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STABILITY OF OVER-RELAXATIONS FOR THE FORWARD-BACKWARD
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Abstract. This paper is concerned with the convergence of over-relaxations of FB algorithm (in particular
FISTA), in the case when proximal maps and/or gradients are computed with a possible error. We show that
provided these errors are small enough, then the algorithm still converges to a minimizer of the functional, and
with a speed of convergence (in terms of values of the functional) that remains the same as in the noise free case.
We also show that larger errors can be allowed, using a lower over-relaxation than FISTA. This still leads to the
convergence of iterates, and with ergodic convergence speed faster than the classical FB algorithm and FISTA.

Key-words. : Convex analysis, proximal operator, FISTA, FB, over-relaxation.

Introduction. Let H be a Hilbert space and f and g two convex, l.s.c functions from H to
R ∪ {+∞} such that f is differentiable with L-Lipschitz continuous gradient, and g is “simple”,
meaning that its “proximal map”

x 7→ arg min
y∈H

g(y) +
‖x− y‖

2τ

2

can be easily computed. We consider the following minimization problem

(0.1) min
x∈H

F (x) := f(x) + g(x)

and we assume that F is coercive (i.e. F (x) → +∞ when ‖x‖ → +∞) which implies that this
problem has at least a solution (and possibly an infinite set of solutions).

Among the many algorithms which exist to tackle such problems, the proximal splitting al-
gorithms, which perform alternating descents in f and in g, are frequently used, because of their
simplicity and relatively small per-iteration complexity. One can mention the Forward-Backward
(FB) splitting, the Douglas-Rachford splitting, the ADMM (alternating direction method of mul-
tipliers),1 which all have been proved to be efficient in many imaging problem such as denoising,
inpainting, deconvolution, color transfer and many others.

This work focuses on variants of the so-called “Fast Iterative Soft Thresholding Algorithm”
(FISTA) which is an accelerated variant of the Forward-Backward algorithm proposed by Beck
and Teboulle [4], built upon ideas of Nesterov [16] and Güler [12]. More precisely the ergodic
convergence rate and the stability to perturbations of the convergence of the iterates of these
over-relaxed algorithms are studied.

The FB is a descent algorithm which defines a sequence (xn)n∈N by performing an explicit
descent in f and implicit in g. It is then shown that there exists C > 0, such that for all n ∈ N

(0.2) F (xn)− F (x∗) 6
C

n

where x∗ is a minimizer of F . Moreover the sequence (xn)n∈N weakly converges in H. See for
instance [17] or [4] for a simple derivation of this rate. Combettes and Wajs [9] proved that if

1See for instance [9, 13, 10, 11, 8].
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the sum of norms of errors done at each step on the proximal operator and on the gradient was
finite, iterates of FB still converge to a minimizer of F .

This paper proposes a convergence analysis of a class of over-relaxation of FB or inertial
Forward-Backward (iFB) when the proximal operator and the gradient are computed with errors
at each step.
This class includes FISTA and somehow interpolates FB and FISTA. An algorithm is mainly
defined by a parameter d ∈ [0, 1]. The choice d = 1 corresponds to FISTA and the case d = 0
corresponds to FB.

Two definitions of perturbation of the proximal operator are considered (see e.g. [19, 22, 1]
and references therein).

Numerically, FISTA seems less stable than FB: this has led for instance Beck and Teboulle
to introduce a monotone version MFISTA of FISTA in [3], the claim being that MFISTA is more
robust than FISTA.
Our purpose is to show that another way to accelerate FB ensuring a better stability than FISTA
is to slow down the over-relaxation depending on the assumptions on perturbations.

Three convergences are studied for the algorithms:
1. The convergence rate of F (xn)− F (x∗).
2. The convergence rate of F (zn) − F (x∗) where zn is a convex combination of (xk)k6n,

which is defined as ergodic convergence.
3. The weak convergence of (xn)n∈N.

Our work takes some inspiration from the paper by Schmidt et al in [20], where the authors
investigate the stability of FISTA. One of the key results of the paper which enables us to derive
theorems about the convergence for this class of algorithms is Proposition 3.3 which can be seen
as a generalization of Proposition 2 in [20]. The convergence speed results we get also include
the one of [20] and [22].

Moreover, our work is the first one providing stability results for FISTA in terms of conver-
gence of the iterates. Indeed, our work is also based on the paper [7] of the second author of the
present article, where the convergence of the iterates of FISTA is proved. The extension of the
approach of [7] is done using ideas of the work by Moudafy and Oliny [15] with the notion of ε
enlargements.

The main contributions of the paper can be summarized as follows: If the perturbations
are small enough to ensure the optimal decay of FISTA (O

(

1
n2

)

), iterates of FISTA weakly
converge. If the perturbation are larger, slowing down the over relaxation of FB can ensure the
weak convergence of the iterates. Moreover the ergodic convergence of these over relaxations can
be better than classical and ergodic convergence of FISTA.

The rest of the paper is organized as follows. In section 1, we recall the main notations
and definitions used in this paper to analyze iFB and the specific case FISTA. In Section 2, we
introduce the different notions used to approximate proximal operators, and we give some basic
facts.

In Section 3, we study the convergence rate (in terms of values of the functional) for iFB.
We show that for suitable parameter choices, iFB may lead to faster convergence rate than
classical FB and FISTA if we consider ergodic convergence depending on noise assumptions. In
Section 4, we show the convergence of the iterates of the different schemes considered in the
previous section. We then discuss the obtained results, and we put them in perspective with the
existing literature in Section 5. In Section 6, we give some numerical simulations that confirm
the theoretical results of the paper. Most of the proofs of the results presented in the paper are
postponed to Appendix A, for ease of reading.

1. Notation and definitions. This first section introduces the notations used to describe
iFB and FISTA. In the following x∗ denotes a solution of (0.1): the value F (x∗) is uniquely
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defined even if this solution is not unique.
The set of non negative integers is denoted by N and the set of positive integers is denoted

by N
∗. A key tool of FISTA is the proximal map. To any proper, convex and l.s.c function h is

associated the proximal map Proxh which is a function from H to H defined by

Proxh(x) = arg min
y∈H

h(y) +
1

2
‖x− y‖2 .

This function is uniquely defined and it generalizes the projection onto a closed convex set to
convex functions.

In the sequel, γ denotes a non negative real number such that γ 6
1
L where L is the Lipschitz

constant of ∇f and T the mapping from H to H defined by

T (x) := Proxγg(x− γ∇f(x)),

The idea of FB is to apply this mapping from any x0 ∈ H using Krasnosel’ski Mann iterations
to get a weak convergence to a minimizer x∗ of F .

The idea of inertial Forward Backward (iFB) and of FISTA is to apply this mapping using
a suitable extragradient rule to accelerate the convergence.

The iFB is defined by a sequence (tn)n∈N∗ of real numbers larger than 1 and a point x0 ∈ H.
Let (tn)n∈N∗ be a sequence of non negative real numbers and x0 ∈ H, the sequences (xn)n∈N,
(yn)n∈N and (un)n∈N and (yn)n∈N are defined by y0 = u0 = x0 and for all n > 1,

xn = T (yn−1)(1.1)

un = xn−1 + tn(xn − xn−1)(1.2)

yn =

(

1− 1

tn+1

)

xn +
1

tn+1
un.(1.3)

The point yn may also be defined from points xn and xn−1 by

(1.4) yn = xn + αn(xn − xn−1) with αn :=
tn − 1

tn+1

For suitable choices of (tn)n∈N∗ the sequence (F (xn))n∈N converge to F (x∗), i.e the sequence
(wn)n∈N, defined as follows,

(1.5) wn := F (xn)− F (x∗)

tends to 0 when n goes to infinity.
In their seminal work [4] Beck and Teboulle introduce FISTA choosing the specific sequence

(1.6) t1 = 1 and ∀n > 0, tn+1 =
1 +

√

t2n + 1

2

In many articles, see for example [2], authors call FISTA the previous algorithm with tn = n+1
2 .

