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Sensitivity analysis based on Cramér von Mises distance

Fabrice Gamboa Thierry Klein Agnès Lagnoux∗

June 12, 2015

Abstract

In this paper, we first study a new sensitivity index that is based on higher moments and gener-
alizes the so-called Sobol one. Further, following an idea of Borgonovo ([3]), we define and study a
new sensitivity index based on the Cramér von Mises distance. This new index appears to be more
general than the Sobol one as it takes into account, not only the variance, but the whole distribution
of the random variable. Furthermore, we study the statistical properties of a Monte Carlo estimate
of this new index.

Keywords: Sensitivity analysis, Cramér von Mises distance, Pick and Freeze method, func-
tional delta-method, Anderson-Darling statistic.

1 Introduction
A very classical problem in the study of computer code experiments (see [21]) is the evaluation of the
relative influence of the input variables on some numerical result obtained by a computer code. This
study is usually called sensitivity analysis in this paradigm and has been widely assessed (see for example
[22], [20], [11] and references therein). More precisely, the result of the numerical code Y is seen as
a function of the vector of the distributed input (Xr)r=1,··· ,d (d ∈ N∗). Statistically speaking, we are
dealing here with the unnoisy non parametric model

Y = f(X1, . . . , Xd), (1)

where f is a regular unknown numerical function on the state space E1 × E2 × . . . × Ed on which the
distributed variables (X1, . . . , Xd) are living. Generally, the random inputs are assumed to be independent
and a sensitivity analysis is performed by using the so-called Hoeffding decomposition (see [23] and [1]).
In this functional decomposition, f is expanded as an L2-sum of uncorrelated functions involving only a
part of the random inputs. For any subset v of Id = {1, . . . , d}, this leads to an index called the Sobol
index ([22]) that measures the amount of randomness of Y carried in the subset of input variables (Xi)i∈v.
Since nothing has been assumed on the nature of the inputs, one can consider the vector (Xi)i∈v as a
single input. Thus without loss of generality, let us consider the case where v reduces to a singleton. The
numerator Hv of the Sobol index related to the input Xv is

Hv = Var (E [Y |Xv]) = Var(Y )− E
[
(Y − E [Y |Xv])

2
]

(2)

while the denominator of the index is nothing more than the variance of Y . In order to estimate Hv

the clever trick discovered by Sobol [22] is to rewrite the variance of the conditional expectation as a
covariance. Further, a well tailored design of experiment called the Pick and Freeze scheme is considered
[16]. More precisely, let Xv be the random vector such that Xv

v = Xv and Xv
i = X ′i if i 6= v where X ′i is

an independent copy of Xi. Then, setting

Y v := f(Xv) (3)

an obvious computation leads to the nice relationship

Var(E(Y |Xv)) = Cov (Y, Y v) . (4)
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The last equality leads to a natural Monte Carlo estimator (Pick and Freeze estimator)

T vN,Cl =
1

N

N∑
j=1

YjY
v
j −

 1

2N

N∑
j=1

(Yj + Y vj )

2

(5)

where for j = 1, · · · , N , Yj (resp. Y vj ) are independent copies of Y (resp. Y v). The sharp statistical
properties and some functional extensions of the Pick and Freeze method are considered in [16], [15] and
[10]. Notice that the Sobol indices and their Monte Carlo estimation are based on order two methods
since they derived from the L2 Hoeffding functional decomposition. This is the main drawback of this
kind of methods. As an illustration consider the following example. Let X1 and X2 be two independent
random variables having the same first four moments (equal e.g. to 1) and such that E

[
X3

1

]
6= E

[
X3

2

]
.

Let us consider the following model
Y = X1 +X2 +X2

1X
2
2 .

Then
Var (E [Y |X1]) = Var(X1 +X2

1 ) = Var(X2 +X2
2 ) = Var (E [Y |X2]) .

However, since Y is a symmetric function of the inputs X1 and X2 that do not share the same distribu-
tion, X1 and X2 should not have the same importance. That shows the need to introduce a sensitivity
index that takes into account not only the second order behaviors but all the distributions. As pointed
out before, Sobol indices are based on L2 decomposition. As a matter of fact, Sobol indices are well
adapted to measure the contribution of an input on the deviation around the mean of Y . However, it
seems very intuitive that the sensitivity of an extreme quantile of Y could depend on sets of variables
that cannot be read only in the variances. Thus the same index should not be used for any task and we
need to define more adapted indices. There are several ways to generalize the Sobol indices. One can,
for example, define new indices through contrast functions based on the quantity of interest (see [13]).
Unfortunately the Monte Carlo estimator of these new indices are computationally very expensive. In
[9], the author presents a way to define moment independent measures through dissimilarity distances.
These measures define a unified framework that encompasses some already known sensitivity indices.
Unfortunately, the estimation of such indices relies on the estimation of density ratio estimation that
can be computationally expensive. Now, as pointed out in [3], [6], [7], [18] and [19], there are situations
where higher order methods give a sharper analysis on the relative influence of the input and allow finer
screening procedures. Borgonovo et al. propose and study an index based on the total variation distance
(see [3], [6] and [7]). While Owen et al. suggest to use procedures based on higher moments (see [18],
[19]). Our paper follows these tracks. We will first revisit the works of Owen et al. by studying the
asymptotic properties of the multiple Pick and Freeze scheme proposed therein for the estimation of
higher order Sobol indices. Further, we propose a new natural index based on the Cramér von Mises
distance between the distribution of the output Y and its conditional law when an input is fixed. We
will show that this approach leads to natural self-normalized indices as in the case of the Sobol-Hoeffding
decomposition of the variance. As a matter of fact, as for Sobol indices, the sum of all first order indices
can not exceeds one. Notice that these indices extend naturally to multivariate outputs. Furthermore,
we show that surprisingly a Pick and Freeze scheme is also available to estimate this new index. The
sample size required to build such an estimator is of the same order as the size needed for the classical
Sobol index estimation allowing its use in concrete situations.

