
HAL Id: hal-01163467
https://hal.science/hal-01163467

Submitted on 12 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Large-Eddy simulation of turbulent pipe flow of
power-law fluids

P. S. Gnambode, P. Orlandi, Meryem Ould-Rouiss, Xavier Nicolas

To cite this version:
P. S. Gnambode, P. Orlandi, Meryem Ould-Rouiss, Xavier Nicolas. Large-Eddy simulation of turbulent
pipe flow of power-law fluids. International Journal of Heat and Fluid Flow, 2015, 54, pp.196-210.
�10.1016/j.ijheatfluidflow.2015.05.004�. �hal-01163467�

https://hal.science/hal-01163467
https://hal.archives-ouvertes.fr


Large-Eddy simulation of turbulent pipe flow of power-law fluids.

P.S. Gnambode, P. Orlandi1, M. Ould-Rouiss,∗ and X. Nicolas
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Abstract

Fully developed turbulent flows of power-law fluids in a cylindrical stationary pipe are

investigated numerically by the use of large eddy simulation (LES) for various power law index

(0.5 ≤ n ≤ 1.4) at different Reynolds numbers (4000 ≤ Res ≤ 12000). To validate the present

computations, the predictions are compared to the results reported in the archival literature for

laminar and turbulent flows. The LES predictions agree reasonably favourably with the findings

of the literature. The log-region of the mean axial velocity profile expands with increasing Res

and decreasing power-law index n. The predicted friction factor for n ≤ 1 at Res = 4000 is slightly

overestimated in comparison with Dodge and Metzner correlation, and is better interpolated

by Gomes correlation. With increasing n the apparent viscosity increases close to the wall and

decreases for y+ > 30. This implies that the turbulent fluctuations develop and are more intense

further from the wall when n > 1 and closer to the wall when n < 1. The influence of Res and n on

the higher-order statistics (skewness and flatness) is analyzed. Visualizations of the instantaneous

filtered velocity fields exhibit turbulent patterns which develop more as n increases.
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Nomenclature

Cd coefficient of the dynamic model

D pipe diameter (m)

f mean friction factor, f = 2τw/(ρU2
b )

fDM Dodge and Metzner (1959) correlation for friction factor

fG Gomes (1987) correlation for friction factor

F (v′
i) flatness factor, F (v′

i) =
〈v′4i 〉

〈v′2i 〉2

K consistency index (Pa.sn)

Lz length of the computational domain (m)

n power law index

qi generic notation for qr, qθ and qz

qr, qθ, qz variables qr = rvr, qθ = rvθ, qz = vz

Reb Reynolds number based on bulk velocity, Reb = UbD
ν

Recr critical Reynolds number between laminar and turbulent flows, Recr = 2100 (4n+2)(5n+3)
3(3n+1)2

ReMR Metzner-Reed Reynolds number ReMR =
8ρU2−n

b
Dn

K(6+2/n)n

Res simulation Reynolds number, Res =
ρU2−n

cL
Rn

K

Rew generalized Reynolds number, Rew = ρUτ D
ηw

r dimensionless coordinate in the radial direction scaled by the pipe radius

R pipe radius (m)

Sij strain rate tensor

S(v′
i) skewness factor, S(v′

i) =
〈v′3i 〉

〈v′2i 〉
3
2

ui generic notation for the dimensionless velocity components vr, vθ and vz

Ub bulk velocity (m/s)

UcL centerline axial velocity. For analytical laminar profile, UcL = (3n+1)Ub

n+1

U+ mean axial velocity in wall units, U+ = U/Uτ

Uτ friction velocity, Uτ = (τw/ρ)1/2

vr, vz, vθ dimensionless radial, axial and azimuthal velocity components

y+ distance from the wall in wall units, y+ = (1 − r)Uτ/ν

z dimensionless coordinate in the axial direction scaled by the pipe radius

Greek symbols

ηw mean apparent viscosity at the wall (m2s−1).
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η apparent viscosity, η = Kγ̇n−1

ηd,w dimensionless apparent viscosity at the wall, ηw/(ρUcLR)

γ̇ shear rate, γ̇ = (2SijSij)
1/2

γ̇d,w dimensionless shear rate at the wall, γ̇d,w = γwR/UcL

θ dimensionless angular coordinate in the circumferential direction

νt turbulent viscosity

ρ density (kg/m3)

τij subgrid stress tensor, τ̄ij = −2νtS̄ij

τw mean averaged fully-established wall shear stress, τw = D
4

∂p
∂z

Superscripts

< (.) > statistically averaged

(.)+ normalized by uτ or ηw

(̄.) filtered variable

(.)′ fluctuation component

Subscripts

c centerline

L laminar

w wall
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1 Introduction

The turbulent flows of non-Newtonian fluids are of importance in mechanical and

engineering fields. They are encountered in a variety of engineering applications, e.g.

drilling hydraulics, sewage transport, processing of mineral oil and polymer products, blood

flow in arteries, and applications involving relatively high heat transfer rates. While the

turbulence theory, the mathematical models and the numerical methods are well-advanced

for Newtonian fluids, those for non-Newtonian fluids are not as developed. Some attempts

have been made to explore the effect of the power-law index and Reynolds number on the

velocity distribution and turbulence statistics. Computational models for non-Newtonian

fluids can help to bridge the gap in the existing literature, and can contribute to developing

the general theories of the turbulent flows of non-Newtonian fluids.

Malin (1997) used a modified k− ǫ model (a low Reynolds number k− ǫ model extended

to power law fluids) to calculate the frictional resistance and the velocity profile for fully

developed laminar and turbulent flows in smooth-walled tubes. A modification of the

viscous damping that improves the predictions for non-Newtonian fluids is proposed. The

presented k − ǫ predictions are in fairly good agreement with experimental data for the

turbulent friction and the mean velocity profiles at various generalized Reynolds numbers

and different values of the power-law index n.

A more conventional and general k − ǫ model was developed by Ro Kyoungchul and

Ryou HongSun (2012) to analyze non-Newtonian fluid flows for more complex and various

engineering problems. The modified k − ǫ model is based on the standard one with wall

and damping functions including the drag reduction phenomenon. In order to validate

their modified k − ǫ model, numerical simulations are performed for shear-thinning fluids,

at different values of the flow index 0.4 ≤ n ≤ 1. The predicted friction factors and mean

axial velocity profiles agree well with the experimental results of literature (Dodge and

Metzner (1959), Escudier and Presti (1998), Ptasinski et al. (2001)), and this agreement

is much better than with the standard k − ǫ model. The proposed model also agree well

with Malin’s power law model in the simulation of blood flow. The authors indicate that

the computational time and computer resources of the modified k − ǫ model are reduced by
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about one third of those required by the low Reynolds number k − ǫ models for power-law

fluid (including Malin’s model). The authors point out that their turbulence model better

predicts the behavior of high power-law fluids.

Direct numeral simulation of turbulent pipe flows of shear-thinning fluids was carried

out by Rudman et al. (2004) for n = 0.5, 0.69 and 0.75, using a spectral element-Fourier

method, at a moderate Metzner-Reed Reynolds number (ReMR ≃ 3000 and 4000). A

similar DNS study at a higher Meztner-Reed Reynolds number (ReMR = 7500) was

conducted by Rudman and Blackburn (2012). In the log-region, the velocity profile was

shown to agree well with the experimental data by Rudman et al. (2001) and Rudman

et al. (2002). The friction factors predicted by DNS were 10% to 15% higher than those

referred to in earlier research (Dodge and Metzner correlations obtained from experiments).

