 0, ¢ > 0 and N > 0 such that we have
the estimate

7[|Q¢ oaroraxsA W)X (W)ul,,_, . < Cu'2eTF T Pull g0 4 + Ce®T Mf“ﬁwH

m—1

en? 2
Ot/ (e_saT T esf—cu) 5 7 ||ull,_(3.26)

for any v € C(R™), u > uo, A such that (3.16) holds and T > 7.
Proof. We only need to estimate the last two terms in the RHS of Carleman estimate (3.12) (the first term

being estimated in (3.18) and Lemma 3.7). Since we have chosen § < ¢, we have that § < d — 7§ so that
the support of x5 gives using again Lemma 2.13, for 7 > 7, %u < A < Cp,

72
e D anon x5 (8)Ts ()1 < CAVE TN lul,,

m—1,7

)

< CptPrmTlem T O% lull,,_y - (3.27)
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We also need to estimate the term eT(w_d)PogRaR,)\xg,)\(w))Zg (¥)u: we have

(=) (=)

IA

agROR,AX&AW)%W)PuHo

eT("/’_d) [UQRJR,)\X57A(¢)%5(¢)’ P]UH

Pasnaraxs T 0],

d

0
2
< CeTNTES (| Pul o amy + 1l )

2

< Cu2eT T (| Pull o ary + tly)  (3:28)

where we have used several times Lemma 2.13 to x5, (1) or some of its derivatives of order less than m — 1.
So, the Carleman estimate (3.12) applied to c2ror AXsx(¥)Xs(¥)u, together with (3.18), (3.19), (3.27)
and (3.28) gives for all 79 < 7, u large enough, A such that (3.16) holds, the sought estimate (3.26). [

3.3 Step 3: A complex analysis argument

The purpose of this part is to transfer the information given by the Carleman estimate to some estimates

on the low frequencies of the function and conclude the proof of Theorem 3.1. The presence of the non

.. _elDg|? . N . .
local regularizing term e~~ 2 ~ makes this task more intricate than in the usual case and imposes to work

by duality. Following [Tat95, H6r97, Tat99b, Tat99a], the idea is to proceed with the following three steps:

1. We make a kind of foliation along the level sets of v: if we want to measure u, we rather define the
distribution hy = ¥.(fu) by (hy,w)e/m),com®) = (fu,w(®))e @mn),coomn) and estimate it for any
test function f. Heuristically, h(s) is the integral of fu on the level set {¢(z) = s}.

2. We notice that the Fourier transform of A is hAf(C) = (fu,e~%¥) and can be extended to the complex
domain if u is compactly supported. In particular, on the imaginary axis, hAf(ZT) = (f,ue™). Since
the Carleman estimate gives information on the norm of e™¥u for 7 large, this can be translated in
some information on a on the upper imaginary axis. A Phragmén-Lindel6f type argument allows
to transfer this estimate to the (almost) whole upper plan.

3. Finally, using a change of contour, this information can be transferred to the real axis where we can
estimate the real Fourier transform hy.

Note that in the problem of (qualitative) unique continuation, the third step is replaced by a Paley-
Wiener type argument: a bound of exponential type for |@(C)| on C implies some conditions on the
support of hy. Roughly speaking, if ¥(x) = x1, the problem is to transfer some information on the
Laplace transform (with respect to the z; variable) le>c €™ fu (given by the Carleman estimate) to
some information on the Fourier transform using complex analysis. Moreover, since the Carleman estimate

e| D

. . . _elDg? . . .
only gives some information on e~ 2 ~e"%u, we need to add some cutoff in frequency to this reasoning.

More precisely, let us define
neC((=4,1)), n="1in[=1/2,1/2] and ns(s) := n(s/9).

We first prove the following lemma. We then conclude this section with the end of the proof of Theorem 3.1
by estimating the left hand-side of the estimate of the lemma.

Lemma 3.10. Under the above assumptions, there exists To = (||1)|| o (B(20,4R)) + 116)2 7 > 0 such that
for any k,c1 > 0, there exists Sy, C,c >0 (depending on 0,4, d, 79, k, c1,€), such that for any 0 < 8 < By,
for all > %% and u € CG°(R™), we have

| MPHoaro R AXsA (W)X (WIMsa ()|, < Ce™ (D + ||ull,,_,),
with
D = et (HM)Q\M?%\’LLH s Pu'B(mOAR)) ;A= 2ep.
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Proof. We now follow [Hor97, proposition 2.1]. For any test function f € S(R™), we define the following
distribution (with 8 > 0 to be chosen later on)

(h, 0)er Ry, o) = ((MP" f)oaroraxs () Xs (V) u, w(th)) er gy coe (n)-
We choose the particular test functions w = 7s x, and want to estimate the quantity
(hy,msA)er®),co @) = (MP f)oaro g axs(¥)Xs (V)u, 052 (V) &r w0 (2
= (MP"05r0 R X570 (V) X6 (V)05 A (V)0 [sr(RnY,8 (RN

uniformly with respect to f to finally obtain an estimate on || MP*oarar X5 (V) Xs (V)15 A (V)] m—1. As
the Fourier transform of a compactly supported distribution, hy is an entire function satisfying

h(C) = (MP" £)o2roraxsx (V) Xs (), €YY g1 (n) oo ()
= (02RO R AXoA (V)Xo (V)u, €TV (MPF ) g1y, coe ()
= (e Y osro R axs A (V)Xs (W)U, (MPHf))er(rn),coemn), ¢ € C.
Using supp(o2r) C B(2°,4R), we have the a priori estimate
hp (O = e Y o2r0 R A X6 () X6 (V) (MPH ) g1(Rny 00 (20|
< lle* ¥ oaror A x00 (¥)X6 (V) tllm—1 [|(MP* F)][1m
< C(glymtel mOMl e ooam fluf |-y ¢ € C. (3.29)
Next, for ( € R, we have

1t (Q)] = [{e 7Y o2ro R AXSA (V) X6 (W)U, (MPH )Y ermny oo mey] < CLO™ a1 [ fl|1=m, CE(R- :
3.30

Finally, for ¢ € iR*, ¢ =i with 7 > 0, we have
g (iT)] = [((MP"f), €™ 02r0 R A X6 (V) X6 () 1) oo (Y, 27 ()|
= [(e37 1P (2158 ), &= 3 1P eV 03 mo R XA ()Xo (1)) s ) 7|
< ||6?‘D“| MO f |1 lle™ 5Pl ™ 0 po xxo 0 ()R (8l 1
< e flloml| QY o2ro R AX6 A ()R ()]l m—1,
as |€q| < B on supp(mP*). Using (3.26), we obtain for all 7 > 79, u > 1, %u <A< Cu,

» . € 32,2 2
sG] < Ce= | flliom <u1/zecﬂ | Pull pgo 4y +€*7

Mipﬂ)\uH
m—1

2
—|—C,LL1/2TN( 7857‘+6 T +e§‘r C#) eC 57' ”uH )

Now, we choose
A= 2e1p,

and to simplify the notation we write, for x > 0,

D = e (HMf”ﬁ,\uHml + ”PUHB(zOAR)) :

With this notation, we have

~ - L2
lhytir)| < Cewﬁzfnfhm(W%Cueﬁfe-wme%e-w
+,U,1/27'N (68674—6 872 +e§-r CH) eC 57 ”u” )
/2N 5 620 > osr —ep , —2 95y
< OuErNeE PR OT (Dt ull,, )l (e ¥ £ %), (3.3)
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where the new constant ¢ > 0 may depend on &.
We now come back to the quantity we want to estimate:

(MPPaapor axsx () Xs (V)15 (V)u, [smny,s@ry = (hg,ms,x) el (R),co0(R) = /R}Alf(oﬁé,,\(—()d(-

As ns € C§°(—44,6), the function 7js is holomorphic in the lower complex half-plane together with the
estimate
[75(¢)] < Cem O for Im(¢) <0,

that is,
7s(—C)| < Ce®M™© 1 for Tm(¢) > 0,
2 m 2— e 2
15,3 (=C)| = |€_%f]§(—(§)| < Ce™MITEE S Q) for Im(¢) > 0,

For a constant 0 < d < 1 (beware that this d is not the same as d appearing in the Carleman estimate)
to be chosen later on, we split the integral in three parts according to

/Rilf(C)ﬁa,,\(—C)dC =I_+Ih+1,

with

—dp dp +oo
= / by (Ooa(—O)dC, T = / By (Ooa(—O)dC, I, = /d s (C)sn(—C)dC.

—00 —dp 12
According to (3.30) and (3.33), we have, for p > 1, A = 2¢qp,

Too g2

e _ _g2 el
c e 3 O™ Hulm-1fli—md¢ < Cu*™e™ S Jullm—1 [l fl1-m
dp

2
Cae™ T [[ullm—1 [l fll1-m- (3.34)

|1+ |

IN

IN

So the main problem is to estimate Iy. For this, let us define
H(Q) = u 2+ i) e hy Q).
From (3.31), we have the estimate on the imaginary axis for all 7 > 7, for u > 1, A = 2¢1 4,
£ T2 ep?
Hn| < CeP W% (D4 ful, Il (e + e % 4 ).

Moreover, (3.29) implies (we can assume N > m — 1 without loss of generality)

H(0)] < Cel TN 0.am) |l || fll1—m, ¢ € C, Tm(C) > 0.

Next, we define H := 2 with

co = CD +lull,, - DI lli-m, (3.35)

and apply Lemma 3.11 below to the function H.

This Lemma implies the existence of dy > 0 (depending only on 6, &, [|[¥)| Lo (B(20,4R)), € and the con-
stants C, ¢ appearing in the exponents of the estimates of #H(i7)) such that for any d < dy, there exists
Bo > 0, (depending on the same parameters, together with d) such that for any 0 < 8 < Sy, for all

1
Fo . To(l1%ll oo (B (20,4m))T116)2
B - B

> , we have

86 Im — d
MO < coe™™ MO, on Q0 {7 <[] < 2dpu},
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with @ = R% +iR* . The same procedure leads to the same estimate if ), is replaced by the set R* +iR7,
and hence, by the whole C; = {¢ € C,Im(¢) > 0}. Coming back to fzf, we obtain

R d
[Rip (O < cop ([N e 1O < o270 on € {p < [¢] < 2dps}. (3.36)

where ¢ is defined in (3.35).

We now come back to Iy. The function /(¢)fis x(—C) being holomorphic in C , we make the following
change of contour in the complex plane:

o= [ h@isa-0dc+ [ h@isa-0dc+ [ s (©na(-0)dc,
Y v
where the contours (oriented counterclockwise) are defined by
I'Y = {Re(¢) = £du, 0 < Im(¢) < du/2},
I = {—dp < Re(¢) < dp, Im(C) = dp/2}.
with d €]0, do[ still to be chosen later on.

Im(¢)

1

—du 0

du 2du

NS

o/ IF
>
=

Figure 5: Coutours of integration

Since IY UTH UTY ¢ C4 N {4p < [¢| < 2dpu} and A = ¢y p, estimates (3.33) and (3.36) yields the
estimate

Im(¢)2 —Re(¢)?

s (O)isa(—C)] < CO#N+1/267651m(<)672CW 6451m(§)7 (e F-‘i urfurv

Im(¢)2—Re($)?

NH1/2=2Im(O ™ 2e | ¢ceTYurHur?

)

< cop
Using that %uz < Re(¢)? —Im(¢)? < d?p? for ¢ € TY UTY we now obtain
~ 342
R (Qisa(—O) £ cout /2 ImORE ceTY uTY,
On ' we have Im(¢) = du/2, so , we can estimate
~ 2
p(Qisa(—Ql < copNtH/2etest ¢ eTH
2
Now, we can fix 0 < d < min(4c; 4, dg) so that we have e 0dp g sey i < Ce= (for some 0 < ¢ < 2¢16% ). As

a consequence, we have

[lo] =

IN

copN AT urf urY e em

/ By (Q)is A (=C)dC
FKUFHUFZ

IN

Ce™ (D + [[ull - DI Fll1-m; (3.37)
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for any 0 < 8 < fBy, for all p > max(C, ) (as [TY UTH UTY| = Cdp).
This, together with (3.34) yields, for any 0 < 3 < B, for all u > %0,

(M oaroraxs (W) Xs(V)ns A ()t s @y s@ny| =

/ B (O)fisa(—C)d¢
R

Ce™ (D + [Jull DI l1-m-

IN

The constants being uniform with respect to f € §(R™), this provides by duality the estimate

HMB”GQRUR,/\X(S,,\(w)ia(zﬁ)ﬂs,x(ﬂ’)uHm_l < Ce™ "D+ ||ull,,_4),
which concludes the proof of the lemma. O

With Lemma 3.10, we can now conclude the proof of the local estimate of Theorem 3.1. Lemma 3.11
and its proof are postponed to the end of the section.

End of the proof of Theorem 3.1. Using Lemma 2.3 with m(2 -) and 1 — m(-), we get

Bp
2

HMA (1 — MPH) < Ce N

Hm—1 (]Rn)*)Hm,fl (Rn)

Hence, applying Lemma 3.10, we obtain, for any 0 < 8 < By, for all u > % and A\ = 2cypu,

| MProaporaxs A ()X (WInsa(W)ul| | < HM;;U — MP")oa R0 axs (V) Xs (V)52 (¥)u

m—1
Bu

+ || M2 MPHospo g axsa (V) Xs (¥)nsx(¥)u

m—1

< Ce (D + [ul,,_,). (3.38)

Using Lemma 2.11, estimate (3.38) and the definition of r in Corollary 3.6, we get for any 0 < 8 < S, for
all p > %" and A = 2cyp,

Bu
or M2 u

IN

Bp
HM o + e lull,,_,

m—1 m—1

s _
or A M,? 02roRAXS A (V) Xs(V)Ns A (V) u

IA

m—1
Bu

+ ||oraAM,? (1 — o2ro R AXsA (V) Xs (V)05 (V) )

+ Ce™ " lull,,_1

m—1

B
oraM,? (1= o2ro R AXsA (V)05 A (V)1

< Ce D+ |lul,, )+ . (3.39)

m—1

We know that or = xs5(¢) = Xs5(¥) = ns5(¢) = 1 on a neighborhood of supp(o,) according to (3.15) and
the properties of x, x5 and 1. So, we can select IT € C§°(R™) such that IT = 1 on a neighborhood of

supp(o,.) and such that oogr = or = x5(¥) = Xs(¥) = ns(1») = 1 on an neighborhood of supp(IT). Now,
we have

Ur,,\M,\%M (1 = o2roRAXsA(V)Xs (V)57 (1)) u

m—1

< UT,AM;TM (1 = o2rorAXs A (V)Xs (V)N A (1)) (1 — I)u

m—1
Bu

+ |or A M, (1 = 02roRAXsA (V) X5 (W) 05 (¥) ) u

(3.40)

m—1
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To estimate the first term, we use Lemma 2.10 to obtain

B
or M7 (1 — H)” < Ce=“*. Con-
. Hm—-1_sHgm—1
cerning the second term, we have

JT,AM;T“ (1 = o2ro R X5 (V) X5 (V)15 (1)) T
m—1

< C|(1 = o2rorAXs A (V)X (V)15 (V) ue|| - < Ce™lull,,,_, (3.41)

where we have decomposed in the last inequality

1= 02ror A XsA(V)Xs(W)ns A () = (1 —o02r) +02r(1 —0oRrA) + 02roR A (1 — X570 (¥))
+02r0 R AXs A (V) (1 — Xs(¥)) + 02ro R AX5 A (V) X5 () (1 — ns A ()

and used Lemmata 2.3 and 2.5. These two Lemmata can be applied thanks to the geometric fact that
dist(supp(II), {x € R";02r(x) # 1}) > 0,

and the same is true with oap replaced by o, x5(%), Xs(¥) or n5(1)). We now have the existence of 7o > 0
such that for any ,c; > 0, there exist By, C,c > 0, such that for any 0 < 8 < g, p > %0 and A\ = 2¢yp,
the following estimate holds:

Bu
M," or u

< Ce (D + |lul,,_y), D= e (HMf“ﬂme_l + IIPUIIB@OAR)) -

m—1

This concludes the proof of Theorem 3.1 with x’ = ¢, when replacing u and po by £1/2 and /2 respectively.
O

It only remains to prove Lemma 3.11 below.