More recently Chambolle and D. [7] propose the choice tn = n+a−1
a with a > 2. In the sequel

we ill consider these three different choices as different versions of a single algorithm we will call
FISTA.

Several proofs use bounds on the local variation of the sequence (xn)n∈N, which we will
denote by (δn)n∈N:

(1.7) δn :=
1

2
‖xn − xn−1‖2
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The sequence (vn)n∈N denoting the distance between un and a fixed minimizer x∗ of F will also
be useful:

(1.8) vn :=
1

2
‖un − x∗‖2 .

To complete this part dedicated to notations, we define a sequence (ρn)n∈N, associated to
(tn)n∈N∗ , whose positivity will ensure the convergence of the iFB iterations:

(1.9) ρn := t2n−1 − t2n + tn.

In [7], the following result is shown on the iterates of FISTA:
Theorem 1.1. Let a > 2 be a positive real number, and for all n ∈ N let tn = n+a−1

a . Then

the sequence (xn)n∈N given by FISTA weakly converges to a minimizer of F and it exist a real

number C depending on F and x0 such that

(1.10) F (xn)− F (x∗) 6
La2 ‖x0 − x∗‖2
2(n+ a− 1)2

Remark that only the convergence of F (xn) is shown in [4] where FISTA is introduced. In
the present paper, we will use ideas from [7] to prove the convergence of iterates xn for the
considered schemes.

2. Inexact computations of the proximal point. In this section, we introduce the
different notions used to approximate a proximal operator in this work. As recalled in the
previous section, if F is a proper, convex and l.s.c function, and λ > 0, we can define the
proximal map ProxλF by

(2.1) ProxλF (y) = arg min
x∈H

F (x) +
1

2λ
‖x− y‖2 .

Let us denote by

(2.2) Gλ(x) = F (x) +
1

2λ
‖x− y‖2 .

The first order optimality condition for a convex minimum problem yields

(2.3) z = ProxλF (y) ⇐⇒ 0 ∈ ∂Gλ(z) ⇐⇒ y − z

λ
∈ ∂F (z)

We now introduce the notion of ε-subdifferential of F at the point z ∈ domF as:

(2.4) ∂εF (z) = {y ∈ H | F (x) ≥ F (z) + 〈x− z, y〉 − ε, ∀x ∈ H}

It is worth noticing that it holds:

(2.5) 0 ∈ ∂εF (z) ⇐⇒ F (z) ≤ inf F + ε

This is a generalization of the subdifferential:

(2.6) ∂F (z) = {y ∈ H | F (x) ≥ F (z) + 〈x− z, y〉, ∀x ∈ H}

If ε > 0 then ∂f(x) ⊂ ∂εf(x).
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We can introduce different kind of approximations of the proximal operator computation
[19, 22].

Definition 2.1. We say that z ∈ H is a type 1 approximation of ProxλF (y) with ε precision

and we write z ≈1 ProxλF (y) if and only if

(2.7) 0 ∈ ∂εGλ(z)

Another notion of approximation which is usefull is obtained by relaxing the last equation
in (2.3):

Definition 2.2. We say that z ∈ H is a type 2 approximation of ProxλF (y) with ε precision

and we write z ≈2 ProxλF (y) if and only if

(2.8)
y − z

λ
∈ ∂εF (z)

Notice that if z ≈2 ProxλF (y), then z ≈1 ProxλF (y) (see Proposition 1 in [22]).
Condition (2.8) can be written equivalently as:

(2.9) y ∈ z + ∂εF (z) ⇐⇒ z ∈ (Id+ ∂εF )
−1

(y)

Recalling that the proximity operator of F is defined as (Id + ∂F )−1, the admissible ap-
proximations of type 1 can be interpreted as a kind of ε enlargement of the proximity operator
[6].

Indeed, if R is a monotone operator, we can generalize the notion of approximate subdiffer-
ential with the one of ε enlargement [6]:

Definition 2.3.

(2.10) Rε(x) = {z ∈ H | 〈z − v, x− y〉 ≥ −ε ∀y ∈ H, v ∈ R(y)}

Notice that if R = ∂f with f a convex function, then one has ∂εf(x) ⊂ Rε(x) ∀x ∈ H. This
inclusion may be strict (see [6] for examples).

Another definition of approximation of prox is used in [9] to study the stability of the
Forward-Backward algorithm.

Definition 2.4. We say that z ∈ H is a type 0 approximation of ProxλF (y) with ε precision

and we write z ≈0 ProxλF (y) if and only if

(2.11) ‖z − ProxλF (y)‖ ≤
√
2λε

Unfortunately our analysis does not handle such an approximation.
We end this section with a technical lemma taken from [2] that enables to consider approx-

imations of types i = 1 or i = 2 in the same setting.
Lemma 2.5. If x ∈ H is a type 1 approximation of ProxλF (y) with ε precision, then there

exists r such that ‖r‖ ≤
√
2λε and

(2.12)
y − x− r

λ
∈ ∂εF (x)
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The proof of this lemma is the one of Lemma 2 in [2]. Notice that when r = 0, then we get
the definition of a type 2 approximation.

Proof. Let aλ(x) =
1
2λ‖x− y‖2. Then:

∂εaλ(x) =

{

z ∈ H | 1

2λ
‖x− y − λz‖2 ≤ ε

}

=

{

z ∈ H, z =
x− y + r

λ
| 1

2λ
‖r‖2 ≤ ε

}

If x ≈1 ProxλF (y), then 0 ∈ ∂εGλ(x). Since Gλ(x) = F (x) + aλ(x), we have that

(2.13) ∂εGλ(x) ⊂ ∂εF (x) + ∂εaλ(x)

Hence 0 ∈ ∂εGλ(x) means that there exists r with r ≤
√
2λε and

(2.14)
y − x− r

λ
∈ ∂εF (x)

Now that we have introduced all this material, we can formulate the main results of the
paper in the next two sections.

3. Convergence rates of inertial FB in presence of perturbations. Application to

FISTA. The sketch of the approximate over-relaxation of FB (FISTA when tn is well chosen)
used in the paper is given in Algorithm 1.

Algorithm 1 Approximate inertial FB algorithm

Let (tn)n∈N∗ be a non decreasing sequence of non negative real numbers such that t1 = 1 and
x0 ∈ H, the sequences (xn)n∈N, (yn)n∈N and (un)n∈N and (yn)n∈N are defined by y0 = u0 = x0

and for all n > 1,

xn = T ǫn
en (yn−1)(3.1)

un = xn−1 + tn(xn − xn−1)(3.2)

yn =

(

1− 1

tn+1

)

xn +
1

tn+1
un.(3.3)

with

(3.4) T ǫn
en (x) ≈i Proxγg(x− γ(en +∇f(x))) with εn precision and i ∈ {1, 2}

The point yn may also be defined from points xn and xn−1 by

(3.5) yn = xn + αn(xn − xn−1) with αn :=
tn − 1

tn+1

This section presents the convergence rate results (in term of values of the functional).
In all the sequel, we will use specific choices of sequences (tn)n∈N: ∀n ∈ N

∗,

(3.6) tn =

(

n+ a− 1

a

)d
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where (a, d) satisfies a specific condition H1.
Definition 3.1. The pair (a, d) satisfies hypothesis H1 if

d = 0 or d ∈]0, 1] and a > max(1, (2d)
1
d )

One can notice that the choice d = 1 and a > 2 corresponds to the version of FISTA proposed
in [7] and satisfies H1. The choice d = 0 corresponds to Forward-Backward.
This condition ensures that for all n ∈ N, n > n,

(3.7) ρn = t2n−1 − t2n + tn > 0

which is a key property for all the following results. More precisely:
Lemma 3.2. If (a, d) satisfies condition H1 then ∀n ∈ N, n > 2,

(3.8)
1

ad
− 2d

a2d
> 0 and ρn >

(

1

ad
− 2d

a2d

)

(n+ a− 1)d > 0

Proof. See Subsection A.1.
All the following theorems derive from the next proposition which can be seen as a general-

ization of Proposition 2 of [20, 2] to any sequence (tn)n∈N∗ ensuring the positivity of the sequence

(ρn)n>2, with the additional and crucial term
∑N

n=2 ρnwn−1. Lemma 3.2 gives a lower bound
on ρn.