The authors reported that this is most likely related to the imperfect fit of the experimental

data concerning fluids with power-law rheology. It was shown that, for a given Reynolds

number, the flow deviates further from the Newtonian profile as the power-law index n

decreases, and the results suggest that the transition to turbulence is delayed. Moreover,

the shear-thinning or thickening rheologies did not result in major changes to the nature of

the flow at ReMR = 7500.

Direct numerical simulation (DNS) and large-eddy simulation (LES) are techniques well

suited for predicting turbulent non-Newtonian fluid flows, because a detailed picture of the

turbulent structures, profiles of turbulence energy, rms and Reynolds stresses are difficult to

obtain experimentally. In DNS, numerically accurate and complete resolution of all spatial

and temporal flow scales is required and no turbulence model is used. In LES, an accurate

numerical resolution of a wide range of scales is required and only the smallest scales are

modeled using a subgrid scale (sgs) turbulence model. While DNS is clearly a very useful tool

for accurately simulating the turbulent flows, LES however can yield quantitatively accurate

predictions at a computational cost which is significantly lower than the corresponding DNS

one, since the effect of the smallest scales in LES is modeled and the mesh is relatively

coarse. Moreover, when the Reynolds number is significant, LES provides an effective tool

for predicting the effect of the flow index and Reynolds number on the turbulent fields of

non-Newtonian fluids.
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There are very few studies employing LES for non-Newtonian fluids. To predict the

turbulence features in non-Newtonian fluid flows, Ohta and Miyashita (2014) developed a

turbulence model that can reproduce the DNS results. They pointed out that constructing

a new turbulence model extended for non-Newtonian fluids would obviously be difficult,

since the new model would have to consider additional terms in the filtered Navier-Stokes

equations (i.e. it can hardly be expected to construct a turbulence model by introducing

turbulence corrections to the additional terms). Therefore, they considered a different

approach: they proposed an extended Smagorinsky model with a correction for the filter

width of the locally varying viscosity. Ohta and Miyashita (2014) performed DNS and

LES of turbulent channel flow, in two non-Newtonian fluids with the viscosity described by

both the power-law model (n = 0.85 and 1.15) and Casson’s model. By performing LES

with the Smagorinsky model as sgs model, extended according to the results of the DNS,

they evaluated the reliability of the extended sgs model. They found that it could more

accurately predict the velocity of turbulent flows of fluids described by both Casson’s model

and power-law model as compared to the standard Smagorinsky model (i.e. the results of

LES with the extended model agree more with those obtained by DNS with high resolution).

Consequently their study showed that the Smagorinsky model of non-Newtonian turbulent

flows could be universally treated via a spatial scaling of the locally varying viscosity.

Thais et al. (2010) proposed an LES approach for viscoelastic turbulent channel flows,

based upon a temporal deconvolution method (which was developed for LES of Newtonian

channel flows) for residual Newtonian stress modelling and secondary regularization for

unresolved subfilter Newtonian stress. A particular emphasis is put on the turbulent drag

reduction. Excellent agreement is obtained between temporal LES and DNS in terms of

drag reduction prediction. The first normal Reynolds stress component is exactly in line

(the agreement is even better than observed for Newtonian flows), while shear is slightly

overestimated in the near-wall region. The subfilter Reynolds stresses are marginally smaller

than observed for a Newtonian flow at a moderate level of the drag reduction, while they are

markedly smaller than observed for a Newtonian flow at a high level of the drag reduction.

Molla et al. (2012) carried out LES of a pulsatile transition-to-turbulent non-Newtonian

blood flow of arterial stenosis, within a 3D-channel, using a new consistent modelling

approach for the sgs stress. Their approach used the Cross model for the modelling of the
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molecular viscosity and the advanced dynamic non-linear sgs stress model (DNM) of Wang

and Bergstrom (2005) for the modelling of the sgs stress tensor so that both the molecular

and sgs shear stresses could be represented as non-linear functions of the strain rate tensor.

In their research, a high Womersley number (α =10.5) and a low Reynolds number (Re

= 1200), both characteristics of blood flows in large arteries of humans and animals, were

tested. The first and second order flow statistics of the velocity field were analysed. The

streamwise velocity at different downstream locations agreed with the experimental results

of Ahmed and Giddens (1983). The distributions of the other statistics (wall shear stress,

RMS of velocity fluctuations, Reynolds and sgs stresses) were plotted but they were not

compared with the results from the literature. The authors concluded that although their

preliminary results were encouraging, further future studies were necessary to prove that

their new modelling approach is an effective numerical tool for LES of non-Newtonian fluid

flows.

The above literature survey indicates that the few DNS and LES devoted to turbulent

pipe flows of power law fluids have been performed for 0.4 ≤ n ≤ 1.4 at ReMR < 7500. The

current study deals with LES of fully developed turbulent pipe flows of power-law fluids

in a cylindrical pipe. The flow index n ranges from 0.5 to 1.4, and the Reynolds number

is up to 12000. The aim of the current research is to investigate the effects of the power

law index, n, and Reynolds numbers on turbulent power law pipe flows. The LES at the

highest Reynolds number (Res = 12000) for different flow index values are new as well as

the computation of several statistics such as :

- higher-order statistics (skewness, flatness),

- cross-correlation coefficients and kinetic energy,

- correlations for the peak position of the RMS of the velocity fluctuations (with respect to

n) and of the kinetic energy.

This study is also intended to examine the effectiveness of the LES approach for predicting

the turbulent pipe flow of power-law fluids.

The paper is organized as follows: section 2 provides the governing equations and the

numerical procedure. The influence of the power law index and Reynolds numbers on

many turbulent statistics (mean velocity profiles, root mean square of fluctuating velocities,

Reynolds shear stress, high order statistics, friction factor) are discussed in section 3.
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The present LES predictions are also compared to the available results of literature for

validation. The main conclusions are found in section 4.

2 Governing equations and numerical procedure

2.1 Governing equations

The present study deals with the fully developed turbulent pipe flows of power-law fluids

in a cylindrical pipe. The dimensionless filtered governing equations for incompressible non-

Newtonian fluids, using the centerline axial velocity (UcL) of the analytical fully developed

laminar profile and the pipe radius R as velocity and length scales respectively, can be

expressed as follows:

∂ūi

∂xi
= 0 (1)

∂ūi

∂t
+

∂ūiūj

∂xj
= −

∂p̄

∂xi
+

1

Res

∂

∂xj

[
γ̇n−1

d

(
∂ūi

∂xj
+

∂ūj

∂xi

)]
−

∂τ̄ij

∂xj
(2)

The Reynolds number of the simulations is defined as Res =
ρU2−n

cL
Rn

K
. The apparent

viscosity η of the fluid is modelled by a power-law (Ostwald de Waele model) given by

η = Kγ̇n−1, where K is the consistency, n is the power-law index, and γ̇ is the shear

rate. The flow index values 0 < n < 1, n = 1 and n > 1 correspond to shear thinning

(or pseudoplastic), Newtonian, and shear thickening (or dilatant) cases respectively. The

dimensionless shear rate is defined as: γ̇d = γ̇R
UcL

. The above dimensionless equations are

written in cylindrical coordinates and in terms of the variables qr = rvr, qθ = rvθ and

qz = vz in the code to avoid the singularity at the axis pipe (r = 0). A mean pressure

gradient, at each time substep, is evaluated to balance the friction losses (the mean pressure

gradient in the qz equation maintains a constant bulk velocity).
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2.2 Dynamic eddy viscosity model

The subgrid stress tensor τ̄ij is related to the of strain rate tensor S̄ij as

τ̄ij = −2νtS̄ij = −2Cd∆
2 | S̄ | S̄ij = −2Cd∆

2[2S̄ijS̄ij]
1/2S̄ij (3)

where the turbulent viscosity νt is expressed using an eddy viscosity assumption, ∆ is the

computational filter, Cd is the model constant, and S̄ij = 1
2
[ ∂ūi

∂xj
+

∂ūj

∂xi
].