Lemma 3.11. Let 6,x, Ry,C1,e,79 > 0. Then, there exists dy = do(0, K, Ry, C1,€) such that for any

1
d < dy, there exists By (0, K, Ro,c1,€,d) such that for any 0 < 8 < By and for all u > w, we have
the following statement: -
For every H holomorphic function in Q1 = R} +iR% , continuous on Q1 satisfying
. 822 o2 - VLA
|H(iT)| < e"27# "1 max(e™™,e" 37 ,e77°7)  for 1 € [1p, +00), (3.42)
[H(Q)| < efe™© on @, (3.43)
we have
—85Tm - d
[H(O)] < e on Qun{u < [¢] < 2du}. (3.44)

The proof essentially consists in performing a scaling argument to get rid of the parameter y and then
applying Lemma B.2.

Proof of Lemma 3.11. The function H is holomorphic in @7 and z — log |z| is subharmonic on C*. As a
consequence, the function

g ¢ log |H (ud)|

is subharmonic on @; (which is invariant by dilations). Assumption (3.42) (used for Tu € [rg, +00)) yields

, 5  €f? 5 To
g (i) < e17° + — + max(—k, =967, ——), for 7 € [—,+00), (3.45)
T 81 n
and Assumption (3.43) yields
9"(¢) < RoIm(¢), on Q. (3.46)
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Now, we set,

£
8y

m

2
. £
1 (y) = Royl, 20y (y) + Ljz0 o) (y) min{ Roy, max(—r, =99y, — ) + Cry? + 7}7 yERy. (347)

According to Lemma B.2, there exists dy = do(0, k, Rp,&,C1) such that for any d < dy, there exists

1
Bo(d, Kk, Ry, d,e,C1), such that for any 0 < S < By, and any pu > %, the function fI' is continuous
and the associated function f# given by Lemma B.1 with fo =0 and f; = fI' satisfies

frec®@y), Aff=0and |[f'(z,y) < Cu(l+|(z,y)) in Q1, f*=f'oniRy, f*=0onRy
together with
£4(Q) < ~85Tm(Q) on Qu1 {§ < I¢] < 24).
This is
FA(C/n) < —SIIm(Q) /i on Qa0 {5 <[] < 2dp). (3.48)
Now, as ¢g* is subharmonic and f* harmonic, the function
R (C) == g"(€) — F*(C)
is subharmonic too. As a consequence of (3.45), (3.46) and (3.47), we have
h*(¢) <0 on Ry UiR,.
Moreover, (3.46) and |f* ()] < C(1 + [{|) also yield
W (¢) < Cu+ (Cu + Ro)[C]-

According to Lemma B.4, this implies -
h*(¢) <0 on @1,

and hence

|H(uC)| = et9"(©) < er" (O on Q.

Finally, coming back to (3.48), we obtain

~ d
[H(Q)| < e ™™ on @y {u < [(] < 24},

which concludes the proof of the lemma. O

4 Semiglobal estimates

4.1 Some tools for propagating the information

The Local Estimate of Theorem 3.1 only provides information on the low frequency part of the function.
Tterating this result alows us to propagate the low frequency information. In this section, we define some
tools that will be useful for this iterative procedure. They are aimed at describing how information on the
low frequency part of the solution can be deduced from one subregion to another one.

Definition 4.1. Fix Q be an open set of R” = R™s x R™ P a differential operator of order m defined
in Q, and (V});jes and (U;)icr two finite collections of bounded open sets of R™. We say that (V});es is
under the dependence of (U;);cr, denoted

(Vi)jesr 9 (Ui)ier,
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if for any 9J; € C§°(R™) such that 9;(z) = 1 on a neighborhood of U;, for any 1;]» € C§°(V}) and for all
k,a > 0, there exist C, &/, 8, g > 0 such that for all (u,u) € [uo, +00) x C5°(R™), we have

> [[8rGia],_, < 0o (Z 3529 e,y + |Pu|m(9>> + O™ ullyy -
jeJ iel

If 41 =1 and Uy = U, we write (V});es QU, with the same convention for V.
The norm ||-||,,_, being taken in R".

Remark 4.2. The definition < actually depends on the splitting R™ = R™= x R™ the set £ and the
operator P. However, in the main part of this work, R® = R" x R™ ) and P will be fixed, so it should
not lead to confusion (in particular in the applications). The dependence of < upon these object will be
mentioned when needed.

For the applications, it is important that the function w is not necessarily supported in €.

In the following, we will only need to use this relation < in some appropriate coordinate charts.
However, it will not be a problem for what we want to prove, even on a compact manifold. Indeed, we
will fix some coordinate chart on an open set {2 C R™ close to a point or close to a trajectory. Then, we
will use the relation < related to 2 to finally obtain some estimates which will be invariant by change of
coordinates.

Now, we list some general properties of the relation <, which actually hold without using any asumption
on the set €2 and the operator P.

Proposition 4.3. We have the following properties
1. If (Vj)jes < (U)ier with U; =U for alli € I, then (V});e; <U.
If (Vi) jes Q(Us)ier with U; C W; for alli € I, then (V})jcs < (Wi)ier-
If V.C U then, V QU. In particular, we always have U < U.
Uicr Ui < (Ui)ier-
If for any i € I, V; QU;, then (V;)icr S (U)icr. In particular, we always have (U;);er < (U)ier-

St o

Proof. Property 1 is obvious from the definition. Property 2 is also immediate since ¥;(z) = 1 on a
neighborhood of W; implies ¥;(z) = 1 on a neighborhood of U; since U; C W;.

Property 3 is a consequence of Lemma 2.11 applied with au/2 instead of p, A = pu, fi =9 and f = J.
The assumptions on ¥ and ¥ ensures that f1 = 1 on a uniform neighborhood of supp(f). This gives the
result with 8 = a/2.

Property 4 is a consequence of Lemma 2.12 with the same parameters as before for Property 3, but

Property 5 is almost a consequence of the definition. Actually, the only difference is that a priori, we
have one f3; for each ¢ € I. Taking the worst of the constants C,«’, g given by the application of the
definition for any i, it gives

Z HMﬁi‘u’l;i’uu

iel

|, SO (Z M40, e, + ||Pu||Lz<m> +Ce™ Jull,, -
el

with ¢; = 1 on U; and 51 € C§°(V;). But taking 28 = inf {8;,i € I}, we have

IN

HM[E#I%#U

HM/[L%MM/?I%%#U

|- v

‘mfl ’mfl

< |aggedi| o ce )
.

m—1"

where we have used Lemma 2.3 and the properties of support of m(g) and (1 —m(ﬁ—)) for the last estimate.
The second part comes from the combination with U; < U; for all i € 1. O
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The relation is not clearly transitive but we have the following weaker but sufficient property: if
(Vj)jes < (ﬁi)iej and U; € U; with compact inclusion (that is U; C U;) and (U;)ier S (Wi)kek, then,
(Vi)jes < (Wi)ker (this is proved by introducing functions f; € C5°(U;) equal to 1 on U;: see the proof
of Item 6 in Proposition 4.5 below).

For this reason, it is convenient to introduce the following stronger property.

Definition 4.4. Given () an open set of R™ = R x R™ P a differential operator of order m defined in
Q, and (V;)jes and (U;)ier two finite collections of bounded open sets of R™, we say that (V;);es is under
the strong dependence of (U;);c; if there exists (72 € U; such that (V})jes < (ﬁi)iel- In that case, we
write.

(Vi)jer < (Ui)ier-

This makes the relation transitive, but it becomes more strict in the sense that we do not always have
U < U. We sumarize again the properties of this relation.

Proposition 4.5. We have the following properties
1. (Vi)jes < (Ui)ier implies (V;)jes < (Ui)ier-
2. If (Vj)jeq < (Us)ier with Uy =U for all i € I, then (V;);jcs <U.
3. If V; @ U; for any i € I, then, (V;)ier < (Uy)ier-
4. If Vi € U; for any i € I, then ,c; Vi < (Us)icr-
5. If for any i € I, V; < U;, then (V;)icr < (Uy)ier- In particular, if for any i € I, U; < U, then
(Ui)ier < U.
6. The relation is transitive, that is

[(Vi)jes < (Us)ier and (Uy)ier < (Wi)ker] = (Vj)jes < (Whi)rek -

Proof. Property 1 is obvious. For 2, the assumption gives some (ﬁi)ig with (V});es < (ﬁi)iel and U; € U
for all i € I. Since U; C U for all i € I and [ is finite, we have U;e;U; = Uje;U; C U. Denote W = Uz U
We have U; C W for all i € I, so Property 2 and then Property 1 of the previous Lemma give (V;);cg <W
which implies (V});jes < U since W € U.

For 3, we use (V;)ier < (Vi)ier from Property 5 of the previous Lemma and V; € U;.

For 4, we use Property 4 of the previous Lemma, which gives | J,.; Vi <(V;)ier. Thisis ,o; Vi<(U)ier
by the definition of <. _ N - - N

For 5, assume V; QU; with U; € U;. Then, Property 5 of the previous Lemma gives (V;)ier < (Uy)ier
which gives (V;)ier < (U;)ier by definition. The second part is direct by combining with Property 2.

For 6, the assumptions give the existence of (71 € U; and Wk € W}, such that

(Vi)jes 9 (Ui)ier and (U;)ies < (Wk)kEK

Since U; € Ui, we can pick x; € C3°(U;) such that x; = 1 in an neighborhood of E Let « > 0, kK > 0,
and take ¥ € C§°(R™) (for all k¥ € K) such that Jx(x) = 1 on a neighborhood of W), and 5]' e Cg°(V;)

(for all j € J). Since we have (U;);c; I (Wi)kex and x; € C5°(U;), there exist C, ', 8, o > 0, such that
we have

DM,y < Cetr (Z 1M O,y + ||P“||L2<m> + e ful oy -
il kK

Now, we apply the relation given by (V;);jes < (Ui)ier with « replaced by the above 8 and x replaced
by k1 = min(x’,k)/2 > 0. Since x; = 1 in an neighborhood of U; and ¥; € C§°(V;), there exist
C' k", B, wy > 0 such that

||| < e (Z M), + ||Pu|Lz<m> F O ]
jed i€l
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Combining the above two estimates now yields

Z HMfl“gj,uu‘ < OCe5tRn Z HMl‘f”ﬂk,MuHm_l + Cle™ (14 C’e%“) HPUHL2(Q)
jeg m—1 keEK

+ (Cle™m s CClelr =) Ju

m—1"-

Since k/2 + k1 < k and K1 — K < K /2 — K = —K/2 <0, it gives (V}),cs < (Wi)kex, which implies the
result since Wk € Wkg.

Note that in the proofs above, we have omitted to precise each time the restriction p > po. Yet, all the
estimates have to be taken with that restriction, taking the worst constant py when several restrictions
are involved. O

Corollary 4.6. Under the assumptions of Theorem 3.1, there exists Ry > 0 such that for any R € (0, Ry),
there exists r, p > 0 so that we have

B(2%,r) < [{¢ > 2p} N B(«°,3R)],
B(z% r) < [{¢ > p} N B(z°,4R)] .
Proof of Corollary 4.6. First, we restrict Ry so that B(z°,4Ry) C Q. Theorem 3.1 gives some R, 7, p,
70 > 0.

Let x, o > 0. We apply the result with 4 = ap’, ¢y = 1/« and & replaced by k/a to obtain, uniformly
for p’, 2 7:0/(05ﬂ)7

Boy
HMH, O U

m—1 ’m—

< e (HM;“/‘ uu 1+|PuL2<B<ro,m))) + e (|l ).

Now, let 9 € Cg°(B(z°,r)). Since o, = 1 on B(z°,7), Lemma 2.11 gives

/3 ’ 2~ ! —c !
N [T e

m—1

This gives the result. The second comes from the compact inclusion of [{¢ > 2p} N B(2°, 3R)] into
B(2°r) < [{¢ > p} N B(z",4R)]. O

4.2 Semiglobal estimates along foliation by graphs

This section is devoted to the proof of Theorem 1.10. Actually, this result is a corollary of the following
stronger theorem, stated here in the context of zone of dependence.

Theorem 4.7. Under the assumptions of Theorem 1.10, there exists an open neighborhood U of K such
that for any open neighborhood & of Sy, we have

U<w.

In the present section, we first prove that Theorem 4.7 implies Theorem 1.10, and then prove Theo-
rem 4.7.

Proof that Theorem 4.7 implies Theorem 1.10. We first apply Theorem 4.7 for a neighborhood & of Sy
such that & € @, where & is that in the statement of Theorem 1.10. We obtain U <w;. Take x € C§°(U)
such that xy = 1 on a neighborhood U, of K, and ¢ € C§°(w) such that ¢ = 1 on a neighborhood of wy.
We obtain that for any x > 0, there exist C, 3, ', uo > 0 such that for u > puyg,

|32l < O (M@l + 1Pl gy )+ Ce " full, (4.1

But since ¢ € C5°(@), taking again ¢ € C5°(@), ¢ = 1 on a neighborhood of supp(y), we get thanks to
Lemma 2.3

||M5<Puu||m_1 < HM;ﬂE@uuHm_l + ”(1 - @)quu”m_l

> |peaofGem)| + el
lal+[B]<m—1

IN

m—1"-
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Next, we have

1Da il

IN

€8m0 (Ea /1)l o ey 1
< € (€ e nesy 10 < CHI IS

since the function &, — £3m,(&,) is uniformly bounded on R™ for ;1 > 1. As a consequence, we now have

Iieuull,, ., < ¢ > ul
lee|+|B|<m—1

et S |[pgy

|B|<m—1

A

D} (@u)|| + Cem* [jull,,

IN

+ Ce* ||ul|

L2(@) m—1

< O ull gy gy + Ce ully, -

In the particular case where n, = n, we change slightly the estimate

Mg, < MM, + 0 - MMl
< ot ol + O ull,,
< out Bl + Ot (1= B)pul, + O ull,,_,
< Cut | Bull . + Ce ull,,

In (4.1), the constant x > 0 is arbitrary (all other constants in that estimate depending on it): imposing
k < ¢/2 and noticing that ™1 < C,,e"*, we obtain, with ¢/ := min(c/2, x’),

1],y < € (lull g @) + I1Pull 2y ) +Ce" full,y - (42)
In the analytic case, n, = n, using p*+™~1 < Cye*, we have similarly
M2,y < € (1l + 1 Pullaay) + e ful, -y -

Now, let X € C5°(Uy) be such that ¥ =1 in a neighborhood of K. We have, using again Lemma 2.3,

”2”’”0 < ”%qu”() + 11 - X;L)SZUHO
< Clixuully + Ce™ Jlullp,—y
< C’HM/f“XMuHO—|—C’||(1—M5")qu||0+0676“ lull,_y - (4.3)

Concerning the second term in this estimate, we write

(1- m;t)(/%:)

H(l - Mﬁ“)XH“H <C Sup m—1 | Il -
8 OT (wtnernatm |16 T+ (&) "
Hence, in the range |&,| > Bu/2 with p > po, we have the loose estimate
(1 —m,)(&) c
m—1 m—1 S m—1" (44)
|§a| + <£b> H

In the range |&,| < Bu/2, using dist (supp(l —m(3)),{l&l < B/Q}) > 0, we have |(1 — mu)(ﬁ%) < Ce

according to Lemma 2.3. In this range of £,, this yields
(1—m)(52)
€™+ (&)™

so that (4.4) holds for all £, € R, and p > po. This yields [|(1 — Mg*)x,ul|, < = [Ixpuull,, ;. which,

< Ce

combined with (4.2) and (4.3) gives, for p > po,

~ C
IFullg < € (lullps oy + 1Pullaey) + sy Tl
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Similarly, in the analytic case, we have

~ " ~ C
[fuly < € (1Bully-. + NPulliaey) + g s

Finally, the case n, = 0 is a direct consequence of (4.1) since there is no regularization.

