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k-Chordal Graphs: from Cops and Robber to Compact Routing via Treewidth

A. Kosowski · B. Li · N. Nisse · K. Suchan

Abstract Cops and robber games, introduced by Winkler and Nowakowski [41] and independently defined by
Quilliot [43], concern a team of cops that must capture a robber moving in a graph. We consider the class of
k-chordal graphs, i.e., graphs with no induced (chordless) cycle of length greater than k, k≥ 3. We prove that k−1
cops are always sufficient to capture a robber in k-chordal graphs. This leads us to our main result, a new structural
decomposition for a graph class including k-chordal graphs.

We present a polynomial-time algorithm that, given a graph G and k≥ 3, either returns an induced cycle larger
than k in G, or computes a tree-decomposition of G, each bag of which contains a dominating path with at most
k− 1 vertices. This allows us to prove that any k-chordal graph with maximum degree ∆ has treewidth at most
(k−1)(∆−1)+2, improving the O(∆(∆−1)k−3) bound of Bodlaender and Thilikos (1997). Moreover, any graph
admitting such a tree-decomposition has small hyperbolicity.

As an application, for any n-vertex graph admitting such a tree-decomposition, we propose a compact routing
scheme using routing tables, addresses and headers of size O(k log∆ + logn) bits and achieving an additive stretch
of O(k log∆). As far as we know, this is the first routing scheme with O(k log∆ + logn)-routing tables and small
additive stretch for k-chordal graphs.

Keywords Treewidth · chordality · compact routing · cops and robber games.

1 Introduction

Because of the huge size of real-world networks, an important current research effort concerns exploiting their
structural properties for algorithmic purposes. Indeed, in large-scale networks, even algorithms with polynomial-
time in the size of the instance may become unpractical. Therefore, it is important to design algorithms depending
only quadratically or linearly on the size of the network when its topology is expected to satisfy some properties.
Among these properties, the chordality of a graph is the length of its longest induced (i.e., chordless) cycle. The
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(Gromov) hyperbolicity of a graph reflects how the metric (distances) of the graph is close to the metric of a
tree. More precisely, a graph has hyperbolicity ≤ δ if, for any u,v,w ∈ V (G) and any shortest paths Puv,Pvw,Puw
between these three vertices, any vertex in Puv is at distance at most δ from Pvw ∪ Puw [30]. Intuitively, in a
graph with small hyperbolicity, any two shortest paths between the same pair of vertices are close to each other.
Several recent works take advantage of such structural properties of large-scale networks for algorithm design
(e.g., routing [36,20]). Indeed, Internet-type networks have a so-called high clustering coefficient (see e.g. [49,
42]), leading to the existence of very few long chordless cycles, whereas their low (logarithmic) diameter implies
a small hyperbolicity [39].

Another way to study tree-likeness of graphs is by tree-decompositions. Introduced by Robertson and Sey-
mour [44], such decompositions play an important role in design of efficient algorithms. Roughly speaking, a
tree-decomposition maps each vertex of a graph to a subtree of the decomposition tree in a way that the subtrees
assigned to adjacent vertices intersect [44,13]. The nodes of the decomposition tree are called bags, and the size
of a bag is the number of vertices assigned to it. The width of a tree-decomposition is the maximum size over its
bags minus 1, and the treewidth of a graph is the smallest width over its tree-decompositions. By using dynamic
programming based on a tree-decomposition, many NP-hard problems have been shown to be linear time solv-
able for graphs of bounded treewidth [25]. In particular, there are linear-time algorithms to compute an optimal
tree-decomposition of a graph with bounded treewidth [12,14]. However, from the practical point of view, this
approach has several drawbacks. First, all above-mentioned algorithms are linear in the size of the graph but (at
least) exponential in the treewidth. Moreover, due to the high clustering coefficient of large-scale networks, their
treewidth is expected to be large [39]. Hence, to face these problems, it is important to focus on the structure of
the bags of the tree-decomposition, instead of trying to minimize their size. For instance, several works study the
diameter of the bags [27,37]. In this work, we consider tree-decompositions in which each bag admits a partic-
ular small dominating set. Such decompositions turn out to be applicable to a large family of graphs (including
k-chordal graphs).

1.1 Our results

Our results on tree decomposition are inspired by a study of the so called cops and robber games (Winkler and
Nowakowski [41], Quilliot [43]). The aim of such a game is to capture a robber moving in a graph, using as few
cops as possible. This problem has been intensively studied in the literature, allowing for a better understanding
of the structure of graphs [17].

Outline of the paper. We start by presenting our results for the cops and robber problem in Section 2. Next,
using these results, in Section 3 we provide a new type of efficiently computable tree-decomposition which we
call good tree decomposition. Our tree decomposition turns out to be applicable to many real-world graph classes
(including k-chordal graphs), and has several algorithmic applications. Finally, we focus on the applications of this
decomposition to the compact routing problem, a research area in which tree decompositions have already proved
useful [26]. The objective of compact routing is to provide a scheme for finding a path from a sender vertex to a
known destination, taking routing decisions for the packet at every step using only very limited information stored
at each vertex. In Section 4, we show how to use our tree decomposition to minimize the additive stretch of the
routing scheme (i.e., the difference between the length of a route computed by the scheme and that of a shortest
path connecting the same pair of vertices) in graphs admitting a k-good tree-decomposition for any given integer
k ≥ 3 (including k-chordal graphs), assuming logarithmic size of packet headers and routing tables stored at each
vertex.

The necessary terminology concerning cops and robber games, tree decompositions, and compact routing, is
introduced in the corresponding sections.

Main contributions. Our main contribution is the design of a polynomial-time algorithm that, given a n-vertex
graph G and an integer k ≥ 3, either returns an induced cycle of length at least k+ 1 in G or computes a tree-
decomposition of G with each bag having a dominating path of order (number of vertices on the path) at most
k− 1. More precisely, each bag of our tree-decomposition contains a chordless path with at most k− 1 vertices,
such that any vertex in the bag is either on the path or adjacent to some vertex of the path. In the case when
G admits such a decomposition, this ensures that G has treewidth at most (k− 1)(∆ − 1) + 2 (where ∆ is the
maximum degree), tree-length at most k and Gromov hyperbolicity at most b 3

2 kc. In particular, this shows that
the treewidth of any k-chordal graph is upper-bounded by O(k ·∆), improving the exponential bound of [16]. The
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proposed algorithm is mainly derived from our proof of the fact that k−1 cops are sufficient to capture a robber
in k-chordal graphs (generalizing some results in [7,24]).