The paper is divided in three sections. In the next section, we will study the statistical properties of the
multiple Pick and Freeze method proposed earlier by Owen et al ([18], [19]). Section 3 is devoted to the
new index built on the Cramér von Mises distance. In the last section, we give some numerical simulation
that illustrate the interest of the new index. In particular, we revisit a real data example introduced in
[8] and studied in [12] and [5].

2 Multiple Pick and Freeze method
Using the classical Hoeffding decomposition, for a singleton v ∈ Id, the numerator of the classical Sobol
index with respect to v is given by

H2
v = E

[
(E[Y |Xv]− E[Y ])

2
]
. (6)
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Following [18] and [19], we generalize this quantity by considering higher order moments. Indeed, for any
integer p > 2, we set

Hp
v := E [(E[Y |Xv]− E[Y ])

p
] . (7)

Hv = H2
v . The following lemma gives the Pick and Freeze representation of Hp

v for p > 2.

Lemma 2.1. For any v ∈ Id, one has

E [(E[Y |Xv]− E[Y ])
p
] = E

[
p∏
i=1

(
Y v,i − E[Y ]

)]
. (8)

Here, Y v,1 = Y and for i = 2, . . . , p, Y v,i is constructed independently as Y v defined in equation (3).

Obviously, Hp
v is non negative for even p and

|Hp
v | 6 E [|Y − E[Y ]|p] .

Further, Hp
v is invariant by any translation of the output.

Estimation procedure In view of the estimation of Hp
v , we first expand the product in the right-hand

side of (8) to get that

Hp
v =

p∑
l=0

(
p

l

)
(−1)p−lE [Y ]

p−l E

[
l∏
i=1

Y v,i

]
.

with the usual convention
∏0
i=1 Y

v,i = 1. Second, we use a Monte Carlo scheme and consider the following
Pick and Freeze design constituted by the following p×N -sample(

Y v,ij

)
(i,j)∈Ip×IN

.

We define for any any N ∈ N∗, j ∈ IN and l ∈ Ip,

P vl,j =

(
p

l

)−1 ∑
k1<...<kl∈Ip

(
l∏
i=1

Y v,kij

)
and P

v

l =
1

N

N∑
j=1

P vl,j .

The Monte Carlo estimator is then

Hv
p,N =

p∑
l=0

(
p

l

)
(−1)p−l

(
P
v

1

)p−l
P
v

l . (9)

Notice that we generalize the estimation procedure of [15] and use all the available information by
considering the means over the set of indices k1, . . . , kl ∈ Id, kn 6= km. The following theorem provides
asymptotic properties of Hv

p,N .

Theorem 2.2. Hv
p,N is consistent and asymptotically Gaussian:

√
N
(
Hv
p,N −Hv

p

) L→
N→∞

N
(
0, σ2

)
(10)

where

σ2 = p
[
Var(Y ) + (p− 1)Cov(Y, Y v,2)

]( p∑
l=1

albl

)2

,

al =
l

p
E[Y ]l−1, l = 1, . . . , p

b1 = (−1)p−1p(p− 1)E[Y ]p−1 +

p−1∑
l=2

(
p

l

)
(−1)p−l(p− l)E[Y ]p−l−1E

[
l∏
i=1

Y v,i

]
and

bl =

(
p

l

)
(−1)p−lE[Y ]p−l, l = 1, . . . , p.
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Proof of Theorem 2.2. The consistency follows from a straightforward application of the strong law of
large numbers. The asymptotic normality is derived by two successive applications of the delta method
[23] .

(1) Let W 1
j = (Y v,1j , . . . , Y v,pj )T (j = 1, . . . , N) and g1 the mapping from Rp to Rp whose l-th coordinate

is given by

g1l (x1, . . . , xp) =

(
p

l

)−1 ∑
k1 < . . . < kl

ki ∈ Ip, i = 1, . . . , l

(
l∏
i=1

xki

)
.

Let Σ1 be the covariance matrix of W 1
j . Clearly, one has Σ1

ii = Var(Y ) for i ∈ Ip while Σ1
ij =

Cov(Y v,i, Y v,j) = Cov(Y, Y v,2). The multidimensional central limit theorem gives withm = (E[Y ], . . . ,E[Y ])T

√
N

 1

N

N∑
j=1

W 1
j −m

 L→
N→∞

Np
(
0,Σ1

)
.

We then apply the so-called delta method to W 1 and g1 so that
√
N
(
g1
(
W

1

N

)
− g1

(
E
[
W 1
])) L→

N→∞
N
(

0, Jg1
(
E
[
W 1
])

Σ1Jg1
(
E
[
W 1
])T)

with Jg1
(
E
[
W 1
])

the Jacobian of g1 at point E
[
W 1
]
. Notice that for i ∈ Ip and k ∈ Ip,

∂g1l
∂xk

(
E
[
W 1
])

=

(
p−1
l−1
)(

p
l

) ml−1 =
l

p
E[Y ]l−1 =: al.