Proposition 3.3. Consider Algorithm 1 with i ∈ {1, 2} and any sequence (tn)n∈N∗ such

that t1 = 1 and the sequence (ρn)n>2 is positive. Then for all n > 1, we have

(3.9) t2NwN +

N
∑

n=2

ρnwn−1 +
1

2γ
‖uN − x∗‖2 6

1

2γ

(

‖u0 − x∗‖+ 2Ai,N +
√

2BN

)2

with

(3.10) A2,n = γ

n
∑

k=1

tk‖ek‖

and

(3.11) A1,n =
n
∑

k=1

tk

(

γ‖ek‖+
√

2γεk

)

and

(3.12) Bn = γ

n
∑

k=1

t2kεk

Proof. See Subsection A.2.
This proposition relates the quantity wn = F (wn) − F (x∗) to the initialization choice (dis-

tance to the minimizer) and the numerical errors εn and en.
For suitable choices of the sequence (tn)n∈N∗ Proposition 3.3 leads to the following theorem:
Theorem 3.4. Consider Algorithm 1 with i ∈ {1, 2}. Consider that (a, d) satisfies condition

H1 and that ∀n ∈ N
∗, tn =

(

n+a−1
a

)d
. Then for all n > 1, we have

(

N + a− 1

a

)2d

wN +
N
∑

n=2

(

1

ad
− 2d

a2d

)

(n+ a− 1)dwn−1 +
‖uN − x∗‖2

2γ

6
1

2γ

(

‖u0 − x∗‖+ 2Ai,N +
√

2BN

)2
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with

(3.13) Ã2,n = γ

n
∑

k=1

(

k + a− 1

a

)d

‖ek‖

and

(3.14) Ã1,n =
n
∑

k=1

(

k + a− 1

a

)d
(

γ‖ek‖+
√

2γεk

)

and

(3.15) B̃n = γ

n
∑

k=1

(

k + a− 1

a

)2d

εk

This applies to FISTA (d=1).
If the sequences Ai,n and Bn are uniformly bounded, we get convergence rates of the over-
relaxation:

Theorem 3.5. Consider Algorithm 1 with i ∈ {1, 2}, consider that (a, d) satisfies condition

H1 and that ∀n ∈ N
∗, tn =

(

n+a−1
a

)d
. Assume that the following assumptions hold: There exists

A1, A2 and B positive real numbers such that

1.

(3.16)

+∞
∑

n=1

nd√εn 6 A1 if i = 1 in Algorithm 1.

(3.17)

+∞
∑

n=1

n2dεn 6 A2 if i = 2 in Algorithm 1.

2.

(3.18)

+∞
∑

n=1

nd‖en‖ 6 B

Then

1. The sequence (ndwn)∈N belongs to ℓ1(N).
2. The sequence (n2dwn)n∈N belongs to ℓ∞(N).
3. The sequence (n2dδn)n∈N belongs to ℓ∞(N)
4. Let us define for all n ∈ N

∗,

(3.19) sn =
n
∑

k=1

(k + a− 1)d and zn =
1

sn

n
∑

k=1

(k + a)dxk.

There exists C1 > 0 depending on a, d, Ai, B and ‖u0 − x∗‖ such that ∀n ∈ N
∗,

(3.20) we
n := F (zn)− F (x∗) 6

C1

nd+1
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Proof. The two first points are direct consequence of Theorem 3.4.
The third point is a consequence of the coercivity of the function F . Indeed, under the

hypothesis of the Theorem, from Theorem 3.4, the sequence (‖x∗ − un‖)n∈N belongs to ℓ∞(N)
which implies that the sequence (‖un‖)n∈N belongs to ℓ∞(N). Since (w(xn))n∈N tends to 0 and
since the function F is coercive we get that the sequence (‖xn‖)n∈N belongs to ℓ∞(N). From
the definition of un (1.3) it follows that (tn ‖xn − xn−1‖)n∈N belongs to ℓ∞(N). Remarking that

tn =
(

n+a−1
a

)d
and δn = 1

2 ‖xn − xn−1‖2 concludes the proof of this third point.
The fourth one is a consequence of the fact that under the hypotheses of the Theorem there

exists C > 0 such that

N
∑

n=1

(n+ a− 1)d(F (xn)− F (x∗)) =
N
∑

n=1

(n+ a− 1)dwn 6 C.

Hence by convexity of function F ,

F (zn)− F (x∗) =F

(

1

sn

n
∑

k=1

(k + a− 1)dxk

)

− F (x∗)

6
1

sn

n
∑

k=1

(k + a− 1)d (F (xk)− F (x∗))6
C

sn

Moreover

sn =
d
∑

k=1

(k + a− 1)d >

∫ n

0

tddt =
1

d+ 1
nd+1

which concludes the proof of the Theorem.
The previous theorem ensures that the over-relaxed algorithm behaves in the same way

with small perturbations and with no perturbations. In the following Corollaries we focus on
consequences of Theorems 3.4 and 3.5 when the perturbations are too large to ensure the optimal
decay of FISTA.We will focus on convergence of wn := F (xn)−F (x∗) and on ergodic convergence,
i.e. convergence of we

n = F (zn)− F (x∗) where zn is defined in (3.19).
This first Corollary of Theorem 3.4 focuses on FISTA (d = 1):

Corollary 3.6.

1. If i = 1, d = 1, (a, d) satisfies condition H1 and α ∈]0, 1[ and if

‖en‖ = O

(

1

n1+α(lnn)2

)

and
√
εn = O

(

1

n1+α(lnn)2

)

then

wn = O

(

n−2α

(lnn)4

)

and we
n = O

(

n−2α

(lnn)4

)

2. If i = 2, d = 1, (a, d) satisfies condition H1 and α ∈]0, 1[ and if

‖en‖ = O

(

1

n1+α(lnn)2

)

and
√
εn = O

(

1

n
1
2+α(lnn)2

)

Then

wn = O

(

n−2α

(lnn)4

)

and we
n = O

(

n−2α

(lnn)4

)
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One can remark that results are similar for classical and ergodic convergence.
The first result with i = 1 is similar to the one of Schmidt et al. [20] and the second one to Salzo
et al. [19] (although [19] only considers the special case en = 0).
The case α = 1 is treated by Theorem 3.5.
One can observe that if the convergence rate is good for α close to 1, it is not that good for α

close to 0. If α > 0, the sequence (‖en‖)n∈N and (εn)n∈N belongs to ℓ1(N). Proposition 1 of [20]
implies that the ergodic convergence of Forward-Backward satisfies in this case:

we
n = O

(

1

n

)

Hence for α < 1
2 , the bounds we can achieve on FISTA are worse than what can be achieved

with ergodic convergence of Forward-Backward.
Next corollary shows that, for α ∈]0, 1[ for a suitable choice of d, one can perform better than
FISTA and FB. This corollary is a direct consequence of Theorem 3.5.