Our tree-decomposition may be used efficiently for solving problems using dynamic programming in graphs
of small chordality and small maximum degree. In particular, we present a compact routing scheme that uses our
tree-decomposition and that achieves an additive stretch ≤ 2k(dlog∆e+ 5

2 )− 2dlog∆e− 4 with routing tables,
addresses and message headers of O(k · log∆ + logn) bits. An earlier approach of Dourisboure achieved stretch
k+1, but with routing tables of size O(log2 n).

1.2 Related Work

Chordality and hyperbolicity. Chordality and hyperbolicity are both parameters measuring “tree-likeness” of a
graph. Some papers consider relations between them [11,50]. In particular, the hyperbolicity of a k-chordal graph
is at most k, i.e. the hyperbolicity of a graph is at most its chordality. But the gap, i.e. the difference between
the two parameters, may be arbitrary large (take a 3× n-grid). The seminal definition of hyperbolicity is the
following. A graph G is δ -hyperbolic provided that for any vertices x,y,u,v ∈ V (G), the two larger of the three
sums d(u,v)+ d(x,y),d(u,x)+ d(v,y) and d(u,y)+ d(v,x) differ by at most 2δ [30]. With this definition, it is
proved that any graph with tree-length at most k has hyperbolicity at most k [22]. This definition is equivalent to
that of Gromov hyperbolicity (mentioned at the beginning of the introduction), which we use in this paper, up to a
constant ratio [8]. No algorithm better than the O(n4)-brute force algorithm (testing all 4-tuples in G) is known to
compute hyperbolicity of n-vertex graphs. The problem of deciding whether the chordality of a graph G is at most
k is NP-complete if k is as part of the input. Indeed, if G′ is obtained by subdividing all the edges in G once, then
there is an induced cycle of length 2|V (G)| in G′ if and only if G has a Hamilton cycle. It is coNP-hard to decide
whether an n-vertex graph G is k-chordal for k =Θ(n) [48].

There are several problems related to chordality are considered. Finding the longest induced path is W [2]-
complete [21]. In [33], the problem of deciding whether there is an induced cycle passing through k given vertices
is studied. This problem is NP-Complete in planar graphs when k is part of the input and in general graphs even
for k = 2. However, this problem is Fixed Parameter Tractable (FPT) in planar graphs, i.e., there is an algorithm to
solve this problem in time O( f (k)p(n)) where f is an arbitrary function of k and p is a polynomial in the size n of
the graph. Finding an induced cycle of size exactly k in d-degenerate graph (every induced subgraph has a vertex
of degree at most d) is FPT if k and d are fixed parameters [18]. Note that, any planar graph is 5-degenerate.

Treewidth. It is NP-complete to decide whether the treewidth of a graph G is at most k [10]. For (4-)chordal
graphs, cographs [15], circular arc graphs [47], chordal bipartite graphs [32] and etc., the treewidth problem is
polynomially solvable. Bodlaender and Thilikos proved that the treewidth of a k-chordal graph for (k ≥ 4) with
maximum degree ∆ is at most ∆(∆ −1)k−3 which implies that treewidth is polynomially computable in the class
of graphs with chordality and maximum degree bounded by constants [16]. They also proved that the treewidth
problem is NP-complete for graphs with small maximum degree [16].

Compact routing. In a name-independent routing scheme, the designer of the scheme is not allowed to label the
vertices in the way he wants, that is, each vertex in the network has a predefined fixed label. Abraham et al.
provided a universal name-independent routing scheme with stretch linear in k and n1/k polylog(n) space in [5].
There are weighted trees for which every name-independent routing scheme with space less than n1/k requires
stretch at least 2k+ 1 and average stretch at least k/4 [4]. Subsequently, the interest of the scientific community
was turned toward specific properties of graphs. Several routing schemes have been proposed for particular graph
classes: e.g., trees [28], bounded growth [6], bounded hyperbolic graph [23], bounded doubling dimension [2,34],
excluding a fixed graph as a minor [3,1], etc. The best compact routing scheme in k-chordal graphs (independent
from the maximum degree) is due to Dourisboure and achieves a stretch of k + 1 using routing tables of size
O(log2 n) bits [26]. A routing scheme achieving stretch k− 1 with a distributed algorithm for computing routing
tables of size O(∆ logn) bits has been proposed in [40].

1.3 Notations

Throughout the paper, denote G as a simple connected undirected graph with vertex set V and edge set E. Let
n = |V | be the order of G and m = |E| is the size of G. For any subgraph H of G, denoted as H ⊆G, we use V (H)
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(a) All the cops are placed on v. The robber is on r.
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(b) The induced subgraph (v1, . . . ,vi,v,P,u) is a
chordless cycle ≥ i+2. The robber is on r.

Fig. 1: illustration for the proof of Theorem 1

and E(H) to denote the vertex and edge set of H, respectively. The set of vertices adjacent to v∈V in G is denoted
NG(v) and called open neighborhood of v. Let NG[v] = NG(v)∪{v} be the closed neighborhood of v. We extend
this notation for a vertex set U ⊂V to write NG[U ] = ∪u∈U NG[u] and NG(U) = NG[U ]\U . Let dG(v) = |NG(v)| be
the degree of v and ∆ denote the maximum degree among the vertices of G. If the context is clear for graph G, then
we use N(v) instead of NG(v) and similarly for N[v], N(U) and N[U ]. The graph obtained from G by removing an
edge {x,y} is denoted G\{x,y}; the result of removing a vertex v and all adjacent edges is denoted G\{v}. Like
above, we extend this to denote removing sets of vertices or edges. For U ⊂V , the subgraph of G induced by U is
denoted as G[U ]. It can be obtained as the result of removing from G the vertices in V \U , denoted by G\ (V \U).
Given two paths P = (p1, . . . , pk) and Q = (q1, . . . ,qr), we denote their concatenation by (P,Q) the path induced
by V (P)∪V (Q); to make descriptions more concise, we omit the detail of reversing P or Q if necessary.