Following the model proposed by Germano et al. (1991), with modifications and

extensions provided by Lilly (1992), the coefficient of the dynamic model Cd is dynamically

determined as :

Cd = −
1

2∆2

〈LijMij〉

〈MijMij〉
, (4)

where the tensors Lij and Mij are given as follows

Lij = ˜̄qiq̄j − ˜̄qi ˜̄qj = −2Cd∆
2Mij (5)

Mij =
∆̃2

∆2
|̃ S̄ |˜̄Sij −

˜| S̄ | S̄ij (6)

Here a test filter ∆̃ larger than the grid filter ∆ which is defined as ∆ = (r∆r∆θ∆z)1/3 is

introduced. The total volume-average box filter in cylindrical coordinates is used. The ∆̃

filter width is twice in the axial and azimuthal directions in comparison to the grid filter

∆. The angle brackets, 〈 〉, denote spatial averaging procedure along the homogeneous

directions of the flow to make the subgrid-scale coefficients well conditioned, and to reduce a

large part of the spatial variations. Negative values of the turbulent viscosity are eliminated

(i.e. set to zero).

Note that in the present LES study, the standard dynamic model of Germano et al.

(1991) and Lilly (1992) is used to model the sgs shear stresses. The sgs stress tensor is thus

given as τij = −2νtS̄ij , where the sgs viscosity νt is a linear function of the shear rate | S̄ |

(cf. Eq.(3)). However, when the spatial filter is applied to the Navier-Stokes equations,
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in non-Newtonian viscous fluid flows (with spatially varying viscosity characteristics),

additional terms are derived (Ohta and Miyashita, 2014) because the stress tensor is a

non linear function of the strain rate tensor. This means that in the current LES study

with a standard dynamic model, the additional terms are ignored. Indeed, these terms are

smaller than the sgs stress : Ohta and Miyashita (2014) plotted the profiles of the sgs stress

and of the additional terms that are estimated by filtering the DNS results of Newtonian

and power-law fluids. From these profiles, they demonstrated that the additional terms

are much smaller than the sgs stress. Therefore, in their study, they concentrated on a

modification of the sgs model for the viscosity characteristics of non-Newtonian fluid and

ignored the additional terms. Moreover, the grid resolution of the present LES approaches

that of the true DNS (LES is performed with high resolution). The coarse DNS and

LES with sgs model, both performed at the same grid resolution (653), are in satisfactory

agreement (see subsection 3.2). It seems that the grid scale is finer than the dominant

scales of the flow so that it suffices to yield the right behaviour of the dominant scales (i.e.

the dynamic sgs contribution is reduced and the LES results approach those of DNS). This

provides justification for why it is reasonable to ignore the additional non linear terms in

the filtered Navier-Stokes equations.

2.3 Numerical procedures

The governing equations were discretized on a staggered grid using cylindrical coordi-

nates. The numerical integration was performed by a finite difference scheme, second-order

accurate in space and time. The time integration and the velocity-pressure coupling are

performed by the fractional step method suggested by Rai and Moin (1991) and modified

by Verzico and Orlandi (1996). In a first step, the momentum equations are solved by an

incremental factorization method of ADI type to compute a non solenoidal approximation

of the velocity field. This intermediate velocity field is not locally divergence-free but it

is globally because periodic boundary conditions are applied in θ and z directions and the

wall at r = R is impermeable. In this step, the time schemes are a third-order Runge-

Kutta explicit scheme and a Crank-Nicolson implicit scheme for the convective and diffusive

terms, respectively. In the second step, the non-solenoidal velocity field is projected onto a
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solenoidal velocity field in order to correct the pressure and velocity fields and to satisfy the

continuity equation on each cell. This projection step requires to solve a Poisson equation

for a scalar pressure increment φ. This Poisson equation is solved by Fast Fourier Trans-

forms in the two periodic directions. This implies that the grids are necessarily uniform in

the streamwise and azimuthal directions. In equation (2), the shear rate γ̇d is calculated

explicitly.

The pipe length in the streamwise direction is equal to Lz = 20R. In the radial direction,

the grid distribution is stretched (with an hyperbolic tangent function). A large computa-

tional time has been spent checking the grid and Lz independence of the results, especially

on the axial velocity profiles. Different grids have been tested for n = 0.75, 1 and 1.2 and

predictions were compared to those of the literature. The grid 65×65×65 was found to pro-

vide an accurate prediction of turbulence statistics (in agreement with the available data of

the literature) and to give a good compromise between the required CPU-time and accuracy.

In wall bounded flows, the near-wall streaks in the buffer region play an important role

in the regeneration of turbulent energy. The maximum production of turbulent kinetic

energy occurs in the inner layer. Consequently a finer mesh is required in the near-wall

region. It is well known that a wall-resolved LES needs a near-wall grid resolution of y+ ≃ 1

(which means that the first gridpoint is located within the viscous sublayer) to capture the

dynamically dominant streak-like vortical structures in the viscous and buffer regions. For

present LES, the mesh with 65 nodes in the radial direction has a grid resolution of y+
1 < 1

for the first grid cell adjacent to the wall (see table 1 and the following discussion). That

means that the flow simulation is able to capture accurately the major part of the eddies

that contribute to the momentum transport.

The two-point correlations of the fluctuating streamwise velocity along the axial and

azimuthal directions provide information about the flow structures and whether the pipe

length is sufficient to capture the largest eddies in the flow. In a previous work (Redjem,

Phd Thesis, 2008), we shew that the computational domain Lz = 15R is large enough

to simulate the largest structures for n = 1 (Newtonian fluid flow) at Re ≃ 5000. The

computational domain in the periodic directions was not only large enough to capture the

largest eddies of the flow, but also sufficient for the scalar field (i.e. to simulate the largest

thermal structures). In the present LES, Lz = 20R was fixed in all simulations. When the
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length is increased to Lz = 20R, a convergence to the statistical steady state is reached

for n > 0.69. In these cases, the results are obtained in a reasonably long pipe, rather

than spending a large computational time checking the independence of the two-point

correlations on Lz. For n ≤ 0.69, the pipe length is also considered large enough even

though the statistics are less good.

Rudman et al. (2004) performed DNS runs on a domain lengths equal to 4πD for various

n. Because their simulation for n = 0.5 was in transitional regime, they also performed

a DNS for n = 0.5 on a domain length equal to 8πD. However, they observed that the

average flow results of both DNS are very similar and still transitional for both domain

lengths. The main difference is in the axial turbulence intensity that is slightly higher with

the longest domain. The friction factors of the two domains differ by less than 2%. It

clearly appears that the structures do not fill the domains (isolated structures persist when

the domain length of the simulation is increased). The authors concluded that the results

on the extended domain confirm that this flow is transitional.

