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ON A BOLTZMANN MEAN FIELD MODEL FOR KNOWLEDGE

GROWTH

MARTIN BURGER, ALEXANDER LORZ, AND MARIE-THERESE WOLFRAM

Abstract. In this paper we analyze a Boltzmann type mean field game model for knowl-
edge growth, which was proposed by Lucas and Moll [14]. We discuss the underlying
mathematical model, which consists of a coupled system of a Boltzmann type equation for
the agent density and a Hamilton-Jacobi-Bellman equation for the optimal strategy. We
study the analytic features of each equation separately and show local in time existence
and uniqueness for the fully coupled system. Furthermore we focus on the construction
and existence of special solutions, which relate to exponential growth in time - so called
balanced growth path solutions. Finally we illustrate the behavior of solutions for the
full system and the balanced growth path equations with numerical simulations.

1. Introduction

Endogenous growth theory is based on the assumption that human capital, innovation
and knowledge are significant factors for economic growth. Understanding how innova-
tion and knowledge lead to long-term economic growth attracted a lot of interest in the
macroeconomic literature. Different models have been proposed to describe knowledge in-
crease; most of them relate innovation and/or imitation to knowledge growth. In [10, 11]
economic growth is initiated by imitation in random meetings. Koenig et al. [12] pro-
posed a decision based models, in which firms decide between ’imitation’ or ’innovation’.
Luttmer [16, 15] claims that noise and imitation lead to growth and considered a model
in which individuals are characterized by their productivity or knowledge level. Here the
cumulative distribution function describes the distribution of knowledge, which evolves
as individuals meet each other, compare ideas and improve their own knowledge level.
Individual meetings are modeled by ’collisions’ in a Boltzmann type equation for the dis-
tribution function. The interaction frequency among individual agents is assumed to be
given; agents do not decide how much time they invest in learning or working. Lucas
and Moll [14] extended this approach by modeling agents as rational individuals, which
decide between either option. Each agent’s decision is based on maximizing its individual
earnings given the distribution of all other agents with respect to their knowledge level.
The resulting system corresponds to a Boltzmann equation for the agent distribution that
is coupled to an Hamilton-Jacobi-Bellman equation for the optimal strategy. This novel
approach combines mathematical models developed in the field of kinetic equations as well
as mean field games.

Mathematical tools and methods from statistical mechanics such as kinetic theory have
become a popular and successful tool in economics and social sciences. The kinetic theory
developed by Boltzmann studies the statistical behavior of a system not in equilibrium
and has its origins in analyzing the thermodynamics of dilute gases. The Boltzmann
equation describes the evolution of the probability distribution function of molecules due
to microscopic interactions, namely the collisions between particles. In socio-economic
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applications these collisions correspond to trading events cf. [3, 8], the exchange of opinion
cf. [19, 7, 17, 18, 2, 1] or non-cooperative games, cf. [6].
In mean field models the effect of all other individuals on a single individual is replaced
by an averaged effect. In mean field game theory the dynamics of a single individual are
determined from a stochastic optimal control problems, in which the optimal strategy is
influenced by the knowledge of the distribution of all other players at all times. Mean
field game models received an increasing interest in economics, e.g. for describing the
strategic decision making processes in large player stochastic games, cf. [13, 9] in the
last years. Their general structure corresponds to a coupled system of a Fokker-Planck
equation describing the evolution of the macroscopic agent density (forward in time) and
a Hamilton-Jacobi-Bellman equation for the optimal strategy (backward in time).
Degond et al. [6] introduced a different mean-field kinetic model for rational agents that
act in a game-theoretical framework. This framework initially developed to describe herd-
ing, has been extended to model wealth evolution cf. [5] and further investigated with
respect to model predictive control, cf. [4].

In this paper we investigate existence and uniqueness of solutions to a Boltzmann mean
field game (BFMG) model for knowledge growth, with a particular focus on the construc-
tion of so called balanced growth path. The BMFG system exhibits interesting analytic
features, such as mass accumulation of agents at the maximum initial knowledge level.
Balanced growth path are special solutions, for which the cost function, here the overall
production, grows exponentially in time. We discuss and identify specific assumptions and
conditions, which allow for the existence of such solutions and illustrate the behavior with
numerical simulations.
This paper is organized as follows: in section 2 we present the Boltzmann mean field game
model of Lucas and Moll and discuss specific modeling assumptions. Section 3 focuses
on the separate analysis of the Boltzmann and the Hamilton-Jacobi-Bellman equation as
well as the coupled system. In section 4 we discuss the existence of balanced growth path
solutions. We conclude by presenting various numerical examples to illustrate the behavior
of the proposed model in section 5.

2. A Boltzmann type model for knowledge growth

Lucas et al. [14] studied the following scenario: consider an economy or society with a
constant number of interacting agents, which are characterized by their knowledge level.
Agents can decide how much time they devote to working (by producing goods with the
knowledge the already have) and how much to learning (by exchanging ideas with oth-
ers). Each agent is characterized by its knowledge level z ∈ I and the fraction of time
s = s(z, t) : I × [0, T ] → [0, 1] it devotes to learning. The interval I may correspond to
the positive real line, i.e. I = R

+, or the bounded interval with maximum knowledge level
z̄, i.e. I = [0, z̄]. The function f = f(z, t) describes the distribution of the agents with
respect to their knowledge z and time t. We assume that each agent has one unit of time,
hence the time devoted to working corresponds to 1− s(z, t).

The evolution of the distribution f = f(z, t) is modeled by a Boltzmann type approach;
individuals meet (i.e. collide) and exchange ideas and knowledge. Lucas and Moll proposed
the following minimal interaction law to model knowledge increase. If two individuals with
knowledge levels z and z′ meet, their post-collision knowledge corresponds to

z = max(z, z′), (1)
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i.e. the agent with the lower knowledge level matches its level with the other. Based on
(1), the evolution of all agents f = f(z, t) can be described by the following Boltzmann
type equation:

∂tf(z, t) = −α(s(z, t))f(z, t)

∫ z̄

z
f(y, t)dy + f(z, t)

∫ z

0
α(s(y, t))f(y, t)dy (2a)

f(z, 0) = f0(z). (2b)

The function α = α(s(z, t)) : [0, 1] → [0, 1] denotes the learning function, i.e. the interac-
tion probability of an individual with knowledge level z. We assume that the initial distri-
bution of all agents f0 = f0(z) is a probability distribution, i.e. it satisfies

∫

I
f0(z) dz = 1

and f0(z) ≥ 0 for all z ∈ I. Note that equation (2) can be written in terms of the Heaviside
function H = H(z), namely