2 A detour through Cops and Robber games

In this section, we study the cops and robber games introduced by Winkler and Nowakowski [41], independently
defined by Quilliot [43]. Given a graph G, a player starts by placing k ≥ 1 cops on some vertices of G, then a
visible robber is placed on one vertex of G. Alternately, the cop-player may move each cop along one edge, and
then the robber can move to an adjacent vertex. The robber is captured if, at some step, a cop occupies the same
vertex.

Aigner and Fromme introduced the notion of cop-number of a graph G, i.e., the fewest number of cops cn(G),
such that there exists a strategy for the cop-player that assures to capture the robber whatever he does [7]. A
long standing conjecture due to Meyniel states that cn(G) = O(

√
n) for any n-vertex graph G [29]. To tackle this

question, many researchers have focused on particular graph classes and provided many nice structural results
(see the recent book [17]). For any n-vertex graph G, cn(G) = O( n

2(1−o(1))
√

logn ) [38,46], cn(G) ≤ 3 in any planar

graph G [7], cn(G)≤ 3+ 3
2 g in any graph G with genus at most g [45], cn(G) = O(m) in any graph G excluding

a m-edge graph as a minor [9], etc. Bounded hyperbolicity graphs have been considered in [19]. The cop number
of graphs with minimum degree d and smallest induced cycle (girth) at least 8t− 3 is known to be Ω(dt) [29].
Strangely, little is known related to the largest induced cycle (chordality): in [7], it is shown that cn(G) ≤ 3 for
any 2-connected 5-chordal graph G. In this section, we consider the class of k-chordal graphs.

Theorem 1 Let k≥ 3. For any k-chordal connected graph G, cn(G)≤ k−1, and there exists a strategy where all
k−1 cops always occupy a chordless path except for the move that captures the robber.

Proof Let v ∈V be any vertex and place all cops at it (see in Fig. 1(a)). Then, the robber chooses a vertex. Now, at
some step, assume that the cops are occupying {v1, · · · ,vi} which induce a chordless path, i ≤ k−1, and it is the
turn of the cops (initially i = 1). Let N =

⋃
1≤ j≤i N[v j], if the robber occupies a vertex in N, it is captured during

the next move. Else, let R 6= /0 be the connected component of G\N occupied by the robber. Finally, let S be the
set of vertices in N that have some neighbor in R. Clearly, since R is non-empty, so is S.

Now, there are two cases to be considered.
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– If N(v1)∩S⊆
⋃

1< j≤i N[v j]. This case may happen only if i > 1. Then,“remove” the cop(s) occupying v1. That
is, the cops occupying v1 go to v2. Symmetrically, if N(vi)∩S ⊆

⋃
1≤ j<i N[v j], then the cops occupying vi go

to vi−1. Then, the cops occupy a shorter chordless path while the robber is still restricted to R.
– Otherwise, there is u ∈ (N(v1)∩ S) \ (

⋃
1< j≤i N[v j]) and v ∈ (N(vi)∩ S) \ (

⋃
1≤ j<i N[v j]). First, we show that

this case may happen only if i < k−1. Indeed, let P be a shortest path between such u and v with all internal
vertices in R (possibly, P is reduced to an edge). Such a path exists by definition of S. Then (v1, · · · ,vi,v,P,u)
is a chordless cycle of length at least i+2 (See in Fig. 1(b)). Since G is k-chordal, this implies that i+2≤ k.
Then one cop goes to vi+1 := v while all the vertices in {v1, · · · ,vi} remain occupied. Since v ∈ S, it has some
neighbor in R, and then, the robber is restricted to occupy R′, the connected component of G\(N∪N[v]) which
is strictly contained in R.

Therefore, proceeding as described above strictly reduces the area of the robber (i.e., R) after < k steps, R decreases
progressively and the robber is eventually captured. ut

Note that previous Theorem somehow extends the model in [24], where the authors consider the game when
two cops always remaining at distance at most 2 from each other must capture a robber. It is possible to improve
the previous result in the case of 4-chordal graphs, i.e. k = 4. In the following theorem, we prove that cn(G) ≤ 2
for any 4-chordal connected graph G.

Theorem 2 For any 4-chordal connected graph G, cn(G) ≤ 2 and there always exists a winning strategy for the
cops such that they are always at distance at most one from each except for the move that captures the robber.

Proof Initially, place the cops on any two adjacent vertices. At some step of the strategy, let us assume that the
cops are on two adjacent vertices a and b (or a = b) and it is the turn of the cops. If the robber stands at some
vertex in N = N[a]∪N[b], then it is captured during the next move. Hence, let R be the connected component of
G\N where the robber stands. Let S ⊆ N be the set of the vertices adjacent to a or b and at least one vertex of R,
i.e., S is an inclusion-minimal separator between {a,b} and R.

We will prove that there is z ∈ {a,b} and a vertex c in S∩N(z), such that, S ⊂ N[z]∪N[c] = N′. Since c ∈ S,
N(c)∩V (R) 6= /0. Hence, if the cops move from a,b to c,z, which can be done in one step, then the robber is
constrained to occupy a vertex of R′ where R′ is the connected component of G\N′ which is strictly contained in
R. Note that, R′ is a proper subgraph of R. Iterating such moves, the robber will eventually be captured.

It remains to prove the existence of z ∈ {a,b} and c ∈ S∩N(z), such that, S⊆ N[z]∪N[c].

– If there is z ∈ {a,b} such that S⊆ N[z], then any vertex in N(z)∩S satisfies the requirements.
– Else, let c ∈ S \N(b) (such a vertex exists because otherwise we would be in the previous case). Clearly,

S∩N(a) ⊆ N[a]∪N[c]. Now, let x ∈ S \N(a). By definition of S, there is a path P from x to c with internal
vertices in R. Moreover, all internal vertices of P are at distance at least two from a and b; also c is not adjacent
to b and x is not adjacent to a. Hence, considering the cycle a,b,x,P,c, there must be an edge between x and c
because G is 4-chordal. So S\N(a)⊂ N(c). Therefore, S = (S∩N(a))∪ (S\N(a))⊆ N[a]∪N[c].

The bound provided by this theorem is tight because of the cycle with 4 vertices. ut

Theorem 1 relies on chordless paths P in G such that N[V (P)] is a separator of G, i.e., there exist vertices a
and b of G such that all paths between a and b intersect N[V (P)]. In the next section, we show how to adapt this
to compute particular tree-decompositions.