Table 1 lists the simulation parameters and mean flow quantities, at Res = 4000. The

first gridpoint, y+
1 , is also given in Table 1, for each simulation. This table shows that due

to the non-uniform grid, the first gridpoint, y+
1 , in all cases is located at y+ < 1. The next

gridpoints are also within the viscous sublayer: from a minimum of 21 gridpoints at n = 0.5

to a maximum of 29 gridpoints at n = 1.4. For Res = 8000 and 12000, the first gridpoint y+
1

is also located at y+ < 1 and there are many gridpoints within the viscous sublayer: from a

minimum of 18 gridpoints to a maximum of 25 (see tables 2 and 3). Thus the simulation run

for the smallest Reynolds number and flow index (Res = 4000 and n = 0.5) can be considered

as LES with high resolution; for the other cases, the LES are of moderate resolution except

at Res = 12000 for n = 1.2 which is rather a low LES resolution. Indeed, Montreuil (2000)

pointed out that three grid resolution’s levels can be distinguished: LES with ∆z+ ≃ 35

and (r∆θ)+ < 10 is referred to as LES with high resolution; LES with ∆z+ ≃ 70 − 80 and

(r∆θ)+ ≃ 15 − 20 is referred to as LES with moderate resolution; LES with ∆z+ ≃ 155

and (r∆θ)+ ≃ 35 − 40 is referred to as LES with low resolution. When employing schemes

second-order accurate in time and space, good results can be derived with ∆z+ < 100 and

(r∆θ)+ < 12 (Zahrai (1995)). Moreover, Zang (1991) showed that an accurate LES can
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be performed using ∆z+ < 80 and (r∆θ)+ < 40, with a minimum of three points within

the viscous sublayer. In the present LES, there are many gridpoints within the viscous

sublayer (more than three points) confirming that accurate LES are performed in this study.

To avoid the possible singularity at zero shear rate (η is infinite when γ̇ = 0 and n < 1),

a cut-off value γ̇ = 10−6 is added in the code. Below this value, the shear rate is supposed

constant and set equal to the cut-off value. However this cut off is never invoked in the

present LES runs because γ̇ is always above the cut off value.

The time is made dimensionless using the pipe radius, R, and the maximum velocity

of the laminar power law profile, UcL. The calculations have been conducted at the

constant Courant, Friedrichs and Lewy condition: CFL = 1.7. In this case, the time step

is computed from the imposed CFL, which is however limited by the value 0.08R/UcL for

shear-thickening and Newtonian fluids, and by 0.04R/UcL or 0.01R/UcL for shear-thinning

fluids, in order to avoid large time discretization errors. The simulation is stopped if the

computed time step size becomes very small (which means that the solution is diverging).

This occurs when decreasing flow index n: it was necessary to reduce the time step DT to

avoid very large (diverging) velocity fields from the dimensionless time step DT = 0.08 (for

n > 0.75) to DT = 0.04 (for n = 0.75) and DT = 0.01 (for n < 0.75). Hence, in the present

LES, the time step varies from 0.01R/UcL to 0.08R/UcL.

The statistics are computed by averaging in the periodic directions and in time. The

final data are obtained by ensemble averaging over the time interval 6750 (i.e. from the

dimensionless t = 250 until t = 7000) for the smallest flow index (n = 0.5 and 0.69). At

higher flow index (n > 0.69), the integrated time over which the statistics are collected is

9750 (i.e. from the dimensionless time t = 250 until t = 10000).

3 Results and discussion
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3.1 Reynolds numbers

First of all, note that the Metzner-Reed Reynolds number, ReMR, is computed and not

imposed in each simulation (the imposed Reynolds number is Res). The relation between

the two Reynolds numbers is:

Res

ReMR

=
1

8
(3 +

1

n
)n

(
UcL

Ub

)2−n

(7)

If the flow is laminar, Eq. (7) reads:

Res

ReMR
=

1

8

(
3n + 1

n + 1

)2 (
n + 1

n

)n

(8)

As a consequence, for laminar flows, the ratio Res/ReMR monotonically increases from

Res/ReMR = 0, 601 for n = 0.5 (the most shear thinning fluid flow in this study) to

Res/ReMR = 1, 248 for n = 1.4 (the most shear thickening fluid flow), passing through

Res/ReMR = 1 for n = 1 (Newtonian fluid flow). In other words, at fixed Res, the values of

ReMR decrease when n increases.

On the other hand, from Tables 1-3, one can note that for turbulent flows at fixed Res,

the values of ReMR decrease when n varies from 0.5 to 1, but increase when n increases

from 1 to 1.4. This is due to the variation of the dimensionless bulk velocity (Ub/UcL) with

n in equation (7) : both Ub/UcL and the centerline velocity (Uc/UcL) vary in a similar way

to ReMR in Tables 1-3.

Mishra and Tripathi (1971) derived a general criterion to characterize the transition

between laminar and turbulent flows in non-Newtonian fluid flows. This criterion is based

on the critical Reynolds number :

Recr = 2100
(4n + 2)(5n + 3)

3(3n + 1)2
(9)

Using this criterion, one can calculates Recr for each n. Table 1 shows that all the

simulations are performed for turbulent flows.
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3.2 Mean velocity profile

The laminar axial velocity profiles, for various flow indexes n at Res = 500, are depicted

in figure 1, along with the analytical distribution:

Uz

Ub

=
3n + 1

n + 1

[
1 −

( r

R

)n+1

n

]
(10)

The predictions demonstrate a good agreement with the analytical equation. When n < 1,

the velocity profiles flatten at the pipe center because the apparent viscosity η increases

where the strain rate γ̇ decreases, and the fluid tends to behave as a solid. Opposite

behaviours are observed for n > 1 or close to the wall where γ̇ increases. Indeed, for

dilatant fluids (n > 1), the apparent viscosity increases with increasing shear rate, i.e. near

the wall. A possible explanation of the dilatant behavior is as follows. This behaviour

is encountered in concentrated suspensions of solid particles. At rest, the voidage is at

a minimum and the liquid present is only sufficient to fill the void space. At low shear

rates, the liquid lubricates the motion of each particle past the others thereby minimizing

solid-solid friction. Consequently, the resulting stresses are small. At high shear rates,

however, the mixture slightly expands (dilates) so that there is no longer sufficient liquid to

fill the increased void space and prevent direct solid-solid contacts and friction. This leads

to the development of much large shear stresses (which result in increased friction) than

those seen in a pre-dilated sample at low shear rates. This mechanism causes the apparent

viscosity to rise rapidly with increasing rate of shear (Rajendra P. Chhabra, 2010).

Shear thinning fluids (n < 1) are generally high polymer solutions or many suspensions.

With increasing shear rates, the molecules are progressively aligned and these fluids become

less viscous with increasing shear rates. The micro-structure of such materials is even

smashed up at higher shear. This results in lower viscosities, hence the fluid flows more

easily. Naturally, smaller the value of n is, more shear thinning the material is.

Validation of the present LES calculations of the velocity field is also achieved by com-

paring the present results to the following results of literature for fully developed turbulent

pipe flows:

- the Laser Doppler Anemometry (LDA) and Particle Image Velocimetry (PIV) measure-

ments by Eggels et al. (1994), at Reb = UbD/ν = 5300 for n = 1,
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- experimental data by Pinho et al. (1990) for a concentration of a polymer CMC (sodium

CarboxyMethyl Cellulose) with n = 0.9 at Rew = 5070,

- DNS predictions by Eggels et al. (1994) for n = 1 at Reb = 5300,

- DNS results by Rudman et al. (2004) for n = 0.75 at ReMR = 3935.

We first present the comparisons with the turbulent profiles measured by Eggels et al.

(1994) for n = 1 at Reb = 5300 and by Pinho et al. (1990) for n = 0.9 at Rew = 5070

(see Fig.2a). Plotted on these graphs are the mean axial velocity distributions scaled by the

friction velocity (U+ = U/Uτ with Uτ = (τw/ρ)1/2) as a function of the distance from the

wall (based on the friction velocity and the mean wall viscosity, y+ = ρUτ (r −R)/ηw). The

relation between the pressure gradient and the wall shear stress gives the friction velocity Uτ

necessary to scale the axial velocity in wall units. The mean wall viscosity ηw (ηw = Kγn−1
w )

necessary to scale the distance from the wall (y+) is obtained from the simulation results.