∂tf(z, t) = −α(s(z, t))f(z, t)((1 −H) ∗ f) + f(z, t)(H ∗ (αf)). (3)

Another reformulation of (3) is based on the cumulative distribution function (CDF)
F (z, t) =

∫ z
0 f(x, t) dx and reads as

∂tF (z, t) = −[1− F (z, t)]

∫ z

0
α(s(x, t))f(x, t)dx. (4)

We assume that the working and learning time is directly related to the individual benefit;
more precisely that the earnings y = y(z, t) of an agent with knowledge level z correspond
to the product of the time the individual spends on working, i.e. 1 − s(z, t), times its
knowledge level z. Hence we have

y(z, t) = (1− s(z, t))z. (5)

The per-capita production illustrates the total earning in a society and is given by

Y (t) =

∫

I

(1− s(z, t))zf(z, t) dz. (6)

Based on the per-capita production each agent wants to maximize its earnings (discounted
by a given temporal discount factor r ∈ R

+), by choosing an optimal partition of its
working respectively learning time. Then the optimal ratio of working to learning time (a
quantity related to the work-life balance), is determined by the solution s = s(z, t) of the
optimal control problem

V (x, t′) = max
s∈S

[
∫ T

t′

∫ z̄

0
e−r(t−t′)(1− s(z, t))zρx(z, t)dzdt

]
,

subject to

∂tρx(z, t) = −α(s)ρx(z, t)

∫ z̄

z
f(y, t) dy + f(z, t)

∫ z

0
α(s)ρx(y, t) dy

with ρx(z, t
′) = δx. Here S denotes the set of admissible controls given by

S = {s : I × [0, T ] → [0, 1]}. (7)
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Then the optimal strategy can be calculated via the Lagrange functional

L =

∫ T

t′

∫ z̄

0
e−r(t−t′)(1− s(z, t))zρx(z, t)

−

[

∂tρx(z, t) + α(s(z, t))ρx(z, t)

∫ z̄

z
f(y, t) dy

− f(z, t)

∫ z

0
α(s(y, t))ρx(y, t) dy

]

e−r(t−t′)V (z, t) dzdt.

The optimality condition with respect to f corresponds to the Hamilton-Jacobi-Bellman
equation:

∂tV (z, t) − rV (z, t) + max
s∈S

[(1− s(z, t))z − α(s(z, t))V (z, t)((1 −H) ∗ f)

+α(s(z, t))((1 −H) ∗ (V f))] = 0.

The function V = V (z, t) denotes the value function, and represents the production level
starting from knowledge level z at time t and controlling the system until a final or infinite
time. Altogether we obtain a Boltzmann mean field game (BMFG) of the form

∂tf(z, t) = −α(S(z, t))f(z, t)((1 −H) ∗ f) + f(z, t)
(

H ∗
(
α(S(z, t))f

))

, (8a)

∂tV (z, t) − rV (z, t) = − [(1− S(z, t))z − α(S(z, t))V (z, t)((1 −H) ∗ f)

+ α(S(z, t))((1 −H) ∗ (V f))] ,
(8b)

S(z, t) = argmax
s∈S

[(1− s(z, t))z − α(s(z, t))V (z, t)((1 −H) ∗ f)

+ α(s(z, t))((1 −H) ∗ (V f))] ,
(8c)

f(z, 0) = f0(z), (8d)

V (z, T ) = 0. (8e)

Lucas and Moll refer to α = α(s) : [0, 1] → R
+ as the learning technology function, which

may have the form

α(s) = α0s
n, n ∈ [0, 1). (9)

We conclude this section by stating three special modeling situations, which we shall
discuss and analyze later.

2.1. Symmetric meetings. In the initial model only one party in the interaction/collisions
gains knowledge, the other one has no benefit. To capture symmetric meetings Lucas and
Moll propose a modified Boltzmann type equation of the form

∂tf(z, t) =− f(z, t)

∫ ∞

z
[α(s(z, t)) + βα(s(y, t))]f(y, t)dy

+ f(z, t)

∫ z

0
[α(s(y, t)) + βα(s(z, t))]f(y, t)dy,

(10)

where β ∈ [0, 1] encodes the probability to learn from each other. The case β = 0
corresponds to the original model, β = 1 to perfectly symmetric meetings.

2.2. Special case: α = α0 ∈ R
+. Let us consider the BMFG model (8) with a given

constant learning function α = α0 ∈ R, i.e. n = 0 in (9). Note that in this case the value
function V = V (z, t) is positive by definition and that f = f(z, t) is non-negative for all
times if f(z, 0) ≥ 0. Then the maximum of

((1− s(z, t))z + α0 (V (z, t)((1 −H) ∗ f) + ((1 −H) ∗ (V f)))
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is given by s(z, t) = 0. In this case system (8) decouples and the Boltzmann type equation
(8a) can be written in terms of the cumulative distribution function F = F (z, t), i.e.

∂tF (z, t) = −α0(1− F (z, t))F (z, t). (11)

Hence the optimal strategy V = V (z, t) can be calculated independently, which also
motivates the separate analysis of the Boltzmann and the HJB equation in the next section.

2.3. Balanced growth path. Lucas and Moll postulated the existence of balanced growth
path (BGP) solutions to system (8), for which the production rate (6) grows exponentially
in time. BGPs correspond to solutions in the rescaled variables (φ, v, σ):

f(z, t) = e−γtφ(ze−γt), V (z, t) = eγtv(ze−γt) and s(z, t) = σ(ze−γt) (12)

assuming the existence of a constant γ ∈ R
+. If this is the case the production (6) can be

transformed to

Y (t) = eγt
∫ ∞

0
[1− σ(x)]xφ(x)dx.

The rescaled equations for (φ, v, σ) = (φ(x), v(x), σ(x)) read as

− γφ(x)− γφ′(x)x = φ(x)

∫ x

0
α(σ(y))φ(y) dy − α(σ(x))φ(x)

∫ ∞

x
φ(y) dy, (13a)

(r − γ)v(x) + γv′(x)x = max
σ∈Ξ

{

(1− σ)x+ α(σ)

∫ ∞

x
[v(y)− v(x)]φ(y) dy

}

, (13b)

where Ξ = {σ : R+ → [0, 1]} denotes the set of admissible controls.

3. Analysis of the Boltzmann mean field model

In this section we present a local existence result for the fully coupled Boltzmann mean
field model (8). We start with the analysis of the Boltzmann equation (2) for a given
interaction rate α = α(z, t). Then we discuss existence and uniqueness of solutions for the
Hamilton Jacobi equation and conclude the section by studying the fully coupled system.