3 Structured Tree-decomposition

In this section, we present our main contribution, that is, an algorithm that, given a n-vertex graph G and an integer
k ≥ 3, either returns an induced cycle of length at least k+ 1 in G or computes a tree-decomposition of G. First,
we need some definitions.

A tree-decomposition of a graph G = (V,E) is a pair ({Xi|i ∈ I},T = (I,M)), where T is a tree and {Xi|i ∈ I}
is a family of subsets, called bags, of vertices of G such that (1) V =

⋃
i∈I Xi; (2) ∀{u,v} ∈ E there is i ∈ I such

that u,v ∈ Xi; and (3) ∀v ∈V , {i ∈ I|v ∈ Xi} induces a (connected) subtree of T . The width of a tree-decomposition
is the size of its largest bag minus 1 and its `-width is the largest distance between two vertices of a bag of a
tree-decomposition. The treewidth [44] denoted by tw(G) (resp., tree-length [27] denoted by tl(G)) of a graph G
is the minimum width (resp., `-width), over all possible tree-decompositions of G.
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Let k ≥ 2. Let us define a k-super-caterpillar as a graph that has a dominating set, called backbone, which
induces a chordless path of order at most k− 1. That is, any vertex of a k-super-caterpillar either belongs to the
backbone or is adjacent to a vertex of the backbone. A tree-decomposition is said to be k-good if each of its bags
induces a k-super-caterpillar. Clearly, the width of a k-good tree decomposition is at most O(k∆) and its `-width
is at most k.

Theorem 3 Given an m-edge-graph G and an integer k ≥ 3, there is a O(m2)-algorithm which:

– either returns an induced cycle of length at least k+1;
– or returns a k-good tree-decomposition of G.

Proof The proof is by induction on |V (G)| = n. We prove that either we find an induced cycle larger than k, or
for any chordless path P = (v1, . . . ,vi) with i ≤ k− 1, there is a k-good tree-decomposition for G with one bag
containing NG[V (P)]. Note that the later case does not mean that a large induced cycle does not exist. Obviously,
it is true if |V (G)|= 1. Now we assume that it is true for any graph G with n′ vertexs, 1≤ n′ < n, and we show it
is true for n-vertex graphs.

Let G be a connected n-vertex graph, n > 1. Let P = (v1, . . . ,vi) be any chordless path with i ≤ k− 1 and let
N = NG[V (P)] and G′ = G\N. There are three cases to be considered:

Case 1. Let G′ = /0. In this case, we have V (G) = N. The desired tree-decomposition consists of one node, correspond-
ing to the bag N.

Case 2. Let G′ be disconnected. Let C1, . . . ,Cr, r ≥ 2, be the connected components of G′ For any j ≤ r, let G j be
the graph induced by C j ∪N. Note that any induced cycle in G j, for any j ≤ r, is an induced cycle in G. By
the induction hypothesis, either there is an induced cycle C larger than k in G j, then C is also an induced
cycle larger than k in G, or our algorithm computes a k-good tree-decomposition T D j of G j with one bag X j
containing N. To obtain the k-good tree-decomposition of G, we combine the T D j’s, for j ≤ r, by adding a
bag X = N adjacent to all the bags X j for j = 1, . . . ,r. It is easy to see that this tree-decomposition satisfies our
requirements.

Case 3. Let G′ be connected. We consider the order of the path P = (v1, . . . ,vi). In the following proof, first we prove
that if the order of path P, i = k− 1, then we can find either an induced cycle larger than k or the required
tree-decomposition for G. Subsequently, we prove it is also true for path with order i < k− 1 by backward
induction on i. More precisely, if i < k− 1, either we find directly the desired cycle or tree-decomposition,
or we show that there exists a vertex vi+1 such that P∪{vi+1} induces a chordless path P′ of order i+ 1. By
backward induction on i we can find either an induced cycle larger than k or a k-good tree-decomposition of
G with one bag containing NG[V (P′)]⊇ NG[V (P)].
(a) If i = k−1, then we consider the following two cases.

– Assume first that there is u ∈ NG(V (P))∪{v1,vi} (in particular, u /∈ P \ {v1,vi}) such that NG(u) ⊆
NG[V (P)\{u}] (See in Fig. 2(a)). Let G̃ = G\{u}. Then G̃ is a graph with n′ = n−1 vertices. By the
induction hypothesis on n′ < n, the algorithm either finds an induced cycle larger than k in G̃, then it is
also the one in G; Otherwise our algorithm computes a k-good tree-decomposition T̃ D of G̃ with one
bag X̃ containing NG̃[V (P)\{u}]. To obtain the required tree-decomposition of G, we just add vertex
u into the bag X̃ . The tree-decomposition is still k-good.

– Otherwise, there exist two distinct vertices v0 ∈NG(v1)\NG(V (P)\v1) and vi+1 ∈NG(vi)\NG(V (P)\
vi) and there are vertices u1,u2 ∈V (G′) (possibly u1 = u2) such that {v0,u1} ∈ E(G) and {vi+1,u2} ∈
E(G) (See in Fig. 2(b)). If {v0,vi+1} ∈ E(G), (P,v0,vi+1) is an induced cycle with k + 1 vertices.
Otherwise, let Q be a shortest path between u1 and u2 in G′ (Q exists since G′ is connected). So
(P,vi+1,u2,Q,u1,v0) is an induced cycle with at least k+1 vertices in G.

(b) If i < k−1, we proceed by backward induction on i. Namely, assume that, for any chordless path Q with
i+ 1 vertices, our algorithm either finds an induced cycle larger than k in G or computes a k-good tree-
decomposition of G with one bag containing N[V (Q)]. Note that the initialization of the induction holds
for i= k−1 as described in case (a). We show it still holds for a chordless path with i vertices. We consider
the following two cases.

– Either there is u ∈ NG(V (P))∪{v1,vi} (in particular, u /∈ P \ {v1,vi}) such that NG(u) ⊆ NG[V (P) \
{u}]. That is, we are in the same case as the first item of (a). We proceed as above and the result holds
by induction on n.