The axial velocity distribution is slightly underestimated in the log-region in comparison

with this experimental data. This discrepancy may be due to the difference in the Reynolds

number values between the present LES and the experiments of literature. Indeed, Res =

4000 corresponds to Reb = 4449 for n = 1 (see Table 1), and it corresponds to Rew = 5200

for n = 0.9 .

On the other hand, the predicted LES profile for a flow index n = 0.75 at Res = 4000

indicates a good agreement with the DNS result by Rudman et al. (2004)(see Fig. 2b). The

influence of the power-law index n on the velocity profile is also illustrated on this graph. In

the viscous sublayer (0 ≤ y+ ≤ 5), the normalized velocity profile agrees with the universal

linear law U+ = y+, for all values of n except for n = 0.5 where the prediction is slightly

overestimated. This means that this flow is in the transitional regime and it confirms the

observation by Rudman et al. (2004) for n = 0.5. Indeed, for n = 0.5, the viscosity is higher

in the core region and hence the turbulence is not as fully developed here, even though

the Reynolds number (RMR = 5302) is slightly higher than that observed for the other

flow index values (see Table 1). This may be due to the difference between the viscosity

and Reynolds number evolutions: the viscosity increases more rapidly than the Reynolds

number for more shear-thinning fluid flows, damping the turbulence and inducing a less

well-developed turbulent flow. In the log-region (y+ > 30), the mean axial velocity profile

for n = 1 agrees with the log-law U+ = 2.5ln(y+) + 5.5, and departs from the Newtonian
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behaviour when n is different from unity. This deviation is more pronounced for n < 1 as

the flow index n decreases. Similar trends have been observed by Rudman et al. (2004).

The influence of the Reynolds number is shown in Fig. 2c. By fixing the power-law index

n and increasing Res both an enhancement of the axial velocity values is clearly seen in the

log-region, and the log-region is more expanded. Moreover, for a given Reynolds number,

the log-region is more expanded by decreasing n.

Finally, note that the grid resolution and the sgs model play a non negligible role, Fig.

2d-e. This can be observed by comparing LES with and without the sgs model, at the

highest Reynolds number (Res = 12000), for two flow indexes (n = 0.8 and n = 1.2), using

various meshes, from a very coarse grid (17 × 30 × 9) to a finer grid (65 × 65 × 65). For

the coarser grid, the predictions for the axial velocities without the sgs model deviate from

those with the sgs model, especially for n = 0.8, indicating how important this model is.

Indeed it enables an improvement in the results when very coarse grids are used, with the

LES (with dynamic model) having significantly lower centerline velocity than the no sgs

model (the sgs model provides more damping as expected). For the intermediate and finer

grids, there is no difference between the LES results with and without sgs model. It seems

that the sgs model is not important and that the fine grid resolution (653) is potentially good

enough for a DNS. The role of the sgs model is reduced when the resolved viscous term (ie

the gamma term) in Eq.(2) is greater than that due to the sgs one (ie the τij term). If the

near wall structures are more oredered (ie more viscous and less turbulent), the sgs model

should be less important because less energy goes from the resolved to the unresolved scales.

Note that the ratio between the centerline velocities using LES with dynamic model for

the coarser and finer grids is approximatly 44/23 for n = 0.8 and approximatly 33/18 for

n = 1.2. These ratios denote a large difference between the centerline velocities, especially

for n = 0.8, due to the large difference between the corresponding friction velocities: the

friction velocity obtained with the coarser grid is almost twice that calculated with the finer

grid. This may be due to the choice of the grids : LES with resolution less than 653 should

never be performed for any kind of circular pipes (one can never generates reasonable

velocity oscillations in the azimuthal direction in a domain wide 2π with 32 points). In

the simulations with 653, the grid scale is fine enough to be able to simulate the dominant

scales of the flow and its right behaviour, as previously discussed. Similar conclusions have
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been reported for Newtonian fluid flows by Feiz et al. (2003).

3.3 Friction factor

The friction factor is defined by f = 2τw/(ρU2
b ). For the fully developed laminar flows

simulated at Res = 500 for various n values, the predicted friction factor value is f ≃

0.0341. This is within a 2.3% accuracy when compared with the well-known correlation

f = 16/ReMR. On the other hand, for the fully developed turbulent flows, the friction

factor decreases for decreasing n (at a given Res ) and for increasing Res (at a given n), see

Table 1. The present LES predictions of f for shear-thinning and Newtonian fluids (n ≤ 1),

at Res = 4000, are slightly overestimated in comparison to the following Dodge and Metzner

(1959) correlation:

fDM =
a

Reb
MR

(11)

where a = 0.0665 + 0.01175n and b = 0.365 − 0.177n + 0.062n2. The discrepancies vary

between 9% and 14.5% for the cases at Res = 4000 (see Table 1), between 2.2% and 20.6%

at Res = 8000 (see Table 2), and between 4.4% and 15.8% at Res = 12000 (see Table 3). A

similar observation has been reported by Rudman et al. (2004): their DNS predictions were

10% to 15% higher than the Dodge and Metzner correlation. For shear-thickening fluids,

the discrepancy is enhanced. Gomes (1987) proposed an explicit relation for pseudo-plastic

fluids (n ≤ 1):

fG = 0.110n0.616Re−0.287 (12)

Table 1 compares the LES predicted friction factors to the above mentioned correlation.

This relationship seems to give better results for Res = 4000: the present friction factor is

now 3.7% to 10.4% higher than Gomes correlation for n ≤ 1. There are a number of other

friction factor correlations (empirical or semi-empirical) for pipe flows of power law fluids,

in the literature. El-Emam et al. (2003) tested correlations against published data. They

noted that many of these correlations fitted the experimental data of their authors but did

not fit that of other authors, indicating a lack of generality.
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3.4 Mean normalized viscosity

The variation of the mean viscosity scaled by the mean wall viscosity, versus the shear

rate, for different values of power law index n, at Res = 4000, can give further insights

into the flow field. The smallest values of the relative shear rate < γ̇ > /γ̇w in figure 3a

are located in the pipe centre, while the highest ones are located near the pipe wall. For

the flow index n = 1, the Newtonian behaviour is find (constant viscosity equal to wall

viscosity). At n < 1, this graph (Fig. 3a) clearly displays lower relative viscosity < η > /ηw

for high shear rates. For a given n (n < 1), the relative viscosity increases from the pipe

wall towards the pipe centre because the fluid tends to behave like a solid rather than a

liquid when approaching the core region of the pipe, due to the lower shear rate in this

region. This trend is more pronounced as n decreases. For n > 1, the opposite behaviour

is observed. Shear thickening fluids become more viscous with increasing shear rate. Shear

thickening behaviour is less common and generally arises in fluids that have a highly regular

micro-structure at rest. When the fluid begins to move, the micro-structural components

jam against each other, thickening the fluid thus preventing movement.

In the core region, for flows with increasing shear-thinning behavior (n < 1), the

deviation from the Newtonian behaviour is faster than that for flows with increasing shear

thickening behaviour. The ratio between the viscosity in the centre and the mean wall

viscosity is about 1.8, 2.2, 2.8 and 5.1 for the flow index n = 0.8, 0.75, 0.69, and 0.5

respectively, and approximately 0.6 and 0.4 for n = 1.2 and 1.4 respectively, indicating

higher relative viscosities (η/ηw) in the core region of the pipe for n < 1 than for n > 1.

Note that for all values of n, the mean viscosity remains constant in the viscous sublayer

up to y+ ≃ 5, denoting a linear velocity distribution in this zone (not shown here).