Corollary 3.7.

1. If i = 2, if α ∈]0, 1[, if a is such that (a, α) satisfies condition H1 and

‖en‖ = O

(

1

n1+α(lnn)2

)

and
√
εn = O

(

1

n1+α(lnn)2

)

Then choosing tn =
(

n+a−1
a

)α
in Algorithm 1,

wn = O
(

n−2α
)

and we
n = O

(

n−1−α
)

2. If i = 1, if α ∈]0, 1[, if a is such that (a, α) satisfies condition H1 and

‖en‖ = O

(

1

n1+α(lnn)2

)

and
√
εn = O

(

1

n
1
2+α(lnn)2

)

Then choosing tn =
(

n+a−1
a

)α
in Algorithm 1,

wn = O
(

n−2α
)

and we
n = O

(

n−1−α
)

This second corollary shows that for a suitable choice of d in Algorithm 1, one can accelerate
Forward-Backward in a better way than FISTA. It turns out that a smaller value of d can be
better than FISTA because the acceleration of the convergence increases errors. It is a known
stability problem of FISTA. Another choice of d may provide a better trade off between acceler-
ation and enhancement of perturbations. Moreover this choice of d, depending on perturbation
assumptions, ensures the weak convergence of iterates. This result is the purpose of Theorem
4.1 which relies on the following corollary of Theorem 3.5.

Corollary 3.8. Consider (a, d) satisfying condition H1 and for n > 1, tn =
(

n+a−1
a

)d
.

Let us assume that there exists 3 positive real numbers A1, A2 and B such that

1.

(3.21)

+∞
∑

n=1

n2dεn 6 A2 if i = 2 in Algorithm 1.

(3.22)

+∞
∑

n=1

nd√εn 6 A1 if i = 1 in Algorithm 1.
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2.

(3.23)
+∞
∑

n=1

nd‖en‖ 6 B

Then the sequence (ndδn)∈N belongs to ℓ1(N).
Proof. See Subsection A.3.
This bound on (ndδn) will play a key role in proving the convergence of the iterates, since it

will be part of the final bound.
Now that the convergence of the values of the functional has been adressed, we can turn to

the convergence of the iterates for Algorithm 1.

4. Convergence of iterates. In this section, we present the theorem stating the conver-
gence of iterates of inertial Forward Backward algorithms. The next theorem and corollary are
generalizations of Theorem 1.1 in the case of errors in Algorithm 1.

Theorem 4.1. Consider Algorithm 1 with i ∈ {1, 2}. Assume that (a, d) satisfies condition

H1 and that ∀n ∈ N
∗, tn =

(

n+a−1
a

)d
. Assume that the two following assumptions hold:

1.

(4.1)

+∞
∑

n=1

n2dεn < +∞ if i = 1 in Algorithm 1.

(4.2)

+∞
∑

n=1

nd√εn < +∞ if i = 2 in Algorithm 1.

2.

(4.3)

+∞
∑

n=1

nd‖en‖ < +∞

Then the sequence (xn)n∈N given by Algorithm 1 weakly converges to a minimizer of F .

Proof. See Subsection A.4.
For d = 1 this theorem ensures that the iterates of FISTA converge if the errors satisfy a

somability condition.
Corollary 4.2. Let a > 2 be a positive real number, and for all n ∈ N let tn = n+a−1

a .

Assume that the two following assumptions hold:

1.

(4.4)

+∞
∑

n=1

n2εn < +∞ if i = 3 in Algorithm 1.

(4.5)
+∞
∑

n=1

n
√
εn < +∞ if i = 2 in Algorithm 1.

2.

(4.6)

+∞
∑

n=1

n‖en‖ < +∞

Then the sequence (xn)n∈N given by Algorithm 1 weakly converges to a minimizer of F .
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5. Discussion. With Theorems 3.4 and 3.5, we propose generalizations of results of Salzo
et al. [19] and of Schmidt et al. [2] to any choice of d ∈]0, 1[ for two different ways to define the
approximate proximal operator, with an extension of error to gradient computation in the case
of [19]. More precisely in both articles, authors consider classical FISTA where the sequence
tn is defined accordingly to the rule of Beck and Teboulle [4] or with the other classical choice
tn = n+1

2 corresponding to αn = n−1
n+2 . Following Chambolle et al. [7], for d = 1 we consider

tn = n+a−1
a with a > 2 because this sequence ensures the weak convergence of iterates, but it

turns out that results of [19, 2, 4] are similar with this choice of FISTA parameters.
The weaker assumptions on errors for i = 2 in the Algorithm 1 to get similar decay of wn confirms
the fact that the definition of approximation of proximal operator given by i = 1 is stronger than
for i = 2.
Considering d ∈]0, 1[ has two advantages:

1. The ergodic convergence is better than FISTA for some perturbation levels.
2. The weak convergence of iterates may be achieved for perturbation levels for which the

weak convergence of iterates of FISTA is not ensured.
More precisely, we show that

1. If the perturbations on proximal operator and gradient are small enough to ensure the
optimal decay rate of FISTA (O( 1

n2 )), then iterates of FISTA weakly converge.
2. If the perturbation level is too high to ensure the optimal decay rate of FISTA, it may

be better to slow down the over-relaxation to limit the enhancement of perturbations
due to over relaxation. A lower over-relaxation may stabilize the algorithm, ensuring a
better ergodic convergence and a weak convergence of iterates.

3. For large perturbation, ergodic convergence behaves better than classical convergence.
Theorem 4.1 and Corollary 4.2 extend the convergence result of [7] to the case when errors

occur in FISTA algorithm. Notice that this extension is based on ideas proposed in [15], the
notion of ε enlargements having a key role. This stability result for the convergence of iterates for
FISTA indicates that provided the errors are sufficiently controlled, then there is still convergence
of the iterates. This is an interesting property, in particular in the case of nested algorithms.

Since no strong convergence has been proved for FB or FISTA, the question of the conver-
gence rate of iterates (xn)n∈N does not have any meaning in a general setting. Nevertheless,
the question may be interesting in finite dimension, when the weak convergence implies a strong
convergence. Unfortunately there is no chance to prove any convergence rate of iterates for FB
or FISTA. If we consider the minimization problem infx (f(x) + g(x)) with f(x) = xp, p > 2,
and g(x) = 0, than FB is a simple gradient descent and FISTA is an inertial gradient descent.

It can be shown that any sequence (xn)n∈N defined by FB satisfies xn > C1n
− 1

p−2 where C1

depends on x0 > 0, and that any sequence (xn)n∈N defined by FISTA satisfies xn > C2n
− 2

p−2

where C2 depends on x0 > 0. It follows that the convergence to the minimizer 0 may be very
slow for large values of p.

6. Numerical experiments. Theorem 3.5 ensures that the bound on the ergodic conver-
gence rate may be better for an over-relaxation of Forward-Backward that is not FISTA for some
noise level. The fact that the bound is lower does not guaranty that the decay of F (zn)−F (x∗)
is better for a suitable over-relaxation. A classical example of an algorithm whose bound on
the convergence rate are not tight is the original FISTA. It is known for a while that in most
experiments the sequence F (xn)− F (x∗) is oscillating and that for most values of n the bound
‖x0−x∗‖
2(n+1)2 given in [4] is not tight.