In this section we will need the following assumptions on the initial datum f0 = f0(z):

(A1) Let f0 ∈ L∞(I) be a probability density, i.e.
∫

I
f0(z)dz = 1 and f0(z) ≥ 0 for all

z ∈ I.

3.1. Analysis of the Boltzmann equation for a given learning function α. We
start with the analysis of the Boltzmann type equation (2) for a given learning function
α = α(z, t). Hence we consider

∂tf(z, t) = −α(z, t)f(z, t)

∫ z̄

z
f(y, t) dy + f(z, t)

∫ z

0
α(y, t)f(y, t)dy, (14a)

f(z, 0) = f0(z), (14b)

on the interval I = [0, z̄].

Remark 3.1. Let us introduce the operators Gs = α(s(z, t))
∫ z̄
z f(y, t) dy and

Ls =
∫ z
0 α(s(y, t))f(y, t) dy. Then equation (14) can be written as

∂tf(z, t) = f(z, t) (Lsf(z, t)−Gsf(z, t)) .
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Note that Gs and Ls are adjoint operators, i.e. L∗
s = Gs since

(Lsf, g) =

∫ z̄

0

[
∫ z

0
α(s(y, t))f(y, t)dy

]
g(z, t)dz

=

∫ z̄

0

[
∫ z̄

y
g(z)dz

]
α(s(y, t))f(y, t)dy.

First we present a global existence result for (14) in time.

Theorem 3.2. Let (A1) be satisfied and α = α(z, t) ∈ L1(I)×L∞([0, T ]). Then equation
(14) has a global in time solution f = f(z, t) ∈ L1(I)× L∞([0, T ]).

Proof. Let T > 0 be given, ᾱ := maxα and A the following closed subset:

A = {g ∈ C([0, T ], L1(I)), g ≥ 0, ‖g(·, t)‖1 ≤ a},

where a = c
∫
f0(y) dy. For each g ∈ A we define the operator Φ(g) as the solution of

∂tf(z, t) = −α(z, t)f(z, t)

∫ z̄

z
g(y, t) dy + f(z, t)

∫ z

0
α(y, t)g(y, t)dy, (15)

with initial data f(z, 0) = f0(z). Then the existence of a solution follows from Picard
Lindeloef by showing that the operator Φ

(a) maps A onto itself,
(b) is a contraction for T small.

A priori estimates: The change of the total mass can be estimated by

d

dt

∫

I

f(y, t) dy ≤ ᾱ‖g‖1

∫

I

f(y, t) dy.

Based on this estimate we use Gronwall to deduce that
∫

I

f(y, t) dy ≤ exp(ᾱ

∫ t

0
‖g‖1 ds)

∫

I

f0(y) dy.

Hence (a) is satisfied. To show that Φ is a contraction we consider equation (15) for two
given functions g1 and g2, gi ∈ A, i = 1, 2. Then their difference satisfies

∂t(f1 − f2)(z, t) =− α(z, t)f1(z, t)

∫ z̄

z
g1(y, t) dy + f1(z, t)

∫ z

0
α(y, t)g1(y, t) dy

+ α(z, t)f2(z, t)

∫ z̄

z
g2(y, t) dy − f2(z, t)

∫ z

0
α(y, t)g2(y, t) dy.

Using ‖f2‖1 ≤ ‖f0‖1e
aᾱT =: Kloc, for the L

1-norm of the difference, we obtain the differ-
ential inequality

∂t‖f1 − f2‖1 ≤ 2aᾱ‖f1 − f2‖1 + 2Klocᾱ‖g1 − g2‖1.

Since f1(z, 0) = f2(z, 0) we deduce, using Gronwall, that Φ is a contraction for sufficiently
small time T . Note that all constants in the local existence argument depend on the initial
mass only. Since we have mass conservation, i.e.

∫

I

f(z, t) dz =

∫

I

f0(z) dz for all t > 0,

we can iterate the local existence argument at T, 2T, . . . to obtain global existence. �

Next we show that the support of f remains bounded if the initial datum f0 has a compact
support.



A BMFG MODEL FOR KNOWLEDGE GROWTH 7

Proposition 3.1. Let α ∈ C([0, T )×I) and f = f(z, t) be a continuous solution to (14),
i.e. f ∈ C([0, T ) × I) with suppf(·, 0) ⊂ [0,M ], M < z̄. Then

supp(f(·, t)) ⊂ [0,M ] for all times t > 0.

Proof. The proof is based on the maximum principle. Let us assume there exists a point
ẑ in (M, z̄] such that f(ẑ, t) > 0. Then 0 < ∂tf(ẑ, t). But since f(z, 0) = 0 for all z > M ,
we deduce that f(z, t) = 0 for all z > M . � �

Note that Lemma 3.1 is only valid for continuous solutions. However we expect that
solutions of (14) converge to Dirac deltas as time evolves. This can be explained by the
fact that individuals with a lower knowledge level gain knowledge in each collision, but
individuals with the greater knowledge level cannot improve. Hence we conjecture the
formation of Dirac deltas at z = M , if supp(f) ⊂ [0,M ]. This can be observed in the
evolution of the first order moment, i.e.

d

dt

∫

I

zf(z, t)dz =

∫

I

[
zf(z, t)

∫ z

0
α(y, t)f(y)dy − f(z, t)

∫ z̄

z
α(z, t)f(y, t)zdy]dz

=

∫

I

f(z)

∫ z̄

z
α(y, t)f(y, t) (y − z)

︸ ︷︷ ︸

≥0

dydz, (16)

where we used the fact that Ls and Gs are adjoint operators (see Remark 3.1). Hence we
deduce that the first order moment is increasing in time. Also the mass located in the
interval (z0, z̄) is increasing, because

d

dt

∫ z̄

z0

f(z, t)dz =

∫ z̄

z0

[
∫ z

0
f(z, t)f(y, t)α(y, t)dy −

∫ z̄

z
f(z, t)α(z, t)f(y, t)dy

]
dz

=

∫ z̄

z0

[
∫ z

0
f(z, t)f(y, t)α(y, t)dy −

∫ z̄

z0

f(z, t)f(y, t)α(y, t)dy
]
dz

=

∫ z̄

z0

∫ z0

0
f(z, t)f(y, t)α(y, t)dydz ≥ 0. (17)

From the previous estimates we deduce the following theorem.

Theorem 3.3. Let α(z, t) ≥ α > 0 and z̄ ∈ supp(f), then

f(·, t)⇀∗ δz̄.