Now, we notice that the previous estimates are true for any 2 neighborhood of K. Denoting now by
(2 the neighborhood of K given by the assumptions of the Theorem, we can apply the previous estimates
to an open neighborhood 2 of K so that Q € €. This gives that for any w C Q neighborhood of Sy, there
exists an open set U neighborhood of K (that we can impose included in Q) so that we have the estimates

" C
lullpaey < CE* (Nullips oy + 1Pull o) + s el (4.5)

Take yo supported in € and so that xo = 1 in Q. In particular, we have ||P(X0u)||L2(§~2 = ||Pu||L2(§)
||Pu||L2(Q)7 HXOUHLz(ﬁ) = ||u||L2([j): ||XOU||Hg"*1(a,) = ”u”H:‘*l(@) and HXOU”m 1> <C HUHHm 1(Q)" Apply-
ing inequality (4.5) to xou gives

. c
ey < O™ (Iullposioy + I1Pullpaey) + o Il sy
This concludes the proof of Theorem 1.10 in the general case. The end of the proof in the cases n, = n
and n, = 0 is similar. O

Now, we come to the proof of the main result of this section, namely Theorem 4.7. This proof consists
in two main steps: first defining the adapted geometrical context, and second to iterate the local result in
this geometric context, using an induction argument.

Proof of Theorem 4.7. To begin with, we choose w; € wy € @ where w; is another open neighborhood of
So. We fix R such that

2R < min(dist(K, Q°), dist(w{, So)), (4.6)

define the set

Kf = U B(z,2R),

zeK

and pick a cutoff function
XK € C®(R), such that xx =1 on K and supp(xx) N {z, <0} C w;. (4.7)

Given any point = € K, there exists € > 0 such that € Sc.. We denote by Ry > 0 the constant given by
Theorem 3.1 associated to the point x and the function ¢.. Next, we set

R, := min(Roy/2, R/4), (4.8)

and then
ry = min(r/2,3R,), Pz = Ps

where 7, p > 0 are the constants given by Theorem 3.1 (and Corollary 4.6) associated to x, ¢. and R,.
For any € € (0,1] and « € S., we have ¢.(x) = 0. So, we can write

SCU (x,74),

€S,

and, since S; is compact, we can extract a finite covering, i.e. there is a finite set of indices I. and a finite
number of points (z5);er., such that

Se C U B(xf,re2), x5 € Se.

i€l
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For z§ € S., we rename the associated radii, setting

and define

Since ¢. = 0 on S;, we still have

S. (U B(a;;?,rg)> N{¢- < p-} =: U..

i€l

The definition of U, is illustrated on Figure 6. Therefore, for ¢ €]0,1], U is an open neighborhood the

Figure 6: Definition of the set U, striped in blue

compact surface S.. Since G is C!, we claim that we can find g(g) > 0 so that

V. = U S, CU. (4.9)
e’€le—g(e),e+g(e)l
(the definition of V. is illustrated on Figure 7). Indeed, since G € C1(Dx]0,1]), we can find C' > 0 so that
|G(2',e) — G(2',¢")| < Cle — €|,
uniformly for 2’ € D. In particular, if [¢ — /| < & dist(S.,US) with dist(S,US) > 0, we have
dist [(2/, G(2',€")), Sc] < dist [(2/, G(2',¢)), (2, G(2,€"))] < |G(2',e) — G(a',€")| < dist(Se,US)/2.

This holds for any 2’ € D, so that S.. is contained in a neighborhood of S. of size dist(S.,4¢)/2, and
hence contained in .. This proves (4.9) with g(e) = dist(S., US)/2C > 0.

As a consequence of (4.9), we have in particular, for any ¢ €]0, 1],
Ve CU: C {9 < p:}- (4.10)

Now, we also have

KC(SOU U Vs)c(wlu U VE).

c€(0,1] €€(0,1]

The same argument as above using that w; is a neighborhood of Sy shows that there exists ¢ such that

V() = U Ss C ws.
e€[0,e0)

a0



Figure 7: Definition of the set V., striped in blue

As a consequence, we now have
K c (vou U vg), Vo Cuwr.
e€leo,1]

From the covering [e0, 1] C U,.¢[e, 17l —9(€), € + g(¢)[, we now extract a finite covering [go, 1] C U, ¢ s]e; —
g(g5),€j + g(e;)[, where J is a finite set of indices. In particular, this yields a finite covering

[0,1] € [0,20) U [les — 9(e5), 85 + g(e5)[- (4.11)
e

As a consequence, we now have ()., being defined in (4.9))

KcwulJV, |c wiulJ U B@7,r)n{ee, <pe,}) |- (4.12)

jeg jeJiEl,,
Now, we reorder the set J by increasing order of €; — g(¢;), that is
J=1[0,N], with ¢; —g(e;) <ejp1 —g(ejy1), forall je[0,N—1]. (4.13)

Note that if ; —g(e;) = €j41 —9g(€j41), we can suppress that associated to the smaller €, +g(e;) is smaller,
and the covering property remains true. We will also need to check that we have

€p1 — 9lery1) < gfgxk(fj + 9(g5))- (4.14)

Indeed, if it is not the case, we have €41 —g(ex+1) > maxo<;j<k(€;+9(c;)). In particular, for j < k, we have
gj+9(ej) < epp1—9(ert1) and exy1—g(ernt1) ¢le;j—9(ej),€5+9(g;)[. But for j > k+1, by increasing choice
(4.13), we have €41 —g(ex+1) < €;—g(e;), and in particular, ex+1—g(ex+1) ¢le; —9(e;j),€;+g(g;)[. Hence
ext1—9(ert1) & Ujeslej—9(ej), e5+9(es)[. Moreover, we have ex11—g(ex+1) > maxi<j<k(ej+9(g5)) > o
as € > gg for j > 1 and hence g1 — g(ex+1) ¢ [0,e0[. This contradicts (4.11) and proves (4.14).

This preparatory definitions were made to state the following geometrical Lemma that we prove below.

Lemma 4.8. With the notation of the proof of Theorem 4.7, we have for any k € [0, N — 1] and i € I, .

{(éek+1 >pgk+1} NB(z*™" 4R*™) € w1 U U U Bz, )|,
jelLk] i€l

where we consider the union Uje[[l,k]] empty if k= 0.
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Now, we are going to use an abstract iteration argument, so we set the following notations for j €
[1,N]=JandicI,:

o Iy =1,
Uiy = Bl 27,
o iy = Bl
o Vij = [{¢c, > pe,} N B(a57,4R)],
.« Vo=0,
o Uy=uwi.
The choice of the r;’ and p;’ < p., according to Corollary 4.6 implies
Ui <V

Moreover, we have w;,; € U; j and Lemma 4.8 can be written as V; k1 € |Uo UUjep1 ) User, winj |- Now,

we are in position to apply the following iteration Proposition, that we prove later on.

Proposition 4.9. Assume that there exists some open sets Uy, U; j, w; j € U, ;, with j € [1, N] and i € I;
(I finite) such that we have

Ui <Vi; and w;; @U;j, forallje[l,N] andiec I;
Vikst € [Uo UUjequag Uier, wia] s for kb e [0,¥ =1],

where we consider the union Uj€[17kﬂ empty if k = 0. Then, we have |Uy U Uje[[LN]] Uielj wi,]} Vg for
any Uy € V.
Now, we always have ws < &, as a consequence of Properties 5 (second part) and 6 of Proposition 5,
Hence, denoting U := |w; U Uje[[l,k]] UieIE]. B(z}?, rfj)}, the application of Proposition 4.9 yields
U<aw.

Since U is a neighborhood of K by the covering property (4.12), this concludes the proof of Theorem 4.7,
up to the proofs of Lemma 4.8 and Proposition 4.9. O

The next two sections are devoted to the proofs of Lemma 4.8 and Proposition 4.9, respectively.

4.2.1 Proof of Lemma 4.8

In this section,we give a proof of Lemma 4.8. We first prove, for later use, that for any 2’ € Q, ¢ > 0, we
have

G(a' e —g(e)) =2 G(a',e) — pe (4.15)

Indeed, let x € V., so x € S, for one €’ €]e — g(g),e + g(¢)[. That is z,, = G(z',&’). Using (4.10), we
have ¢.(z) < p., that is G(2/,¢) — z, < p. and so G(z',e) — G(2',€’) < p.. This is true for any point
z = (2/,G(z',¢) for &' €]e — g(e),e + g(¢)[. Letting ¢’ tending to ¢ — g(e) and using the continuity of G,
we get G(2/,¢) — G(2',e — g(g)) < pe, which is (4.15).

We now come back to the proof of the Lemma. Notice that, as a consequence of the definitions of U,
V. C U, and of (4.12), we have for all k € [0, N]

Vo U U Ve, | € [w1 U U U Bz, ;%) . (4.16)

JE[1:k] Je[tk] i€l
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By (4.16), it is sufficient to prove, for any k € [0, N — 1], the inclusion

({qssk+1 > Perprs ﬂB(;z:f’““,élRf’““)) C (m u U vs,.),

JE[1.K]
which shall follow from the following two inclusions:
({bers = pern } NK) C (w1 U VEJ.), (4.17)
JE[L,K]
and
({Persy = Pepsr ) NK®) N B(x;* AR C wy. (4.18)

Let us first prove (4.17). Since K C (w1 UUjeq,n Vsj) by (4.12), we have

({¢5k+1 Z p€k+1} N K) C (wl U U (VEJ‘ n {¢5k+1 Z p5k+1 }) ) (419)

j€,N]
Moreover, using (4.10), we get
Ve C {¢5k+1 < p6k+1}'
Now, we will use the fact that G is increasing in € to prove that we also have
Ve, C{¢erss <peprn} forj>k+1. (4.20)

Actually, for x € V., with j > k + 1, we have z,, = G(2',¢) for some ¢ > ¢; — g(e;) > epy1 — g(€rt1)
(that is here that we use the order of the ¢; defined in (4.13)). But since G is strictly increasing in
e, this implies x, > G(2/,ex41 — g(ek+1)). Using the inequality (4.15), true for any £ > 0, we obtain
Tp > G(2',€pq1) — pey,- This gives ¢, (2/,2,) < pe,,, and therefore (4.20). As a consequence, in the
right hand-side of (4.19) only the terms for j < k are nonempty, and it thus implies precisely (4.17).

We now prove (4.18). Since x;"' € K and 4R;*"' < R, it is sufficient to prove
({¢ak+1 > O} NnK° ﬂKR) C wi.
We first notice that, according to the definition of K, we have
K®={z, <0}U{x, > G 1)}.
In addition, since G is increasing in €, we have,
{$e.s =0} = {2, < G2, e441)} C {zn < G(2/,1)}.

As a consequence, {gbsk“ > ()} N K¢ C {x, < 0}. We are thus left to prove

({zn <0} N KT C wy,

which is true thanks to (4.6). This concludes the proof of (4.18).
We finally check that the proof works the same way for the degenerate case k = 0, which corresponds
to the same proof with () instead of Uje[[l,k]]' This concludes the proof of Lemma 4.8. O

Remark 4.10. In this process, we can also impose that the points z;’ are far from {z,, = 0}, by forcing
B(z7,4R7) N {z,, = 0} = (.

Indeed, if B(x;’,4R;’) N {x, = 0} # 0, we have necessarily dist(z;’,Sp) < 4R;’ because
dist(z;?, {z,, = 0}) is necessarily reached at a point in Sy = D x {0,,}, since z;’ € S., C D x R,,. But,
in the process, see (4.6) and (4.8), we have chosen R;’ < dist(w$, Sp)/8. This implies dist(z;’,w§) >
dist(w§, Sp) — dist(x;”, Sp) > 8R;’ —4R;’ and so B(x;’,4R;’) C wy. In particular, these points x;’ can be
removed without affecting the set

wy U U UB(xfj,rf")

jElL k] i€l

for any k.
This fact was not used here but it will be useful later in the presence of boundary.
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4.2.2 Semiglobal estimates by iteration: proof of Proposition 4.9

We now prove Proposition 4.9, which follows an induction argument on k € [1, N] = J. We make the
following induction assumption at step k:

For any j € [1,k] and i € I;, we have U, ; < V. (IAy)

Note that using Property 4 of Proposition 5 and since we can select Wy with Uy € Wy € V and w; j; € U, 4,
we have

Uou |J U wis| <Wo,Ui) e e,
je[],kﬂ ’iEIj

So, since we always have Wy <1 Vp, using Properties 5 (second part) and 6 of Proposition 5, (I Ay) directly
implies

Uy U U U wij| < Vo. (421)

Jell k] i€l;

In particular, proving (I Ay) implies (4.21) for k = N, which is the result of the proposition:

U:=|UyU U U wiji| < V- (4.22)
jEﬂl,N]] i€l

We now come to the proof of (I Ag) by induction

For k =1, we need to prove U; 1 <V for ¢ € I;. But the assumption with & = 0 gives V; 1 € Uy, which
implies V; 1 < Up. Since U; 1 < V; 1 by assumption, we get by transitivity U; 1 < Uy. Since, we also have
Uy <V, we obtain the expected result U; 1 < Vp.

We now prove (I Ay) = (IAgy1) for k € [1, N — 1]. The assumption of the proposition gives

Vik+1 € U U U Uwi,j

jelL,k] i€l;

Combined with Property 3 of Proposition 5, this yields

Vik+1 < |Ug U U Uwi,j
Jje[1,k] i€l

Using (4.21) true for & since (I A)j is true and the transitivity of <, we get
Vik+1 < Vo

Since U; ; <V, ;, the transitivity Property gives again U; x41 <0 Vj. This implies (/Ax11) and thus proves
the induction property for k € [1, N — 1].
This concludes the proof of Proposition 4.9. O

4.3 Semiglobal estimates along foliation by hypersurfaces

The previous framework, where we define hypersurfaces by graphs may look a bit rigid for the applications.
This definition of these hypersurfaces as graphs was mainly convenient to make the foliation more effective
and order the hypersurfaces more easily.

Now, we give a slight variant of Theorem 4.7, more adapted to some possible changes of variables.
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Theorem 4.11. Let ) C R™ = R" xR"™ and P smooth differential operator of order m on Q, analytically
principally normal in {£, = 0}. Let ® a diffeomorphism of class C? from Q to Q = ®(Q). Assume that
the Geometric Setting of Theorem 1.10 is satisfied for some D, G, K, ¢. on Q (and not on ). Assume
further that for any € € [0,1+ n), the oriented surface {¢. o ® = 0} = ®~1(S.) (well defined on Q) is be
stricly pseudoconvex with respect to P on ®71(S.).

Then, for any w a neighborhood of ®~1(Sy), there exists an open neighborhood U C Q of ®~1(K) such
that

U <Qw.

where < = <q p is related to the operator P defined on Q (see Remark 4.2).

Proof. The proof is exactly the same as that of Theorem 1.10/4.7 except that the local uniqueness estimates
are performed in 2. So, for any z € ®~1(S.), it furnishes some r,, R, and p,, so that

Bo(x,75) <o,p [{¢e 0 ® > p,} N Ba(z,4R,)).

But since ® is an homeomorphism, it implies the existence of r, and E; (that can still be chosen small
enough) so that ®~! [B5(®(z),7,)] € Bo(w,7,) and Bo(z,4R,) € 71 [Bﬁ(é(x)Aﬁw)}, so that

71 [Ba(@(2),73)] <ap ({600 > p} 1871 [By(@(x), 47,)] ).

where Bq (resp. Bg) denote balls in € (resp. Q).
The geometric part of the proof of Theorem 1.10/4.7 is then exactly the same, performed in S~2,

i.e. replacing r;, R, by r, and R,. Once the geometric part is done, the iteration process, per-
formed in (, is exactly the same by replacing each geometric term by the preimage in Q (for instance

o1 [Bﬁ(q)(xf’“),llﬁzjk )} replaces B(x;*, 4R ¢\) etc.). O

5 The Dirichlet problem for some second order operators

In this section, we shall consider a particular class of operators as described in Remark 1.9, that is, with
symbols the form ps(x, &) = Q. () where @, is a smooth family of real quadratic forms. Assuming that
the variables z, are tangent to the boundary, and that the functions satisfy Dirichlet boundary conditions,
we prove a counterpart of the local estimate of Theorem 3.1 for this boundary value problem. For this,
the main goal to achieve is to prove a Carleman estimate adapted to this boundary value problem. All
local, semiglobal and global results shall then follow.

This situation is of particular interest for the wave equation for which z, is the time variable, which is
always tangent to the boundary of cylindrical domains.

For the sake of simplicity, we shall further assume that the operator principal symbol of P is independent
of the z, variable (we would otherwise need to assume the coefficients of P to be analytic with respect to
Zq)- This allows to avoid some additional technicalities in the (already rather technical) proofs.