– Or there is w ∈ (NG(v1)∪NG(vi))\V (P) such that (P,w) is chordless (i.e., the vertex w is a neighbor
of v1 or vi but not both and w /∈ NG(V (P) \ {v1,vi})). Therefore, we apply the induction hypothesis
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Fig. 2: illustration for the proof of Theorem 3

(on i) on P′ = (P,w). By the assumption on i, either our algorithm returns an induced cycle larger than
k or it computes a k-good tree-decomposition of G with one bag containing NG[V (P′)]⊇ NG[V (P)].

Now we describe the algorithm and study its complexity. Let G be an m-edge n-vertex graph with maximum
degree ∆ . Roughly speaking, the algorithm proceeds by steps. At each step, one vertex is considered and the step
takes O(m) time. We prove that at each step (but the initial one), at least one edge will be considered and that each
edge is considered at most once (but one vertex may be considered several times). This implies a time-complexity
of O(m2) for the algorithm.

The algorithm starts from an arbitrary vertex v ∈V (G) and computes the connected components C1, · · · ,C j of
G\N[v] ( j ≥ 1) in time O(m) [31]. We start with the k-good tree-decomposition for the induced graph of N[v] in
G that consists of one bag B = N[v] adjacent to, for any i≤ j, each bag Bi = {v}∪{w ∈ N(v) : N(w)∩Ci 6= /0}.
This takes time O(m).

Now, at some step of the strategy, assume that we have built a k-good tree-decomposition (T,X ) of a con-
nected subgraph G0 of G. Let C1, · · · ,C j ( j ≥ 1) be the connected components of G \G0, and, for any i ≤ j, let
Si be the set of the vertices of G0 that are adjacent to some vertex of Ci. Assume finally that, for any i ≤ j, there
is a leaf bag Bi ⊃ Si of (T,X ) where Pi = Bi \Si is a chordless path dominating Bi and has minimum number of
vertices.

For any e ∈ E(G), we say that e = {x,y} is alive if there is i≤ j such that x ∈ Si∪Ci and y ∈Ci. Note that, if
an edge is alive, such an integer i is unique. An edge that is not alive is said dead. Note also that, after the initial
step, all edges in the bag B are dead and other edges are alive.

The next step consists of the following. Choose any i≤ j and let w be any vertex of Si such that Q = Pi∪{w}
is a chordless path. (Such w exists because Pi is the dominating path with the minimum order. Suppose Pi =
{v1, . . . ,vl}. If NG(v1) \V (Pi) = /0, then the chordless path Pi \ v1 dominates Bi and has less vertices than Pi. So
NG(v1)\V (Pi) 6= /0. If any w ∈ NG(v1)\V (Pi) is a neighbor of some vertices in Pi, then the chordless path Pi \ v1
dominates Bi and has less vertices than Pi. ) Note that by definition of Si, there is at least one edge from w to Ci and
that such an edge is alive before this step. We add the bag B′ = Q∪Bi∪ (N(w)∩Ci) adjacent to Bi. If Q is larger
than k, by the above proof, the algorithm finds a large cycle. Otherwise, the connected components C′1, · · · ,C′r of
Ci∪Bi \B′ are computed in time O(m). Let S′h, h≤ r, be the subset of the vertices of Si that are adjacent to some
vertex in C′h, and let Qh be the smallest subpath of Q dominating S′h. Computing the sets S′1, · · · ,S′r only requires a
time O(m) since we have only to check the edges in B′. For any h≤ r, add a bag B′h = Qh∪S′h adjacent to B′.

One can check that this algorithm follows the above proof and that it eventually computes the desired tree-
decomposition or returns a large cycle.

To conclude, we can check that the set of edges alive after one step is contained in the set of edges alive before
this step, and that, at each step at least one edge (the one(s) from w to Ci) becomes dead. Therefore, at each step,
the number of alive edges strictly decreases and the algorithm terminates when there are no more. Since each step
takes time O(m) and there are at most m steps, the result follows. ut

The following two theorems discuss some properties of the graphs with k-good tree decompositions.
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Theorem 4 Let G be a graph that admits a k-good tree-decomposition. Let ∆ be the maximum degree of G. Then
tw(G)≤ (k−1)(∆ −1)+2 and tl(G)≤ k.

Proof It directly follows the fact that, in a k-good tree-decomposition, each bag has a dominating path with < k
vertices. ut

Recall that a graph G has Gromov hyperbolicity≤ δ if, for any u,v,w∈V (G) and any shortest paths Puv,Pvw,Puw
between these three vertices, any vertex in Puv is at distance at most δ from Pvw ∪Puw. In the next theorem, we
prove that the Gromov hyperbolicity of the graph admitting a k-good tree-decomposition is at most b 3

2 kc.
Notice that the result given in [22] refers to the seminal hyperbolicity and does not imply our result for Gromov

hyperbolicity.

Theorem 5 Any graph G that admits a k-good tree-decomposition has Gromov hyperbolicity at most b 3
2 kc.

Proof Let G = (V,E) be a graph that admits a k-good tree-decomposition ({Xi|i∈ I},T = (I,M)). Let T be rooted
at bag X0, 0 ∈ I. For any u,v ∈ V , let us denote the distance between u and v in G by d(u,v). By definition of a
k-good decomposition, for any i ∈ I and for any u,v ∈ Xi, we have d(u,v)≤ k.

Let x,y,z ∈V and let P1,P2,P3 be any three shortest paths in G between x and y, y and z, x and z respectively.
Let u ∈ P1. To prove the Theorem, we show that there is v ∈ P2∪P3 such that d(u,v)≤ b 3

2 kc.
First, let us assume that there is i∈ I such that u∈ Xi and there is v∈ (P2∪P3)∩Xi 6= /0. In that case, d(u,v)≤ k

and the result holds.
Otherwise, let Tu be the subtree of T induced by {i ∈ I : u ∈ Xi}. Similarly, let Tx be the subtree of T induced

by {i ∈ I : x ∈ Xi} and Ty be the subtree of T induced by {i ∈ I : y ∈ Xi}. Let P be the path in T between Tx
and Ty. Note that P may be empty if V (Tx)∩V (Ty) 6= /0. Let j ∈ V (Tx)∪V (Ty)∪P that is closest to Tu in T . If
j ∈ V (Tu), then X j is a separator between x and y or x ∈ X j or y ∈ X j. If x ∈ X j or y ∈ X j, then we are in the first
case above; otherwise we have X j is a separator between x and y. Then z∈ X j or z cannot be in both the component
of G\X j containing x and of the one containing y. So one of the paths P2 or P3 should pass trough X j and we are
in the the first case again.