Proof. Setting z0 = 0 in equation (17) gives d
dt

∫ z̄
z0
f(z, t)dz = 0 and therefore implies mass

conservation. From (17) we deduce that

−
d

dt
F (z0, t) =

d

dt
(1− F (z0, t)) ≥ α

∫ z̄

z0

f(z, t)dzF (z0, t) = α(1− F (z0, t))F (z0, t).

This differential inequality implies that the CDF F (z0, t) → 0 for z0 < z̄ as time t → ∞.
Since we can choose z0 close to z̄ we conclude that f converges to a Dirac mass. �

Remark 3.4. Note that the formation of a Delta Dirac mass accumulates at z = z̃, where
z̃ = maxz supp(f) for compactly supported initial datum and z̃ = z̄ for positive initial data
on the bounded domain I = [0, z̄]. If f0(z) > 0 for all z ∈ R

+ the mass accumulates at
z = ∞.
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3.2. Analysis of the Hamilton-Jacobi Bellman equation. Next we study the an-
alytic behavior of the Hamilton-Jacobi-Bellman equation for a given f ∈ C(0, T, L1) on
I = R

+:

∂tV (z, t)− rV (z, t) = −max
s∈S

[(1− s(z, t))z − α(s(z, t))V (z, t)((1 −H) ∗ f)

+α(s(z, t))((1 −H) ∗ (V f))]
(18a)

V (z, T ) = 0. (18b)

We shall need the following assumption for the terminal value function in the rest of the
section:

(A2) Let the final data V (·, T ) in equation (18) be non-negative and non-decreasing.

To ensure the existence of a maximizer we need the following assumptions on the learning
function α = α(s):

(A3) Let α : [0, 1] → R
+, α ∈ C∞([0, 1]), α(0) = 0, α′(0) = ∞, α′′ < 0 and α monotone.

In the following we shall use the variable

B = −V (z, t)(1 −H) ∗ f + (1−H) ∗ (V f),

to enhance readability.

Lemma 3.5. Let assumption (A3) be satisfied, z > 0 and B ∈ R. Then there exists a
unique solution S = S(B) of the optimization problem

max
s∈S

((1− s)z + α(s)B) , (19)

with S = argmaxs∈S ((1− s)z + α(s)B).

Proof. Let β := α−1, then the problem with ζ = α(s) is equivalent to

arg max
ζ∈[0,α(1)]

z(1− β(ζ)) +Bσ

Because of the strict concavity of −β, there exists a unique solution. �

Lemma 3.6. Let assumption (A3) be satisfied, z > 0, B ∈ R and S = S(B) be the optimal
control satisfying (19) for a given B. If

lim
B→0

α′′(S(B))B3 < 0,

then the maps B → S(B), B → α(S(B)) and B → α(S(B))B are Lipschitz.

Proof. We distinguish between the following three cases:
Case 1: If B < 0, then s = 0.
Case 2: If B > z

α′(1) and since α is concave we deduce that

z(1− s) +Bα(s) ≤ z(1− s) +Bα(1) +Bα′(1)(s − 1)

= Bα(1) + (1− s)(z −Bα′(1)) < Bα(1).

Hence the maximum is attained at s = 1.
Case 3: If 0 < B < z

α′(1) let α′(s) = d
dsα(s) and α

′′(s) = d2

ds2α(s). In this case there exists

a unique solution of d
dsα(s) =

z
B , which gives the maximum. Furthermore we have that

d2

ds2
α(s)s′(B) = −

z

B2
⇒ s′(B) = −

z

B2α′′(s)
,

and
d

dB
α(s) =

d

ds
α(s)s′(B) = α′(s)s′(B) =

z

B
s′(B) = −

z2

B3α′′
= −

α′3

zα′′
. (20)
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Because limB→0−B
3α′′(B) > 0, we conclude that S is piecewise continuously differen-

tiable. Since

lim
B→0

−B2α′′(B) = ∞,

we deduce that S′(B) → 0 as B → 0. Hence we have continuity at B = 0 and B = A
α′(1) ,

Lipschitz continuity follows for S(B). The same is true for α(S)B. �

Lemma 3.7. Let assumption (A2) be satisfied. Then the value function V (·, t) solving
(18) is non-negative and non-decreasing for all times t ∈ [0, T ).

Proof. Equation (18) can be written as

∂tV (z, t)− rV (z, t) = −(1− S(z, t))z

− α(S(z, t))

[∫ ∞

z
V (y, t)f(y, t)dy − V (z, t)

∫ ∞

z
f(y, t)dy

]

.
(21)

In a minimum point z0 we have

∂tV (z0, t)−rV (z0, t) ≤ −(1−S(z0, t))z0−α

[

V (z0, t)

∫ ∞

z0

f(y, t)dy − V (z0, t)

∫ ∞

z0

f(y, t)dy

]

.

Since this inequality is backwards, it preserves non-negativity.
Calculating the derivative of equation (21) with respect to z, we obtain

∂tVz(z, t) − rVz(z, t) = Sz(z, t)z + S(z, t) − 1

− α′(S(z, t))Sz(z, t)B + α(S(z, t))Vz(z, t)

∫ ∞

z
f(y, t)dy.

Using α′ = z/B, it follows that

∂tVz(z, t)− rVz(z, t) = S(z, t)− 1 + α(S(z, t))Vz(z, t)

∫ ∞

z
f(y, t)dy.

Since S ≤ 1 we deduce that Vz stays non-negative. �

Lemma 3.8. Let assumption (A2) be satisfied. Then B(·, t) is non-increasing and the
maximizer S(·, t) is non-increasing for all times t ∈ [0, T ). Moreover the function S(·, t)
is strictly decreasing on the interval where 0 < S(·, t) < 1, except in the degenerate case
of B(0, t) = 0. Then S(z, t) = 1 for small z.

Proof. We have already seen above that B(z, t) ≥ 0 and

Bz = −Vz(z, t)

∫ ∞

z
f(y, t)dy ≤ 0.

If B(0, t) = 0, then S(z, t) = 1 for all z. Otherwise B(0, t) > 0, so B > z
α′(1) and

therefore the maximizer S(z, t) is equal to 1 for small z. If 0 < B < z
α′(1) , we have

S(z, t) = (α′)−1
(
z
B

)
. Since α is strictly concave, S(z, t) is strictly decreasing. �

The previous results lead to the following existence and uniqueness theorem for the
Hamilton-Jacobi-Bellman equation.