To test these bounds, we need to be able to bound the errors on gradient and on the proximal
operator at each step. We propose two examples to illustrate that result. The first one is a simple
gradient descent and the second one is a toy example of 1D inpainting using wavelets.
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We first consider the specific case of H = R
2 and f = ‖·‖p2 and g = 0. In this case the

proximal operator of g is the identity. The inertial FB can be stated as follow:

(6.1) xn = yn−1 − γyn−1 ‖yn−1‖p−2
and yn = xn + αn(xn − xn−1)

We consider the following perturbed algorithm

(6.2) xn = yn−1 − γyn−1 ‖yn−1‖p−2
+ en and yn = xn + αn(xn − xn−1)

where en is a perturbation.
In our experiments the sequence (en)n>1 is a sequence of random vectors such that ∀n > 1,

‖en‖ = C
nβ for a given C and β and whose directions are uniformly spread on the sphere. The

minimizer of F is 0 and the minimum of the function is 0. In the next figure, several choices of β
are tested and the three choices of d are compared, d=0 (FB), d=1 (FISTA) and d = 0.5 which
is another inertial FB (iFB). The value of F (zn)− F (x∗) is also given for the last value of n.

For each experiment the starting point x0 is set to (1, 0) and the curves are a mean over
1000 trajectories. Each trajectory is oscillating but the mean of 1000 trajectories is more stable
and most of the time decreasing.

One can observe on Figure 1 that, as stated in Theorem 3.5, the choice d = 0.5 may be
better than FB (d=0) and FISTA (d = 1) depending on β. For high values of β, which means
small pertubations, FISTA is better, for small values of β which means high perturbations, FB
is better and for intermediate values of β, the choice d = 0.5 for inertial FB gives better results.
Notice that when considering ergodic convergence, than iFB gives the best result except in the
case of weal noise (where FISTA does a better job).

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

β = 0.5

← F(z
n
)−F(x*)

for iFB,d=0.5

Iterations k

F
(x

n
)
−
F
(x

∗
)

10
0

10
1

10
2

10
3

10
4

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

β = 1.5

← F(z
n
)−F(x*)

for iFB,d=0.5

Iterations k

F
(x

n
)
−
F
(x

∗
)

10
0

10
1

10
2

10
3

10
4

10
−15

10
−10

10
−5

10
0

β = 2.5

← F(z
n
)−F(x*)

for iFB,d=0.5

Iterations k

F
(x

n
)
−
F
(x

∗
)

Fig. 1. Values of F (xn)− F (x∗) as a function of n, FB blue dotted line, FISTA black dashed line and iFB
with d=0.5 red solid line. β is set to 0.5 on the right (strong noise), 1.5 in the middle, and 2.5 on the right (weak
noise). As expected from the theory in this paper, FISTA gives the best convergence speed result in the case of
weak noise, and FB gets better when the level of noise increase. However, iFB (proposed in the present paper)
gives the best result (except in the case of weak noise), as soon as the ergodic convergence is considered. This
can be explained by the fact that iFB oscillates around the solution, and thus an averaging brings improvement.

Secondly we consider a simple example of 1D inpainting. We consider a 1D signal x0 ∈ R
N ,

piecewise regular, M a random masking operator and we want to estimate x0 from y = Mx

solving

(6.3) min
x

1

2
‖y −Mx‖22 + ‖Tx‖1

where T is a Daubechies wavelet transform.
To solve (6.3) we consider f = 1

2 ‖y −M ·‖22 and g = ‖T ·‖1 and use FB, FISTA and iFB with
d = 0.5. Here the proximal operator of g is a soft thresholding in the wavelet domain. The iFB
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can be stated as follows:

(6.4) xn = yn−1 − γS(yn − γMyn, γλ) and yn = xn + αn(xn − xn−1)

where S(x, t) is the soft thresholding in the wavelet domain with Threshold equal to t. The
parameter γ is set to 0.99.
We consider the following perturbed algorithm

(6.5) xn = yn−1 − γS(yn − γMyn, γλ) + en and yn = xn + αn(xn − xn−1)

where (en) is a sequence of random vectors such that ∀n > 1, ‖en‖ = C
nβ for a given C and β

and whose directions are uniformly spread on the unit sphere of RN .
Several values of β have been tested. For each algorithm the associated curve is a mean over 50
trajectories. For small values of β, FB is more stable and for high values of β FISTA is faster
but for intermediate values of β, iFB with d = 0.5 may be better than both of them. Notice that
when considering ergodic convergence, than iFB gives the best result except in the case of weal
noise (where FISTA does a better job). We can observe that the set of values of β for which
the choice d = 0.5 is better than FB and FISTA is not the same that in the first example (se
Figures 2 and 3).
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Fig. 2. Values of F (xn)− F (x∗) as a function of n, FB blue dotted line, FISTA black dashed line and iFB
with d=0.5 red solid line. β is set to 0.5 on the right (strong noise), 0.6 in the middle, and 1 on the right (weak
noise). As expected from the theory in this paper, FISTA gives the best convergence speed result in the case of
weak noise, and FB gets better when the level of noise increase. However, iFB (proposed in the present paper)
gives the best result (except in the case of weak noise). iFB is even more performant as soon as the ergodic
convergence is considered. This can be explained by the fact that iFB oscillates around the solution, and thus an
averaging brings improvement.

Appendix A. Appendices.

We detail here most of the proofs of the results presented in the paper.

A.1. Proof of Lemma 3.2. Proof. The first inequality comes from a direct calculation.
Let us remark that

(n+ a− 1)2d − (n+ a− 2)2d =

∫ n+a−1

n+a−2

(2d)t2d−1dt

If d ∈ [ 12 , 1],

(n+ a− 1)2d − (n+ a− 2)2d 6 (2d)(n+ a− 1)2d−1
6 (2d)(n+ a− 1)d
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Fig. 3. Values of F (xn) − F (x∗) as a function of n, FB blue dotted line, FISTA black dashed line and
iFB with d=0.5 red solid line. On the left, you can compare iFB with FB: FB has not converged while iFB has.
On the right, iFB is compared with FISTA for the same amount of noise: it can be noticed that FISTA is still
oscillating around the solution, and therefore has not converged yet.

If d ∈ [0, 1
2 [,

(n+ a− 1)2d − (n+ a− 2)2d 6 2d 6 (2d)(n+ a− 1)d

It follows that ∀n ∈ N

(

n+ a− 2

a

)2d

−
(

n+ a− 1

a

)2d

+
2d

a2d
(n+ a− 1)d > 0.

Hence

ρn = t2n−1 − t2n + tn =

(

n+ a− 2

a

)2d

−
(

n+ a− 1

a

)2d

+

(

n+ 1

a

)d

>

(

1

ad
− 2d

a2d

)

(n+ a− 1)d

which concludes the proof of the Lemma. One can remark that condition a > 2 ensures that for
all d ∈]0, 1], a > (2d)

1
d

A.2. Proof of Proposition 3.3. The proof of Proposition 3.3 makes use of several lemmas.
The first one is a generalization of Lemma 1 in [5] dealing with inexact computation of the
proximal operator. The original lemma which can also be found in many other references, [21] or
[4, 5] is at the core of the proof of the convergence rate of FISTA since it provides an inequality
mixing values of F at some points and distances between points. This lemma is a consequence
of the fact that the function defining the proximal operator is strongly convex.

Lemma A.1. Let γ ∈]0, 1
L ], where L is the Lipschitz constant of ∇f , x̄ ∈ H and x̂ = T ε

e x̄.