Assume that j /∈V (Tu), then we have that either X j is a separator between x and u or x∈X j, and that either X j is
a separator between y and u or y∈ X j. Let Pxu and Puy be the subpaths of P1 from x to u and from u to y respectively.
By remark above, there exist vertices w∈ Pxu∩X j and t ∈ Puy∩X j. Possibly, w = t. Then d(w,u)+d(u, t) = d(w, t)
because P1 is a shortest path, therefore, d(w,u)+d(u, t) = d(w, t)≤ k. So there is ` ∈ X j with d(u, `)≤ b k

2c.
Finally, let us show that there is h ∈ (P2 ∪P3)∩X j. If x ∈ X j or y ∈ X j or z ∈ X j, it is obvious. Otherwise, z

cannot be in both the component of G\X j containing x and of the one containing y, because X j separates x and y
in G. Therefore one of the paths P2 or P3 should pass trough X j.

To conclude, d(u,h)≤ d(u, `)+d(`,h)≤ b k
2c+ k ≤ b 3

2 kc. ut

From the above theorems, it is easy to get the following corollaries.

Corollary 1 Any k-chordal graph G with maximum degree ∆ has treewidth at most (k−1)(∆−1)+2, tree-length
at most k and Gromov hyperbolicity at most b 3

2 kc.

Proof By definition of k-chordal graph and Theorem 3, any k-chordal graph admits a k-good tree-decomposition.
The result follows from Theorems 4 and 5. ut

Corollary 2 There is an algorithm that, given an m-edge graph G and k ≥ 3, states that either G has chordality
at least k+1 or G has Gromov hyperbolicity at most b 3

2 kc, in time O(m2).

4 Application of k-good tree-decompositions for routing

In this section, we propose a compact routing scheme for any n-vertex graph G that admits a k-good tree-
decomposition (including k-chordal graphs). Recall that ∆ denotes the maximum degree of G and that the degree
of any v ∈V (G) is denoted as dG(v).
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4.1 Model and performance of the routing scheme

We propose a labelled routing scheme which means that we are allowed to give one identifier, name(v), of O(logn)
bits to any vertex v of G. Moreover, following [28], we consider the designer-port model, which allows us to
choose the permutation of ports (assign a label of logdG(v) bits to any edge incident to v in V (G)). Finally, to any
vertex v ∈ V (G), we assign a routing table, denoted by Table(v), where local information of O(k · log∆ + logn)
bits is stored. Any message has a header that contains the address name(t) of the destination t, three modifiable
integers pos ∈ {−1,1,2, · · · ,k−1},cnt,cnt ′ ∈ {−1,0, · · · ,∆ +1}, one bit start and some memory, called path, of
size O(k · log∆) bits. The two items start and path change only once.

Following our routing scheme, a vertex v that receives a message uses its header, name(v), Table(v) and the
port-numbers of the edges incident to v to compute its new header and to choose the edge e = {v,u} over which it
relays the message. Then, the vertex u knows that the message arrived from v. The length of the path followed by
a message from a source s ∈V (G) to a destination t ∈V (G), using the routing scheme, is denoted by |P(s, t)|, and
the stretch of the scheme is maxs,t∈V (G)(|P(s, t)|−d(s, t)) where d(s, t) is the distance between s and t in G.

To design our routing scheme, we combine the compact routing scheme in trees of [28] together with the
k-good tree-decomposition. Roughly, the scheme consists of following the paths in a BFS-tree F of G according
to the scheme in [28], and using one bag of the tree-decomposition as a short-cut between two branches of F .
Intuitively, if the source s and the destination t are ”far apart”, then there is a bag X of the tree-decomposition that
separates s and t in G. The message follows the path in F to the root of F until it reaches X , then an exhaustive
search is done in X until the message finds an ancestor y of t, and finally it follows the path from y to t in F using
the scheme of [28]. The remaining part of this Section is devoted to the proof of the next Theorem that summarizes
the performances of our routing scheme.

Theorem 6 For any n-vertex m-edge graph G with maximum degree ∆ and with a k-good tree-decomposition,
there is a labelled routing scheme R with the following properties. The scheme R uses addresses of size O(logn)
bits, port-numbers of size O(log∆) bits and routing tables of size O(k · log∆ + logn) bits. The routing tables, ad-
dresses and port-numbers can be computed in time O(m2). Except the address of the destination (not modifiable),
the header of a message contains O(k · log∆) modifiable bits. The header and next hop are computed in time O(1)
at each step of the routing. Finally, the additive stretch is ≤ 2k(dlog∆e+ 5

2 )−2dlog∆e−4.

4.2 Data structures

4.2.1 Routing in trees [28].

Since we use the shortest path routing scheme proposed in [28] for trees, we start by recalling some of the data
structures that this scheme uses. Let F be a tree rooted in r ∈ V (F). For any v ∈ V (F), let Fv be the subtree of
F rooted in v and let wF(v) = |V (Fv)| be the weight of v. Consider a Depth-First-Search (DFS) traversal of F ,
starting from r, and guided by the weight of the vertices, i.e., at each vertex, the DFS visits first the largest subtree,
then the second largest subtree, and so on. For any v ∈V (F), let IdF(v) ∈ {1, · · · ,n} be the preordering rank of v
in the DFS.

Lemma 1 For any u,v ∈V (F), v ∈V (Fu) if and only if IdF(u)≤ IdF(v)≤ IdF(u)+wF(u)−1.

For any v∈V (F) and any e incident to v, the edge e receives a port-number pF(e,v) at v as follows. Set pF(e,v)= 0
if v 6= r and e leads to the parent of v in F , i.e., the edge e is the first edge on the path from v to r. Otherwise, let
(u1, · · · ,ud) be the children of v (where d = dF(v) if v = r and d = dF(v)−1 otherwise) ordered by their weight,
i.e., such that wF(u1)≥ ·· · ≥ wF(ud). Then, let pF({ui,v},v) = i, for any i≤ d. Finally, each vertex v ∈V (F) is
assigned a routing table RTF(v) and an address `F(v) of size O(logn) bits allowing a shortest path routing in trees
(see details in [28]).