Theorem 3.9. Let f ∈ C(0, T, L1) be given and α = α(s, t) satisfy assumption (A3).
Then there exists a unique solution V ∈ C(0, T, L∞) of (18) with V (z, T ) = 0. Moreover,

let Ṽ be a solution of (18) with f̃ , then there exist constants m and D (independent of Ṽ

and f̃) such that

‖V − Ṽ ‖∞ ≤ Demt‖f − f̃‖C(0,T,L1)‖Ṽ ‖∞. (22)



10 M. BURGER AND A. LORZ AND M.T. WOLFRAM

Proof. The proof is based on the following statements:

(i) V → B(V, f) = (1−H) ⋆ (V f)− V (1−H) ⋆ f is Lipschitz on the spaces given.
(ii) B(V ) → S and B(V ) → α(S)B are Lipschitz because of Lemma (3.6).

Then equation (18) is of the form

∂tV = R(V ),

with R Lipschitz and we can conclude the proof with Picard-Lindeloef. For the difference
V − Ṽ we obtain

∂t(V − Ṽ ) = R(V )− R̃(Ṽ ) = R(V )−R(Ṽ ) +R(Ṽ )− R̃(Ṽ ).

Since the estimate ‖B(Ṽ , f) − B(Ṽ , f̃)‖∞ ≤ ‖Ṽ ‖∞‖f − f̃‖C(0,T,L1) holds, we can show
that

‖R(Ṽ )− R̃(Ṽ )‖ ≤ K‖f − f̃‖‖Ṽ ‖∞

with K independent of Ṽ , f, f̃ . Therefore we conclude

‖V − Ṽ ‖∞ ≤ Demt‖f − f̃‖C(0,T,L1)‖Ṽ ‖∞.

�

3.3. Analysis of the fully coupled Boltzmann mean field game system. We show
existence and uniqueness of the fully coupled system using a fixed-point argument.
Because of the term (1− s)z, we expect linear growth of V in z. Therefore we are looking
for a solution in the space C(0, T, L∞

1+z(R
+)), where

W∞ := L∞
1+z(R

+) := {u = (1 + z)w|w ∈ L∞(R+)} with ‖u‖L∞

1+z
:= ess sup

|u(z)|

1 + z
.

To compensate we use a weighted L1-norm for f :

W 1 := L1
1

1+z

(R+) := {u =
w

1 + z
|w ∈ L1(R+)} with ‖u‖L1

1
1+z

:=

∫

|u(z)|(1 + z) dz.

First we state two lemmas, which provide the necessary estimates and bounds for the local
existence proof.

Lemma 3.10. Let the initial datum f0 = f0(z) satisfy assumption (A1) and the learning
function α = α(s) assumption (A3). Then every solution f = f(z, t) to (3) has a bounded
first order moment.

Proof. We reiterate from (16) that

d

dt

∫

I

zf(z, t) dz ≤

∫

I

f(z)

∫ ∞

z
α(y, t)f(y, t)y dydz ≤ ᾱ

∫

I

f(y, t)y dy.

This gives an exponential bound for the first order moment. �

Lemma 3.11. Let V = V (z, t) be a solution to (8b). Then V is bounded in L∞
1+z(R

+).

Proof. Dividing equation (8b) by 1 + z and changing t to −t, we obtain

∂t
V

1 + z
≤ r

V

1 + z
+

z

1 + z
+

1

1 + z
αB(V, f)

and

B(V, f) ≤

∫ ∞

z
(V f)(x)dx ≤ ‖V ‖W∞‖f‖W 1 ≤ C‖V ‖W∞eKt.

This implies

∂t
V

1 + z
≤ r

V

1 + z
+

z

1 + z
+

1

1 + z
ᾱ‖V ‖W∞CeKt.

�
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Theorem 3.12. Let assumptions (A1)-(A3) be satisfied. If lims→0
(α′)3

α′′ < ∞, then the
fully coupled Boltzmann mean field game system (8) on I = R

+ has a unique local in time
solution.

Proof. For local existence, we take a g ∈ C(0, T, L1
1

1+z

(R+)) and solve

∂tV (z, t) − rV (z, t) = −max
s∈S

[(1− s(z, t))z − α(s(z, t))B(V, g)] , (23)

for V and S. Then we solve

∂tf(z, t) = −α(S(z, t))f(z, t)((1 −H) ∗ f) + f(z, t)
(

H ∗
(
α(S(z, t))f

))

, (24)

for f . Let Ψ denote the operator mapping g to f . We show that Ψ is a contraction by
considering two solutions g and g̃. Taking the difference of equation (23) for g and g̃ gives

∂t(V − Ṽ ) = r(V − Ṽ ) + z(S − S̃)− (α(S)B(V, g) − α(S̃)B(Ṽ , g̃)).

To show that the second term on the RHS is Lipschitz, we calculate S′(B) = − z
B2α′′

=

− (α′)2

zα′′ . Similarly for the third term on the RHS we deduce that

d

dB
(αB) = α′(S)S′(B)B + α = zS′ + α = −

(α′)2

α′′
+ α.

Since both derivatives are bounded we obtain

∂t(V − Ṽ ) ≤ r(V − Ṽ ) +K|(B(V, g)−B(Ṽ , g̃)|.

Let us consider the last term only. Due to the structure of B, i.e. B(V, g) = (1 − H) ⋆
(V g) − V (1 − H) ⋆ g, we work on the part (1 − H) ⋆ (V g) only. The other part can be
estimated using similar arguments. We deduce that

(1−H) ⋆ (V g)− (1−H) ⋆ (Ṽ g̃) = (1−H) ⋆ [(V − Ṽ )g + Ṽ (g − g̃)]

=

∫ ∞

z
(V − Ṽ )g dx+

∫ ∞

z
Ṽ (g − g̃) dx

≤ ‖V − Ṽ ‖W∞‖g‖W 1 + ‖Ṽ ‖W∞‖g − g̃‖W 1 .

(25)

This implies the following inequality:

∂t(V − Ṽ ) ≤ r(V − Ṽ ) + 2K‖V − Ṽ ‖W∞‖g‖W 1 + ‖Ṽ ‖W∞‖g − g̃‖W 1 .