Then

(A.1) ∀x ∈ H F (x̂) +
‖x̂− x‖2

2γ
6 F (x) +

‖x− x̄‖2
2γ

+ ε+ 〈e+ r

γ
, x− x̂〉

with ‖r‖ ≤ √
2γε
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Proof.
Since γ ∈]0, 1

L ], we have by convexity of f that:

f(x̂) ≤ f(x̄) + 〈∇f(x̄), x̂− x̄〉+ 1

2γ
‖x̂− x̄‖2

≤ f(x) + 〈∇f(x̄), x̄− x〉+ 〈∇f(x̄), x̂− x̄〉+ 1

2γ
‖x̂− x̄‖2

= f(x) + 〈∇f(x̄), x̂− x〉+ 1

2γ
‖x̂− x̄‖2(A.2)

Since x̂ = T ε
e x̄ we have from Lemma 2.5 that there exists r with ‖r‖ ≤ √

2γε and:

(A.3) −∇f(x̄)− e− x̂+ r − x̄

γ
∈ ∂εg(x̂)

We thus have for any x ∈ H that:

g(x̂) ≤ ε+ g(x) +

〈

x̄− x̂

γ
−∇f(x̄)− e− r

γ
, x̂− x

〉

= ε+ g(x) + 〈∇f(x̄), x− x̂〉+ 1

γ
〈x̄− x̂, x− x̂〉+ 〈e+ r

γ
, x− x̂〉(A.4)

Adding (A.2) and (A.4), we get:

(A.5) f(x̂) + g(x̂) ≤ ε+ f(x) + g(x) +
1

γ
〈x̄− x̂, x− x̂〉+ 1

2γ
‖x̂− x̄‖2 + 〈e+ r

γ
, x− x̂〉

The result of the Lemma follows from the fact that F (x) = f(x) + g(x), and that:

(A.6) 2〈x̄− x̂, x− x̂〉+ ‖x̂− x̄‖2 = ‖x̄− x‖2 − ‖x̂− x‖2

The following lemma is a generalization of Lemma 5 in [7]. It uses the previous one and the

convexity of F to bound t2Nwn+
∑N

n=2 ρnwn1
when the proximal operator is inexact. The bound

depends explicitly on errors and on x∗−un which will be bounded using other lemmas following
the ideas of Schmidt et al. [2].

Lemma A.2. If the sequence (tn)n∈N satisfies t1 = 1, and γ 6
1
L then for any N > 2,

(A.7) t2NwN +

N
∑

n=2

ρnwn−1 6
v0 − vN

γ
+

N
∑

n=1

t2nεn +

N
∑

n=1

tn〈en +
rn

γ
, x∗ − un〉.

with ∀n > 1, ‖rn‖ 6
√
2γεn

Proof. Applying Lemma A.1 to x̄ = yn, x̂ = xn+1 and x = (1− 1
tn+1

)xn + 1
tn+1

x∗, we find

F (xn+1) +

∥

∥

∥

1
tn+1

un+1 − 1
tn+1

x∗
∥

∥

∥

2

2γ

6 F

(

(1− 1

tn+1
)xn +

1

tn+1
x∗

)

+

∥

∥

∥

1
tn+1

x∗ − 1
tn+1

un

∥

∥

∥

2

2γ
+εn+1+〈en+1+

rn+1

γ
,

1

tn+1
x∗− 1

tn+1
un+1〉
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with ‖rn+1‖ ≤ √
2γεn+1

Using the convexity of F it follows

F (xn+1)− F (x∗)−
(

1− 1

tn+1

)

(F (xn)− F (x∗))

6
‖un − x∗‖2
2γt2n+1

− ‖un+1 − x∗‖2
2γt2n+1

+ εn+1 + 〈en+1 +
rn+1

γ
,

1

tn+1
x∗ − 1

tn+1
un+1〉

Using definitions of wn and vn this inequality can be stated

(A.8) t2n+1wn+1 − (t2n+1 − tn+1)wn 6
vn − vn+1

γ
+ t2n+1εn+1 + tn+1〈en+1 +

rn+1

γ
, x∗ − un+1〉

Summing these inequalities from n = 0 to n = N − 1 leads to

(A.9) t2NwN +

N−1
∑

n=2

ρn+1wn 6
v0 − vN

γ
+

N−1
∑

n=1

t2n+1εn+1 +

N−1
∑

n=1

tn+1〈en+1 +
rn+1

γ
, x∗ − un+1〉.

which ends the proof of Lemma A.2.
Lemma A.3. Consider Algorithm 1 with i ∈ {1, 2}. If the sequence (tn)n∈N satisfies t1 = 1,

if γ 6
1
L then for any N > 2,

(A.10) ‖un − x∗‖ ≤ ‖u0 − x∗‖+ 2Ai,k +
√

2Bk

with

(A.11) A3,n = γ

n
∑

k=1

tk‖ek‖

and

(A.12) A2,n =
n
∑

k=1

tk

(

γ‖ek‖+
√

2γεk

)

and

(A.13) Bn = γ

n
∑

k=1

t2kεk

Proof. The proof is almost exactly the same as the one proposed in section 6.2.1 in [2]. It
relies on a technical lemma which we recall here (and whose proof is given in [2]).

Lemma A.4. Assume that the nonnegative sequence {an} satisfies the following recursion

for all n ≥ 1:

(A.14) a2n ≤ Sn +

n
∑

k=1

λkak

with Sn a non-decreasing sequence, S0 ≥ a20 and λk ≥ 0 for all k. Then, for all k ≥ 1, it holds:

(A.15) an 6
1

2

n
∑

k=1

λk +



Sn +

(

1

2

n
∑

k=1

λk

)2




1/2
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From (A.7), using the fact that wn ≥ 0 for all n and that 2vn = ‖un − x∗‖2, we get:

(A.16) ‖uN − x∗‖2 6 ‖u0 − x∗‖2 + 2γ
N
∑

n=1

t2nεn + 2γ
N
∑

n=1

tn

(

‖en‖+
‖rn‖
γ

)

‖x∗ − un‖

Using Lemma A.4 with aN = ‖uN − x∗‖2,

(A.17) SN = 2γ
N
∑

n=1

t2nεn

and

(A.18) λn = tn

(

‖en‖+
‖rn‖
γ

)

we get:

(A.19) ‖uN − x∗‖2 6 AN +
(

‖u0 − x∗‖2 + 2BN +A2
N

)1/2

and we conclude using the fact that
(

‖u0 − x∗‖2 + 2BN +A2
N

)1/2 ≤ ‖u0 − x∗‖+
√
2BN +AN .

Proof. [Proof of Proposition 3.3]

Using Lemmas A.2 and A.3, we get:

γt2NwN + γ

N
∑

n=2

ρnwn−1 +
1

2
‖uN − x∗‖2

6
1

2
‖u0 − x∗‖2 +

N
∑

n=1

γt2nεn + γ

N
∑

n=1

tn

(

‖en‖+
‖rn‖
γ

)

‖x∗ − un‖

and

(A.20) ‖un − x∗‖ ≤ ‖u0 − x∗‖+ 2Ai
k +

√

2Bk

Hence:

γt2NwN + γ

N
∑

n=2

ρnwn−1 +
1

2
‖uN − x∗‖2

6
1

2
‖u0 − x∗‖2 +BN +Ai,N

(

‖u0 − x∗‖+ 2Ai,N +
√

2BN

)

6
1

2

(

‖u0 − x∗‖2 + 2BN + 2Ai,N‖u0 − x∗‖+ 4A2
i,N + 2Ai,N

√

2BN

)

6
1

2

(

‖u0 − x∗‖+ 2Ai,N +
√

2BN

)2
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A.3. Proof of Corollary 3.8. Proof. [Proof of corollary 3.8.] Applying Lemma A.1 to
x̄ = yn = xn + αn(xn − xn−1), x̂ = xn, and x = xn leads to

(A.21) F (xn+1)+
‖xn − xn+1‖2

2γ
6 F (xn)+

α2
n ‖xn − xn−1‖2

2γ
+εn+1+〈en+1+

rn+1

γ
, xn−xn+1〉

with

(A.22) ‖rn+1‖ ≤
√

2γεn+1

which can be written with definitions of wn and δn

δn+1 − α2
nδn 6 γ(wn − wn+1) + γεn+1 + γ〈en+1 +

rn+1

γ
, xn − xn+1〉

If tn =
(

n+a−1
a

)d
, αn = tn−1

tn+1
= (n+a−1)d−ad

(n+a)d
.