Figure 3b depicts the behaviour of the dimensionless apparent viscosity < η > versus the

wall distance y+, for Res = 4000: near the wall, the apparent viscosity < η > is constant

for a given n up to y+ ≃ 5. It increases with increasing n for y+ < 5, while it decreases with

increasing n after the wall distance y+ ≃ 35, for n ≥ 0.69. Once again, the case n = 0.5

deviates from this behaviour probably because this flow is transitional.
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When plotting the mean relative viscosity < η > /ηw versus the mean relative shear rate

< γ̇ > /γ̇w, Fig.3c, all the distributions collapse, as expected. Indeed, the dimensionless

apparent viscosity, ηd, is related to the dimensionless shear rate and the Reynolds number

by < ηd >=< γ̇n−1
d > /Res. Therefore, the Reynolds number disappears in the relative

viscosity < ηd > /ηd,w =< η > /ηw =< γ̇n−1 > /γ̇n−1
w However, the plot of the mean

relative viscosity < η > /ηw versus the mean shear rate < γ̇ > clearly exhibits the effect

of the Reynolds number on < η > /ηw, Fig.3d : the mean relative viscosity < η > /ηw is

noticeably affected by the Reynolds number for n = 0.8; the influence of Res (and thus

ReMR) on the viscosity is quite small for n = 1.2; with increasing Res, the mean viscosity

becomes almost independent of Res (the LES predictions at Res = 8000 and Res = 12000

are very close to each other).

3.5 Root mean squares of turbulent fluctuations and Reynolds stress

In figure 4a, the rms of axial, radial and azimuthal velocity fluctuations and the

corresponding experimental data of Eggels et al. (1994) are in reasonable agreement for

n = 1. In figure 4b, for n = 0.9, the LES predictions are underestimated in comparison to

the experimental data by Pinho et al. (1990), particularly for the axial component near the

wall.

The root mean square (rms) of fluctuating axial velocity is plotted in figure 5a, at various

values of power law index n, for Res = 4000. The predicted rms for n = 0.75 is in

satisfactory agreement with the DNS result of Rudman et al. (2004). The maximum value

of the axial velocity fluctuations increases and its position moves far away from the wall

with increasing n. It moves from y+ ≃ 13, 67 at n = 0.5 to y+ ≃ 23, 79 at n = 1.4. The

rms of axial velocity fluctuations, Fig. 5a, is reduced in the vicinity of the wall when n

increases, and is enhanced after reaching the peak location. This is due to the fact that

the apparent viscosity η increases with increasing n near the wall (in the viscous sublayer),

but it decreases when n increases in the turbulent layer (see Fig. 3c). Thus the turbulent

fluctuations develop and are more intense far from the wall (after the peak) when n > 1
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and closer to the wall when n < 1.

The radial and azimuthal velocity fluctuations are smaller than the axial ones, and reach

a maximum further away from the wall, Fig. 5b-c. Both radial and azimuthal turbulence

intensities diminish with decreasing n in the turbulent layer (as soon as y+ > 20), denoting

an augmentation of the mean apparent viscosity in this region. For n < 1, the increase of

the mean viscosity towards the pipe core generates larger and weaker axial vortices, hence

reducing the wall drag. For shear-thickening fluid flows, the mean viscosity is smaller in

the pipe core, leading to less dissipation and shorter turbulent structures in this zone.

Figure 6a shows that for a given flow index n, when the Reynolds number increases, the

distribution of the fluctuating axial velocity rms shifts towards the wall, and a significant

rise of its peak is observed. The influence of n on the peak value of axial velocity fluctuations

appears to be more pronounced at the lowest Reynolds number (here Res = 4000). At

Res = 12000, the flow index n seems to have no effect on the maximum value of axial

turbulence intensity, while its influence on the peak location is marked.

Similarly, on figures 6b-c, the distribution of the rms of radial and azimuthal velocity

fluctuations moves towards the wall with increasing Reynolds number, since the thickness

of the viscous sublayer diminishes and hence the turbulence transports higher momentum

towards the wall. However, the maximum value of the radial velocity fluctuations is

reduced when Res increases, whereas the peak of the azimuthal turbulence intensity profile

disappears, Fig. 6c, creating two new peaks at Res = 12000.

The predicted Reynolds shear stress < u′
ru

′
z > /Uτ agree reasonably with the experi-

mental data (n = 1) and DNS results (n = 0.75) of literature, Fig. 7a. The Reynolds shear

stress behaves like the axial turbulence intensity when the flow index varies (see Fig. 5a).

Its distribution is shifted towards the wall with increasing n for a given Res, and its peak

value is noticeably enhanced. Similar behaviour is observed when the Reynolds number

increases, for a given n, Fig. 7b. The influence of Res on the Reynolds shear stress is

much more pronounced for y+ < 40 (i.e. before reaching the peak location) than for y+ > 40.

21



Figure 8 depicts the distribution of the cross-correlation coefficient of the Reynolds shear

stress, Ru′

ru′

z
, with respect to y+. This graph exhibits a plateau with almost the same value

for all n. The plateau is more and more extended with decreasing flow index n. This result

means that the axial velocity fluctuations are correlated to the radial ones along a more

extended region when n decreases.

The effect of the power law index n on the turbulence kinetic energy was also analyzed

but is not shown here. The position of the maximum turbulent kinetic energy moves

far further from the wall as n increases, at a given Reynolds number. This behaviour is

expected since the mean viscosity decreases towards the pipe centre with increasing n.

When Res increases, the peak value of kinetic energy is enhanced.

Figure 9 depicts the peak position (y+) of the rms of velocity components, as well as

the peak position of the turbulent kinetic energy, versus the flow index n, at Res = 4000.

All the peak positions shift towards the core region with increasing n. The graph confirms

that the maximum of the axial velocity component is always closer to the wall pipe than

those of the wall-normal and azimuthal velocity components, irrespective of the flow index

n. The predicted values of the peak position of < u
′2
r >1/2 and that of < u

′2
θ >1/2 can

be interpolated by y+ = 82.8n0.29 and y+ = 67.2n0.47 respectively. The peak position of

< u
′2
z >1/2 can be interpolated by the correlation y+ = 19.0n0.72 . Nearly the same n

dependency is observed for the peak position of kinetic energy: y+ = 20.0n0.69, indicating

the large contribution of the axial component on the turbulent kinetic energy. Keeping in

mind the viscous sublayer thickness (y+ ≃ 5) and that of the logarithmic region (y+ ≥ 30),

the present predictions show that for 0.5 < n ≤ 1.4, the maximum of the rms of axial

velocity as well as the maximum of kinetic energy are reached in the buffer layer. The peak

positions of < u
′2
r >1/2 and < u

′2
θ >1/2 are mainly located in the log-region, for all values of n.
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3.6 Higher-order statistics

A description of a turbulent variable at a given location and time is given by the prob-

ability density function (PDF) or the moments of the variable derived from the PDF. The

skewness is the third moment of the fluctuation v′ = v− < v > normalized by the vari-

ance. A PDF which is symmetric (a Gaussian PDF) about the mean < v > will have zero

skewness. All higher odd moments of such a symmetric PDF will also be identically zero.

The skewness reveals information about the asymmetry of the PDF. A non-zero skewness

indicates a skewed or asymmetric PDF, which in turn means that larger excursions in one

direction are more probable than in the other. Positive skewness indicates that the PDF has

a longer tail for (v− < v >) > 0 than for (v− < v >) < 0. Hence a positive skewness means

that variable v′ is more likely to take on large positive values than large negative values. A

time series with long stretches of small negative values and a few instances of large positive

values, with zero time mean, has positive skewness.

The kurtosis (or flatness) is the fourth moment of v′ normalized by the variance. the

kurtosis can be used as an indication of the tails of a PDF. A higher kurtosis indicates

that relatively larger excursions from the mean are more probable. A PDF with longer

tails will have a larger kurtosis than a PDF with more narrow tails. A time series with

most measurements clustered around the mean has low kurtosis; a time series dominated

by intermittent extreme events has high kurtosis. For the Gaussian behavior, the flatness

value is equal to F = 3.