So for
∫ T
0 ‖g − g̃‖W 1 dt small, ‖V − Ṽ ‖W∞ is small. Moreover according to Lemma (3.8),

S = S̃ = 1 for small z, so the Lipschitz constant coming from (20) is bounded. Therefore

we obtain that also the term |α(S) − α(S̃)| is small. This implies for equation (23) that

‖f − f̃‖W 1 ≤ a‖g − g̃‖W 1 with a < 1 for T small enough. Hence the operator Ψ is a
contraction, which concludes the proof. �

4. Balanced growth paths

In this section we discuss the existence of balanced growth path solutions and the con-
vergence behavior towards them. Balanced growth paths correspond to solutions (φ, v, σ)
for which the production function (6) grows exponentially in time. We reiterate that
the rescaled equations for the Boltzmann mean field game (8) in the variables (φ, v, σ) =
(φ(x), v(x), σ(x)) with

f(z, t) = e−γtφ(ze−γt), V (z, t) = eγtv(ze−γt) and s(z, t) = σ(ze−γt) (26)
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read as

−γφ(x)− γφ′(x)x = φ(x)

∫ x

0
α(σ(y))φ(y) dy − α(σ(x))φ(x)

∫ ∞

x
φ(y) dy (27a)

(r − γ)v(x) + γv′(x)x = max
σ∈Ξ

{

(1− σ)x+ α(σ)

∫ ∞

x
[v(y)− v(x)]φ(y) dy

}

(27b)

where Ξ = {σ : R+ → [0, 1]} denotes the set of admissible controls. A necessary pre-
requisite for the existence of BGP solutions is the assumption that the initial cumulative
distribution function F (z, 0) has a Pareto tail, which is given by:

(A4) The productivity function F (z, 0) =
∫ z
0 f0(y)dy has a Pareto tail, i.e. there exist

constants k, θ ∈ R
+ such that

lim
z→∞

1− F (z, 0)

z−1/θ
= k. (28)

Condition (28) in the rescaled variable φ reads as:

lim
z→∞

∫∞

z φ(y) dy

z−1/θ
= k. (29)

Lemma 4.1. Let assumption (A4) be satisfied. Then F = F (z, t) has a Pareto tail with
the same decay rate θ for all times t ∈ [0, T ].

Proof. Note that we can rewrite equation (4) as

∂t[1− F (z, t)] = [1− F (z, t)]G(z, t) with G(z, t) :=

∫ z

0
α(s(x, t))f(x, t)dx.

Then the solution is given by

1− F (z, t) = [1− F (z, 0)] exp(

∫ t

0
G(z, s) ds).

Multiplication with z−1/θ yields

[1− F (z, t)]z1/θ = [1− F (z, 0)]z1/θ exp(

∫ t

0
G(z, s) ds).

For a fixed time s the function G(z, s) is monotonically increasing in z and bounded.
Hence we can pass to the limit z → ∞ and deduce that the function F (z, t) also has a
Pareto tail for all time t ∈ [0, T ]. �

Lemma 4.2. Let assumption (A4) be satisfied. Then the growth parameter γ ∈ R is given
by

γ = θ

∫ ∞

0
α(σ(y))φ(y)dy. (30)

Proof. Recall that F =
∫ z
0 f(y, t)dy satisfies (4). Using that F (z, t) = Φ(ze−γt) we deduce

that

γΦ′(x)x = [1− Φ(x)]

∫ x

0
α(σ)φ(y) dy. (31)

Dividing this equation by x−θ, passing to the limit x → ∞ and using assumption (A4),
we obtain

−γ
1

θ
k = −k

∫ ∞

0
α(σ(y))φ(y)dy,

and subsequently formula (30). �
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4.1. Existence. Next we study the existence of BGP. In the special case of α = α0 we
can show existence of solutions, for the fully coupled problem we shall provide first results
on the existence of (γ, φ) for a given (v, σ).

4.2. Special case: α = α0. We reiterate that system (27) decouples in the case of a
constant learning function α = α0 ∈ R

+. Hence we solve equation (27a) for φ = φ(z)
first. Since α is constant, we have σ = 0 and we can solve the equation (27b) for v = v(z),
giving us a global solution.

Theorem 4.3. Let assumption (A4) be satisfied and α = α0. Then there exists a unique
BGP solution (Φ, v, 0) and a scaling constant γ to (27) given by

γ = α0θ

∫

I

f0(z) dz, Φ(x) =
1

1 + kx−1/θ
.

Proof. Note that the initial datum f0 uniquely determines the scaling constant γ for the
BGP in the case of constant learning function α = α0. Since

∫

I

f0(z) dz =

∫

I

f(z) dz =

∫

e−γtφ(ze−γt) dz =

∫

φ(y) dy,

we deduce for γ that

γ = θα0

∫

φ(y) dy = θα0

∫

I

f(z, t) dz.

For α = α0 we can write equation (27a) as

− γΦ′(x)x = −α0[1− Φ(x)]Φ(x). (32)

We define Φ̃ := 1
1−Φ i.e. Φ := 1− 1

Φ̃
and obtain

xΦ̃′ = a(Φ̃− 1)

with a = α0

γ . This equation has the solution

Φ̃ = bxa + 1 and Φ =
bxa

bxa + 1
.

Since we look for solutions which have a Pareto tail we can determine the constant b from
the Pareto tail assumption (A4) and obtain

Φ =
1

1 + kx−1/θ
. (33)

In the case α = α0, the maximum on the RHS of (27b) is attained at σ = 0. In order to
solve equation (27b) with φ given and σ = 0, we consider w := vφ which satisfies

rw + γw′x = φx+ α0φ

∫ ∞

x
w dy − α0w

∫ x

0
φdy. (34)

We define W :=
∫∞

x w dy and rewrite equation (34) as

rw + γw′x = Φ′x+ α0Φ
′W − α0Φw.

This gives:

(γ − r)W ′ − γ(W ′x)′ = Φ′x+ α0(ΦW )′.

With H ′(x) = xΦ′(x), it follows that

(γ − r)W − γW ′x = H + α0ΦW +K. (35)

Equation (35) is a first order ODE withW (∞) = 0, which can be solved by considering the
solution to the homogeneous equation and then using the variation of constants method.
Hence we obtain a unique solution w, and therefore v = w/φ . �



14 M. BURGER AND A. LORZ AND M.T. WOLFRAM

For constant α we are able to prove the following results about the stability of BGPs.

Theorem 4.4. Let assumption (A4) be satisfied, α = α0 and f denote a solution to
the original BMFG problem (8). Then the rescaled density ψ = eγtf(xeγt, t) converges
pointwise to the BGP solution φ, given by (26), as t→ ∞.

Proof. The function ψ(x, t) solves

∂tψ(x, t) − γψ(x, t)− γ∂xψ(x, t)x = ψ(x, t)

∫ x

0
α0ψ(x, t) dy − α0ψ(x, t)

∫ ∞

x
ψ(x, t) dy

and therefore its primitive Ψ(x, t) :=
∫ x
0 ψ(y, t) dy satisfies

∂tΨ(x, t)− γΨ(x, t)− γx∂xΨ(x, t) = −α0[1−Ψ(x, t)]Ψ(x, t). (36)

We define U(x−1/θ, t) := x1/θ 1
k

(
1
Ψ − 1

)
i.e Ψ = 1

1+kx−1/θU
and deduce

∂tΨ = −Ψ2kx−1/θ∂tU,

∂xΨ = Ψ2kx−1/θ 1

θ

(

x−1/θ−1U + x−2/θ−1∂yU
)

,

Ψ(1−Ψ) = Ψ2kx−1/θU.