4.2.2 Our data structures.

Let G be a graph with the k-good tree-decomposition (T = (I,M),{Xi|i ∈ I}). Let r ∈V (G). Let F be a Breadth-
First-Search(BFS) tree of G rooted at r. Let T be rooted in b ∈ I such that r ∈ Xb.

We use (some of) the data structures of [28] for both trees F and T . More precisely, for any v ∈ V (G), let
IdF(v),wF(v), `F(v) and RTF(v) be defined as above for the BFS-tree F . Moreover, we add dF(v) to store the
degree of v in the tree F . Set pe,v = pF(e,v) for edges that belong to F defined as above, the ports > dF(v) will be
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assigned to edges that do not belong to F . Knowing dF(v), the ports that correspond to edges in F can be easily
distinguished from ports assigned to edges in G\E(F)≡ F .

For any v ∈ V (G), let (u1, · · · ,ud) = NF(v) be the neighborhood of v in F ordered such that IdF(u1) < · · · <
IdF(ud). We assign pei,v = dF(v)+ i, where ei = {v,ui}, for each ui in this order. This ordering will allow to decide
whether one of the vertices in NF(v) is an ancestor of a given vertex t in time O(log∆) by binary search.

For any i ∈ I, let IdT (i) and wT (i) be defined for the tree T as above. For any v ∈ V (G), let Bv ∈ I be the
bag of T containing v which is closest to the root b of T . To simplify the notations, we set IdT (v) = IdT (Bv)
and wT (v) = wT (Bv). These structures will be used to decide “where” we are in the tree-decomposition when the
message reaches v ∈V (G).

Finally, for any i∈ I, let Pi = (v1, · · · ,v`) be the backbone of Bi with `≤ k−1 (recall that we consider a k-good
tree decomposition). Let (e1, · · · ,e`−1) be the set of edges of Pi in order. Set Backbonei = (pe1,v1 , pe1,v2 , pe2,v2 , · · · ,
pe`−1,v`). For any v∈V (G) such that IdT (v) = i∈ I, if v = v j ∈ Pi, then back(v) = ( /0, j) and if v /∈ Pi, let back(v) =
(pev , j) where e = {v,v j} and v j ( j ≤ `) is the neighbor of v in Pi with j minimum. This information will be used
to cross a bag (using its backbone) of the tree-decomposition.

Now, for every v ∈ V (G), we define the address name(v) = 〈`F(v), IdT (v)〉. Note that, in particular, `F(v)
contains IdF(v). We also define the routing table of v as Table(v) = 〈RTF(v),dF(v),wT (v),Backbone(v),back(v)〉,
where Backbone(v) = Backbonei for i = Bv, i.e. the backbone of the bag containing v and closest to the root of T .

Next table summarizes all these data structures.
notation description

name(v) `F(v) the address of v in tree F [28]
IdT (v) the identifier of the highest bag Bv containing v in T
RTF(v) the routing table used of v for routing in F [28]
dF(v) the degree of v in F

Table(v) wT (v) the weight of the subtree of T rooted in Bv
Backbone(v) information to navigate in the backbone of Bv
back(v) information to reach the backbone of Bv from v

Clearly, name(v) has size O(logn) bits and Table(v) has size O(k · log∆ + logn) bits. Moreover, any edge e
incident to v receives a port-number pe,v of size O(log∆) bits.

4.3 Routing algorithm in k-good tree-decomposable graphs

Let us consider a message that must be sent to some destination t ∈ V (G). Initially, the header of the message
contains name(t), the three counters pos,cnt, cnt ′ =−1, the bit start = 0 and the memory path = /0, which stores
the backbone of the bag containing an ancestor (in F) of the destination vertex of the message. Let v ∈ V (G)
be the current vertex where the message stands. First, using IdF(t) in name(t), IdF(v) in name(v) and wF(v)
in RTF(v) ∈ Table(v), it is possible by using Lemma 1 to decide in constant time if v is an ancestor of t in F .
Similarly, using IdT (t) in name(t), IdT (v) in name(v) and wT (v) in Table(v), it is possible to decide if the highest
bag Bv containing v is an ancestor of Bt in T . There are several cases to be considered.

– If v is an ancestor of t in F , then using the protocol of [28] the message is passed to the child w of v that is an
ancestor of t in F towards t. Recursively, the message arrives at t following a shortest path in G, since F is a
BFS-tree.

– Else, if path = /0, then
– if neither Bv is an ancestor of Bt in T nor Bt = Bv, then the message follows the edge leading to the parent

of v in F , i.e., the edge with port-number pe,v = 0. Note that the message will eventually reach a vertex w
that either is an ancestor of t in F or Bw is an ancestor of Bt in T , since the message follows a shortest path
to the root r of F and Br is the ancestor of any bag in T .

– Else, an ancestor of t belongs to Bv since either Bv = Bt , or Bv is an ancestor of Bt . (This is because T is
a tree-decomposition, Bv has to contain a vertex on the shortest path from t to r in F . ) Now the goal is to
explore the bag Bv using its backbone P = (v1, · · · ,v`) (` < k), until the message finds an ancestor of t in
F .
In this case we put the message on the backbone, and then explore the backbone using Backbone(v) copied
in path in the header of the message. Using back(v) = (p, j) ∈ Table(v), pos is set to j. If p = /0 then
the message is already on the backbone. Otherwise, the message is sent over the port p. Recall that by the
definition of back(v), port p leads to v j ∈ P. The idea is to explore the neighborhoods of vertices on the
backbone, starting from v1. Note that in what follows path 6= /0 and pos 6=−1.
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– Else, if start = 0 (This is the case initially), then the message is at v = v j ∈ P and pos indicates the value of
j. Moreover, in the field path of the header, there are the port-numbers allowing to follow P. If pos > 1 then
pos = j− 1 is set and the message follows the corresponding port-number pe j−1,v j ∈ Backbone(v j) to reach
v j−1. Otherwise, start is set to 1, cnt = dF(v1) and cnt ′ = dG(v1)+1.