Multiplying this inequality by (n+ a)2d and summing from n = 1 to n = N leads to

N
∑

n=1

(n+ a)2d(δn+1 − α2
nδn) 6 γ

N
∑

n=1

(n+ a)2d(wn − wn+1) + γ

N
∑

n=1

(n+ a)2dεn+1

+γ

N
∑

n=1

(n+ a)2d〈en+1 +
rn+1

γ
, xn − xn+1〉,

which gives

(N + a)2dδN+1 +

N
∑

n=2

((n+ a− 1)2d − (n+ a)2dα2
n)δn 6

γ

(

(a+ 1)2dw1 − (N + a)2dwN+1 +

N
∑

n=2

(

(n+ a)2d − (n+ a− 1)2d
)

wn

)

+γ

N
∑

n=1

(n+ a)2dεn+1 + γ

N
∑

n=1

(n+ a)2d〈en+1 +
rn+1

γ
, xn − xn+1〉

that is

(A.23) (N + a)2dδN+1 +
N
∑

n=2

(2ad(n+ a− 1)d − a2d)δn

6 γ

(

(a+ 1)2dw1 − (N + a)2dwN+1 +

N
∑

n=2

2d(n+ a)dwn

)

+ γ

N
∑

n=1

(n+ a)2dεn+1 + γ

N
∑

n=1

(n+ a)2d〈en+1 +
rn+1

γ
, xn − xn+1〉

Here the majoration of (n+ a)2d − (n+ a− 1)2d by 2d(n+ a)d is the same than the one used in
lemma 3.2.

Theorem 3.4 ensures there exists C > 0 such that ‖xn − xn−1‖ 6
C

nd
, wich gives

γ

N
∑

n=1

(n+ a)2d〈en+1 +
rn+1

γ
, xn − xn+1〉 6 γ

N
∑

n=1

C(n+ a)2d

nd
(‖en+1‖+

‖rn+1‖
γ

).
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If i = 3, rn+1 = 0, under the hypotheses of the Corollary

γ

N
∑

n=1

(n+ a)2dεn+1 + γ

N
∑

n=1

(n+ a)2d〈en+1, xn − xn+1〉

is uniformely bounded.
If i = 2,

γ

N
∑

n=1

(n+ a)2dεn+1 + γ

N
∑

n=1

(n+ a)2d〈en+1 +
rn+1

γ
, xn − xn+1〉

6 γ

N
∑

n=1

(n+ a)2dεn+1 + γ

N
∑

n=1

C(n+ a)2d

nd
(‖en+1‖+

√
2γεn+1

γ
)

which is uniformely bounded with hypotheses of the Corollary.
Hence, by Theorem 3.5, the right part of the inequality in (A.23) is uniformly bounded

independently of N , which ensures that the sequence (ndδn)n∈N belongs to ℓ1(N). It also follows
that the sequence (n2dδn)n∈N is uniformly bounded.

A.4. Proof of Theorem 4.1. We first need to prove a lemma to bound the quantity
∑+∞

k=j βj,k.

Lemma A.5. If ∀n ∈ N, tn =
(

n+a−1
a

)d
and (a, d) satisfies condition H1 there exists C(d)

depending on d such that ∀j ∈ N,

(A.24)

+∞
∑

k=j

βj,k 6 C(d)jd

Proof. For d = 0 and for all n, αn = 0 thus one can choose C(d) = 0.
We split the proof into two cases, depending on the fact that d = 1 or d ∈ (0, 1).
Case 1: We first consider the case d = 1. We can observe that condition H1 implies that a > 2.
Let us define for all j > 1 and for all k > j

βj,k =

k
∏

l=j

αl =

k
∏

l=j

l − 1

l + a
.

and βj,k = 1 if j > k.
Since α1 = 0, ∀k > 1, β1,k = 0. Moreover since a > 2,

βj,k 6

k
∏

l=j

l − 1

l + 2
.

Hence, for all j > 2 and for all k > 1, βj,k 6 1, while if k − j > 2,

βj,k 6

(

j + 1

k

)3

.

It follows that for all j > 2,

+∞
∑

k=j

βj,k 6 2 +

+∞
∑

k=j+2

βj,k 6 2 +

+∞
∑

k=j+2

(

j + 1

k

)3

6 2 + (j + 1)3
+∞
∑

k=j+2

1

k3

6 2 + (j + 1)3
∫ +∞

t=j+1

dt

t3
6 2 + (j + 1)3

1

2(j + 1)2
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and then

(A.25)

+∞
∑

k=j

βj,k 6
j + 5

2
6 3j

Case 2: Consider now the case when d ∈ (0, 1).

Taking tn = (n+1−a
a )d it follows that αl =

tl−1
tl+1

= (l+a−1)d−ad

(l+a)d

and αl − 1 6 − ad

(l+a)d
. Remarking that for a > 1, (l+ a)d 6 ad(l+ 1)d, and then that − ad

(l+a)d
6

− 1
(l+1)d

we get αl − 1 6 − 1
(l+1)d

Since for all x ∈ R, x 6 ex−1 it follows that

βj,k =

k
∏

l=j

αl 6

k
∏

l=j

eαl−1
6

k
∏

l=j

e
− 1

(l+1)d 6 e
−

∑k
l=j

1

(l+1)d

It follows that

ln(βj,k) 6 −ad
∫ k+1

j

dt

(t+ 1)d
6 − 1

1− d
((k + 2)−d+1 − (j + 1)−d+1)

Which implies that

+∞
∑

k=j

βj,k 6 eK(j+1)1−d
+∞
∑

k=j

e−K(k+2)1−d

with K =
1

1− d
.

We now bound the sum on the right part of the previous inequality:

+∞
∑

k=j

e−K(k+2)1−d

6

∫ +∞

j

e−K(t+1)1−d

dt

With the change of variables u = (t+ 1)1−d it follows that

+∞
∑

k=j

e−K(k+2)1−d

6
1

1− d

∫ +∞

(j+1)1−d

e−Kuu
d

1−d du

where d
1−d > 0, and we can integrate by parts:

(A.26)

∫ +∞

(j+1)1−d

e−Kuu
d

1−d du =

[−e−Ku

K
u

d
1−d

]+∞

(j+1)1−d

+
d

K(1− d)

∫ +∞

(j+1)1−d

e−Kuu
d

1−d
−1du

where the expression in the bracket is exactly equal to 1
K e−K(j+1)1−d

(j + 1)d.
Let us remark that

(A.27)

∫ +∞

(j+1)1−d

e−Kuu
d

1−d
−1du 6

∫ +∞

(j+1)1−d

e−Kuu
d

1−d
1

(j + 1)1−d
du
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If we denote A =
∫ +∞

(j+1)1−d e
−Kuu

d
1−d du and B = 1

K e−K(j+1)1−d

(j + 1)d, equation (A.26) and

(A.27) lead to

A 6 B +
d

K(1− d)(j + 1)1−d
A 6 B +

d

(j + 1)1−d
A

It follows that it exists j0 depending on d such that for all j > j0 we get A 6 B + A
2 which can

be stated:

∀j > j0,

∫ +∞

(j+1)1−d

e−Kuu
d

1−d du 6 2
1

K
e−K(j+1)1−d

(j + 1)d

With previous inequalities it follows that there exists j0 depending on d such that for all j > j0,

(A.28)
+∞
∑

k=j

βj,k 6 2(j + 1)d 6 2d+1jd

To deal with small j one can use the fact that for all pair (j, k) βj,k 6 1 and that for all j 6 j0,
βj,k 6 βj0,k which implies that for all j 6 j0

+∞
∑

k=j

βj,k 6 j0 − j +

+∞
∑

k=j0

βj0,k 6 j0 +

+∞
∑

k=j0

βj0,k

where the right part of the inequality is uniformly bounded. Which concludes the proof of the
lemma.