Hence we can rewrite equation (36) as

−∂tU −
γ

θ
U −

γ

θ
y∂yU = −α0U.

Since ϕ has a Pareto-tail, U solves the equation

∂tU +
γ

θ
y∂yU = 0 with U0(x) = U(x, 0) = 1.

This equation has the solution U(y, t) = U0(e
−γty), hence U(y, t) converges pointwise to

1 for t→ ∞. �

4.3. Existence for the general model. We conclude the section by proving existence
of a solution (γ, φ), which has a Pareto tail for a given (σ, v). Existence of the fully coupled
system is a challenging problem.

Theorem 4.5. Let assumption (A3) hold and σ ∈ C1([0,∞)) denote a given function,
which satisfies

σ(z) = 1 for z ∈ [0, z0], σ
′(z) ≤ 0.

Then there exists a γ ∈ R
+ and a solution φ ∈ L1([0,∞)) to equation (27a), which has a

Pareto tail.

Proof. The function σ is non-increasing and equal to 1 in the interval [0, x0], hence
α(σ(z)) = α(1) on [0, x0]. We know from the previous subsection that in the case α = α0

there exists a solution Φ = Φ(x), x ∈ [0, x0] of the form

Φ(z) =
bxa

bxa + 1
, (37)

where a = α(1)/γ on the interval [0, x0]. That way we obtain Φ(x0).
We rewrite (31) by integration by parts as

γΦ′(x)x = [1− Φ(x)]

[

Φ(x)α(σ(x)) −

∫ x

0
Φ(y)

d

dy
α(σ(y)) dy

]

(38)
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and can obtain a solution on [x0,∞) starting from Φ(x0) using Picard-Lindelöf. Next we

check that the Pareto-tail condition is satisfied. To do so we change variables to x̃ := x−1/θ

and define Φ(x) =: 1−K(x̃)x̃. The existence of the limit

lim
x→∞

1−Φ(x)

x−1/θ

is equivalent to the existence of limx̃→0K(x̃). In this new variable equation (31) reads as

K ′x̃ = −K

∫ x̃

0
α(σ̃)(Kξ)′ dξ,

where σ̃ is σ transformed in the new variable x̃. Since (Kx̃)′ is non-negative we can
estimate the integral on the right hand side

K ′x̃ ≥ −K

∫ x̃

0
ᾱ(Kξ)′ dξ = −KᾱKx̃.

Then it follows that

−
K ′

K2
≤ ᾱ and therefore K(0) ≤

K(x̃0)

1− ᾱx̃0K(x̃0)
.

Since Φ(x) → 1 for x→ ∞, we have x̃0K(x̃0) → 0 for x̃0 → 0. This means that the limit

limx→∞
1−Φ(x)

x−1/θ exists.

The proof follows by iterating between Φ and γ. For θ < 1, the derivative Φ′ is bounded.
So we obtain a fixed point (γ, φ) satisfying equations (27a) and (30). �

5. Numerical simulations

In this section we present an iterative scheme to solve (8) numerically. First we illustrate
the formation of blow-up solutions for the Boltzmann type model (8a). Then we compare
the numerical solution of our scheme with the BGP calculated using the code provided
by Lucas and Moll. For additional information on the construction of solutions and the
numerical solver for the BGP we refer to [14]. Finally we study the stability of BGP
solutions with respect to initial perturbations.

5.1. Numerical scheme. We consider a bounded domain I = [0, z̄], where z̄ denotes to
the maximum knowledge level. The spatial discretization corresponds toN logarithmically
spaced intervals. The temporal domain is split into equidistant time steps of size ∆t. Let
zi denote the i− th grid point and tk = k∆t the k-th time step. We set the initial agent
distribution to f(x, 0) = f0(x) to

f0(x) =
k

θ
x−

θ+1

θ e−kx
1
θ .

Note that in this case the cumulative distribution function of F0(z) =
∫ z
0 f0(y)dy has a

Pareto tail, i.e. assumption (A4) is satisfied. Let V (z, T ) = 0 be the terminal condition of
the optimal strategy in the iterative solver. Then the numerical results of the full model
are based on the following iterative procedure:

(1) Calculate the solution f = f(z, t) of the Boltzmann type equation (8a) by updating
the solution via an explicit in time discretization:

f(zi, tk+1) = f(zi, tk) + ∆t

[

−α(s(zi, tk))f(zi, tk)

∫ z̄

zi

f(y, tk)dy+

f(zi, tk)

∫ zi

0
α(s(y, tk))f(y, tk)dy

]

,
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Figure 1. Distribution of agents f = f(z, t) at different times starting at
t = 0 up to t = 5.

where the integrals on the right hand side are evaluated using the trapezoidal rule.
(2) Solve the Hamilton Jacobi Bellman equation (8b), by first calculating the max-

imum via the optimality conditions. Then determine the new optimal velocity
using the updated density distribution f = f(z, t) and the function s.
In particular

max
s(z)∈S

(

(1− s)z + α(s)

∫ z̄

z
(V (y, t)− V (z, t))f(y, t)dy

)

is given by
(a) z = 0: Then s = 1 since α = α(s) is a strictly monotone function.
(b) z = z̄: Then the integral is equal to zero, hence s = 0 gives the maximum.

(c) z ∈ (0, z̄): Then s = min
(

( z
α0nB

)
1

n−1 , 1
)

, hence we cut-off s if it lies outside

the interval [0, 1].
(3) Go to (1) until convergence.

5.2. Numerical simulations of the Boltzmann type equation for a given α. In
our first example we study mass accumulation in the case of compactly supported initial
data f(z, 0), cf. Lemma 3.3. We assume that the maximum knowledge level is denoted
by z̄ = 1, and choose an initial agent distribution of

f(z, 0) =

{

2 for all z ≤ 0.5

0 otherwise.

We set α = 1− z, i.e. individuals with the lowest knowledge devote all their time to ’in-
teractions’, those with the maximum knowledge do not interact at all. Figure 1 illustrates
the formation of a Dirac at z = 0.5 for symmetric and non-symmetric meetings. Note that
the lines correspond to f at different discrete time steps. Furthermore we observe that the
formation of the Dirac happens much faster in case of symmetric meetings, i.e. β = 1.