Thus Σ2 := Jg1
(
E
[
W 1
])

Σ1Jg1
(
E
[
W 1
])T is given by

Σ2
ij = paiaj

(
Σ1

11 + (p− 1)Σ1
12

)
.

(2) Now consider W 2
j = (P v,1j , . . . P v,pj )T (j = 1, . . . , N) and g2 the mapping from Rp to R defined by

g2(y1, . . . , yp) =

p∑
l=0

(
p

l

)
(−1)p−lyp−l1 yl.

We apply once again the delta method to W 2 so that
√
N
(
g2
(
W

2

N

)
− g2

(
E
[
W 2
])) L→

N→∞
N
(

0, Jg2
(
E
[
W 2
])

Σ2Jg2
(
E
[
W 2
])T)

with Jg2
(
E
[
W 2
])

the Jacobian of g2 at point E
[
W 2
]
. Notice that for k ∈ Ip,

∂g2

∂y1

(
E
[
W 2
])

= (−1)p−1p(p− 1)E[Y ]p−1

+

p−1∑
l=2

(
p

l

)
(−1)p−l(p− l)E[Y ]p−l−1E

[
l∏
i=1

Y v,i

]

and

∂g2

∂yl

(
E
[
W 2
])

=

(
p

l

)
(−1)p−lE[Y ]p−l.

Thus the limiting variance is

σ2 := Jg2
(
E
[
W 2
])

Σ2Jg2
(
E
[
W 2
])T

= p
(
Σ1

11 + (p− 1)Σ1
12

)( p∑
i=1

aibi

)2

,

where bi is the i-th coordinate of ∇g2
(
E
[
W 2
])
.
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The collection of all indices Hp
v is much more informative than the classical Sobol index. Nevertheless

it has several drawbacks: it may be negative when p is odd. To overcome this fact, we may have
introduced E [|E[Y |Xi, i ∈ v]− E[Y ]|p] but proceeding in such a way, we would have loose the Pick and
Freeze estimation procedure. The Pick and Freeze estimation procedure is computationally expensive: it
requires a p ×N sample of the output Y . In a sense, if we want to have a good idea of the influence of
an input on the law of the output, we need to estimate the first d indices Hp

v and hence we need to run
the black-box code K × N times. Moreover, these indices are moment based and it is well known that
they are not stable when the moment order increases. In the next section, we introduce a new sensitivity
index that is based on the conditional distribution of the output and requires only 3×N .

3 The Cramér von Mises index

In this section the code will be denoted by Z = f(X1, . . . , Xd) ∈ Rk. Let F be the distribution function
of Z. For any t = (t1, . . . , tk) ∈ Rk,

F (t) = P (Z 6 t) = E
[
1 {Z6t}

]
and F v(t) the conditional distribution function of Z conditionally on Xv:

F v(t) = P (Z 6 t|Xv, ) = E
[
1 {Z6t}|Xv

]
.

Notice that {Z 6 t} means that {Z1 6 t1, . . . , Zk 6 tk}. Obviously, E [F v(t)] = F (t). Now, we apply
the framework presented in Section 2 with Y (t) = 1 {Z6t} and p = 2. Hence, for t ∈ Rk fixed, we have a
consistent and asymptotically normal estimation procedure for the estimation of

E
[
(F (t)− F v(t))2

]
.

We define a Cramér Von Mises type distance of order 2 between L (Z) and L (Z|Xv) by

Dv
2,CVM :=

∫
Rk

E
[
(F (t)− F v(t))2

]
dF (t). (11)

The aim of the rest of the section is dedicated to the estimation ofDv
2,CVM and the study of the asymptotic

properties of the estimator. Notice that

Dv
2,CVM = E

[
E
[
(F (Z)− F v(Z))

2
]]
. (12)

Let us note that these indices are naturally adapted to multivariate outputs.

Remark 3.1. Unlike the procedure for p = 2, we did not normalize the generalized Sobol index of Y (t).
The purpose, that becomes clear in this section, is to avoid numerical explosion during the estimation
procedure. Indeed, the normalizing term would be F (t)(1−F (t)), like in the ANderson-Darling statistic,
canceling for small and large values of t. Nevertheless, in view of the following proposition, one can
consider 4Dv

2,CVM instead of Dv
2,CVM in order to have an index bounded by 1 as for the Sobol index.

The asymptotic properties will not be affected by this renormalizing factor, so we still consider Dv
2,CVM .

Proposition 3.2. One has the following properties.

1. 0 6 Dv
2,CVM 6 1

4 . Moreover, if k = 1 and F is continuous, we have 0 6 Dv
2,CVM 6 1

6 .

2. Dv
2,CVM is invariant by translation, by left-composition by any nonzero scaling of Y .

We then proceed to a double Monte-Carlo scheme for the estimation ofDv
2,CVM and consider the following

design of experiment consisting in:

1. two N -samples of Z: (Zv,1j , Zv,2j ), 1 6 j 6 N ;

2. a third N -sample of Z independent of (Zv,1j , Zv,2j )16j6N : Wk, 1 6 k 6 N .
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The empirical estimator of Dv
2,CVM is then given by

D̂v
2,CVM =

1

N

N∑
k=1

 1

N

N∑
j=1

1 {Zv,1
j 6Wk}1 {Zv,2

j 6Wk} −

 1

2N

N∑
j=1

(
1 {Zv,1

j 6Wk} + 1 {Zv,2
j 6Wk}

)2
 .