5.1 Some notation
Here, we shall always assume that the analytic variables are tangential to the boundary, that is
T = (Tq,1p) ER™ xR},  with R? =R™ ' xRy, and x = (z},27).

When the distinction between analytic and non-analytic variables is not essential, we shall split the variables
according to

= (2 2,) €ERY =R" ' xRy, witha' = (2q,27) € R™ ™! and 2, = 27 € RY.

We also denote by & = (&,,&,) € R"™! the cotangential variables and &, = &' the conormal variable, by
D' = (D4, Dyy) = $(0n,,0,) the associated tangential derivations and D,, = Dyp = $0,, the normal
derivation.
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For any rg > 0, we define
K,y = {z € RY; |za| < 710, |zs| < 70} = Brea (0,70) X Brey (0,70) N {z, > 0}. (5.1)

We denote by C§°(R’) the space of restrictions to R’} of functions in C§°(R™), and by C§°(K,,) the space
of functions C§°(R" ) supported in K. the trace of a function f € C§°(R") at x, = 0 is denoted by

f\wnZO'
We denote by (f,9) = [zn [7 Hf||§ + = (f, f) the L*(R") inner product and norm. For k € N, the
T :

norm ||||, , will denote the classical Sobolev norm on R} and ||-[|, | , the associated weighted norms,
that is,

2 j 2
1l er= > 710%fllos, 721

jt+la|<k

We also define the tangential Sobolev norms, given by

2 : 2
R =D+ fllo o~ D 108 fllo s 721
j+lal<k

|f

We shall also use, for f,g € C5°(R"}), the notation (f,9)o = [pn-1 fle,=0(2")g|z,=o(z")dz’.

Finally, for j € N, we denote by D¥, the space of tangential differential operators, i.e. operators of the
form

P(z,D',7) = Z aj.o(2)T? D",
Jt+lal<k

and by
o(P)=p(,&,7)= > ajalx)r’”

J+lal=k

their principal symbol.

Remark 5.1. Denote T the restriction operator from D’'(R™) to D'(R7.). We denote H*(R"}) = T(H*(R™))
with the restriction Sobolev norms

[ully 4 = inf {llvll, v e H*R"); Tv = u in D'(R7) }7="inf {|v[|, |ve H*(R™);v = u on R% }
We have the property

||u||k_’+ ~ |(le\l<pk ||aau||L2(R1) )

see Chapter B2. of [Hor85] and Corollary B.2.5 (with different notations H x0)(R7)) . Moreover, the
set C5°(R7%) = T(C§°(R™)) of restriction of smooth functions is dense in H*(R") (see Theorem B.2.1 of
[H6r85]). As a conclusion, if L is a linear operator from H* to H' of norm C that sends ker(T) N H* into
ker(T) N H', then, L extends to a linear operator from H*(R") to H'(R") and we have

|Zull, . < C

In particular, this will be the case for all “tangential” operators.

5.2 The Carleman estimate

In this section, we state and prove the counterpart of the Carleman estimate (2.4) asociated to the Dirichlet
problem for waves. Recall that the operator Q;/’J is defined in (2.3) and acts in the variable z, only, and
hence, is tangential to the boundary.

Theorem 5.2 (Local Carleman estimate). Let 1o > 0 and P = chg + (26, Dy, Dyy) be a differential
operator of order two on a neighborhood of K,,, with real principal part, where T(Jcb,D%,Dajg) does not
depend on z, and is a smooth z} family of second order operators in the (tangential) variable (xq,x}).
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Let ¢ be quadratic polynomial such that z/)gg #0 on K,, and

{p.{p,v}} (x,6) >0, ifp(z,§) =0, zekK, and & =0, &F#0; (5.2)
%{pdﬂpd)}(fmf) >0, ifpw(x7£) =0, z€ Kro and &, =0, 7>0, (53)

where py(z,§) = p(x, § +iTVY).
Then, there exist e >0,d >0, C >0, 19 > 0 such that for any 7 > 10, we have for all v € C§° (K, /4)

QL < C(lQ8Puls, +e™ [l ull} |+ QL ) e, ol

eIy, ol +7(D(QY, W), o+ €I Dy, ofR) . (5.4)

|zn=0

If moreover ), >0 for (z',x, = 0) € K, then we have for all uw € C§°(K,,s) such that u,, o =0,

1Rl v < C ([|Q%Pully , + e [leull} , ). (5.5)

The proof of this theorem relies on a Carleman estimate interpolating between the “boundary elliptic
Carleman estimates” of Lebeau and Robbiano [LR95] and the “partially analytic Carleman estimates” of
Tataru [Tat95] (see also [H6r97]). We first state two Corollaries and get to the proof.

Corollary 5.3. Under the assumptions of Theorem 5.2, there exist € > 0,d >0, C' > 0, 79 > 0 such that

2
for any V€ L>(K,,), W € L*(K,,;R"), independent of x, and any 7 > 1o max{l, [V}, |[|[W|3«},
the Carleman estimates (5.4) or (5.5) are satisfied with P replaced by Pyww =P+ W -V + V.

; 700f. Ap[)lying the Carleman estimates (5)4) or (5!)) for P = PV,W — W - D ‘r’ e need to estimate
the term \\% m
gJ’T " g),-,— Wi ¢ ’ Qg),T(Du) - QQE’Z}’TU

where we used V =V (z3), W = W(ay). Notice first that we have
CvaLuli, < CIVIE~ @2l , < rliet.ll, .
as soon as 73/4C > ||V||3~. Next, using (5.6), we write
Q2 (Du) = (D = ey 4, Do+ i70)) QL u,

and consequently

2

clliw Q2. (o)

2 9 2 1
0,4 < WL~ ||Q~1€pﬁu||1,+ = ZT ||Q1€b,7'u||
as soon as 7/4C" > ||[W||2.. For such 7, these two terms may hence be absorbed in the left hand-side of
the inequality. This concludes the proof of the corollary. O

Corollary 5.4. Under the assumptions of Theorem 5.2, take R(x, D) a differential operator of order 1, with
coefficients which can be extended to a bounded function in {(zq,xp) € C™ x R™;|z,| < 5ro, |2s| < 5ro}
which are analytic with respect to z,, for fived xp.

Then, there exist € > 0, d > 0, C' > 0, 19 > 0 such that for any any T > 79, the Carleman estimates
(5.4) or (5.5) are satisfied with P replaced by Pr = P + R.

Proof. Lemma 4.8 of Hérmander [H6r97] yields

Q¢ -R(w, Dyull, . < ClQZull, , , +Ce™™ [l

14,7 u||1,+7r

for all u € C§°(K,,/4). Actually, it is stated for the interior case, with the norm ||-[|, , _ replaced by the
norm |[|-[|; .. Yet, the estimates used for the proof, (3.13) and (3.14) in [H6r97], are actually made first in
the variable x, and then integrated in x}. Since, the variable z, is tangential, the same proof gives the
expected result.

As in Corollary 5.3, we can absorb the term C HQ

the same form as the right hand side of the Carleman estimate, up to changing d. O

’EliTu"l7+)T for 7 large enough. The second term has
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Remark 5.5. This theorem, as well as its consequences may be extended with some modification to
the Neumann case following Lebeau-Robbiano [LR97]. It could also be generalized to a larger class
of operators and boundary condition (satisfying a Lopatinskii condition) following Tataru [Tat96] and
Bellassoued-Le Rousseau [BLR13].

To prove Theorem 5.2, we define the conjugated operator Py, = ™" Pe~™ = P(z, D + it¢'), and also
. . £ 2 .
Py . the conjugate of Py with respect to e~ 2 |Pal” that is, such that

e_%lDalszw = Pd,’ee_%lD“Pw. (5.6)
Since P is independent on x,, we have
Pw78 = P(Jf, D — 61/);/71.QDQ + Z"T’lp/)7

where ¢ . D, = ¢ ((Dq,0)) (with the notation of [H6r97]).

T,Tq
When proving the theorem, we shall drop the index + in the norms to lighten the notation; of course,

all inner norms and integrals are meant on R”}. We first need the following proposition.

Proposition 5.6. Under the assumptions of Theorem 5.2, there exist C > 0, 19 > 0 such that for any
7> 19 and f € C§°(K,,), we have

TIFIR 7 < C NPy fllg + TIDaf I + 71 iz =ol6 + 71D fio,—ol- (5.7)
If moreover ¢}, >0 for (2',x, =0) € K,,, then
TIfI3 . < ClPsefllo+TIDaf 5, for all f € C5°(Ky,) such that fiz,—o = 0. (5.8)
Proof. Defining Q5 = 1(Ppe + Pj ) and Q5 = = (Pye — P} ), we have
Py = Q5 +itQy5,

and denote by ¢} the principal symbol of Qj, 7 =1,2. We have

Q5 = Dj—2e9y, . (DniDa) + Q5 (5.9)
Qi = an,{cn + w:;nDn + 2@?,

where Q5 € D? and Q5 € D! with principal symbols

¢ = WL L.E) — WL )P (e, € — el €0) — TP (z,0))
qi - f(g]b’fl - 51/};/’@@5&37/};/)7

where 7 is the bilinear form associated with the quadratic form r. Note that, even if it does not appear in

the notation, all these operators depend upon the parameter 7.

With this notation, we hence have py, = ¢9 +i7q), so that i{ﬁw,pd,} =2{39,30}. Assumptions (5.2)

and (5.3) then translate respectively into v
Gy a1} (2,€) >0, ifp(2,6) =0, € K, and & = 0,7 =0; (5.10)
{35, @} (2, &) >0, ifpy(x,&) =0, z€K, and &, =0,7 >0, (5.11

where the second assertion is a direct consequence of (5.3), and the first one follows from (5.2) together
with the fact that, using that p is real, we have

. 1 _ o1 _
Tli>I(I)1+ ;{pd,;pw} - E;{plb’pw} o - 2{]77 {paw}} .

Next, we have the integration by parts formulee:

{ (97Q§f) (Q;gvf)_i[(97D7zf)0+(Dngvf)0+25(g’ lx/n,maDaf)O}a (5 12)
(ngif) ( ‘igvf)_QZ (w/znghf)o' .
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So, we have for f € C§°(K,,)

1Poctlly = [@sf| + 72| @ss|, +im [(@5r.Q5f) - (Q5r.051)]. (5.13)
So, we get, using the integration by parts formula (5.12)
1Poefly = @]+ Q5] +ir (105,515 5) +78°(). (514

with the boundary term

B(f) = [(@£.Duflo+ (DaQif, flo+25(Qif Y, 2. Daflo] =2 (v, G51.5),

for some tangential operator M{ of order 1 (in &', 7) (note that terms of order two in D,, cancel).

Now that we have made the exact computations, we will make some estimates on the symbols of the
interior part of the commutator. The idea is to tranfer the positivity assumption of the full symbol to
some positivity of a tangential symbol, which will then allow to apply the tangential Géarding.

The first step is to perform a factorisation of [Q5 QE] with respect to Q’S and Q2 to have a tangential
reminder. Since [Q5, Q5] is of order 2, it can be wrltten z[QQ, Q5] = Co+C1 D, +Co D2 where C; € DL. But
using (5.9), and ¥, # 0 on K, we can replace D,, = Q5+DLand D? = Q2+25¢zn o, (Dn; Da) — Q5.

2¢/
So, in particular, we can write

i[Q5, Q5] = B5Q5 + BiQs + Bs. (5.16)
where B € D! with real symbol b5. Now, we need to
e use the assumption to get some positivity of the symbol {ﬁ¢,pw}, this is Lemma 5.7;
o transfer this positivity to {py,, pf,} for € small enough by approximation, this is Lemma 5.8;
o transfer this information to a tangential information on the symbol, this is Lemma 5.9.

Lemma 5.7. There exist C1,Cs > 0 such that for all (z,£) € K, x R" and 7 > 0, we have

lpy (z,€)|?
€2 4 72

Proof. All the terms are homogeneous of order 2 in (¢,7) and continuous on the compact (z,£,7) €
Ky, x {(&,7) € R* x RT,[£]? + 72 = 1}. Thus, on this set, the result is a consequence of (5.10), (5.11)

and Lemma A.1 applied to f = “Tg‘g%iz +1&]%2 >0, g = {3,3)} and h = 0. The result on the whole

K,, x R™ x RT follows by homogeneity. O

(I€7 +72) < Ci{@, @}z, &) + Co + € ?| -

Lemma 5.8. There exists g such that for all € € (0,¢¢), there exist Cy,Co > 0 such that for all (z,£) €
K,y xR"™ and 7 > 0, we have
lpg, (@, )|
B Il

€12 +

Proof. By the same argument, we may restrict to the compact (z,€,7) € K, x{(§,7) € R*"xRT, |{[2+72 =
1}. There, the inequality follows from Lemma 5.7 and the continuity of the maps ¢ — ¢, J=1,2from R
to C1(V), where V is a neighborhood of K, x {(§,7) € R* x RT,[£]? + 72 = 1} in R" x R x R™. O

(1€? + ) < Ci{d5, G5 Mz, €) + Co

Now, we set

Me(x’gl) ( ) +2€qi¢xn,xa(wa:n ga) (wa:n) q;

The symbol uf(z, &) satisfies the property that p®(x,&’) = 0 if and only if there exists &, real such that

Py (z,€,¢,) = 0. This is easily seen by noticing that the zero of ¢§ can only be with ¢, = w,—.

Tn

Notice also that pc(z,&’) is a tangential symbol of order 2.
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Lemma 5.9. There exists ey such that for all € € (0,eq), there exist Cy,Cy > 0 such that for all (x,&') €
K., x R""! and 7 > 0, we have

: o [
(€ +7%) < O + o | gy

+1€al?] - (5.17)

Proof. Note first that for any (x,&’,&,) with &, = —%’5/), we have ¢§(z,£,&,) =0 and

Py (@, €, 6) = G5(x, €, &) = (¥, ) 72p° (2, €)).

Now, assume p(x,&’) =0 and &, = 0. Setting &, = 7%’5/), we have py (z, ¢, &,) = 0. Using Lemma 5.8,
we have {g5, ¢5 }(z, &, &) > 0. According to the definition of B in (5.16), we have b§(z,¢’,&,) > 0. As a
consequence, we have

(1 (2, &)=0 and & =0) = b5(z,&,&) >0.

Moreover, all terms in (5.17) are homogeneous of order 2 in the variables (¢’,7) and continuous on (¢/, 7)
(0,0). Hence, applying Lemma A.1 below on the compact set K,, x {(¢',7) € R*™! x R* |¢/|? + 72
1,&, = 0} yields (5.17) on that set. The conclusion follows by homogeneity.