We detail here the proof of Theorem 4.1.
Proof. [Proof of Theorem 4.1]
Let us define

Φn =
1

2
‖xn − x∗‖22 and Γn =

1

2
‖xn+1 − yn‖2

From the identity

(A.29) 〈a− b, a− c〉 = 1

2
‖a− b‖2 + 1

2
‖a− c‖2 − 1

2
‖b− c‖2

we have by using the definition of yn

(A.30) Φn − Φn+1 = δn+1 + 〈yn − xn+1, xn+1 − x∗〉 − αn〈xn − xn−1, xn+1 − x∗〉

Then, using the monoticity of ∂g, we deduce that for any zn+1 ∈ ∂g(xn+1) and for any z∗ ∈
∂g(x∗)

〈γzn+1 − γz∗, xn+1 − x∗〉 > 0

By definition of x∗,

(A.31) −∇(f(x∗)) ∈ ∂g(x∗)

and using (3.4) and Lemma 2.5, there exists rn with ‖rn ≤ √
2γεn such that:

(A.32)
yn − xn+1 − γ∇f(yn)− γen − rn

γ
∈ ∂εng(xn+1).
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It follows since ∂g(x∗) ⊂ ∂εng(x
∗):

〈yn − xn+1 − γ∇f(yn)− γen + γ∇f(x∗)− rn, xn+1 − x∗〉 > −γεn

〈yn − xn+1, xn+1 − x∗〉+ γ〈∇f(x∗)−∇f(yn), xn+1 − x∗〉
> − γεn + γ〈en +

rn

γ
, xn+1 − x∗〉

Hence we get:

(A.33) 〈yn−xn+1, xn+1−x∗〉+γ〈∇f(x∗)−∇f(yn), xn+1−x∗〉 > −γεn+γ〈en+
rn

γ
, xn+1−x∗〉

Combining with (A.30) we obtain

Φn − Φn+1 > δn+1 + γ〈∇f(yn)−∇f(x∗), xn+1 − x∗〉(A.34)

−αn〈xn − xn−1, xn+1 − x∗〉 − γεn + γ〈en +
rn

γ
, xn+1 − x∗〉.

From the co-coercivity of ∇f , we have

〈∇f(yn)−∇f(x∗), xn+1 − x∗〉
= 〈∇f(yn)−∇f(x∗), xn+1 − yn + yn − x∗〉

>
1

L
‖∇f(yn)−∇f(x∗)‖2 + 〈∇f(yn)−∇f(x∗), xn+1 − yn〉

>
1

L
‖∇f(yn)−∇f(x∗)‖2 − 1

L
‖∇f(yn)−∇f(x∗)‖2 − L

2
Γn

> −L

2
Γn.

Substituting back into (A.34), we get

Φn − Φn+1 > δn+1 −
γL

2
Γn − αn〈xn − xn−1, xn+1 − x∗〉 − γεn + γ〈en +

rn

γ
, xn+1 − x∗〉,

and invoking (A.29) it follows that

Φn+1 − Φn − αn(Φn − Φn−1)

6− δn+1 +
γL

2
Γn + αn(δn + 〈xn − xn−1, xn+1 − xn〉) + γεn + γ〈en +

rn

γ
, x∗ − xn+1〉

= − Γn +
γL

2
Γn + (αn + α2

n)δn + γεn + γ〈en +
rn

γ
, x∗ − xn+1〉

where we have used the fact that

δn+1 − αn〈xn − xn−1, xn+1 − xn〉 = α2
n

‖xn − xn−1‖
2

2

− ‖xn+1 − yn‖
2

2

.

Using
αn+α2

n

2 6 αn we obtain

(A.35) Φn+1 −Φn −αn(Φn −Φn−1) 6 −
(

1− γL

2

)

Γn +2αnδn + γεn + γ〈en +
rn

γ
, x∗ − xn+1〉
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with 1− γL
2 > 0.

Now defining θn = max(0,Φn − Φn−1) we obtain

(A.36) θn+1 6 αn(θn + 2δ̃n)

where

(A.37) δ̃n = δn +
γ

2αn

(

εn + 〈en +
rn

γ
, x∗ − xn+1〉

)

Since the sequence (‖x∗ − xn+1‖) is uniformly bounded, there exists Cx∗ such that ∀n ∈
N, ‖x∗ − xn+1‖ 6 Cx∗ and since the sequence (αn)n∈N tends to 1 when n tends to +∞, there
exist a non-negative real number C such that for all j ∈ N

∗

(A.38) δ̃j 6 δj + Cγ

(

εj + Cx∗ ‖ej‖+ Cx∗

√

2
εj

γ

)

if i = 3 in Algorithm 1

and

(A.39) δ̃j 6 δj + Cγ (εj + Cx∗ ‖ej‖) if i = 2 in Algorithm 1

Applying recursively (A.36) it follows that for all n > 2 (α1 = 0, and in particular θ1, θ2 = 0).

(A.40) θn+1 6 2

n
∑

j=2





n
∏

l=j

αl



 δ̃j = 2

n
∑

j=2

βj,nδ̃j .

Hence using Lemma A.5,

+∞
∑

n=2

θn 6 2
+∞
∑

n=1

n
∑

j=2

βj,nδ̃j

6 2
∞
∑

j=2

δ̃j

∞
∑

n=j

βj,n

6 2C(d)

∞
∑

j=1

δ̃jj
d.

From Corollary 3.8 and hypotheses of Theorem 4.1, the right side of the last inequality is finite,
therefore the sequence (θn)n∈N belongs to ℓ1(N).

The end of the proof follows Lorenz and Pock [14]. We set sn = Φn −∑n
i=1 θi and since

Φn > 0 and
∑n

i=1 θi is bounded independently of n, we see that sn is bounded from below. 0n
the other hand

sn+1 = Φn+1 − θn −
n
∑

i=1

θn 6 Φn+1 − Φn+1 +Φn −
n
∑

i=1

θi = sn

and hence (sn)n∈N is a non-decreasing sequence and thus is convergent. This implies that Φn is
convergent.

Recall that Φn = 1
2 ‖xn − x∗‖22.

1. Since F is coercive, the sequence ((xn)n∈N) is bounded, hence weakly sequentially com-
pact.
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2. Assume we have a subsequence which weakly converges to a x̃ ∈ H, xν ⇀ x̃: then since
the sequence (δn)n∈N tends to 0 (thanks to Theorem 3.5, yν ⇀ x̃ which shows that x̃ is
a fixed point of the nonexpansive operator T (since εn → 0 and and en → 0)). Hence it
is a minimizer of F .

Since we have proved that Φn = 1
2 ‖xn − x∗‖22 has a limit for any minimizer x∗ of F , Theorem

4.1 follows, from points 1. and 2. above and the observation that if xν ⇀ x̃ and xν′ ⇀ x̃′, then
using limν ‖xν − x̃‖2 = limν′ ‖xν′ − x̃‖2 and the same equality with x̃′, it follows ‖x̃ − x̃′‖2 = 0
(this is Opial’s Theorem [18]).

This concludes the proof of Theorem 4.1.

Appendix B. The authors would like to thank A. Chambolle and J. Fadili for their usefull
help, advice and references.
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Programme IdEx Bordeaux (ANR- 10-IDEX-03-02).
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