The consistency of D̂v
2,CVM follows directly from the following lemma:

Lemma 3.3. Let G and H be two L1−measurable functions. Let (Uj)j∈IN and (Vk)k∈IN be two inde-
pendent samples of iid rv such that E[G(U1, V1)] = 0 and E[H(U1, U2, V1)] = 0. We define SN and TN
by

SN =
1

N2

N∑
j,k=1

G(Uj , Vk) and TN =
1

N3

N∑
i,j,k=1

H(Ui, Uj , Vk).

Then SN and TN converge a.s. to 0 as N goes to infinity.

Proof. (i) If we prove that E[S4
N ] = O

(
1
N2

)
, we then apply Borel-Cantelli lemma to deduce the almost

sure convergence of SN to 0. Clearly,

E[S4
N ] =

1

N8

∑
E[G(Ui1 , Vj1)G(Ui2 , Vj2)G(Ui3 , Vj3)G(Ui4 , Vj4)]

where the sum is taken over all the indices i1, i2, i3, i4, j1, j2, j3, j4 from 1 to N . The only scenarii that
could lead to terms in O

(
1
N

)
or even O (1) appear when we sum over indices all different except 2 i’s or

2 j’s or over indices all different. Nevertheless, in those cases, at least one term of the form E[G(Ui, Vj)]
appears. Since the function G is centered, those scenarii are then discarded.

(ii) Analogously, it suffices to show that E[T 4
N ] = O

(
1
N2

)
. The only scenarii that could lead to terms

in O
(

1
N

)
or even O (1) appear when we sum over indices all different except 2 i’s, 2 j’s or 2 k’s or over

indices all different. Nevertheless, in those cases, at least one term of the form E[H(Ui, Uj , Vk)] appears.
Since the function H is centered, those scenarii are then discarded.

Corollary 3.4. D̂v
2,CVM is strongly consistent as N goes to infinity.

Proof. The proof is based on Lemma 3.3. First, we define Zj =
(
Zv,1j , Zv,2j

)
, G(Zj ,Wk) = 1 {Zv,1

j 6Wk}1 {Zv,2
j 6Wk},

F (Zj ,Wk) = 1
2

(
1 {Zv,1

j 6Wk} + 1 {Zv,2
j 6Wk}

)
and H(Zi, Zj ,Wk) = F (Zi,Wk)F (Zj ,Wk). Second we pro-
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ceed to the following decomposition

D̂v
2,CVM =

1

N

N∑
k=1

 1

N

N∑
j=1

1 {Zv,1
j 6Wk}1 {Zv,2

j 6Wk} −

 1

2N

N∑
j=1

(
1 {Zv,1

j 6Wk} + 1 {Zv,2
j 6Wk

}
)2


=

1

N2

N∑
j,k=1

1 {Zv,1
j 6Wk}1 {Zv,2

j 6Wk} −
1

4N3

N∑
i,j,k=1

(
1 {Zv,1

i 6Wk} + 1 {Zv,2
i 6Wk}

)(
1 {Zv,1

j 6Wk} + 1 {Zv,2
j 6Wk}

)

=
1

N2

N∑
j,k=1

G(Zj ,Wk)− 1

N3

N∑
i,j,k=1

H(Zi, Zj ,Wk)

=
1

N2

N∑
j,k=1

{G(Zj ,Wk)− E[G(Zj ,Wk)]} − 1

N3

N∑
i,j,k=1

{H(Zi, Zj ,Wk)− E[H(Zi, Zj ,Wk)]}

+
1

N2

N∑
j,k=1

E[G(Zj ,Wk)]− 1

N3

N∑
i,j,k=1

E[H(Zi, Zj ,Wk)]

=
1

N2

N∑
j,k=1

{G(Zj ,Wk)− E[G(Zj ,Wk)]} − 1

N3

N∑
i,j,k=1

{H(Zi, Zj ,Wk)− E[H(Zi, Zj ,Wk)]}

+ E[G(Z1,W1)]−
(

1− 1

N

)
E[H(Z1, Z2,W1)]− 1

N
E[H(Z1, Z1,W1)].

The two first sums converges almost surely to 0 by Lemma 3.3. The remaining term goes to E[G(Z1,W1)]−
E[H(Z1, Z2,W1)] as N goes to infinity.

It remains to show that Dv
2,CVM = E[G(Z1,W1)]− E[H(Z1, Z2,W1)]. On the one hand,

Dv
2,CVM =

∫
R
E[(F (t)− F v(t))2]dF (t) = E[H2

v (W )]

= E[Cov(1 {Zv,1
1 6W1}, 1 {Zv,2

1 6W1})]

= EW [EZ [1 {Zv,1
1 6W1}1 {Zv,2

1 6W1}]− EZ [1 {Zv,1
1 6W1}]

2].