Ok

Taking the real part of (5.14) and using (5.16), we obtain

1Poefly 7 Re(B2(1) = @3], + 72 @is[[ +Re (Bsr. 1) + 7 Re (B35 + BiGD)1.5) - (5.19)

Concerning the remainder term, we have

A

rIRe (B@5+ BiQDLS) | < 7lflloI@5s o + 71F111G5 o
P (AR IQHIR H AIQHIR) . (519)

IN

Defining now
= Q1)+ 26Q50Y, o, (V5,5 Da) + (¥1,)°Q5,

with principal symbol p°, and for an operator G with principal symbol E](ff;g,

inequality in the class S((|£’| +7)2,|d2’|? + (Ié%#?) (see [Hor85, Chapter XVII] or [Ler10]), in which

symbols are allowed to depend smoothly upon the variable z,, yields, for 7 sufficiently large,

the tangential Garding

i < CRe(B5f, f) + Re(Sf,Gf) + [IDafll5. (5.20)

Writing ¢, Dy = %(Qi — [Dn, 1y, 1) — Q7 (where 1, does not vanish), this allows to estimate the full
norm || f||1,- according to

£l < CUQTfllo + 1 f]1.7)- (5.21)

Recalling the definitions of Q¢ in (5.9), we also have
1 - 2
B = (5@ Dut )~ 01, D ) +2Q50, 1 (0L,5D0)
+(w1,)? (Q5 = D2+ 220, (Dui D))
1~ 1~ _
— (3(@1 - (D)~ 0L, D0 ) H(GE Dl ) 4 22080, 1, (04,50

+(5,)? (QZ +2ety 4, (Ds Da)) , (5.22)
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and hence
- 1 - -
Y e (¥,)%Q5 — §¢;nDnQi + 260, ((Wh,)?Dn + Q5% s Da) + DrQ5 + D} + DDy,

We now want to estimate the term Re (X f, Gf) in (5.20). For this, integrating by parts in the tangential
direction x,, we have

(0w (052D + Q1% 5 Da) f,G )| < Cl(Da) I fll17-
This yields

[(BF,G1)

IN

1 ol + | 5704, @51, 61)
0
HIQE ol s + Ul f I + € (D) £ s
(5504, @0.G1) |+l (721G o+ +1QE o+ 7L + 11129
0

According to (5.20) and (5.21) and (5.23), this now implies

- 1 - -
12 5 Re(B5. )+ 1QEAR + |( 5708, Q34,1 ) [+ 7 21 Q5118 + D13
0

Coming back to (5.18), we obtain, for 7 large enough,

2 ~ 2
|~ Q||+ TIDatlf +

IR, S IPeefll; = TR (B () - | @sf

1 I NE
(o@irer)

A

[Py flI2 — 7Re (BE(f)) + 7| Do fl2 + 7

(ot Grcr)
¢ 0

Recalling te definition of Qi, we have 1, Q‘i = D,, + Gy, where G; € D! is a differential operator of order
1 (in (7, D")), we finally have

TIF1IE - S 1Py, fllo = 7Re (B7(f) + TN Dafllg + 7 1(Duf + G1f, Gl (5.24)

where G a tangential pseudodifferential operator of order zero, Recalling the form of B(f) in (5.15) gives
the bound |B°(f)| < 72| fiz,,=0l3 + | D fz, o[, which concludes the proof of (5.7).

Now if f|,, —o = 0, all tangential derivatives vanish. With (5.24) and the form of B°(f) in (5.15), this
yields

TIFIE - S 1Py, fllo = 27(W%, Duf, Duf)o + 7l DafII3,
which proves (5.8) since ¢, > 0 for (2’2, = 0) € K. This concludes the proof of Proposition 5.6. O
We turn now to the proof of Theorem 5.2.

Proof of Theorem 5.2. In the proof, we consider functions u € C§°(K,,/4) where K, is defined in (5.1).
Let x € C§°(Bgrna(0,70)) such that x = 1 on Bgna(0,79/2). Setting v = Q¥ u = e’%|Da|2(e”/’u)
and f = x(zq)v(z), we have supp(f) C K,, so that we may apply Proposition 5.6 to f. We have
v—f=01-xQu=(1- y)e~ 37 1Pal’ (gem¥u) for some Y € C°(Bgrra (0,79/3)) with x = 1 in a
neighborhood of Bgna (0,79/4). As a consequence of Lemma 2.4, we have, for 7 > 7,

[ollr < I fllr + Ce™CE fle™ully,, (5.25)

Now, it remains to estimate the terms on the RHS of Proposition 5.6 in terms of v. Notice first that the
same reasonning with Lemma 2.4 (using that D, is tangential) allows to estimate the boundary terms as:

| flzn=0lo < |Vjz,=olo + Ce™ =™ uy, —oo, (5.26)
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and, with Dv — Df = D ((1 — X)efﬁ‘DaP(j(e”"u)),

‘Df|xn:0|0 < ‘D’U|mn:0|o + Ce ©% |6T¢u‘zn:0‘o + Ce ©% |e7'¢ (T’L/)/ + D)U|mn:0|0
+Ce™“E[e™ Duyy,—olo
| Dvje, =00 + Cre % |e”"u‘$n=0|g +Ce % \e”"Du‘xn:do (5.27)

IN

Second, we estimate || Py o fll, = [|Py.exvlly = IXPy,cvllg + I[Py,e, xJvlly- For the commutator, we write

[Py, XJv = [Py.c, x]e” 712" Ye™u. We notice that [Py ., x| is a differential operator of order 1 in (D, )
with some coefficients supported on supp(x}, ) that is, away from supp(x). In particular, Lemma 2.4
implies [|[Py,, x]v|l, < Ce % e”"u”1 .- This yields

1Py.efllg < [I1Pyevlly + Ce™%

e”puHLT (5.28)

Now, it remains to treat the term || D, f]|o. Similarly, we obtain

-

e 2 _eT
IDafllo = 1Da(xv)llo < xDavllo + lIx;, e~ P2 xe™ ullo < [|Davllo + Ce™

e”puHO (5.29)

where we have used again Lemma 2.4.
Let ¢ a small constant to be fixed later on. We distinguish between frequencies of size smaller and

bigger than ¢7. We get for 7 > % large enough (so that the function s +— se~ 375 is decreasing on

2e
s> /%)

e 2
||Da1}||o = ||Da€_ 5= |Dal eﬂ’bU”o

IN

£ 2
HDaﬂlDaISCTUHO + ||Da1|Da|Z§T€_ 77 | Dal e”’buHO

A

T§2E
s7||vllo +§TefT||e'”pu||0 (5.30)

We may now apply Proposition 5.6 to f. Combining the Carleman estimate (5.7) with (5.28), (5.29),
(5.30), (5.26), (5.27), we obtain, for some Cy > 0 and 7 > 79 with 79 (depending also on ¢, ¢)) sufficiently
large,

T 2
Cirlol, < 1Pyl +CeF [le™ull|  +c2r¥[o])f + e ¢l ul3

+720je, =0l + 70T E ™ upy, olg + 7| Dvjs, ol + TeT*F |7 Dujy,, o3
Fixing ¢ < /2, this yields, for some d > 0 (e is fixed already) and 7 > 79,

G
2

2 _ 2
loli. < IPsevlly +Cem* [lemull;
+T3|U|$n:0|8 + 6*d7|e7'1/’u|w":0|3 + T|Dv|wn:0|(2) + eidT|eTwDu|$n:0|g' (531)

Similarly, if moreover v, > 0 for (2/,2, = 0) € K,,, then (5.8) yields for all u € C§°(K,,/4) such that
Uz, =0 = 0,

.

2
TIollf ;- S I1Py,cvllg +e2F leull) . + 3 llollg + G2rie T e el 2,
and hence
C’1 2 _ 2
7T||v||if < Ppevlly+e™ [[eully (5.32)
Rewriting (5.31)-(5.32) in terms of u concludes the proof of Theorem 5.2. O

5.3 The local quantitative uniqueness result

The Carleman estimates of the previous section have been proved when P has a very specific form. Before
proving the local quantitative uniqueness result, we first state them in a more invariant way that can be
obtained by change of coordinates in x;,. When doing so, we strengthen the assumptions made on the
operator P, still encompassing the cases of wave and Schrédinger operators (or more generally of the form
of Remark 1.9)

Up to now, and until the end of the section, P will have the following property:
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Assumption 5.1. P is a differential operator on R™ x R!" of order two with coefficients analytic in
the variable z,. Assume moreover that P has principal symbol independent of z, of the form p(x,&) =
Qu, (€a) + Gz, (&), Where qu,, G, are smooth x,-families of real quadratic forms on R™= and R™ respectively.

Moreover, if V € L>(R}*) and W € L>*(R!";R"), independent of z,, we denote Py,y = P+W-V+V.

The proof of the local quantitative uniqueness will then be essentially the same as in the boundaryless
case. The following Proposition is the counterpart, in the boundary case, of the end of the first step in
Section 3 (hence containing the geometrical part of the proof of the local uniqueness result).

Proposition 5.10. Let 2° € {x,, = 0} and let P satisfying Assumption 5.1.

Assume that {x,, = 0} is non-characteristic with respect to P.

Let ¢ be a function defined in a neighborhood of x° in R™ such that ¢(x°) = 0, and {¢ = 0} is a C?
strongly pseudoconvex oriented surface at xz° in the sense of Definition 1.6.

Then, there exists Ry > 0 and a smooth function 1) : B(x°,4Ry) — R which is a quadratic polynomial
with respect to x, € R™, such that for any R € (0, Ro], there exist €,9, p,r,d, 79, C > 0, such that we have

1. § < ¢ and (3.13)-(3.14)-(3.15),

2. for any T > 719, the Carleman estimate (5.4) holds for P, for all v € C§°(R") with supp(u) C
B(2°,4R).
If moreover ¢!, (x°) > 0, the Carleman estimate (5.5) holds for P for allu € C§°(R'}) with supp(u) C
B(2%,4R) and U)z, =0 = 0.

2
The estimates can also be made uniform for T > 1o max{1, |V i, [|W |3« } if P is replaced by Pw,y,
as in Corollary 5.3.

Proof. First, according to non-charactericticity assumption, we have Gy, (&) # 0 for , = (2},0) and &, =
0,& = 1. We may thus place ourselves in normal geodesic coordinates for ¢, in R, in a sufficiently small
neighborhood of {z,, = 0}. More precisely (see [Hor85, Appendix C.5]) there exists a local diffeomorphism
¥, from a neighborhood of z in R’}" to a neighborhood of 0 in R’}* such that, setting ¥ := Idgn. @y,
the principal part of ¥*P takes the form (&) + r(zp,&,,&)). From the function ¢ o W= (still defining
a strictly pseudoconvex surface for W* P since this property is invariant), we can construct a quadratic
polynomialfﬁ exactly as in Lemma 3.4/Corollary 3.6 such that the Carleman estimates (5.4)-(5.5) hold for
U*P and . We then use Corollary 5.4 and then Corollary 5.3 to allow, first, lower order terms analytic
in 2, and then lower order terms independent on x, with the right estimates (note that both properties
are invariant by our change of coordinates in x;). Applying then the diffecomorphism ¥ to come back to
the original setting yields the sought estimate with ¢ = 1[) oW, which remains a quadratic polynomial with
respect to the variable z, (only) since ¥ := Idgn. ®¥},. This proves Item 2.

Finally, the geometric assertion of Item 1 comes from the application of Lemma 3.4 in the geodesic
coordinates. There, using the distance N(x,y) = |[¥~1(x) — U~1(y)| allows to obtain (3.13)-(3.14)-(3.15)
with euclidian balls as claimed by Item 1. O

The aim of this section is now to prove the following two local results, namely local quantitative
uniqueness up to and from the boundary.

Theorem 5.11 (Local quantitative uniqueness up to the boundary). Let 2° € {x,, = 0} and P satisfying
Assumption 5.1. Assume that {x,, = 0} is non-characteristic with respect to P.

Assume that there is a function ¢ defined in a neighborhood of 2° in R™ such that ¢(x°) = 0, and
{¢ = 0} is a C? strongly pseudoconvex oriented surface at x° in the sense of Definition 1.6 and such that
L (29) > 0.

Then there exists Ry > 0 such that for any R € (0, Ry), there exist v > 0,p > 0 for any 9 € C§°(R™)
such that ¥(z) = 1 on a neighborhood of {¢ > 2p} N B(2°,3R), for all c1,rx > 0 there exist C, k', 3,79 > 0
such that we have

||Mc’i’;“rvcw“||1,+ < Cet™ (||M5u1901u“||1,+ + ||Pu||L2(B(a:O,4R)mR1)) +Cer ||UH1,+-

for all p > 7o and v € C3°(RY}) such that u),, —o = 0.
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Moreover, under the same assumptions, there exists Co, k', 8,70 > 0 such that for all V € L (R™),
W e L>®(R™;R") the previous estimate is still true with P replaced by Pywy = P+ W -V +V with C

replaced by Comax {1, ||W||;} and uniformly for all ;1 > 7o max{1, ||V||§(x,, ||W||2Loo}

This theorem is proved similarly as in the case without boundary. See the details in the proof of the
related Theorem 5.12 below.

Theorem 5.12 (Local quantitative uniqueness from the boundary). Let 2° and P satisfying Assumption
5.1.

Assume that {x, = 0} is non-characteristic with respect to P.

Assume that the function ¢(x) = —x,, satisfies the property of Definition 1.6 at 2°.

Then there exists Ry > 0 such that for any R € (0, Ry), there exist r > 0 for all ¢c1,k > 0 there exist
C,k, 8,7 > 0 such that we have

M5l , < O (1Dl 2o amnion—o) + 1Pl Lasoamprs) ) + O™ [l 4

for all 4 > 7o and u € C§°(RY}) such that u|,,—o = 0.
The same dependence of the constants holds if P is replaced by Py v as in Theorem 5.11

Proof. The proof is very similar to the proof of Theorem 3.1 in Section 3, using the Carleman estimate (5.4)
of Theorem 5.2 . We only sketch it and underline the differences with respect to the boundaryless case.
We moreover added the potential V' with respect to the general case; we need also check that it is painless
in the proof.

Step 1: The geometric setting. We start by choosing ¢ = —x,,. The surface {¢ =0} = {—z,, =0} is
non characteristic by assumption, and according to Remark 1.9, is hence a strongly pseudoconvex oriented
surface for P. Proposition 5.10 furnishes an appropriate convexified 1, polynomial of degree two in the
variable x,, that satisfies the desired geometric conditions, together with the Carleman estimate (5.4). We
now follow the proof of the boundaryless case.

Step 2: Using the Carleman estimate. The point is to use the Carleman estimate (5.4) with weight
1, applied to the (compactly supported) function w = oaror, A Xs,x (V) Xs(¥)u.
Similarly, using the same support property supp(xs) C| — 89, [, and Lemma 2.13, we write

Q% Pwywll,, < [Q8 02r0maxsA()Xs(W)Pwyully  + QL lo2rorAXsA ()Xo (8), Pwylull,
72 ~
< eTeéT ‘|PW7VU||L2(B(z0,4R)m{zn20}) + ||Qg},7—[UQRUR,AXé,A(w)Xé(w)v PW,V]UHO’J’, .

Next, Lemma 3.7 still holds in R} since z, is a tangential variable (see Remark 5.1). Hence, the commutator
term is bounded by

HQ?;[UQRUR,/\Xa,/\W))zéW)aP]“HO,JF < Ce¥T

Miu’lg)\uH
1+

2 72

with some 9 (equal to one in a neighborhood of {¢ > 2p} N B(2°, 3R)) supported in {¢ > p} = {z,, < —p}-.
Moreover, following Remark 3.8, we can get uniform estimates for the commutator of Py 1 by replacing

C by Cy max {1, W Loo(R") } We will not write it any more for sake of clarity but it appears multiplically

in all the estimates.
Since the operator M/, only applies in the tangential variable z,, we have HMész?cwquHr <
_I1Da? .
[9¢ypully - Moreover, since o is supported in {x, < —p} and J.,, = e <17 J is a regularization in the

variable x4, U, is also supported in {z, < —p} and V., ,(z) = 0 if x,, > 0. In particular, ||, ull, , = 0.
That is

_r2
Q2 Pwywl, < CeX e [Pwvull papo amynre)

+C)\1/2TN (e—i‘f + 6—867- _i_e&f—cu) e§667— H“||1,+-
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The other term in the Carleman estimate that we have to check are
| (D(Qirw))p:n:o% + e_dT|ewa|zn:0|g < C’T|eT¢’an|$n:0|g, (5.33)
where we have used that u|;,—g = w|;,—0 = 0. This also implies
Dpwig, —o = (02rRORAX6A (V) X6 (V) D) |, —0-

Since ||e™xs A ()] < CAV2¢37¢ thanks to Lemma 2.13, the left hand-side of (5.33) is bounded by

s 912 2
C>\€26 62 AT |Dnu‘LZ(B(JCOAR)ﬁ{.’L‘n:O})'
So, combining the Carleman estimate of Corollary 5.3 and the previous bounds, we have proved for all
2
T 2 To max{l, ”V”zw}: 2 > 17 %M <A< Cﬂ':

72
/2 HQiTUQRUR,AX(S,A(w)Xé(w)M|17+’T < Cexe’” HPWvVu”LZ(B(zOAR)ﬁRi)

L2
+ON2P2e0Te X | Dyt 12 (500 4y =0))

ep? L2
+CONY2N (e‘ff 4 1e7 807 ¢ e‘sTC“) ex e lJully 4 -
So, denoting D = e (”DnuHL2(B(10,4R)|’T{$,L:0}) + ||PUHL2(B(300,4R)0R1)>7 we can rewrite it as

2
HQ;{TUZRUR’AX‘;’A(’L/})S&(w)u||1,+77— < Cul/Qeé-reCTe—er

2 7'2
+COpt 2N <6E4M7 +7e %7 4+ €5TC#> O 5 e ||u||1+ :

Step 3: A complex analysis argument. We now proceed exactly as in the boundaryless case. For any
test function f € C§°(R’), we define the distribution hy (with 3 > 0 to be chosen later on)

(hf,w)erry,coo®) := (O2rTRAXs A (V) X5 ()w(P)u, (Mﬂ“f»Hg(Ri),H—l(m)-

We proceed similarly, noticing at the end that C§°(R’}.) is dense in the dual space H~'(R") and that
all operations are tangential. The analogue of Lemma 3.10 is proved with the same complex analysis
argument (which does not involve the z-space, but only complexifies the Carleman large parameter 7),

2
using Lemma 3.11. This yields the analogous result for p > Cry max{1,||V||;}.
Finally, it remains to transfer the estimate obtained on HQ’E{TUQRJRAX&A(w))zg(w)un1 .., toan esti-

mate on ||M£$UT,C1;L“||L+- The computations of the end of Section 3.3 remain valid in the present context

for the following two reasons: (a) the operators Mfl |, are tangential and the associated estimates of Sec-

tion 2.4.1 still hold; (b) these computations only rely on the geometric fact that o = xs5(¥) = Xs5(¥) =
ns(1¥) =1 on a neighborhood of supp(c;.), which now follows from Proposition 5.10. O

5.4 The semiglobal estimate with boundary

In this section, we prove a version of Theorem 1.10/4.7 adapted to the boundary value problem. More
precisely, the following result considers, under the assumptions of the above uniqueness results, the Dirichlet
boundary condition at the bottom and the top of the graph, with an observation at the bottom.