A BMFG MODEL FOR KNOWLEDGE GROWTH 17

(a) Transient vs. BGP (b) Linear growth

Figure 2. Evolution of the production function Y = Y (t) in time for
different choices of n and θ

5.3. Numerical simulations of the full Boltzmann mean field game model. Next
we compare our results with the numerical simulations of the balanced growth path solu-
tions by Lucas and Moll. We choose the same simulation parameters in (9) and (28):

α0 = 0.0849, n = 0.3, θ = 0.5, k = 0.05 and r = 0.06.

To compare the results of the two numerical solvers we fix a sufficiently large final time T ,
i.e. t ∈ [0, 200] and rescale the computational domain I using the parameter γ determined
from the BGP simulations of Lucas and Moll. The simulation results for k = 400 time
steps and N = 1001 discretization points are depicted in Figure 2(a). Note that we can
not expect the existence of BGP solutions in general. If we choose for example

α0 = 0.0849, n = 0.9, θ = 0.1, k = 0.05 and r = 0.06,

i.e. a larger value of n and a smaller value of θ then the BGP solver of Lucas and Moll
is not converging. The simulation results in Figure 2(a) reveal the reason why this is the
case. Here the production function Y = Y (t) is growing linear in time, hence the ansatz
proposed by Lucas and Moll is not satisfied.

5.4. Stability of balanced growth path. In our final example we illustrate the stability
of balanced growth path with respect to small perturbations of the initial data. We
consider a perturbation of the initial distribution of the form

fp0 (z) = f0(z) + 0.1(1 − z) sin(25πz)χ[0.1,1],

which corresponds to a perturbation on the interval [0.1, 1] that does not change the overall
mass, see Figure 3(a). Note that the initial datum still has a Pareto tail. We set α0, n, k,
θ and r to the same values as in the previous example and solve the system on the time
interval t ∈ [0, 250] using 500 equidistant time steps. Figure 3 compares the evolution of
balanced growth path for the corresponding unperturbed initial datum, with the transient
simulation. We observe that this perturbation does not change the long time behavior
of the production rate. Note that the difference of the two solutions at t = 250 can be
explained by the terminal condition V (z, t = 250) = 0 for the transient simulation.
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(a) Perturbed initial data (b) Evolution of the production rate Y

Figure 3. Stability of BGP solutions

6. Conclusion

In this paper we present first analytic results as well as numerical simulations for a novel
Boltzmann mean field game model for knowledge growth proposed by Lucas and Moll [14].
In this model the distribution of individuals with respect to the knowledge level evolves
according to a Boltzmann equation. Collisions correspond to knowledge exchange, the in-
dividual interaction rate is determined by maximizing the individual productivity (given
the common knowledge of the distribution of all other agents). This gives to a coupled
system of a Boltzmann equation and a Hamilton-Jacobi-Bellman equation. Knowledge
growth is an inherent nature of the model, which is also reflected in the analytic results.
The value function of the HJB equation is growing linearly in z, hence we can only provide
local in time existence. Balanced growth path solutions, which also correspond to expo-
nential growth of the production function in time, illustrate this nature as well - although
we are not able to provide existence results of these special solutions in a general situation,
we provide first results on their existence and stability in the case of a special interaction
function.

This summary gives indications about several open analytic problems which shall be ad-
dressed in the near future, e.g. existence and stability of BGP solutions for the fully
coupled system. Another point of interest corresponds to the generalization of the model.
For example by considering a common noise via an additional diffusion term, more general
interaction laws for knowledge growth or knowledge decay caused by forgetting informa-
tion.
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[9] M. Huang, R. P. Malhamé, P. E. Caines, et al. Large population stochastic dynamic games: closed-loop

McKean-Vlasov systems and the Nash certainty equivalence principle. Communications in Information

& Systems, 6(3):221–252, 2006.
[10] B. Jovanovic and Y. Nyarko. Learning by doing and the choice of technology. Econometrica: Journal

of the Econometric Society, pages 1299–1310, 1996.
[11] B. Jovanovic and R. Rob. The growth and diffusion of knowledge. The Review of Economic Studies,

56(4):569–582, 1989.
[12] M. König, J. Lorenz, and F. Zilibotti. Innovation vs imitation and the evolution of productivity dis-

tributions. Centre for Economic Policy Research, 2012.
[13] J.-M. Lasry and P.-L. Lions. Mean field games. Japanese Journal of Mathematics, 2(1):229–260, 2007.
[14] R. E. Lucas Jr and B. Moll. Knowledge growth and the allocation of time. Journal of Political Econ-

omy, 122(1), 2014.
[15] E. G. Luttmer. Eventually, noise and imitation implies balanced growth. Technical report, 2012.
[16] E. G. Luttmer. Technology diffusion and growth. Journal of Economic Theory, 147(2):602–622, 2012.
[17] G. Naldi, L. Pareschi, and G. Toscani. Mathematical modeling of collective behavior in socio-economic

and life sciences. Springer, 2010.
[18] L. Pareschi and G. Toscani. Wealth distribution and collective knowledge: a Boltzmann approach.

Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
372(2028), 2014.

[19] G. Toscani et al. Kinetic models of opinion formation. Communications in mathematical sciences,
4(3):481–496, 2006.

Institute for Computational and Applied Mathematics, University of Münster, Einstein-

strasse 62, 48149 Münster, Germany

E-mail address: martin.burger@wwu.de

Sorbonne Universités, UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions,

F-75005, Paris, France; CNRS, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris,

France; INRIA-Paris-Rocquencourt, EPC MAMBA, Domaine de Voluceau, BP105, 78153 Le

Chesnay Cedex

E-mail address: alexander.lorz@upmc.fr

Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sci-

ences, Altenbergerstr. 69, 4040 Linz, Austria

E-mail address: mt.wolfram@ricam.oeaw.ac.at


	1. Introduction
	2. A Boltzmann type model for knowledge growth
	2.1. Symmetric meetings
	2.2. Special case: = 0 R+
	2.3. Balanced growth path

	3. Analysis of the Boltzmann mean field model
	3.1. Analysis of the Boltzmann equation for a given learning function 
	3.2. Analysis of the Hamilton-Jacobi Bellman equation
	3.3. Analysis of the fully coupled Boltzmann mean field game system

	4. Balanced growth paths
	4.1. Existence
	4.2. Special case: = 0
	4.3. Existence for the general model

	5. Numerical simulations
	5.1. Numerical scheme
	5.2. Numerical simulations of the Boltzmann type equation for a given 
	5.3. Numerical simulations of the full Boltzmann mean field game model
	5.4. Stability of balanced growth path

	6. Conclusion
	Acknowledgments
	References