The profiles of the skewness coefficients S(u′
i) =

〈u′3
i 〉

〈u′2
i 〉

3
2

, at Res = 4000, have been

computed and are presented on Fig. 10a-b.. As the power law index n decreases, the

skewness coefficient of the three velocity components grows rapidly at the wall, indicating

a more important intermittent (non Gaussian) behaviour with decreasing n, especially for

the radial velocity fluctuations (not shown here). This indicates that large positive values

of the velocity components rather than large negative values predominate near the wall.

Far from the wall, irrespective of the flow index n, the skewness of u′
r quickly tends to

the Gaussian value (S(u′
r) = 0) towards the pipe centre, meaning that positive values of

the variable are as probable than negative values. On the contrary, the skewnesses S(u′
z),
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Fig. 10a, and S(u′
θ) (not shown here) go to zero towards the core region more rapidly with

increasing n. They tend to zero further from the wall with an augmentation of Res, for

each given n, Fig. 10b.

Profiles of the flatness coefficients F (u′
i) =

〈u′4
i 〉

〈u′2
i
〉2

are sketched in figures 11a-c, at

Res = 4000. Close to the wall, the flatness factors F (u′
z) and F (u′

r) are significantly

dependent on the flow index n. The rapid increase in the flatness factor near the wall

reflects the high intermittency of the velocity fluctuations close to the wall. Such high

values are attributed to the strong sweep events near by the wall (Xu et al., 1996). The

intermittent behavior is more important as n decreases, and more pronounced for F (u′
r)

than for F (u′
z) and F (u′

θ), Fig 11a-c. The more intermittent behaviour close to the wall

means that the probability of observing large variations from the mean axial and radial

velocity components close to the wall is much higher than in the centre of the pipe,

especially when n decreases. Far from the wall, the factor F (u′
r) is equal to the Gaussian

value (F = 3), irrespective of n, whereas F (u′
z) and F (u′

θ) tend to the Gaussian behaviour

for only n ≥ 1. The flatness profiles extends towards the core region with decreasing Res,

for a given n, Fig. 12.

3.7 Flow pictures

To explore the effects of the flow index on the near-wall structures, contours of the axial

velocity at the distance y+ ≃ 15 from the wall are visualized in figures 13a-d for Res = 4000.

As n increases, the turbulence structures are more random, the axial correlation distance

(stretching) is shorter and the streaks are shorter and stronger. This is in accordance with

increasing turbulence intensities, from Fig.13a to Fig. 13d, meaning that the turbulence

is more developed. For the lowest flow index (n = 0.5), Fig.13a, the turbulence activity is

poor. This flow seems not fully developed, because of the higher viscosity in the core region.

However, the mean flow statistics (of first and second order) are still accurately predicted.

Contours of the resolved axial velocity in r − θ plane at Res = 4000, Fig. 14 a-d, show that

the turbulent structures are essentially located close to the pipe wall for n > 0.5. Further

from the wall (for y+ > 15), the turbulence activity is attenuated in comparison to that at
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y+ ≃ 15, especially for n < 1. Indeed, in the core region, the viscosity is increased for n < 1

(since this zone is a lower shear region) inducing a damping of the turbulent structures and

hence a reduction in radial momentum transfer: the turbulent structures are weaker and

bring less high speed fluid from the core region to the wall region. At n = 0.5, when the

Reynolds number is higher (Res = 8000, not shown here), the wall streaks are less long than

those observed at the same position for Res = 4000, denoting a more developed turbulence.

4 Conclusion

Detailed characteristics of fully developed turbulent pipe flows of power law fluids have

been numerically explored, using large eddy simulation with dynamic subgrid-scale model,

to investigate the power law index and Reynolds number effects on the velocity field. The

Reynolds numbers (Res = 4000, 8000 and 12000) and power law index (0.5 ≤ n ≤ 1.4) have

been considered. The main new results (in comparison to those in the literature) obtained

in this study are:

- LES at a higher Reynolds number (Res = 12000) for different flow indexes n, - analysis of

higher-order statistics,

- analysis of cross-correlation coefficients and kinetic energy, - establishment of correlations

for the peak position of the RMS of the velocity fluctuations (with respect to n) and for

the kinetic energy.

The present LES predictions and the available literature results agree quite well. In the

fully developed turbulent flow, the log-region of the mean velocity profile is more expanded

with decreasing flow index and increasing Reynolds number. The normalized velocity

profile agree with the universal linear law, in the viscous sublayer, for all values of n except

for n = 0.5. In this case, the flow is transitional; the delay in the transition to turbulence is

caused by the shear-thinning rheology and a high viscosity in the flow core. More generally,

the results allow to quantify the suppression of turbulence fluctuations with decreasing n

in the core region, after the peak position, of the RMS of velocity fluctuations. The peak

position of all the rms shifts towards the core region with increasing n. Correlations to
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obtain these peak positions are proposed. At Res = 4000, the maximum of the rms of axial

velocity < u
′2
z >1/2 as well as the maximum of kinetic energy are reached in the buffer layer,

while the peak positions of < u
′2
r >1/2 and < u

′2
θ >1/2 are mainly located in the log-region,

for all values of n. The rapid increase in the flatness factor with decreasing n near the wall

reflects the high intermittency of the velocity fluctuations close to the wall. With increasing

flow index and increasing Reynolds number, the axial stretching of the turbulent structures

is reduced, leading to a better developed turbulence. A reduced friction factor for decreasing

n (at a given Res ) and for increasing Res (at a given n) is also shown. The apparent

viscosity < η > is constant for a given n up to y+ ≃ 5. It increases with increasing n

for y+ < 5, while it decreases with increasing n after the wall distance y+ ≃ 35, for n ≥ 0.69.

The LES results obtained in this study indicate that LES, with the conventional dynamic

model of Germano et al. (1991) and Lilly (1992) for evaluating the sgs stresses, using a

fine grid, reproduced most the features of the non-Newtonian fluid flows, and thus seems

capable of predicting non-Newtonian fluid flows and gaining a comprehensive understanding

of the space and time dynamics of such flows, at a reduced computational cost (without

resorting to any tuning of the sgs turbulence model). Furthermore, the present predictions

could be useful in developing a low-Reynolds number turbulence model for predicting

non-Newtonian fluid flows. Additional studies could be performed in the future to further

explore whether a new modeling approach, in which the molecular and sgs stresses would

be represented as non-linear functions of the strain rate tensor, will bring any additional

improvement to LES of non-Newtonian fluid flows.
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FIGURE CAPTIONS

Fig.1 Laminar axial velocity profiles compared to analytical solution.

Fig.2a Turbulent mean axial velocity profile compared to experiments.

Fig.2b Effect of n on turbulent axial velocity profiles.

Fig.2c Effect of Res and n on turbulent axial velocity profiles.

Fig.2d Effect of the sgs model and mesh on the axial velocity profiles, n = 0.8.

Fig.2e Effect of the sgs model and mesh on the axial velocity profiles, n = 1.2.

Fig.3a Mean normalized viscosity versus mean normalized shear rate: effect of n.

Fig.3b Behaviour of the mean normalized viscosity.

Fig.3c Mean normalized viscosity versus normalized shear rate: effect of n for different Res.

Fig.3d Mean normalized viscosity versus shear rate: effect of Res.

Fig.4a RMS of velocity fluctuations compared to experiments for n = 1.

Fig.4b RMS of velocity fluctuations compared to experiments for n = 0.9.

Fig.5a Effect of n on RMS of axial velocity fluctuations.

Fig.5b Effect of n on RMS of radial velocity fluctuations.