Recall that in the present context, the analytic variable is supposed to be tangential to the boundary.
In the following results (as opposed to the boundaryless case), this translates into the fact that we assume
that, in the splittings x = (2/,2,) € R"™! x [0,4] and z = (z4,7) € R™ x R™, the variable z,, = z}
always belongs to the z; variables.

In Theorem 5.13 below, we state the semiglobal estimate with an observation from the boundary (i.e.
the first hypersurface Sy is a Dirichlet boundary) and if the last hypersurface S; touches a (Dirichlet)
boundary. This is the most intricate situation. The proof is the same in the cases where the last hyper-
surface does not touch the boundary, or if we have an internal observation around the first surface. We do
not state these cases for the sake of concision.
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Theorem 5.13. Let D be a bounded open subset of R~ with smooth boundary. Let G = G(2',¢) €
CY(D x [0,1+n)), such that

e For all e € (0,1], we have {z' € R""',G(2',e) >0} =D
o for all 2’ € D, the function ¢ — G(a',¢) is strictly increasing
e for all e € (0,1], we have {z' € R"" G(a’,e) =0} =D

We further set

by = max G(z', 1), G(2',0) =0, So =D x {z, =0},
z'eD

and, for e € (0,1],

S. ={(2',2,) €ER", 2, >0 and G(2',¢) = x,} = (D x R) N {(2/,z,) € R",G(2',¢) =z, },
K={zeR"0<z, <G 1)}

We let Q2 be a neighborhood of K in R"~! x [0, 4] and D be a neighborhood of D in R~ 1.

Let P satisfying Assumption 5.1. Assume that {x, = 0} and {x,, = ly} are non-characteristic with
respect to P.

Assume also that for any e € [0, 1], the function

te(2' 1) = G2 e) — zy,

1s strictly pseudoconvex with respect to P on the whole S..
Then, there exist a neighborhood U of K and constants k,C,pug > 0 such that for all for all u €
CE(R™1 x [0, 4y]) satisfying

U|z,=0 = Uz, =Ly = 0, on D

we have, with Py = P+ V

K C
||u||L2(U) < Ce™ (HDnU|mn:0HLz(5) + ||Pu||L2(Q)) + E ||U||H1(Rn—1x[o,zo])

for all p > pg.
Moreover, under the same assumptions, there exists Co, k', 8,70 > 0 such that for all V € L®(R™),
W e L>®(R™;R") the previous estimate is still true with P replaced by Pywy = P+ W -V +V with C

replaced by Comax {1, ||W|| ;- } and uniformly for all > 7 max{1, ||V||%007 ||W||2Loo}

Proof. For simplicity, we first make the proof for V' = 0 and we will check the dependence in V' at the end.

We will use the same scheme of proof as for Theorem 4.7. We first note that the notion of < can be
extended to the case when there is a boundary and the variables &, are tangential to this boundary. Then,
the local uniqueness results of Corollary 4.6, and Theorem 5.11, can be written as

B(z°,r) < [{¢ > p} N B(z, 4R)] (5.34)

as long as B(z%,4R) N {z, = 0} = 0. Indeed, in (5.34), the case where B(z°,4R) N {z,, = £y} = 0 follows
from the internal quantitative uniqueness result (e.g. Corollary 4.6), whereas the case “up to the boundary”
B(2°,4R)N{x, = o} # 0 follows from Theorem 5.11. To apply this theorem in this context, one needs to
make the change of variables x,, — {y — x,,, which transforms {z, < {p} into R} and ¢. = G(2',¢) — z,,

to ¢. := G(z',e) — (Lo — ). The condition d,, ¢. = —,, ¢ = 1 > 0 is satisfied, the surface {z,, = 0}
(new coordinates) remains noncharacteristic; the pseudoconvexity assumption is invariant as well.

Claim: For any @ open neighborhood of Sy = D x {x,, = 0}, there exists an open neighborhood U of
K (for the topology of R"~! x [0, £]) such that

U <.

66



The claim can be proved with almost the same proof as that of Theorem 4.7, but using in addition Theorem
5.11 instead of only Theorem 3.1. So, we have to ensure that in the proof, we only apply Theorem 5.11 for
some points x;’ with B(x;’,4R;’) N {z, = 0} = (). This is the point of Remark 4.10, which then allows to
prove the Clalm as in Theorem 4.7.

Now, let 2° € D x {x,, = 0}. We apply Theorem 5.12 with R, small enough so that R"~! x {z,, = 0} N
B(z,R;) C {z, =0} x D and B(z, R;) C Q. It gives r, so that for some f3, x, C, &', ug > 0,

cpreip

|22 ] < 0o (IDatesoll g + 1P + Ce

where 0;”50 is centered in z°. By compactness of D, we can cover it by a finite number of such balls

(B(xi,ri))iel. Pick ¥ € C§°(R"! x [0, o)) with supp(¥) C U;erB(z?,r?) so that ¥ = 1 in a neighborhood

w of Sy. Lemma 2.12 gives that for functions crf; equal to one on B(z?,r?), the estimate

|a2 9l <30 Mo e+ O

crpFricipt
i€l

Now, apply the Claim with the selected & and for some 9 € Ce(UNR™ ! x [0,4]) equal to 1 in a
neighborhood of K. For some k1 < min(c¢/2, k'), there exist Cq, k) > 0 so that

HMSMS‘MUHI N < Qe (“MﬁﬁﬂﬁMuHm_l + ||Pu||L2(Q)> 4 Ce ik Hu||1’+ )
This implies, for some ko, k5, C' > 0,
HMSW"“‘L Lo (1Pntte =0l o ) + I1Pullagey) + Ce™ ully

We finish the proof as in Theorem 1.10 once Theorem 4.7 is proved, taking into account Remark 5.1.

Now, if P is replaced by Py, we want to obtain the uniformity with respect to the size of V" and W.
It is clear that the proof of the Theorem involves a finite number of applications of Theorem 5.11 and 5.12.
Indeed, the scheme of proof of Theorem 4.7 only involves a finite number of applications of the geometric
propagation of the property <. They can be divided in two categories: the general ones described in
Proposition 4.5 that are completely independent of the operator P (so, the constants will be independent
of V and W) and those using Theorems 5.11 and 5.12 where the dependence of the constants po and
C' is explicitly described. Note also that in all the properties (propagation, transitivity, simplification...)
that we prove about some relations <, once « is fixed, the pg corresponding to some relations is always
transformed into the some linear combination (with universal constants) of the g corresponding to the
previous ones. This is the same for the constants C involved in <. Finally, a finite number of applications

2
of these rules will always conclude with the restriction of the form p > 7o max{1, |V||; ., |[W|>..} and C
of the form Cymax {1, ||W||, }, once & is fixed.

6 Applications

We now give applications of the above main results, namely Theorem 1.10 and, in the case with boundary
Theorem 5.13 to the wave and Schrodinger operators. In these applications, we study an evolution equation
in the analytic variable. We thus have n, = 1, n, = n — 1 = dim(M) and we denote accordingly ¢ = x,
the time variable and = = x; the space variable. In this section, we prove general versions of Theorems 1.1
and 1.4: we add (complex valued) lower order terms that are analytic in time. We also provide uniform
estimates with respect to these lower order terms if they are time independent.

The proof consists each time in the application of the quantitative estimates of Theorem 5.13 and then
using energy estimates to relate the energy to the initial data and source term. Note that the first step,
the quantitative unique continuation itself, does not see the lower order terms. For instance, Theorem 6.6
below is equally valid for the Schrédinger equation i9; + A4, the heat equation d; — A4, Ginzburg-Landau
e, + Ay, etc.
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6.1 The wave equation
Our result for the wave equation can be formulated as follows.

Theorem 6.1. Let M be a compact Riemannian manifold with (or without) boundary, A, the Laplace-
Beltrami operator on M, and
P=0} Ay +Wod, + Wy -V +V

with V, Wy, W1, div(W7) bounded and depending analytically on the variable t € (=T, T).
For any nonempty open subset w of M and any T > L(M,w), there exist C,k,ug > 0 such that for
any (ug,u1) € HF (M) x L2 (M), f € L*((=T,T) x M) and associated solution u of

Pu=f  in(-T,T)x M,
Uom = 0 m (—T, T) X 8/\/1, (61)
(uaatu)|t20 = (u07u1) in Ma

we have, for any 1 > po,

o C
[(uo, ur)l| o g1 < Ce™ (”uHL?((fT,T);Hl(w)) + ”fHLZ((fT,T)XM)) + m [ (uo, wi)ll g 2 - (6.2)

If moreover all coefficients of P are analytic in t and x, and OM = 0, there exists p € C§°((—=T,T) X w)
such that for any s € R, we have

ol C
(w0, )2+ < O (10l ety + Iz miayeany) + o o,z

If OM # 0 and T is a non empty open subset of OM, for any T > L(M,T), there exist C,rk, g > 0 such
that for any (ug,u1) € H(M) x L*(M), f € L*>((-T,T) x M) and associated solution u of (6.1), we
have

" c
[(uo, )l o gy < C€™ <||6Vu||L2((7T,T)><F) + ”fHLQ((fT,T)XM)) + E (w0, ua)ll o2 - (6.3)

Finally, if V., Wy and W1 are time-independent then we have the following stronger result. There exist
Co, K, pto > 0 such that for any (ug,u1) € Hi(M) x L2(M), f € L?>((=T,T) x M) and associated solution
w of (6.1), and for any V, Wy, W1, div(W7) bounded in the x-variable (all independent of t), estimates (6.2)

and (6.3) hold uniformly for all p > pomax{1, ||V||§,x,, [Woll2 e, W13 } with constant

¢ = Coexp (Comax {1Vl e gy IWoll e (aay IVl (rgy - NV (V) rg) ) -

Remark 6.2. Using Lemma A.3 and the admissibility [0, ull 2 _r rxr) < C (w0, 1)l g1y 12, the previ-
ous estimates can be written as in Corollary 1.2 with some constants depending explicitly on the norms
of the lower order terms.

Theorem 6.1 above is a consequence of the following result, together with basic energy estimates for
solutions to the wave equation.

Theorem 6.3. Let M be a compact Riemannian manifold with (or without) boundary, Ay the Laplace-
Beltrami operator on M, and P = 07 — Ay + R with R = R(t,x,0;,0,) is a differential operator of order
one on (—T,T) x M, bounded in the x-variable and depending analytically on the variable t € (=T, T) at
any T € M.

For any nonempty open subset w of M and any T > L(M,w), there exist €,C, k, ug > 0 such that for
any u € HY((=T,T) x M) and f € L*((—T,T) x M) solving

{ Pu=f  in(-T,T)x M,

woam =0 in (—T,T) x OM, (6.4)

we have, for any p > uo,

C
lull L2 ((—c.eyxmty < CE™ (HUHLZ((fT,T);Hl(w)) + ”fHL?((fT,T)XM)) + M lwll g2~y sy -
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If moreover M and the metric g and lower order terms R are analytic, and OM = (), there exists ¢ €
C§°((=T,T) x w) such that for any s € R, we have

- C
ull p2((—c.eyxmty < CE™ (H‘puHH*S((fT,T)XM) + ||fHL2((—T,T)><M)) + m lwll a2~y ) -

If OM # § and T is a non empty open subset of OM, for any T > L(M,T), there ezist €,C, kK, ug > 0
such that for any u € H*((=T,T) x M) and f € L*((=T,T) x M) solving (6.4), we have

C
ull p2((—ceyxmy < CE™ (Hal/u”L?((—T,T)XF) + ”fHL?((fT,T)XM)) + m lull a2~y sty -

Finally, if all lower order terms are time-independent, that is if R = W0y + W1 -V +V does not depend

on t, then we have the following stronger result. There exist ¢,Cy, k, g > 0 such that for any u €

HY((-T,T) x M) and f € L*((-T,T) x M) solving (6.4) and for any V,Wy € L>°(M) and Wy a L™
2

vector field on M, all above estimates hold uniformly for all p > pomax{1,||V| ., |[WollZ e, [[W1]/Z}

and C replaced by Comax {1, ||W|;}.

We first prove Theorem 6.3 and then conclude with the proof of Theorem 6.1.

Proof of Theorem 6.3. We only prove here the more complicated case of the boundary observation. The
internal observation case is simpler and follows the same proof. To transport the information from one
point 20 to another point z!, the idea is to build nice coordinates in a neighborhood of a path between
2% and z'. In these coordinates, we construct an appropriate foliation in which to apply our semi-global
estimate. To construct these coordinates, we follow the presentation of Lebeau [Leb92, pp 21-22].

We fix a point ' € M. We can find 2° € T and a path ~ : [0,1] — M of length ¢y with £L(M,T) <
ly < T (see the definition of £L(M,T) in (1.3)) so that v(0) = 2° and (1) = x'. Moreover, we can impose
that

~ does not have self intersection
v(s) € M for s €]0,1]
4(0) and (1) are orthogonal to OM.

According to Lemma 6.4 below, we can find local coordinates (w,,) near v in which M is defined by
0 <z, < ¥y, the path v by v(s) = (0, s{p) and the metric is given by the matrix m(w, x,) € M,(R) with

/
mw, ) = < m %ﬂsn) 0 ) + Ong@y(|wl),  for w € Bga-1(0,6),6 >0, (6.5)

with m/(x,) € M,_1(R) (uniformly) definite symmetric. With these coordinates in the space variable,
and still using the straight time variable, the symbol of the wave operator is given by

p(t7 W, T, T, nggn) = p(wa L, T, gwagn) = _7—2 i <m(wa xn)£a€>’ E = (§w7€n)7 (66)

where we have used 7 for the dual of the time variable and &,, &, for the dual to w € Bgn-1(0,6) and
Ty € [0,40]
We now aim to apply Theorem 5.13. Pick again tg with ¢y < tg < T'. For b < § small, to be fixed later

on, we define
T, =1, 2'=(w), D= {(t,w) ’(1;,>2 + (%)2 < 1}
G(t,w,e) = el ( (7)2 + (tO)Q> L Ge(t,w, 1) == Gt w,e) —zn, € €[0,1]

where 1 is such that

Yeven, ¢(£1)=0, (0)=1,
P(s) >0, |Y(s)] <a, forse[-1,1],
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with 1 < a < z—g. This is possible since z—g > 1.
Note also that the point (t = 0,w = 0,x,, = £y) corresponding in the local coordinates to z* belongs

to {¢1 = 0}. We have

otz =t (5 () v (VG G)) (5 5 -

Given the form of the principal symbol of the wave operator in these coordinates (see (6.5)-(6.6)), we
obtain

s dotwn)) = i ((2)+ (;)2)_1 WP
-1
raz i ww (2) 4 (L)) e+

+O(JuP) (1 + S (4)+ (;)2>1 w) ,

2 2
where [//|? is taken at the point ( (ﬂ) + (%) . Now, since a < z—ﬁ and m/(z,,) is uniformly (for

xn € [0, £p]) definite positive, there is > 0 so that for |w| < b small enough, we have
2 4
LHO(uP) > 0?0y
0

o ey, ) + Ol > S () > 0.