On the other hand,

E[G(Z1,W1)]− E[H(Z1, Z2,W1)]

= E[1 {Zv,1
1 6W1}1 {Zv,2

1 6W1}]−
1

4
E[
(

1 {Zv,1
1 6W1} + 1 {Zv,2

1 6W1}

)(
1 {Zv,1

2 6W1} + 1 {Zv,2
2 6W1}

)
]

= EW [EZ [1 {Zv,1
1 6W1}1 {Zv,2

1 6W1}]]− E[1 {Zv,1
1 6W1}1 {Zv,2

2 6W1}]

= EW [EZ [1 {Zv,1
1 6W1}1 {Zv,2

1 6W1}]]− E[E[1 {Zv,1
1 6W1}1 {Zv,2

2 6W1}|W1]]

= EW [EZ [1 {Zv,1
1 6W1}1 {Zv,2

1 6W1}]]− E[E[1 {Zv,1
1 6W1}|W1]E[1 {Zv,2

2 6W1}|W1]]

= EW [EZ [1 {Zv,1
1 6W1}1 {Zv,2

1 6W1}]]− E[E[1 {Zv,1
1 6W1}|W1]]E[E[1 {Zv,2

2 6W1}|W1]]

= EW [EZ [1 {Zv,1
1 6W1}1 {Zv,2

1 6W1}]]− E[1 {Zv,1
1 6W1}]E[1 {Zv,2

2 6W1}]

= EW [EZ [1 {Zv,1
1 6W1}1 {Zv,2

1 6W1}]]− E[1 {Zv,1
1 6W1}]

2

= EW [EZ [1 {Zv,1
1 6W1}1 {Zv,2

1 6W1}]− EZ [1 {Zv,1
1 6W1}]

2].

We now turn to the asymptotic normality of D̂v
2,CVM . We follow van der Vaart [23] to establish the

following proposition (more precisely Theorems 20.8 and 20.9, Lemma 20.10 and Example 20.11).
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Theorem 3.5. The sequence of estimators D̂v
2,CVM is asymptotically Gaussian in estimating Dv

2,CVM

that is
√
N
(
D̂v

2,CVM −Dv
2,CVM

)
is weakly convergent to a Gaussian centered variable with variance ξ2

given by (13).

Proof. We define

GiN (t) =
1

N

N∑
j=1

1 {Zv,i
j 6s}, i = 1, 2,

G1,2
N (t, t) =

1

N

N∑
j=1

1 {Zv,1
j 6t}1 {Zv,2

j 6t},

FN (t) =
1

N

N∑
k=1

1 {Wk6t}.

and rewrite D̂v
2,CVM as a regular function depending on the four empirical processes defined behind:

D̂v
2,CVM =

∫ [
G1,2
N −

(
G1
N + G2

N

2

)2
]
dFN .

Since these processes are cad-lag functions of bounded variation, we introduce the maps ψ1, φ2 :
BV1[−∞,+∞]2 7→ R and Ψ : BV1[−∞,+∞]4 7→ R by

ψi(F1, F2) =

∫
(F1)idF2 and Ψ(F1, F2, F3, F4) = ψ1(F1, F4)− ψ2

(
F2 + F3

2
, F4

)
,

where set BVM [a, b] is the set of càd-làg functions of variation bounded by M .

By Donsker’s theorem,

√
N
(
G1
N − F,G2

N − F,G
1,2
N − G̃,FN − F

)
L→

N→∞
G

where G(t, s) = P
(
Zv,1 6 t, Zv,2 6 s

)
, G̃(t) = G(t, t) and G is a centered Gaussian process of dimension

4 with covariance function defined for (t, s) ∈ R2 by

Π(t, s) = E
(
XtX

T
s

)
− E (Xt)E (Xs)

T

and Xt :=
(
1 {Zv,16t}, 1 {Zv,26t}, 1 {Zv,16t}1 {Zv,26t}, 1 {W6t}

)T .
Using the chain rule 20.9 and Lemma 20.10 in [23], the map Ψ is Hadamard-differentiable from the
domain BV1[−∞,+∞]4 into R. The derivative is given by

(h1, h2, h3, h4) 7→ ψ′(F3,F4)
(h3, h4)− ψ′

(F1+F2
2 ,F4)

(
h1 + h2

2
, h4

)
where the derivative of ψ (resp. φ) are given by Lemma 20.10:

(h1, h2) 7→ h2ϕ ◦ F1|+∞−∞ −
∫
h2−dϕ ◦ F1 +

∫
ϕ′(F1)h1dF2

taking ϕ ≡ Id (resp. ϕ(x) = x2) and h− is the left-continuous version of a càd-làg function h.
Since

D̂v
2,CVM = Ψ

(
G1
N ,G2

N ,G
1,2
N ,FN

)
,
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we apply the functional delta method 20.8 in [23] to get limit distribution of
√
N
(
D̂v

2,CVM −Dv
2,CVM

)
converges weakly to the following limit distribution∫

h4−d(F 2 − G̃) +

∫
h3dF −

∫
F (h1 + h2)dF.

Since the map Ψ is defined and continuous on the whole space BV1[−∞,+∞]4, the delta method in its
stronger form 20.8 in [23] implies that the limit variable is the limit in distribution of the sequence

Ψ′
(F,F,G̃,F )

(√
N
(
G1
N − F,G2

N − F,G
1,2
N − G̃,FN − F

))
=
√
N

[∫
(FN − F )− d

(
F 2 − G̃)

)
+

∫ (
G1,2
N − G̃− F

(
G1
N + G2

N − 2F
))
dF

]
.