– Else, if start = 1, then the exploration of a bag containing an ancestor of t (or t itself) has begun. The key point
is that any ancestor w of t in F satisfies that IdF(w)≤ IdF(t)≤ IdF(w)+wF(w)−1 by Lemma 1. Using this
property, for each vertex v j of the backbone P = (v1, · · · ,v`), the message visits v j first. If v j is an ancestor of
t or v j = t then we are in the first case; otherwise the message is sent to the parent of v j in F . If v j’s parent is
an ancestor of t (or t itself) then we are in the first case; otherwise we explore NF(v j) by binary search. Notice
that the other neighbors of v j are its descendants in F , so if t has an ancestor among them, then v j also is an
ancestor of t.

– If cnt = cnt ′−1, the neighborhood of the current vertex v = v j, where j = pos, has already been explored
and no ancestor of t has been found. In that case, using path, the message goes to v j+1 the next vertex in
the backbone. Then pos is set to j+1.

– Otherwise, let pn = b cnt ′+cnt
2 c. The message takes port-number pn from v towards vertex w. If w is an

ancestor of t, we go to the first case of the algorithm. Otherwise, the message goes back to v = v j. This is
possible since the vertex w knows the port over which the message arrives. Moreover, if IdF(t)> IdF(w)+
wF(w)−1, then cnt is set to pn and cnt ′ is set to pn otherwise.

The fact that the message eventually reaches its destination follows from the above description. Moreover, the
computation of the next hop and the modification of the header clearly take time O(1).

4.4 Performance of our routing scheme

In this subsection, we give an upper bound on the stretch of the routing scheme described in previous section.

Lemma 2 Our routing scheme has stretch ≤ 2k(dlog∆e+ 5
2 )−2dlog∆e−4.

Proof Let s be the source and t be the destination. Recall the main idea of the algorithm: We route along the path
from s to r in tree F until we arrive a vertex x, whose bag Bx is an ancestor of t’s bag Bt in tree T . Then applying
binary search algorithm, we search in the bag Bx for a vertex y, which is an ancestor of t in tree F . In the end, we
route from y to t in tree F .

Because F is a BFS tree and x is an ancestor of s in F , the length of the path followed by the message from s
to x is d(s,x), the distance between s and x in G. Similarly, because y is an ancestor of t in F , the length of the path
followed by the message from y to t is d(y, t). Let track(x,y) be the length of the path followed by the message in
Bx from x to y. Therefore, the length of the path followed by the message from s to t is d(s,x)+track(x,y)+d(y,d).

From the binary search algorithm, for any vertex of the backbone, the message visits at most dlog∆e neighbors
and this causes a path of length 2dlog∆e. There are at most k− 1 vertices on the backbone of the bag Bx. The
worst case occurs when x is the neighbor of the last vertex of the backbone vl , for l ≤ k− 1, then the message
goes to the first vertex of the backbone, v1, while y is a neighbor of vl . After arriving at x, the message goes to v1,
i.e., visits l ≤ k−1 vertices, then it visits dlog∆e neighbors of each of the l ≤ k−1 vertices of the backbone and
y is the last vertex visited. Therefore, track(u,a) ≤ 2k(dlog∆e+ 1)− 2dlog∆e− 4. Then it is sufficient to prove
d(s,x)+d(y, t)≤ d(s, t)+3k.

If Bs is an ancestor of Bt , then x = s and d(s,x) = 0. Moreover, if Bt = Bx, d(y, t) = 0. Otherwise, let B be
the nearest common ancestor of Bs and Bt in the tree-decomposition T . Let Q be a shortest path between s and t.
Because the set of vertices in B separates s from t in G, let x′ be the first vertex of Q in B and let y′ the last vertex
of Q in B. Let Q = Q1 ∪Q2 ∪Q3 where Q1 is the subpath of Q from s to x′, Q2 is the subpath of Q from x′ to y′

and Q3 is the subpath of Q from y′ to t. Note that because each bag has diameter at most k, d(x′,y′)≤ k.
We first show that x ∈ B. If Bx = B, it is trivially the case. Let Px be the path followed from s to x. Since Bx

is an ancestor of B, B separates s from x. Therefore, Px ∩B 6= /0. Let h be the first vertex of Px in B. Since h ∈ B,
the highest bag containing h is an common ancestor of Bs and Bt . Therefore, when arriving at h, the message must
explore Bh. Hence, we have h = x ∈ B.

Finally, since x ∈ B, d(x,x′) ≤ k. Moreover, y ∈ Bx therefore d(y,x) ≤ k. Thus, d(y,y′) ≤ d(y,x)+ d(x,x′)+
|Q2| ≤ 2k+ |Q2|. Finally, d(s,x)≤ d(s,x′)+d(x′,x)≤ k+ |Q1| and d(y, t)≤ d(y,y′)+d(y′, t)≤ 2k+ |Q2|+ |Q3|.
Therefore, d(s,x)+d(y, t)≤ |Q1|+ |Q2|+ |Q3|+3k ≤ |Q|+3k = d(s, t)+3k. ut
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5 Conclusion and Further Work

Inspired by the study of cops and robber games on k-chordal graphs, we get a polynomial-time algorithm that,
given a graph G and k ≥ 3, either returns an induced cycle larger than k in G, or computes a k-good tree de-
composition of G. A graph with a k-good tree decomposition is proved to have bounded (O(k)) tree-length and
hyperbolicity; also its treewidth is bounded by O(k−1)(∆ −1)+2, where ∆ is the maximum degree of the graph.
Furthermore, a k-good tree decomposition is used to design a compact routing scheme with routing tables, ad-
dresses and headers of size O(k log∆ + logn) bits and achieving an additive stretch of O(k log∆). It would be
interesting to reduce the O(k · log∆) stretch due to the dichotomic search phase of our routing scheme.

Any k-chordal graph admits a k-good tree decomposition, so it has treewidth at most O(k−1)(∆ −1)+2. A
clique of size ∆ +1 is a (3-)chordal graph with treewidth ∆ . Then the bound O(k−1)(∆ −1)+2 is tight up to a
constant ratio 2. For k > 3, it would be interesting to find a better bound or to prove the tightness.

A natural problem is to find the minimum k for a given graph G such that G has a k-good tree decomposition.
The complexity of this problem is still open even for k = 2. It would also be interesting to use the k-good tree
decomposition to solve other combinatorial problems, e.g. the (connected) dominating set problem. Another in-
teresting topic concerns the computation of tree-decompositions not trying to minimize the sizes of the bags but
imposing some specific algorithmically useful structure to the bags.
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