Hence, there is a sufficiently small neighborhood (taking again b small enough) of the path (i.e. of w = 0),
in which we have (for any ¢ € [0, 1]), and any (¢, w,x,) € D X [0, 4]

2

p(w, Ty, doe (t, w, x,,)) —%gg(ty ((1;})2 N (;;)2)1 |w,|2+a2£ +7

to t3

Y

Y

G2, 24
—S T+t 5+ =

to to
So, the surface {¢. = 0} is noncharacteristic for any ¢ € [0, 1] and, therefore, strictly pseudoconvex with
respect to the wave operator, see Remark 1.9.

Moreover, since b can be chosen arbitrary small and z° € I' open, we can select b small enough so that

in the chosen coordinates, we have D C [—tg,to] X . Therefore, applying Theorem 5.13 in the chosen
coordinates and writing (with a slight abuse of notation) the final result in an invariant way, we get

3 C
lull p2zry < Ce™ (”@“HLZ((—T,T)xr) + ||P“HL2<<—T,T>XM>> + el ermy o

where U is a neigborhood (in the local coordinates) of {¢; = 0} and in particular a neighborhood of z! (in
the global coordinates). Note, that we actually apply the Theorem to xu with x € C°°(]—T, T[x M) so that
in the coordinate charts, yu € C§°([0, o] xR"~!) and x = 1 on a neighborhood of the Q defined in Theorem
5.13. We have therefore ||[Pxull;2q) = [[Pull 2y < ClPullp2qogrpony and [xtll g o 01 xmn—1) <
lull g1 ((—77)x ) (Where we have switched from some coordinate set to another with a slight abuse of
notation).

Since the previous property is true for any 2 € M, we obtain by compactness (taking the worst of all
the constants «, C, 1), using only a finite number of this estimate, that there exists ¢ > 0 so that we have

C
||UHL2((76¢6)><M) < Ce™ (Hal/uHL?((fT,T)xI‘) + HPUHLQ(]—T,T[XM)) + ; HUHHl((—T,T)xM) :

70



This concludes the proof of the theorem in the general (boundary) case.

For the last analytic case, we apply the same reasoning as before using the case n, = n of Theorem
1.10 and taking care for having some analytic change of coordinates. For instance, we need to have an
analytic path. So, it leads to an observation |[¢u||;-. where ¢ = 1 on all the cutoff functions obtained by
the theorem.

The lower order term depending analytically in time are treated using Corollary 5.4 and Remark 3.8.

The uniform dependence with respect to time independent lower order terms follows from the fact that
we use only a finite number of times Theorem 5.13. O

With Theorem 6.3, we now conclude the proof of Theorem 6.1, using energy estimates to relate

||(u0,u1)||HéxL2(M) to [[ull gra ((— 1y py> @0 ([ (w0, i)l 2 -1 gy B0 1ll 2~ 7y aq)- These estimates
are very classical in the selfadjoint case (which we omit here) and need a little care in the general case.

Proof of Theorem 6.1. We consider a perturbation of order one R(t,x, 0, 0, )u = V (¢, x)u + Wy (¢, x)0su +
Wi(t,x) - Vu and perform the energy estimates. We have the pointwise in time estimate, for s € [T, T,

[B(s)u(s)]2 < Cr (HU(S)HHl(M) + ||<9tU(S)||Lz(M))

with
Cr = IVllpee e rxrm) + IWoll oo (mrmyxany T IWill poo (o semty -
Using the Dumamel formula and Gronwall Lemma, it gives

[1(w, Q) )| g1 ¢ 2y < Cecn ((||(u0>u1)HH1xL2(M) + HfHLl([*T’T]’Lz)) ’
and in particular, integrating in time,
HUHHl(]—T,T[xM) < CeCCR ((”(uo’ul)HHlez(M) + Hf||L1([—T,T],L2)> : (6'7)
Let R*(t,x,0:, Dy)u = V(t,2)u — 0y(Wo(t, x)u) — div(Wi(t, x)u) be the formal (space-time) adjoint of R

(we take the real duality for simplicity).
If (vg,v1) € H! x L?, let v be the associate solution of v + R*v = 0. We have

IR (0(6) 2 < e (10(6) sy + 10005 g0 )
with
Cre = IVl oo 0,61 x m)y T 1Wollwroo (0,61, 200 (M) F WLl oo (0,67 0) T 115V Wl oo (10,21 ) -
Similar energy estimate applied to v give
191l 1 (e ey ety < CZECF (00, 01) 1 L2 pny -

x € C*(]0,€]) so that x(0) =1, x(0) =0 x(¢) =0 x(¢) = 0. Then, w = x(t)v is solution of

Ow+ R*w = 2x(t)0w + xO)Wov+ x(t)v =g
w|3M = 0
(wa at'lU)|t=0 = (’UO; vl)

Then, g is a (trivial) control that (vo,v1) to zero, ie. (w,dw);= = (0,0), with ||g]l120c(xr1) <

Ce®“r ||(vo,v1) || g1y z2- So, the usual computation yields, after integrating by parts

/ ug:/ u(D—i—R*)wz/ ulvo—/ uovl—/ WO(O,x)uovo—i—/ fw
10,e[xM 10,e[xM M M M |—e,e[xM

and in particular

IN

Cllull 2 o,cpx my 190 220, c1x 1) T C NIl L2 0,100 1w E20,61x00)

e (o, o) sz (

<(U0, ul)a (7U1700)>L2><H*1,L2><H1

IN

[0l 2 go.eperny + 1 lz2gocpern )
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where (-, -) is the twisted duality ((uo, u1), (v1,00)) g2y g1 22w = S w0 = [y wovs = [, Wo(0, z)ugvo.
By specifying to vy and ||v1]| ;> = 1, this gives first by duality.

[uollz: = sup / ugvy < Cer (||UHL2(]O,E[><M) + ||fHL2(]O,e[><M)> :

lvall p2=1

Then, with v1 =0 and ||vg|| ;1 = 1, we get

luillg-r = sup / uvg < sup / <u1v0 —/ Wo (0, z)ugvo +/ WO(O,x)uov())
llvoll g1 =1/ M llvoll y1=1J M M M
< sup (w0, u1),(0,v0)) poy -1 2+ SUD / Wo(0, z)ugvg
lvoll g1 =1 lvoll g1 =1J M

IN

et (Jull g oty + M lz2qocenn) ) + € IWoll o ol o

So, finally, we have

(0, wn)l 2y 1 < CeR <||UHL2(]O,5[><M) + ||f||L2(]O,s[><M)> : (6.8)

In the particular case where the perturbation is independent on time, we have

Cr + O < Cmax LIV e vy« Wl e (rty - 19 e g - V() ey
The combination of Theorem 6.3, together with estimates (6.7) and (6.8) gives the sought result. O

The following Lemma is contained in Lebeau [Leb92] p22, see also Lemma 11.38 pp 221 of [ABB12].
We give the proof for sake of completeness.

Lemma 6.4. Let v[0,1] — M be a smooth path without self intersection of length £y so that

~(s) € M for s €]0,1]
~(0) = z¢ and (1) = z1 belong to OM
4(0) and (1) are orthogonal to IM

Then, there are some coordinates (w,l) € Bra-1(0,¢) x [0,4o] in an open neighborhood U near v([0, 1]) so
that

7([0,1]) = {w = 0} x [0, o],

e the metric g is of the form m(l,w) = ( (1) m9(l) ) + O, r) (Jw)),

e in coordinates, we have M N U = Bgn-1(0,¢) x [0, 4] for some & > 0.

Proof. The path + is of length ¢y so, we can reparametrize it by v : [0, ¢y] — M such that v is unitary
(that is ||7(s)||., (5 = 1) Moreover, since v does not have self intersection, there exist U a neighborhood (in

the topology of M) of v and a diffeomorphism ¢ (in the structure of M) such that
e p(U) C{(z,y) eR"|w € [, o +¢] |y < e},
o P(v(s)) = (s,0),

e Y(U) = {(z,y) e R", fi(y) <z < foly) |z € [—¢,4p + €], |y| < e} for some smooth functions f; lo-
cally defined

Up to making the change of variable (z,y) — (z — f1(y),y), we can moreover impose f; = 0 and change

f2 by fo— f1.

Then, we make some change of variable to diagonalize the metric on . By unitarity of the coordinates,

the metric on v has the form
_( 1 U
m(;mO) = < tl(I) g(x) ) ,
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where [ is a line vector and g is a positive definite matrix. We perform the change of variable ® : (x,y) —
1 —a,

~ . 1 0 .
(Z,7) = (r —az - y,y). In y =0, we have D®(x,0) = ( 0 Id ) with ‘D®(z,0) = ( e, Id ) (in

particular, the change of variable is valid for small y) and D®(z,0)! = ) with {D®(x,0)~! =

< toltg; IOd ) Moreover, in the new coordinates, the set in {y = 0} and the metric there is given by

t -1 -1 _ 1 l(z) + a(z)
D(e.0) w0000 = (i gy O
So, we choose a(z) = —I(z) so that in this new coordinates m(x,0) is of the form
1 0
m(z,0) = ( 0 x ) (6.9)

We notice that since 4(0) is orthogonal to OM which is defined locally by {z = 0}, we have [(0) = 0
(5(0) = (1,0) so it implies (0, y)m(0,0)%(0) =* 1(0)y for all y). In particular, ® restricted to {z = 0} is
the identity.

This implies that in this new coordinates, M is still defined near v by 0 < z < fa(y) (now, we still
denote (z,y) for (Z,7)). We still have f5(0) = £y. Morever, since (¢y) = (1,0) is orthogonal to OM which
is defined locally by {z = f2(y)} and using that m(x,0) is of the form (6.9), we get df2(0) = 0.

Finally, making the change of variable (z,y) — (%x, y), which is the identity on 7, we get that M is
given 0 < z < ¢y. Moreover, since df (0) = 0, the metric is not changed on ~.

The expected property of m is then obtained by the mean value theorem using the diagonal form (6.9)
on 7. U

6.2 The Schrédinger equation

Now, we turn to the Schréodinger equation. The result are quite similar to the wave equation except for
two facts.

The first one is that there is no minimal time. This is quite natural with the infinite speed of propa-
gation. In the proof, this appears in the fact that the principal symbol is [£ |§ Therefore, a hypersurface
{¢(t,x) = 0} is non characteristic if V¢ # 0, without assumption on the time derivative.

The second difference is that the remainder term involving the H'((—T,T), M) norm involves some
derivative in time and space which do not have the same weight. Hence, since 0;u = iA4u, this term will
actually count for two derivatives in space.

Theorem 6.5. Let M be a compact Riemannian manifold with (or without) boundary, Ay the Laplace-
Beltrami operator on M, and
P=i0,+Ay+V
with V' depending analytically on the variable t in a neighborhood of (—T,T). Assume moreover that
V e L®((=T,T); W%>(M)).
For any nonempty open subset w of M and any T > 0, there exist C,k,ug > 0 such that for any
up € H*NHE, f € L2((—=T,T); H*(M)) and associated solution u of
Ou+ Agu+Vu=f in (=T,T) x M,
Upm = 0 m (T, T) X 8/\/1, (610)
u(0) = ug in M,

we have, for any 1 > po,

" c
l[uoll 2 < Ce™ (||UHL2((—T,T);H1(UJ)) + ||fHL2((—T,T);H2(M))) + ﬁ l[woll 72 - (6.11)

If moreover all coefficients of P are analytic in t and x, and OM = 0, there exists p € CC((—T,T) X w)
such that for any s € R, we have

. C
l[uoll 2 < Ce™ (”‘puHH*S((fT,T)xM) + ”fHL?((fT,T);H?(M))) + n l[woll 7 - (6.12)
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If OM # () and T is a non empty open subset of OM, then for any T > 0, there exist C, k, o > 0 such
that for any ug € H?> N H}, and associated solution u of (6.10), we have, for any ju > o,

" C
l[uoll 2 < Ce™ <||3uu||L2((—T,T)xr) + ”fHL?((—T,T);HZ(M))) + n llwoll g2 - (6.13)

Finally, if V is time-independent then we have the following stronger result. There exist Cy, K, 1o > 0 such
that for any ug € H>NH}(M), f € L*((=T,T) x M) and associated solution u of (6.10), and for any V

bounded in the x-variable, estimates (6.11) and (6.13) hold uniformly for all p > po max{1, ||V||§oo} with
constant

C = Cyexp (CO HVllww(M)) '

As in the case of the wave equation, the previous Theorem is a combination of the following Theorem
and energy estimates for the Schrédinger equation.

Theorem 6.6. Let M be a compact Riemannian manifold with (or without) boundary, Ay the Laplace-
Beltrami operator on M, and P = A, + R with R = R(t,x,0;,0;) is a differential operator of order one
n (=T,T) x M, bounded in the z-variable and depending analytically on the variable t € (=T,T) at any
x € M.
For any nonempty open subset w of M and any T > 0, there exist €,C, k, ug > 0 such that for any
ue€ HY((=T,T) x M) and f € L*>((-T,T) x M) solving

Pu=f  in(-T,T)x M,
{ woam =0 in (—T,T) x OM, (6.14)

the same estimates as Theorem 6.3 hold.
In the case that R = W0y + W1 -V + V' does not depend on t, the dependence on the size of the
coefficients of R remains the same as Theorem 6.3.

Proof of Theorem 6.6. The proof is quite similar to the one for the wave equation, so we only sketch the
main steps of the proof. The main difference will be that T" can be chosen arbitrary. Pick ¢y arbitrary
with tg < T, this time without any relation with /.

We use the same coordinate charts as defined in the proof of Theorem 6.1 for the wave equation. Then,
the principal symbol of the Schrédinger operator will be

p(w,xn,T, ngfn) = _<m(waxn)£a§>7 5: (gwyfn)

Therefore, p is a quadratic form with real coefficients that is definite on the set {r = 0}. Remark
1.9 allows to get that any non characteristic hypersurface is strictly pseudoconvex. So, with the same
definition of ¢, we get

2

p(w, T, doe (t,w, 1)) = €0b4< m/ (zp)w, w (( ) ( ) )1 W2 — 1

ot (1+ S (5 (2)7) 1)

But, for w small enough, we still have

—1+O0(|w]?)
—(m/ (zn)w, w) + O(jw|*)|w|?

~1/2
0.

ININA

In particular, with the same notations as for the wave equation, there exists b small enough so that for
any € € [0,1]), and any (¢, w,z,) € D x [0, ], we have

1
p(wvxnaquE(tvwaxn)) S *5
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So, applying the same reasoning as for the wave equation, we obtain the existence of some k, C, py and
€ > 0 so that we have

) c
lullz2q-c.etxan < O MOl g rirpery + 2 Il g-rrixan
for any p > pyp.

The dependence on the lower order term R follows the same way as for the wave equation. O

Proof of Theorem 6.5. Since the multiplication by V acts on Hg and H? if V € W?°° (M), using Duhamel
formula and a Gronwall argument allows to obtain, for s € [T, T7,

IA

||u0||L2(M) CeClVilzee (HU(S)HH(M) + HfHLz((fT,T)XM))

()l grangy < CeClVIwaoein <HU0||H2 + IIfHLz«_T,T);H?(M))) :

A

Integrating in time, it gives
ClIVIl oo
luollpzngy < Ce Wllzoe a0 (”uHL?((—g,a)xM)J’_”fHL?((fT,T)XM))
c oo
llge(crrymny < €2 (ol + 1Ly ) -

To estimate O,u, we notice that dyu = i(A + V)u — i f. Therefore, we only need to estimate ||Aul| ..

IA

c ||u||L2((—T,T);H2) +C ||V||L°°(M) ||UHL2((_T,T)><M) + ||fHL2(]—T,T[><M)

CGCHV”WZOC(M) (

Hat“HLZ((—T,T)xM)

IN

lwoll = + Hf||L2((—T,T);H2(M))> :

So, this gives

ClIV Il yy2,00
lull gr =y ) < Ce IVl o) (||U0HH2 + Hf||L2((_T,T);H2(M))> :

This gives the estimates of the Theorem when combined with Theorem 6.6. O

A Two elementary technical lemmata

In the above proof, we used the following elementary lemma (see e.g. [LRL12]).