We define

U :=

∫
1 {W<t}d

(
F 2(t)−G(t, t)

)
= G(W+,W+)− F (W+)2,

V :=

∫ [
1 {Zv,16t}1 {Zv,26t} −

(
1 {Zv,16t} + 1 {Zv,26t}

)
F (t)

]
dF (t) =

1

2

(
F (Zv,1)2 + F (Zv,2)2

)
− F (Zv,1 ∨ Zv,2).

Obviously,

E(U) =

∫ (
G(t+, t+)− F (t+)2

)
dF (t),

E(U2) =

∫ (
G(t+, t+)− F (t+)2

)2
dF (t),

E(V ) =

∫ (
F (t)2 −G(t, t)

)
dF (t),

E(V 2) =
1

2

∫
F (t)4dF (t) +

∫∫ [
F (t ∨ s)

(
F (t ∨ s)− F (t)2 − F (s)2

)
+

1

2
F (t)2F (s)2

]
dG(t, s).

By independence, the limiting variance ξ2 is

ξ2 = VarU + VarV. (13)

4 Numerical applications

4.1 A flavour of the method in a toy model
Let us consider the quite simple linear model

Y = αX1 +X2, α > 0,

where X1 has the Bernoulli distribution with success probability p and X1, X2 are independent. Assume
further that X2 has a continuous distribution F on R with finite variance σ2 and that µ = E[X2] and
σ2 = α2p(1 − p). With these choices the random variables αX1 and X2 share the same variances and
X1 and X2 have the same first order Sobol indices (1/2). On one hand, the conditional distribution Y
knowing X1 = 0 is the same as the one of X2 and the conditional distribution Y knowing X1 = 1 is
F (· − α). On the other hand, the conditional distribution of Y knowing X2 is

P (Y = α+X2 | X2) = 1− P (Y = X2|X2) = p.

Hence, the density of Y is the mixture pF (· − α) + (1− p)F (·). Tedious computations lead to

D1
2,CVM = p(1− p)

∫
R

(F (t)− F (t− α))2 [(1− p)dF (t) + pdF (t− α)] (14)

9



and

D2
2,CVM =

1

6
− p(1− p)

[
1

2
−
∫
R
F (t− α)dF (t)

]
. (15)

As p goes to 0 (and α goes to infinity), D1
2,CVM goes to 0 and D2

2,CVM goes to 1/6 while the two classical
Sobol indices remains equal to 1/2. Our new indices shed lights on the fact that, for small p, X2 is much
more influent on Y than X1 which follows the intuition but is lost when one computes the classical Sobol
indices.

Similarly we can compute the indices of order q (q > 2):

Hq
1 = αq [p(1− p)q + (−p)q(1− p)]

Hq
2 = E[(X2 − µ)q].

Some examples (i) if X2 is a centered Gaussian with variance σ2 = α2p(1 − p), one can easily derive
an explicit formula for the second index of order q:

Hq
2 = E[(X2 −m)q] =

{
0 if q is an odd number

q!
2q/2·(q/2)! else.

(ii) if X2 is a uniformly distributed on [0, b] with b = 2α
√

3p(1− p), one can easily derive an explicit
formula for the different indices introduced before:

D1
2,CVM = p(1− p)×

{ (
α
b

)2 (
1− 2

3
α
b

)
if α 6 b

1/3 else,

D2
2,CVM =

1

6
− p(1− p)

2

(
1−

(
b− α
b

)2

1 α6b

)
and

Hq
2 = E[(X2 − µ)q] =

{
0 if q is an odd number
(b/2)q/(q + 1) else.

(iii) if X2 is a exponentially distributed with mean 1/λ = α
√
p(1− p), one can easily derive an explicit

formula for the different indices introduced before:

D1
2,CVM =

p(1− p)
3

(1− e−λα)2 and D2
2,CVM =

1

6
− p(1− p)

2
(1− e−λα)

and

Hq
2 = E[(X2 − µ)q] =

q!

2
λ−q.

The results are presented in Figures 1 to 3. The blue line (resp. the red dashed line) represents the
true value of index D1

2,CVM (resp. D2
2,CVM ). The blue line with o (resp. the red dashed line with +)

represents the estimation of index D1
2,CVM (resp. D2

2,CVM ).

4.2 A non linear model
Let us consider the quite simple model

Y = exp{X1 + 2X2},

where X1 and X2 are independent standard Gaussian random variables. Straightforwardly, we can derive
the density function of the output Y and its distribution function:

fY (y) =
1√

10πy
e−(ln y)

2/101 R+(y) and FY (y) = Φ

(
ln y√

5

)
where Φ stands for the distribution function of the standard Gaussian random variable. Its density
function will be denoted f in the sequel. Then tedious computations lead to the Sobol indices D1

2,CVM

and D2
2,CVM .
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Figure 1: Example 1 - X2 Gaussian distributed.

Figure 2: Example 1 - X2 uniformly distributed.
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Figure 3: Example 1 - X2 exponentially distributed.

Proposition 4.1.

D1
2,CVM =

1

π
arctan 2− 1

3
≈ 0.019 (16)

and

D2
2,CVM =

1

π
arctan

√
19− 1

3
≈ 0.095. (17)

Proof. First of all, the distribution function of Y |X1 is given by

F (1)(t) = P(Y 6 t|X1) = Φ

(
ln t−X1

2

)
.