Fig.5c Effect of n on RMS of azimuthal velocity fluctuations.

Fig.6a Effect of Res on RMS of axial velocity fluctuations.

Fig.6b Effect of Res on RMS of radial velocity fluctuations.

Fig.6c Effect of Res on RMS of azimuthal velocity fluctuations.

Fig.7a Effect of n on Reynolds shear stress.

Fig.7b Effect of Res on Reynolds shear stress.

Fig.8 Cross-correlation coefficient.

Fig.9 Peak position of RMS velocity fluctuations and kinetic energy.

Fig.10 Skewness of axial velocity fluctuations: (a) effect of n, (b) effect of Res.

Fig.11 Flatness of velocity fluctuations, effect of n: (a) v′
z, (b) v′

r, (c) v′
θ.

Fig.12 Flatness of radial velocity fluctuations, effect of Res.

Fig.13 Contours of resolved axial velocity field at y+ ≃ 15: (a) n = 0.5, (b) n = 0.75, (c)

n = 1.0, (b) n = 1.2 .

Fig.14 Contours of resolved axial velocity field in r − θ-plane: (a) n = 0.5, (b) n = 0.75, (c)

n = 1.0, (b) n = 1.2 .
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TABLE I: Parameters of present LES simulations and mean flow quantities for Res = 4000

Parameters n = 0.5 n = 0.69 n = 0.75 n = 0.8 n = 1.0 n = 1.2 n = 1.4

∆z+ 33.84 38.88 41.14 43.01 50.08 59.85 75.23

(r∆θ)+ 10.63 12.21 12.85 13.51 15.73 18.80 23.63

∆r+
min 0.084 0.059 0.054 0.051 0.040 0.034 0.030

∆r+
max 18.57 12.98 12.00 11.27 8.87 7.56 6.69

Ub/Ucl 0.542 0.545 0.533 0.524 0.494 0.502 0.544

Uc/Ucl 0.757 0.701 0.687 0.677 0.647 0.662 0.725

Uτ/Ucl 0.027 0.032 0.033 0.034 0.036 0.039 0.045

< γ̇d,w > 2.794 6.730 5.902 5.942 5.377 5.366 5.437

< ηd,w > ×104 1.49 1.38 1.60 1.75 2.50 3.50 4.92

Recr 2464 2280.3 2236.7 2204.2 2100 2024.6 1967.5

ReMR 5302 5033 4870 4754 4449 4512 4731

Rew 10211 8011 7042 6359 4449 3506 2920

Reτ = UτR/νw 110 126.4 133.72 139.81 162.77 194.52 244.51

fDM × 10+3 5.82 7.32 7.79 8.18 9.58 10.53 11.00

f × 103 6.35 8.37 8.85 9.24 10.46 12.54 15.69

fG × 103 6.13 7.58 8.06 8.44 9.87 - -

y+
1 0.0342 0.0251 0.0231 0.0217 0.0171 0.0145 0.0129
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TABLE II: Parameters and mean flow quantities for Res = 8000

Parameters n = 0.8 n = 1 n = 1.2

∆z+ 65.56 78.97 99.37

(r∆θ)+ 21.17 24.81 31.22

∆r+
min 0.087 0.063 0.053

∆r+
max 19.13 14.01 11.65

Ub/UcL 0.525 0.495 0.529

Uc/UcL 0.640 0.617 0.663

Uτ/UcL 0.029 0.032 0.037

< γ̇d,w > 9.470 7.759 7.931

< ηd,w > ×104 0.797 1.250 1.891

Recr 2204.2 2100. 2024.6

ReMR 8485 7928 8368

Rew 12291 7928 6109

Reτ = UτR/νw 219.1 256.7 323.0

fDM × 10+3 7.02 8.29 9.0

f × 103 7.18 8.23 10.94

fG × 103 7.15 8.36 -

y+
1 0.0369 0.0270 0.0225
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TABLE III: Parameters and mean flow quantities for Res = 12000

Parameters n = 0.8 n = 1 n = 1.2

∆z+ 92.68 109.65 139.07

(r∆θ)+ 29.11 34.44 43.69

∆r+
min 0.127 0.063 0.071

∆r+
max 27.87 19.44 15.61

Ub/Ucl 0.526 0.496 0.530

Uc/Ucl 0.626 0.603 0.652

Uτ/Ucl 0.027 0.029 0.034

< γ̇d,w > 12.278 9.774 9.609

< ηd,w > ×104 0.504 0.833 1.310

Recr 2204.2 2100. 2024.6

ReMR 12745 11908 12579

Rew 19556 11908 8788

Reτ = UτR/νw 301.2 356.3 452.0

fDM × 10+3 6.31 7.49 8.22

f × 103 6.03 7.05 9.52

fG × 103 6.36 7.44 -

y+
1 0.0538 0.0375 0.0301
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Fig.1   Laminar axial velocity profiles compared to analytical solution. 
 
 

 
Fig.2a   Turbulent mean axial velocity profile compared to experiments. 



 
Fig.2b Effect of n on turbulent axial velocity profiles. 

 
 

 
 

Fig.2c  Effect of Res on turbulent axial velocity profiles. 



 
Fig.2d  Effect of the sgs model and mesh on the axial velocity profile, n = 0.8. 

 
 

 
Fig.2e  Effect of the sgs model and mesh on the axial velocity profile, n = 1.2. 



 
Fig.3a   Mean normalized viscosity versus  mean normalized shear rate: effect of n. 

 
 

 
 

Fig.3b   Behaviour of mean dimensionless viscosity 



 
Fig.3c   Normalized viscosity versus Normalized shear rate: effect of n for different Res 

 

 

 
Fig.3d  Normalized viscosity versus shear rate: effect of  Res 



 
 

Fig.4a  RMS of velocity fluctuations compared to experiments for n=1. 
 

 
Fig.4b  RMS of velocity fluctuations compared to experiments for n=0.9. 

 



 
Fig.5a  Effect of  n on RMS of axial velocity fluctuations. 

 
 

 
Fig.5b   Effect of  n on RMS of radial velocity fluctuations. 



 
Fig.5c  Effect of  n on RMS of azimuthal velocity fluctuations. 

 
 

 
Fig.6a Effect of  Res  on RMS of axial velocity fluctuations. 



 
Fig.6b  Effect of  Res  on RMS of radial velocity fluctuations. 

 
 

 
Fig.6c  Effect of  Res  on RMS of azimuthal velocity fluctuations. 



 
Fig.7a   Effect of  n  on Reynolds shear stress. 

 
 

 
Fig.7b   Effect of  Res  on Reynolds shear stress. 



 

 
Fig.8   Cross-correlation coefficient. 

 

 
Fig.9   Peak position of RMS velocity fluctuations and kinetic energy. 



 
Fig.10a   Skewness of axial velocity fluctuations: effect of  n. 

 

 
Fig.10b   Skewness of  axial velocity fluctuations: effect of  Res. 



 
Fig.11a  Flatness of axial velocity fluctuations: effect of n. 

 

 
Fig.11b  Flatness of radial velocity fluctuations: effect of n. 

 



 

 
Fig.11c   Flatness of azimuthal velocity fluctuations: effect of n. 

 

 
Fig.12   Flatness of  radial velocity fluctuations: effect of  Res. 
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Fig. 13  Contours of resolved axial velocity field at y+ ∼15: 
(a) n = 0.5,  (b) n = 0.75,  (c) n = 1.0,  (d) n = 1.2 . 

 
 



 
 
 
 
 

 
 
 

Fig. 14  Contours of resolved axial velocity field in (r-θ)-plane: 
(a) n = 0.5,  (b) n = 0.75,  (c) n = 1.0,  (d) n = 1.2 . 