Lemma A.1. Let K be a compact set and f,g,h three continuous real valued functions on K. Assume
that f >0 on K, and g > 0 on {f = 0}. Then, there exists Ag,C > 0 such that for all A > Ay, we have
ngAff%hZC on K.

Lemma A.1 is a consequence of the following variant.

Lemma A.2. Let K be a compact set and f a continuous real valued function on K. Let g and h be two
bounded function defined on K. Assume that f > 0 on K, and there exists V an open neighborhood of
{f =0} in K so that g > c on V for one constant ¢ > 0. Then, there exists Ag,C > 0 such that for all
A > Ay, we haveg—i—Af—%hZC on K.

We also used the following result.

Lemma A.3. Let Cy, Cs, and « be positive. Then, there exists K > 0 such that for all g > 0, for any
a,b,c > 0 such that there the following estimates hold

1
b<Cse, a<ec¢, and a< eC1ip + H—ac, for all pu > po,
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we have
D,

a < ——c¢, with D1 = (2C7)*max {K, ug },
*log(g—s—l) 1= (2C1) {K, 15}t

and

e < eP2(8) b,  with Dy :D}/a = 2C max {Kl/",,uo}.

Proof. Dividing all inequalities by ¢, setting y = a/c and x = b/c, it suffices to prove

D
(ngg, y <1, ygecl”x—l—,u_“foralluz,uo):>y§%
log(g—i-l)

1

Note that the second implication is straightforward since the second assertion is equivalent to - <

(Lryt/e T
e\ — 1. To prove the first implication, we set

1 1
w(x) = 3G, log <x + 1> ,

so that e>? r = (=+ r = +x xe. enoting now C3 = (C3(C1,C2,¢) = sup,.« +
hat eC1(2) Liq)'/? 1+ 2)/221/2. Denoti Cs = C5(Cy, C: veoy(1
- (Cs+1)
w(z)>

x)V 2212 (2)® < 400, we have eC1#(*) g < #(%a. As a consequence, if y(z) > pg, then we have y <
which is the sought estimate.

«
If now p(z) < po, that is g log (3 +1) < po, we have 1 < (loZ(Cilfl)) Then, the assump-

«
2C1 po

a1 4]
(2C1)* max {C5 + 1, u§ }. O

This concludes the proof of the lemma for Dy =

tion y < 1 directly implies y < (

B Elementary complex analysis
We recall that we identify C and R? with z = z + iy = (x,%y) and denote
Q1 ={z € C,Re(z) > 0,Im(z) > 0}.

Lemma B.1. Let fo, f1 € WL (RT) such that | f ()], |f1(z)] < C for some C > 0 and almost all x € RT.
Then, the function defined for (z,y) € Q1 by

day [ £hole) dry [* nhi ()
e == | @ A A / @ rne s oy B

satisfies | f(2)| < 20(1 + |z|) in Q, \ (0,0) together with
AfZO in Qh f(.’l?,O):fo(fL‘), f(oay):fl(y)7 $7y€R+~

If moreover, fo(0) = f1(0), then f is continuous on Q.

Remark that this theorem provides an existence result for the Poisson Problem on ); associated
to Lipschitz boundary conditions. The Phragmén-Lindel6f theorem B.4 below provides an associated
uniqueness result in the class of functions having a sub-quadratic growth at infinity.

The next lemma is a key point in the proof of the local estimate.

Lemma B.2. Let R > 0,6 >0,k >0,¢ >0 and ¢; > 0. Then, there exists dy = do(0,k, R,&,c1)
such that for any d < do, there exists Bo(0, K, R, e, c1,d), such that for any 0 < 8 < By, the following two
assertions hold:
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e the function

. € B?
f1(y) = Ryljo)(y) + 1, 100y (y) min { Ry, max(—r, =93y, —g) + ey + ;}

IB 1
(R+95)2

(in the application v = %)

is continuous for all v <

e the function f then given by Lemma B.1 associated to f1 and fo = 0 satisfies
d
flzy) < =83y, for o <|(z,y)] < 2d.

Proof of Lemma B.1. Let us first justify the form (B.1) of the solution. From the green function G¢(z, 2’) =
(27)~11n |2’ — 2] in C, we first construct a Green function in Q; using the so-called “image points” z, —z
and —Zz. This yields

1 1 1 1
G, (z,7') = Eln|z’—z| —%ln|z’—2|—%ln|z/+2\+%ln|z'+z|,

that is, with z = (z,y) and 2’ = (&, 7),

Gau((r.9), (€)= = (€2 + (0 —9)?) — - (E~ ) + (7 +))

1 1
——In((E+2)?+(n-9y)?)+ —In((+2)*+n+y)?).
47 47
For fixed z € @1, the last three terms are smooth in 2’ € @1 so that —A, G, (z,2") = 6,/=,. Moreover,

for 2/ = (§,m) € 0Q1, either £ =0 or n = 0 so that Gg, = 0 for 2’ € Q1.
Now we compute

8GQ1 | - 74%7@/ n

0¢ =0 @+ (y+n)) @+ (y—n)?)’
0Gq, | _ 4wy ¢

On =0 T (=82 +y)((x+8*+y?)

The representation formula for solutions of Af =0in @ and flag, = f writes

6GQ1 r

f(Z) = ) (Zv Z/)|z’€8Q1f(Z/)dzlv
8Q, 9VoQ

which justifies (B.1).

Let us now estimate for (z,y) € Q1 the term

day [ nfi(n) day [ nC(1+mn)

&y (3?2+(y+77)2)($2+(y—77)2)dn‘ S T @ @+ o)
< C(2/marctan(y/x) + y)
< C(l+y),

where we used Lemma B.3 in the second inequality. The other term containing f; can be estimated as
well in Q1 by C (1 + x) so that

fEI<CR+a+y) <200 +]2]), z=(z,y) €

That Af = 0 follows from the definition of Gg, as a Green function, and it only remains to check the
boundary values of f. For this, according to the symmetry, it suffices to prove that for all zq,yo > 0, we
have

lim (Tf1)(x,y) =0, lim (Tf1)(z,y) = fi(yo)- (B.2)

(z,y)—(20,0) (z,9)—(0,y0)
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with

day [ nfi(n)
T Jo (224 (y+n)?)(x2+ (v —n)?)

(Tf1)(z,y) = dn.

Since f] € L>°(R™), we have

[fr(m)] < 1fO)] + nll fill L=
Hence, according to the definition of 7', we obtain
(TS < [AO)TA) + [ f1llL=T (). (B.3)
Using Lemma B.3, this implies
(Tf)(@,y)| < [f1(0)[2/m arctan(y/z) + [ fi]|L~y,

and thus (T'f1)(z,y) — 0 as (z,y) — (x0,0), which yields the first part of (B.2).
To prove the second part of (B.2), we write

[f1(n) = f1 (o)l < [n = yol[l /1]l =
This implies
T f1(z,y) — 2/marctan(y/z) fi(yo)| = [T f1 = T(f1(yo)| < [ fillL=T(In = wol)- (B.4)
We now study the term

day [ nn = yol

Tn=wollew) = == | @+ G-
™ Jo (@24 (y+n)H) @+ (y—n)?)
doy [ n(n — o)
) @ et G-
o dwy v n(yo — n)
=2 ) @@t e
doy [ n(n — o)
T 0 (x2+(y+77)2)(w2Jr(y—77)2)d77
N (Yo —n)

R R [ e D UM

With Lemma B.3, we have T'(n — yo)(x,y) = y — 2/7 arctan(y/x)yo — 0 as (z,y) — (0,y0). Moreover, we
have

dn

day [0 n(yo —n) L% x(yo—n) z(yo —n)
kS /0 (@2 + ( /0

™ P oy s oy K el NS pYRaPe Ay g

(see the proof of Lemma B.3). The term [ %dn vanishes when (x,y) — (0,y0). Concerning the
second term, we have

1 (% a(yo—n) 1 /(yo—y)/w ds
: _apy = = —y—18)——
T /0 2 + (y — 77)2 Ul )y (yO Y ) 1+ s2

— _ 9 Y
= P2 Carctan (27 + arctan (E) T w ,
0 x x 2w 22 + 12

which vanishes when (x,y) — (0,y0). The last three estimate prove T'(|n—yol|)(x,y) — 0 as (x,y) — (0, yo).
In view of (B.4), this implies

lim [T f1(z,y) — 2/marctan(y/x) f1(yo)| = 0
(2,y)—(0,y0)
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which is the second part of (B.2).

For the continuity, by symmetry and translation by a constant, it is sufficient to prove that if f;(0) = 0,
then T f1(x,y) converges to zero as (z,y) converges to zero. This is implied by (B.3). This concludes the
proof of the Lemma. O

Proof of Lemma B.2. Let us define
§ Kk e
Ig .= |BvV/2/6, min(—, —, ——
and notice that Ig # 0 for § < Sy with By = Bo(d, K, c1, ) sufficiently small. We first prove that for all
v < B+4/4/6, we have

2
fi(y) = =90y + c1y? + % on Ig, (B.5)

and
Is C {f1 < -8y}, (B.6)

d tiori for y < —8— < B/4/6.
and, a fortiori for v < (a0} < BvV4/

For this, notice that y € Iz implies y < §/(4c¢1) and y > B+/4/6 which yields

51/2 3 d 2 2
7 < 22 < B2,
o tay s -1yt s B

As a consequence,

5} 2 2
—5Y + ey + % <0, andhence —96y+c1y®+ % < —8.50y <0 < Ry. (B.7)
In particular, (B.5) implies (B.6). Moreover, for y € Iz, we have —x < —9dy together with —% < =94y,

so that max(—r, =90y, —¢) = —9dy. This proves (B.5) with the help of (B.7).

Let us now check the continuity of f;. First remark that both Ry and min {Ry, max(—k, —90y, —i) +
2
c1y? + %} are continuous. Second, we prove that both functions coincide for y < v which provides the

continuity of fi. For 0 <y <~ < ﬁ, we have (90 + R — c1y)y? < 52 and we obtain Ry < —9dy +
—+ 2

cly2+%2. For 8 < By we have I3 # () so that y < 34/4/6 < min(g5, 3—‘\%), and max(—x, =98y, — %) = —9dy
for y <. As a consequence, we have

2
Ry = min { Ry, max(—x, -9y, —5) + ey + %}, for 0 <y <+,

B

and f7 is continuous for all 8 < By and v < -
(R+95)2

Since f; is continuous and globally Lipschitz, it satisfies all assumptions of lemma (B.1) (and fo = 0),
so that we can define f by

74ﬂ o nf1(n)
flay) = — /0 @t @t -

Setting f: f + 8.50y, we now prove an upper bound for f Using the second formula of Lemma B.3, we
have

~ day [ n(f1(n) + 8.50m)
fey) = =7 | @ i@y
- O
T JRy\Ig T JIg
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According to (B.6), we have

dzy n(f1(n) + 8.56n)
™ /15 (22 + (y +n)?) (22 + (y — 77)2)d77 =0 (B.8)

Next, for small 3, we have R, \ Is = [0, D] U [D, +oc], with Dg := 8/4/5 < D = min(5L, &, ).
Since f1(y) < Ry, we have

dey [ dwy [T (R +8.50)n°
= /D (2+(y+n)2)(x2+(yfn)2)dn'

If 0<y<D/2and n> D, we have (y —n)? > (n — D/2)? and (y +n)? > n?, so we estimate

4oy [ 16y /°° (R +8.58)n?
< dn=C(0,k,R,e,c1)xy
= o = Jp D™= e

™ D ™

So, if © <wvD and y < D/2, this implies

4
i) < vO(8, 8, R,ye,c1)D(6, 1,2, ¢1)y < dy/4 (B.9)
™ JbD

as soon as v < 35. Now we fix 2dg := 2do(6, k, R, €, ¢1) = min{vD, D/2}. For any d < do, we have (B.9)
for all (x,y) such that |(z,y)| < 2d.

Finally, we study the term 4? o +++dn. For B sufficiently small (namely 8 < df) we have %—Dg >

g (recall that Dg = 84/4/4). As a consequence, for (z,y) such that % < |(z,y)| < 2d, and for all n € [0, Dg,
the triangle inequality yields

2 2 d o @ 2 2 d o @
@+ @+n)?) 2 (7 -Ds) 2 g, @Hy—n7)2(;-Ds)” 2 5
Still using that fi(y) < Ry, we have
day [Po o A Ds (R + 8.58)n> dn
T Jo oom Jo @40+ -n)?)
4oy (8 4 b 9
< === .50 d
s <d> (R+8.5 )/O n-dn
dzy (8" H
< —= | = _rP
< (N s

< C'(R.6,d)B%

1/3
Now, for all 5 < (serhsay)  this is less than oy/4.

This together with (B.8) and (B.9) implies that f(z,y) < dy/2 for (z,y) such that 4 < |(z,y)| < 2d,
that is

f(xvy) S *85% fOf S |(£C,y)| S 2d.

e

This concludes the proof of the lemma. O

Lemma B.3. For all x,y > 0, we have
dzy [ "
T Jo (@®++n)?)(@*+(y—n)?)
2

)
dzy 1 _
- / @ i@ @Y

dn = 2/ arctan(y/x)
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Proof of Lemma B.3. First notice that

dxyn x x

@+ D@+ -7 E+rnE 2+ —n?

Hence, we obtain

N 7 B N_ " .
4Iy/o (w2+(y+n)2)($2+(y—n)2)dn B /0 w“r(ern)?+962+(y—77)2d77

(N+y)/z 1 y/x 1
LT [
vz L+s (y-N)/z L+

= —arctan((N +y)/z)) + arctan(y/x)
+ arctan(y/x) — arctan((y — N)/z))
—  2arctan(y/z), as N — oo,

since z,y > 0.

Concerning the second equation, we have

N 2 N
4
/ 2 ;Uynz nydn = / ) ! st 3 - zdn
o @+ y+n)?)(@2+ (y—n)?) o 2Hy+n? 22+ (y—n)
B N xn B N (s —y)
= - 2 5dn = — 5 3 08
N2+ (y+n) —Nty T°t S

N+y s N+y Ty
~N4y L7+ ~N+4y T°+ S

. . . . N -N
Since the integrand is an odd function, we have f_;ﬁy srads = _Njyy e

as N — oo. Moreover, we have

Noy oy (N-y)/= 4
/ ﬁds:y/ ——ds—>my, as N — oo,
~N-y T°+s (-N-y)/x 1 +8

ds which converges to zero

which concludes the proof of the lemma. O

The following is a version of the Phragmén Lindel6f principle for subharmonic functions in a sector of
the complex plane. We prove it as a consequence of the maximum principle for subharmonic functions in
bounded domains. Note that the usual Phragmén Lindeldf theorem (see [PLO8] or [SS03, Theorem 3.4])
can be deduced from this one.

Lemma B.4. Let ¢ be a subharmonic function in Q1, continuous in Q.. Assume that there exist ¢ > 0
and C > 0 such that

¢(2) <COL+[27%), 2€Qu, (B.10)

Then ¢(z) <0 for all z € Q1.

Note that the power 2 — & with € > 0 is sharp: the result is false for e = 0, as showed by the harmonic
function (x,y) — zy.

Proof. First note that the sector ()1 can be rotated, say to quadrant

Q= {z€Carg(z) € [, T}
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We set v := Re(227%) (with the principal determination of the logarithm) which is harmonic in Q. We
have v(r,0) := 7273 cos((2 — £/2)0) > r?~5 cos((2 — /2)7/4) with cos((2 — &/2)7/4) > 0. Let

us(z) = () — dv(2),

which is also subharmonic in . We have imsup,¢cq |.|00 u(2) = —00. As a consequence, there exists
R > 0 such that us(z) < 0 on {|z| > R} N Q. Now, on the bounded set Q¥ = Q N {|z| < R}, we apply the
maximum principle to the function wug, satisfying us < 0 on Q. This yields us < 0 on Q and hence
us < 0 on @. Finally letting ¢ tend to zero, we obtain the sought result. O
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