Then

D1
2,CVM =

∫
R
E
[
(F (1)(t)− FY (t))2

]
fY (t)dt

=

∫
R+

E

[(
Φ

(
ln t−X1

2

)
− Φ

(
ln y√

5

))2
]

1√
10πt

e−(ln t)
2/10dt

=

∫
R
E

(Φ

(√
5z −X1

2

)
− Φ (z)

)2
 e−z2/10 dz√

2π

= E

(Φ(X2)− Φ

(√
5X2 −X1

2

))2


where X1 and X2 are independent standard Gaussian random variables. In the same way,

D2
2,CVM = E

[
(Φ(X2)− Φ

(√
5X2 − 2X1

)
)2
]
.
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Thus we are lead to compute the bivariate function:

ϕ(α, β) := E
[
(Φ(X2)− Φ (αX2 − βX1))2

]
at (α, β) = (

√
5/2, 1/2) and (α, β) = (

√
5, 2). The term E

[
Φ(X2)2

]
is

E
[
Φ(X2)2

]
=

∫
Φ(z)2f(z)dz =

[
1

3
Φ(z)3

]+∞
−∞

=
1

3
.

We introduce U , U ′ and V independent random variables distributed as a standard Gaussian for the two
first and a centered Gaussian with variance α2+β2 for the third one. Then the term E

[
Φ (αX2 − βX1)

2
]

can be rewritten as

E
[
Φ (αX2 − βX1)

2
]

= E
[
Φ (V )

2
]

= E
[
E [1 U6V |V ]

2
]

= E [E [1 U6V |V ]E [1 U ′6V |V ]] = E [E [1 U6V 1 U ′6V |V ]]

= E [1 U6V 1 U ′6V ] = P (U 6 V, U ′ 6 V ) .

Let G be the real-valued function defined on R by G(a) = P (U 6 aV, U ′ 6 aV ) where U , U ′ and V are
independent standard Gaussian random variables. We want to compute G(

√
α2 + β2). Integrating by

parts, we have

G′(a) = 2

∫
R
zΦ(az)e−(a

2+1)z2/2 dz

2π

= − 1

π(a2 + 1)

([
Φ(az)e−(a

2+1)z2/2
]+∞
−∞
− a

∫
R
f(az)e−(a

2+1)z2/2dz

)
=

a

π(a2 + 1)

1√
2a2 + 1

Since G(1) = 1/3, we get

G(a) =
1

3
+

∫ a

1

x

π(x2 + 1)

1√
2x2 + 1

dx =
1

3
+

1

π
(arctan

√
1 + 2a2 − arctan

√
3) =

1

π
arctan

√
1 + 2a2

and

E
[
Φ (αX2 − βX1)

2
]

=
1

3
+

1

π
(arctan

√
1 + 2(α2 + β2)− arctan

√
3) =

1

π
arctan

√
1 + 2(α2 + β2).

In the same way, the last term E [Φ(X2)Φ (αX2 − βX1)] is given by

E [Φ(X2)Φ (αX2 − βX1)] = P

(
U 6 V,

√
1 + β2

α2
U ′ 6 V

)
.

where U , U ′ and V are independent standard Gaussian random variables. Remind we only need to

consider (α, β) = (
√

5/2, 1/2) and (α, β) = (
√

5, 2) in which cases
√

1+β2

α2 = 1. Thus the last equals 1/3

in both cases that leads to the result.

Remark 4.2. In the previous proof, we show that

G(a) := P (U 6 aV, U ′ 6 aV ) =
1

π
arctan

√
1 + 2a2

where U , U ′ and V are independent standard Gaussian random variables. Actually, this result is also
a straightforward consequence of Lemma 4.3 in [2] at 0 with X = (aV − U)/

√
a2 + 1 and Y = (aV −

U ′)/
√
a2 + 1. Nevertheless, since our proof is different and elegant, we decide not to skip it.
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We can compute the indices of order q (q > 2):

Hq
1 = E

[
(eX1+2 − e5/2)q

]
Hq

2 = E
[
(e2X1+1/2 − e5/2)q

]
.

The results are in the following tabular.

Cramér von Mises Sobol indices
D1

2,CVM D2
2,CVM S1 S2

True values 0.0191 0.0949 0.0118 0.3738
N = 102 0.0372 0.0960 0.1962 0.1553
N = 103 0.0192 0.0929 0.0952 0.1085

As a conclusion, with only N = 103, the algorithm provides a precise estimation of the different indices.
Moreover, in this example, Sobol and Cramér von Mises indices give the same influence ranking of the
two random inputs. Nevertheless, it seems that the estimation of the Cramér von Mises indices is more
efficient to give the true ranking.

4.3 Application: The Giant Cell Arthritis Problem
Context and goal
In this subsection, we consider the realistic problem of management of suspected giant cell arthritis
posed by Bunchbinder and Detsky in [8]. More recently, this problem was also studied by Felli and
Hazen [12] and Borgonovo et al. [5]. As explained in [8], “ giant cell arthritis (GCA) is a vasculitis of
unknown etiology that affects large and medium sized vessels and occurs almost exclusively in patients
50 years or older”. This disease may lead to severe side effects (loss of visual accuity, fever, headache,...)
whereas the risks of not treating it include the threat of blindness and major vessels occlusion. A patient
with suspected GCA can receive a therapy based on Prednisone. Unfortunately, a treatment with high
Prednisone doses may cause severe complications. Thus when confronted to a patient with suspected
GCA, the clinician must adopt a clinical strategy. In [8], the authors considered four different strategies:

A : Treat none of the patients;

B : Proceed to the biopsy and treat all the positive patients;

C : Proceed to the biopsy and treat all the patients whatever their result;

D : Treat all the patients.

The clinician wants to adopt the strategy optimizing the patient outcomes measured in terms of utility.
The reader is referred to [17] for more details on the concept of utility. The basic idea is that a patient
with perfect health is assigned a utility of 1 and the expected utility of the other patients (not perfectly
healthy) is calculated subtracting some “disutilities” from this perfect score of 1. These strategies are
represented in Figures 4.3 to 4.3 with the different inputs involved in the computation of the utilities.

Figure 4: The decision tree for the treat none alternative

For example in strategy A (see Figure 4.3), the utility of a patient having GCA and developing severe
GCA complications is given by 1− ds − dugc − dudx. His entire sub-path is then

g × gc× (1− ds − dugc − dudx).
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Figure 5: The decision tree for the biopsy and the treat positive alternative

Figure 6: The decision tree for the biopsy and the treat all alternative
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Figure 7: The decision tree for the treat all alternative

The input parameters
As seen in Figures 4.3 to 4.3, the different strategies involve input parameters like e.g. the proportion g
of patients having GCA or the probability gc for a patient to develop severe GCA complications (fixed
at 0.8 as done in [8]) or even the disutility associated to having GCA symptoms. Table 1 summarizes the
input parameters involved.
The base values are provided by a physician expertise. The values P[·] and D(·) refer respectively to
the probability of an event and to the disutility associated with an event. The minimum and maximum
values m and M depict each parameter’s range for the sensitivity analysis. The base values are provided
by a physician expertise. The utilities of the different strategies when all the input parameters are set to
their base value are summarized in Table 2.
The base value of some input parameters are reliable while the others are really uncertain that leads us to
consider them as random. As a consequence, if YA, YB , YC and YD represent the outcomes corresponding
to the four different strategies A to D, the clinician aims to determine

max{E[YA],E[YB ],E[YC ],E[YD]} (18)

with the uncertain model input presented in Table 1. A sensitivity analysis is then performed to determine
the most influent input variables on the outcome.

Estimation phase and sensitivity analysis
As done in [12] and [5], all the random inputs will be independently Beta distributed. The Beta density
parameters corresponding to each random input are determined by fitting the base value as their mean
and capturing 95% of the probability mass in the range defined by the minimum and maximum. The
remaining 5% will be equally distributed to either side of this range if possible. Concretely, each random
input will be distributed as

Z1m6Z<M + U1m>Z + V 1 Z>M

where Z, U and V are independent random variables. Z is Beta distributed with parameters (α, β). U
and V are uniform random variables on [0,m] and [M, 1] respectively.

Results
The expected values of the utilities corresponding to the distributions given in Table 1 are E[YA] = 0.6991,
E[YB ] = 0.7570, E[YC ] = 0.7371 and E[YD] = 0.7171. Table 3 summarizes the sensitivity measures of
the seven random inputs with three different methodologies: considering the Sobol indices associated to
the output vector Y = (YA, YB , YC , YD) (Multivariate) [14] and the indices presented in this paper based
on the Cramér von Mises distance. The last index considered is the one presented in [4] and named β
defined by

βi = E[sup
y∈Y
{|FY (y)− FY |Xi

(y)|}].
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Beta(α,β)
Parameters Symbols Base Min. m Max. M α β
P[having GCA] g 0.8 – – – –
P[developing severe complications of GCA] gc 0.3 0.05 0.5 4.179 11.011
P[developing severe iatrogenic side effects] pc 0.2 0.05 0.5 2.647 10.589
Efficacy of high dose Prednisone e 0.9 0.8 1 27.787 3.087
Sensitivity of temporal artery biopsy sens 0.83 0.6 1 7.554 1.547
D(major complication from GCA) dugc 0.8 0.3 0.9 27.454 6.864
D(Prednisone therapy) dup 0.08 0.03 0.2 4.555 52.380
D(major iatrogenic side effect) dupc 0.3 0.2 0.9 15.291 35.680
D(having symptoms of GCA) dus 0.12 – – – –
D(having a temporal artery biopsy) dub 0.005 – – – –
D(not knowing the true diagnosis) dudx 0.025 – – – –

Table 1: The data used by Buchbinder and Detsky [8] in their analysis

Treatment alternative Utilility
A Treat none 0.6870
B Biopsy and treat positive 0.7575
C Biopsy and treat all 0.7398
D Treat all 0.7198

Table 2: The utilities of the different strategies when all the input parameters are set to their base value

Sensitivity meas. Ranking
Multivariate 1236475
Baucells et al. 1627354

Cramér von Mises 1627354

Table 3: Sensitivity measures
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We then use the estimator given in [5, Table 1] adapted to the multivariate case that is based on the
tedious and costly estimation of conditional expectations.
As a conclusion, both methodologies based on the whole distribution provide the same ranking unlike the
multivariate sensitivity indices. Nevertheless, the main advantage of the Cramér von Mises sensitivity
methodology is that one can use the Pick and Freeze estimation scheme which provides an accurate
estimation simple to implement. In [5], the authors study a slightly different model that explains the
numerical differences between their results and the ones of the present paper. Furthermore, they perform
a sensitivity analysis on the best alternative with the greater mean instead of considering the multivariate
output.
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